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Abstract

Many studies have documented that daily realized volatility estimates based on intraday

returns provide volatility forecasts that are superior to forecasts constructed from daily

returns only. A few recent studies also find that density forecasts based on realized volatil-

ity are superior to those based on daily data. We investigate whether these forecasting

improvements translate into economic value added. In order to address this question we

develop a new class of discrete-time option valuation models that use daily returns as well

as realized volatility, and that nest the daily Heston and Nandi (2000) GARCH model as

a special case. We derive closed-form option valuation formulas and we assess the option

valuation properties using S&P500 return and option data. We find that realized volatility

reduces the pricing errors of the benchmark model significantly across moneyness, maturity

and volatility levels.
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1 Introduction

ARCH models (Engle (1982)) and their extensions (Bollerslev (1986), Nelson (1991), Glosten,

Jagannathan, and Runkle (1993)) have proven very successful in describing the time series be-

havior of conditional variances of financial asset returns. Statistical tools like the likelihood

principle strongly favor ARCH and GARCH over models with constant variance, and the models

have therefore found widespread use in finance to model stock returns, interest rates, exchange

rates, and option prices.

One important criticism of GARCH models concerns their apparent shortcomings in forecast-

ing volatility, as measured by the R2 of a Mincer-Zarnowitz regression that uses squared daily

return as a proxy for variance on the left-hand side and the GARCH forecast of volatility on

the right-hand side. Andersen and Bollerslev (1998) make two important contributions in this

regard. First, they prove theoretically and by simulation that when the GARCH model is the

true underlying data generating process, the R2s of Mincer-Zarnowitz regression can be expected

to be low, and are in fact of similar magnitude than the empirically observed R2s. Andersen

and Bollerslev (1998) note that this apparent lack of predictive ability is due to the use of the

squared daily returns as the dependent variable in the regression, because the squared daily

return is a very noisy measure of the variance. Andersen and Bollerslev’s second contribution is

to demonstrate that realized volatility, measured as the sum of squared intra-daily returns, is a

superior measure of volatility, and leads to much higher R2s in the Mincer-Zarnowitz regression.

Following the realization that accurate measures of volatility can be obtained from high fre-

quency data, a growing literature has developed that studies the properties of realized volatility.

Andersen, Bollerslev, Diebold, and Labys (2003) propose time series models for realized volatility

in order to more accurately predict volatility. Joint models for returns and realized volatility

have been proposed, either ignoring the contribution of jumps (Forsberg and Bollerslev (2002))

or by incorporating them in the model (Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009)).1

Likewise, a few authors jointly model returns and realized volatility for the purpose of option

pricing. Following the density modeling approach in Forsberg and Bollerslev (2002), Stentoft

(2008) assumes that the conditional distribution of realized volatility is Inverse Gaussian with

time-varying mean, while returns are assumed to be conditionally normal with variance equal

to current realized volatility. Corsi, Fusari, and La Vecchia (2009) follow a similar approach by

jointly modeling returns and the two-scale realized volatility (Zhang, Mykland and Aït-Sahalia

(2005)). These models are not affine, and therefore pricing European options is done using

1Other studies investigate the properties of realized volatility when the intra-day returns converge toward
zero (e.g., Barndorff-Nielsen and Shephard (2002)), when there are market frictions (e.g., Zhang, Mykland, and
Aït-Sahalia (2005)), and when one faces different types of jumps (see e.g., Aït-Sahalia and Jacod (2009) and the
references therein).
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simulation, making statistical inference challenging.

We develop a new class of affine discrete-time models that allow for closed-form option valua-

tion formulas using the conditional moment-generating function. We model daily returns as well

as realized volatility. The volatility dynamic for the resulting models contains a GARCH com-

ponent that consists of daily lagged squared returns, but also a realized volatility component.2

We refer to this model as the generalized realized volatility (GRV) model. The GRV model nests

the daily Heston and Nandi (2000) GARCH model as a special case, and also nests a variance

dynamic with realized volatility only as a special case, which we refer to as the RV model.

While realized volatility is a better proxy for spot volatility than lagged squared returns,

it still may be too noisy when used in its raw form in option valuation. We therefore develop

another model where expected realized volatility is used in the variance dynamic in conjunction

with squared returns. We refer to this model as the GERV model, and the corresponding special

case that only models expected realized volatility is referred to as the ERV model. We thus study

five models in total: GRV, RV, GERV, ERV, and the benchmark Heston-Nandi GARCH model.

We implement and test our models using two different data sets. First, we estimate the models

on S&P500 returns and realized volatility data using maximum likelihood. Second, we assess the

option valuation properties of our models using S&P500 option data. We find that incorporating

realized volatility leads to a better fit on returns and realized volatility, and that it reduces

the option pricing errors of the benchmark model significantly across moneyness, maturity and

volatility levels. Moreover, modeling expected realized volatility is superior to the use of raw

realized volatility. We demonstrate that the improved performance of our newly proposed models

is due to their ability to more adequately model higher moments, in particular the volatility of

variance.

The paper proceeds as follows. Section 2 introduces the models. Section 3 presents model

estimates obtained using a long sample of returns and realized volatilities. Section 4 discusses the

models’ risk neutralization. Section 5 discusses option valuation using a large sample of option

data. Section 6 concludes. Some of the more technical material is collected in the appendix.

2 Modeling Return Dynamics Using Realized Volatility

This section builds two classes of affine dynamic models that employ the information embedded

in daily realized volatility, while nesting the affine discrete time option pricing model of Heston

and Nandi (2000). The first class of models focuses on realized volatility directly, and we refer

2Our model thus contains two components, and is somewhat related to the literature that argues that more
than one volatility component is needed. See for instance Bates (2000), Duffie, Pan, and Singleton (2000),
Christoffersen, Jacobs, Ornthanalai, and Wang (2008), Christoffersen, Dorion, Jacobs, and Wang (2009), and
Christoffersen, Heston, and Jacobs (2009).
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to it as the GRV model. The second class models the expectation of realized volatility instead,

and we refer to it as the GERV model.

2.1 The Benchmark Heston and Nandi (2000) GARCH Model

Heston and Nandi (2000) assumes the following process for daily log returns

Rt+1 ≡ ln (St+1/St) = r + λht −
1

2
ht +

p
htεt+1,

where r denotes the risk-free rate, λ denotes the price of risk, and ht is the conditional variance

for day t + 1 which is known at the end of day t.3 The i.i.d. standard normal error term is

represented by εt+1. The autoregressive GARCH-type variance process takes the following form

ht+1 = ω + βht + α
³
εt+1 − γ

p
ht
´2
,

where γ captures the asymmetric volatility response, often referred to as the leverage effect. We

will refer to this model as HN below.

2.2 Augmenting GARCH with Realized Volatility: The GRV Model

The seminal paper by Andersen, Bollerslev, Diebold and Labys (2003) contains the important

intuition that realized volatility helps in forecasting future volatility, because it provides a better

assessment of current spot volatility. GARCH models instead need to infer today’s volatility

from a moving average of past daily squared returns. This intuition motivates us to build an

option valuation model where realized volatility is used to construct today’s spot volatility. This

should in turn lead to better estimates of the volatility term structure, and thus to more accurate

option prices.

In the GRV model, returns are specified as

Rt+1 = r + λh̄t −
1

2
h̄t +

p
h̄tε1,t+1. (1)

Daily volatility is defined as a weighted average of two components, one driven by daily return

3Note that our timing convention is a little different from Heston and Nandi (2000). Furthermore, they do
not include the −12ht term thus λ = −12 corresponds to risk-neutrality in their setup whereas λ = 0 corresponds
to risk-neutrality in ours. This will be discussed further below.
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innovations and one by daily realized volatility

h̄t = nht + (1− n)RVt (2)

ht+1 = ω1 + β1ht + α1
³
ε1,t+1 − γ1

p
h̄t
´2
, (3)

where RVt is observed at the end of day t. The HN model is nested in the GRV model by

imposing n = 1. A purely realized-volatility based model obtains if n = 0. We refer to this

model as RV.

In order to use the model for option valuation we need to specify the conditional distribution

of the random variable RVt+1. Staying with the Heston-Nandi type affine dynamics, we assume

that

RVt+1 = ω2 + β2RVt + α2
³
ε2,t+1 − γ2

p
h̄t
´2

, (4)

where we assume that the joint distribution of the innovations to return and realized volatility,

ε1,t+1 and ε2,t+1, is bivariate standard normal with correlation ρ. Note that the daily return and

the daily realized volatility are allowed to have separate leverage effects through γ1 and ργ2. Note

also that each volatility component follows an affine dynamic, as in the Heston-Nandi GARCH

model in Section 2.1.

Below we estimate these models using quasi-maximum likelihood. We therefore need the

following moment expressions

Et (Rt+1) = r + λh̄t −
1

2
h̄t

Et (RVt+1) = ω2 + α2 + α2γ
2
2nht + (β2 + α2γ

2
2(1− n))RVt (5)

V art (RVt+1) = α22(3 + 4γ
2
2h̄t)

Covt (RVt+1, Rt+1) = −2ργ2α2h̄t.

The following moments drive the model’s option pricing performance, and will be studied in

more detail below.

First, the expected variance is given by the GARCH and RV factors

Et

¡
h̄t+1

¢
= nEt (ht+1) + (1− n)Et (RVt+1) ,

where Et (RVt+1) is provided above and where

Et (ht+1) = ω1 + α1 +
¡
β1 + α1γ

2
1n
¢
ht + α1γ

2
1(1− n)RVt. (6)
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Second, the conditional variance of variance takes the form

V art
¡
h̄t+1

¢
= n2α21(3 + 4γ

2
1h̄t) + (1− n)2 α22(3 + 4γ

2
2h̄t) + 2α1α2

¡
1 + 2ρ2 + 4γ1γ2h̄tρ

¢
.

Third, the conditional covariance between return and variance takes the form

Covt
¡
Rt+1, h̄t+1

¢
= −2 (nα1γ1 + (1− n) ργ2α2) h̄t.

Notice that using RV as a factor not only provides a potentially more accurate picture of the

current spot volatility and the volatility term structure, it also provides more flexible functional

forms for variance of variance and the leverage effect which are key in capturing the dynamics of

the higher moments of the return distribution.

2.3 Augmenting GARCH with Expected Realized Volatility: The

GERV Model

The approach in (2.2) is the most straightforward way to incorporate realized volatility into a

return dynamic that is suitable for option valuation. However, while realized volatility is a better

proxy for spot volatility than squared returns, it still may be too noisy when used for option

valuation directly within the weighted average conditional variance above. We thus develop

another model where the expected realized volatility, mt = Et [RVt+1], is used instead. We refer

to this model as GERV.

Returns are again defined as

Rt+1 = r + λh̄t −
1

2
h̄t +

p
h̄tε1,t+1. (7)

The conditional variance is now defined by

h̄t = nht + (1− n)mt

ht+1 = ω1 + β1ht + α1
³
ε1,t+1 − γ1

p
h̄t
´2

. (8)

Note again that the HN model in Section 2.1 appears as a special case when n = 1. A model

purely based on expected realized volatility emerges if n = 0. We denote this special case by

ERV.

We assume that expected realized volatility evolves as

mt = ω2 + θmt−1 + β2RVt (9)
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and that observed realized volatility is linked with its expectation via

RVt+1 = mt + α2

∙³
ε2,t+1 − γ2

p
h̄t
´2
−
¡
1 + γ22h̄t

¢¸
. (10)

Note that the term inside the square bracket has a zero mean by construction. Note also that

this model offers a richer dynamic for realized volatility than does the RV model above.

We again assume that ε1,t+1 and ε2,t+1 follow a bivariate standard normal distribution with

correlation ρ. The model moments needed to estimate the model by quasi maximum likelihood

are

V art (RVt+1) = α22(3 + 4γ
2
2h̄t)

Covt (RVt+1, Rt+1) = −2ργ2α2h̄t.

The key moments for option valuation are as follows. First, the expected variance is given by

Et

¡
h̄t+1

¢
= nEt (ht+1) + (1− n)Et (mt+1) ,

where

Et (ht+1) = ω1 + α1 +
¡
β1 + α1γ

2
1n
¢
ht + α1γ

2
1(1− n)mt

Et (mt+1) = ω2 + (θ + β2)mt.

Second, the conditional variance of variance implied by the model is

V art
¡
h̄t+1

¢
= n2α21(3 + 4γ

2
1h̄t) + (1− n)2 α22β

2
2(3 + 4γ

2
2h̄t) + 2α1α2β2

¡
1 + 2ρ2 + 4γ1γ2h̄tρ

¢
.

Third, the conditional covariance between return and variance is

Covt
¡
Rt+1, h̄t+1

¢
= −2 (nα1γ1 + (1− n) ργ2α2β2) h̄t.

The time series paths of these moments will be plotted once the models have been estimated.

3 Daily Return and Realized Volatility Empirics

We now estimate the two models introduced in Section 2, GRV and GERV, as well as the

special cases RV and ERV, using daily return and realized volatility data. We also estimate the

benchmark Heston-Nandi model. Recall that these five models are related as follows.
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Model: HN RV GRV ERV GERV

n: 1 0 free 0 free

We use daily close-to-close returns and realized variance data for the S&P 500 cash index for

the period February 2, 1983 to August 31, 2006, which yields a total of 5,946 observations. The

daily returns on the S&P500 index are plotted in the top panel of Figure 1. The 22% drop in

October 1987 dominates the picture but the plot also illustrates the low-frequency variations in

volatility. The low-volatility period in the mid 1990s is evident as is the period of high volatility

in the late 1990s and early 2000s. The last part of the sample (2004-2006) is characterized by

another episode of relatively low volatility.

The middle and bottom panels of Figure 1 plot the daily realized volatility (square root of

RV) using 5-minute and 60-minute intraday returns respectively. It is interesting to note that

the dominating October 1987 crash shows up as a 14% volatility day when using 60-minute RV

but only as a 7% volatility day when using 5-minute returns to compute RV. Notice also the that

60-minute RV, which is computed from many fewer intraday observations than the 5-minute RV,

tends to exhibit more high-frequency variation which may be driven by sampling error. We will

focus on the 5-minute RVs below and include results on 60-minute RVs as a robustness check.

3.1 Maximum Likelihood Estimation

We estimate the five models using quasi maximum likelihood. The quasi-log-likelihood of returns

at time t+ 1 conditional on information known at time t is

L(Rt+1|It) = −
1

2
ln(2πV art [Rt+1])−

(Rt+1 −Et [Rt+1])
2

2V art [Rt+1]
. (11)

The quasi-log-likelihood of realized variance at time t + 1 conditional on information known at

time t is

L(RVt+1|It) = −
1

2
ln(2πV art [RVt+1])−

(RVt+1 −Et [RVt+1])
2

2V art [RVt+1]
.

and the joint quasi-log-likelihood of returns and realized variance is

L(Rt+1, RVt+1|It) = − ln(2π)−
1

2
ln
¡
V art [Rt+1]V art [RVt+1]− Covt (RVt+1, Rt+1)

2¢

−

Ã
V art [RVt+1] (Rt+1 −Et [Rt+1])

2 + V art [Rt+1] (RVt+1 −Et [RVt+1])
2

−2 (RVt+1 −Et [RVt+1]) (Rt+1 −Et [Rt+1])Covt (RVt+1, Rt+1)

!
2
¡
V art [Rt+1]V art [RVt+1]− Covt (RVt+1, Rt+1)

2¢ .

The conditional moments required for these likelihood functions are provided in Section 2 above.
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Estimation results are reported in Tables 1 and 2. For each RV series, we follow Hansen and

Lunde (2005) by adding the squared overnight return to the high-frequency intraday returns.

We then scale the realized variances to match the unconditional variance of returns. When

using realized volatility data, the choice of aggregation interval is important. Table 1 reports

results obtained using 5-minute intervals, and Table 2 using 60-minute intervals. The appendix

provides the conditions for variance stationarity as well as equations for variance and equity

premium targeting which is used to pin down estimates of λ, ω1, and ω2 as functions of the other

parameters.

First consider the results obtained using 5-minute intervals in Table 1. Note that model-

implied average volatility is the same in all five models, because of variance targeting. Similarly,

λ is the same across models due to equity premium targeting. In the GRV model the point

estimate of the parameter n is 0.45, and it is significantly different from zero. In the GERVmodel

the point estimate of the parameter n is 0.20, and it is significant at conventional significance

levels. The persistence of volatility and the volatility components is indicated at the bottom of

the table. In the GRV model the persistence associated with the GARCH component is 0.70,

whereas the persistence associated with the realized volatility component is 0.50. In the GERV

model, the structure is somewhat different: the realized volatility component is slowly mean

reverting, with a persistence of 0.99, while the GARCH component rapidly mean reverts with a

persistence of 0.25. In the special cases of the RV and the ERV model, persistence is estimated

at 0.88 and 0.98 respectively, which compares with the GARCH persistence of 0.96.

The estimates of γ1 and γ2 are positive in all cases, which is induced by the negative skewness

of the return distribution. The estimate of ρ is approximately 0.1 in all models.

The log-likelihood values allow us to test the special cases of the RV model and the ERV

model against the more general GRV model and GERV model respectively. Using a standard

likelihood ratio statistic, the restrictions imposed by these models are resoundingly rejected,

indicating that the GARCH and RV dynamic both contribute to the modeling of daily index

returns.

Another interesting comparison is between the two models incorporating realized volatility,

RV and GRV, and the two competing ones that model the conditional mean of realized volatility

instead, ERV and GERV. This comparison is also interesting because the number of parameters

in these models only differs by one. Based on the likelihood values, we conclude that modeling

based on the expected value of realized volatility is preferable, and that the resulting reduction

in noise is beneficial for the purpose of modeling returns and realized volatility.

It is less straightforward to statistically compare the GARCH model and the four newly

proposed models. The GARCH likelihood does not contain a realized volatility component, and

therefore cannot be meaningfully compared to the overall likelihood of the GRV and GERV
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models. The table reports the realized volatility component and return component separately

for the four newly proposed models, but a comparison of the return component of the likelihood

with the GARCH likelihood is also problematic, because in the four newly proposed models (11)

is not considered separately. For the four newly proposed models, we therefore also report the

likelihood from returns only. This is done by computing the conditional mean and variance of

returns implied by the model, and then maximizing the univariate Gaussian likelihood using

these two conditional moments. These return-based log-likelihood results are reported in the

row labeled “Maximized on Returns”. They indicate that the Heston-Nandi GARCH model is

superior to the raw RV model, but that it is dominated by the other three models.

Table 2 presents an analysis similar to Table 1, but now 60-minute intervals are used for

constructing realized volatility. The estimate of n in the GRV model is somewhat higher than

in Table 1, at 0.50, and the estimate of n in the GERV model is substantially higher, at 0.35.

All estimates of γ1 and γ2 are again positive, and the estimates of ρ are very similar to Table

1. Overall the estimates of the persistence for all models are also comparable to those in Table

1. The log-likelihood comparison between the models also yields similar results, although the

evidence in favor of modeling using the expectation of realized volatility is even stronger, with

the much more parsimonious ERV model outperforming the GRV model.

Overall the estimation based on returns and realized volatility yields two important con-

clusions. First, both the GARCH volatility and the realized volatility dynamic contribute to

the modeling of daily index returns. Second, modeling the expectation of realized volatility is

superior to modeling realized volatility directly.

3.2 Dynamic Model Properties

Figures 2-5 report on various dynamic properties of the five models we have estimated. For

brevity we only report on the models estimated on 5-minute realized variance. Figure 2 plots the

daily conditional volatility
p
h̄t =

p
V art (Rt+1) for each of the four new models when estimated

on 5-minute realized variance. Not surprisingly, all four models track the market volatility during

the 1983-2006 period in a similar way. Notice however, that the pure RV model in the top-left

panel tends to exhibit much more high-frequency variation in the conditional volatility. Figure

3 confirms this by plotting the model-implied conditional volatility of variance defined as the

square root of V art
¡
h̄t+1

¢
. The volatility of variance is generally higher in the RV model than

in the other models and it also tends to show more high-frequency moments inherited from h̄t.

Figure 4 plots the model-implied conditional correlation between return and variance, defined
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as

Corrt
¡
Rt+1, h̄t+1

¢
=

Covt
¡
Rt+1, h̄t+1

¢q
V art

¡
h̄t+1

¢
h̄t

.

Figure 4 shows that the models differ considerably in this regard. The conditional correlation

is roughly constant over time in each model. Notice that it is around -10% in the RV and ERV

models, around -30% in the GRV model and around -50% in the GERV model. Recall that the

GRV and GERV models have two sources of the leverage effect: γ1 from the GARCH part and

ργ2 from the RV part. Clearly allowing for the GARCH to play a role in the models increases

the estimated leverage effect. This is important to keep in mind when analyzing the models’

ability to fit options which we turn to next.

Before turning to option valuation we plot in Figure 5 the conditional volatility, conditional

volatility of variance, and conditional correlation of return and variance for the benchmark HN

GARCH model. When comparing with the RV models in Figure 2-4 we see that the conditional

volatility is much less volatile in the GARCH model and that the conditional correlation with

returns is much larger in magnitude and fluctuates much more over time in GARCH compared

with the RV models.

4 Risk Neutralization and Option Valuation

In this section we use the return processes defined above to derive option valuation formulas,

using the models’ conditional moment generating functions. We first consider the GRV model

and subsequently the GERV model. Recall that the RV and ERV models are special cases of

these.

4.1 The GRV Model

4.1.1 Moment Generating Function

The appendix demonstrates that the one-period conditional moment generating function for the

GRV model is of the form

Et [exp (u1Rt+1 + u2ht+1 + u3RVt+1)]

= exp (A1 (u1, u2, u3)ht +A2 (u1, u2, u3)RVt +B (u1, u2, u3)) .

This allows us to find Et

h
exp

³
u
PM

j=1Rt+j

´i
. Since the model is affine, we conjecture that
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the multi-period conditional moment generating function is of the form

Ψt,t+M (u) ≡ Et

"
exp

Ã
u

MX
j=1

Rt+j

!#
= exp (C1 (u,M)ht + C2 (u,M)RVt +D(u,M)) .

The appendix proves this conjecture.

4.1.2 Risk Neutralization

The pricing kernel provided in Christoffersen, Elkamhi, Feunou and Jacobs (2009) is defined via

Zt+1 =
exp (ν1,tε1,t+1 + ν2,tε2,t+1)

Et [exp (ν1,tε1,t+1 + ν2,tε2,t+1)]
.

Given that ε1,t+1 and ε2,t+1 are bivariate standard normal with correlation ρ we have

Zt+1 = exp

µ
ν1,tε1,t+1 + ν2,tε2,t+1 −

ν21,t
2
−

ν22,t
2
− ν1,tν2,tρ

¶
.

We need to impose that

EQ
t [exp (Rt+1)] = exp (r) .

The risk-neutral expected compound return is

EQ
t [exp (Rt+1)] = Et [Zt+1 exp (Rt+1)] = exp

³
r + λh̄t + (ν1,t + ν2,tρ)

p
h̄t
´
.

Setting this to the risk-free rate gives

EQ
t [exp (Rt+1)] = exp (r)⇔ λh̄t + (ν1,t + ν2,tρ)

p
h̄t = 0

⇔ ν1,t + ν2,tρ = −λ
p
h̄t.

For the bivariate shocks we have the risk-neutral expectation

EQ
t [exp (u1ε1,t+1 + u2ε2,t+1)] = Et [Zt+1 exp (u1ε1,t+1 + u2ε2,t+1)]

= exp

µ
u1 (ν1,t + ν2,tρ) + u2 (ν2,t + ν1,tρ) +

u21
2
+

u22
2
+ u1u2ρ

¶
.

Under the risk-neutral probability measure we know that ε∗1,t+1 = ε1,t+1 − (ν1,t + ν2,tρ) and

ε∗2,t+1 = ε2,t+1− (ν2,t + ν1,tρ), are bivariate standard normal with correlation ρ. We can therefore
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rewrite the model as follows

Rt+1 = r + λh̄t −
1

2
h̄t +

p
h̄tε1,t+1.

= r + λh̄t −
1

2
h̄t +

p
h̄t
¡
ε∗1,t+1 + ν1,t + ν2,tρ

¢
= r + λh̄t +

p
h̄t (ν1,t + ν2,tρ)−

1

2
h̄t +

p
h̄tε

∗
1,t+1

= r − 1
2
h̄t +

p
h̄tε

∗
1,t+1

which holds because

λh̄t +
p
h̄t (ν1,t + ν2,tρ) = 0.

The dynamic of the GARCH component of the volatility can be rewritten in term of the risk-

neutral shock as follows

ht+1 = ω1 + β1ht + α1
³
ε1,t+1 − γ1

p
h̄t
´2

= ω1 + β1ht + α1
³
ε∗1,t+1 − γ∗1

p
h̄t
´2

with γ∗1 = γ1 − λ.

The dynamic of the RV-component of the volatility can be rewritten in term of risk-neutral

shock as follows

RVt+1 = ω2 + β2RVt + α2
³
ε2,t+1 − γ2

p
h̄t
´2

= ω2 + β2RVt + α2
³
ε∗2,t+1 − γ∗2t

p
h̄t
´2

with γ∗2t = γ2 −
ν2,t+ν1,tρ√

h̄t
.

In order to keep model affine under the risk-neutral probability measure, we assume

ν2,t + ν1,tρ = χ

q
h̄t,

where χ is a given constant. In that case we have

ν2,t = χ
p
h̄t − ν1,tρ

and

γ∗2t = γ∗2 = γ2 − χ.
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In summary, the dynamic under the risk-neutral probability measure is

Rt+1 = r − 1
2
h̄t +

p
h̄tε

∗
1,t+1

h̄t = nht + (1− n)RVt

ht+1 = ω1 + β1ht + α1
³
ε∗1,t+1 − γ∗1

p
h̄t
´2

RVt+1 = ω2 + β2RVt + α2
³
ε∗2,t+1 − γ∗2t

p
h̄t
´2

where ε∗1,t+1 and ε∗2,t+1, are bivariate standard normal with correlation ρ under Q.

4.1.3 Option Valuation

Using the results in Section 4.1.1, we can show that the price at time t of a European call option

with payoff (St+M −X)+ at time t+M is given by

Ct = exp(−rM)StP1,t − exp(−rM)XP2,t, (12)

where the probabilities are defined via Fourier inversion of the conditional characteristic function

P1,t =
exp (rM)

2
+

Z +∞

0

Re

⎡⎣exp
³
ΨQ
t,t+M (1 + iu)− iu ln

³
X
St

´´
πiu

⎤⎦ du,
P2,t =

1

2
+

Z +∞

0

Re

⎡⎣exp
³
−iu ln

³
X
St

´
+ΨQ

t,t+M (iu)
´

πiu

⎤⎦ du.
The risk-neutral conditional characteristic function is defined using its physical counterpart as

ΨQ
t,t+M (u) = C∗1 (u,M)ht + C∗2 (u,M)RVt +D∗(u,M).

The price of a European put option can be computed using put-call parity.
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4.2 The GERV Model

4.2.1 Moment-Generating Function

For the GERV model the appendix shows that the one-period conditional moment generating

function is also of the exponentially affine form

Et [exp (u1Rt+1 + u2ht+1 + u3mt+1)]

= exp (A1 (u1, u2, u3)ht +A2 (u1, u2, u3)mt +B (u1, u2, u3)) .

Since the model is affine, we conjecture that the multiperiod conditional moment generating

function is of the following form

Ψt,t+M (u) ≡ Et

"
exp

Ã
u

MX
j=1

Rt+j

!#
= exp (C1 (u,M)ht + C2 (u,M)mt +D(u,M))

which is derived in the appendix.

4.2.2 Risk Neutralization

The risk-neutralization and the pricing kernel is very similar to the one provide in the GRV

model. Let us just write the dynamics of the realized variance RVt+1, as it is the only difference

between the two models.

RVt+1 = mt + α2

∙³
ε2,t+1 − γ2

p
h̄t
´2
−
¡
1 + γ22h̄t

¢¸
= mt + α2

∙³
ε∗2,t+1 + ν2,t + ν1,tρ− γ2

p
h̄t
´2
−
¡
1 + γ22h̄t

¢¸
= mt + α2

∙³
ε∗2,t+1 − γ∗2t

p
h̄t
´2
−
¡
1 + γ22h̄t

¢¸
with

γ∗2t = γ2 −
ν2,t + ν1,tρp

h̄t
.

Again, to keep the model affine under Q, we will impose a constant γ∗2t. This is done by assuming

ν2,t + ν1,tρ = χ
p
h̄t
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where χ is a given constant. In that case we have

ν2,t = χ
p
h̄t − ν1,tρ

and thus

γ∗2t = γ2 − χ.

We now have

RVt+1 = mt + α2

∙³
ε∗2,t+1 − γ∗2

p
h̄t
´2
−
¡
1 + γ22h̄t

¢¸
= mt + α2

¡
γ∗22 − γ22

¢
h̄t + α2

∙³
ε∗2,t+1 − γ∗2

p
h̄t
´2
−
¡
1 + γ∗22 h̄t

¢¸
.

There is one notable difference between the physical (P) and the risk-neutral (Q) measures. Note

that

EQ
t [RVt+1] = mt + α2

¡
γ∗22 − γ22

¢
h̄t

= Et [RVt+1] + α2
¡
γ∗22 − γ22

¢
h̄t,

and thus

EQ
t [RVt+1]−Et [RVt+1] = α2

¡
γ∗22 − γ22

¢
h̄t,

which means that the difference between γ∗2 and γ2 measures the variance premium.

In summary, the dynamic under the risk-neutral probability measure is

Rt+1 = r − 1
2
h̄t +

p
h̄tε

∗
1,t+1

h̄t = nht + (1− n)mt

with

ht+1 = ω1 + β1ht + α1
³
ε∗1,t+1 − γ∗1

p
h̄t
´2

RVt+1 = m∗
t + α2

∙³
ε∗2,t+1 − γ∗2

p
h̄t
´2
−
¡
1 + γ∗22 h̄t

¢¸
mt = ω2 + θmt−1 + β2RVt

m∗
t = mt + α2

¡
γ∗22 − γ22

¢
h̄t,

where ε∗1,t+1 and ε∗2,t+1, are bivariate standard normal with correlation ρ under Q.
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4.2.3 Option Valuation

Using these results, the price at time t of a European call option with payoff (St+M −X)+ at

time t+M is given by

Ct = exp(−rM)StP1,t − exp(−rM)XP2,t, (13)

where again the probabilities can be computed using Fourier inversion of the risk-neutral condi-

tional characteristic function which is defined by

ΨQ
t,t+M (u) = C∗1 (u,M)ht + C∗2 (u,M)mt +D∗(u,M).

As before put options can be valued using put-call parity.

5 Option Valuation: Empirical Findings

We now discuss the option fit of the four proposed models, and compare it with the fit of the

benchmark GARCHmodel. We first discuss the option data used in our empirical analysis. Then

we estimate the models on option data using Nonlinear Least Squares (NLS).

5.1 Option Data

We use closing prices on European S&P500 index options from OptionMetrics observed from

January 1, 1996 through December 31, 2004. In order to ensure that the contracts we use are

liquid, we only rely on out-of-the-money options with maturity between 15 and 180 days. For

each maturity on each Wednesday we retain only the seven most liquid strike prices. We restrict

attention to Wednesday data. This enables us to study a fairly long time-period while keeping

the size of the data set manageable. Our sample has 10,138 options.

Table 3 describes key features of the data. The top panel of Table 3 sorts the data by six

moneyness categories and reports the number of contracts, the average option price, the average

Black-Scholes implied volatility, and the average bid-ask spread in dollars. Moneyness is defined

as the implied index futures price, F , divided by the option strike price X. The implied volatility

row shows that deep out-of-the-money puts, those with F/X > 1.06 are relatively expensive. The

implied volatility for those options is 25.73% compared with 19.50% for at-the-money options.

The data thus display the well-known smirk pattern across moneyness.

The bottom panel sorts the data by maturity reported in calendar days. The implied volatility

row shows that the term structure of volatility is roughly flat on average during the period.
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5.2 Estimating Model Parameters from Option Prices

We estimate the GERV, GRV, ERV, and RV models, as well as the benchmark Heston-Nandi

GARCH model by minimizing implied volatility root mean squared error (IVRMSE). We refer

to Broadie, Chernov, and Johannes (2007) for a discussion on the benefits of using the IVRMSE

metric for comparing option pricing models. For the computation of the IVRMSE, we invert each

computed option price Oj from the model using the Black-Scholes formula to get the implied

volatilities IV (Oj,Xj,Mj,Sj,rj). With N denoting the total number of options in the sample,

the IVRMSE is then computed as

IV RMSE ≡
s
1

N

NP
j=1

¡
σBSj − IV (Oj, Xj,Mj, Sj, rj)

¢2
.

Tables 4 and 5 contain the results of NLS estimation. Table 4 uses realized volatility con-

structed using 5-minute intervals, and Table 5 uses 60-minute intervals.

The third row from the bottom in Table 4 indicates the IVRMSE metric. The IVRMSE for

the most general GERV model is 3.067, compared with 3.904 for the benchmark GARCH model.

This is an improvement of 21.44% on a percentage basis, which is impressive. The IVRMSE of

the ERV model is 3.485. The GERV model therefore outperforms this model by almost 12%,

which indicates that the GARCH-type volatility dynamic contributes to option valuation as does

the RV based dynamic. This conclusion is reinforced by comparing the IVRMSE of the GRV

model, 3.503, with the IVRMSE of the RV model, 3.923.

Another obvious conclusion from the IVRMSEs is the superiority of the modeling approach

based on expected realized volatility. The IVRMSE of the GERV model, 3.067, is 12.44% lower

than the IVRMSE of the GRV model, 3.503. Moreover, the IVRMSE of the ERV model, 3.485,

is 11.16% lower than the IVRMSE of the RV model, 3.923.

It is also important to keep this in mind when comparing the performance of the GARCH

model, which exclusively uses exponentially weighted lagged squared returns, with the perfor-

mance of models based exclusively on current realized volatility. The IVRMSE of the GARCH

model, 3.904, is lower than the IVRMSE of the RV model, but substantially higher than the

IVRMSE of the ERV model.

Comparing parameter estimates with the QMLE estimates in Table 1 based on returns and

realized volatility, the estimate of n in the GERVmodel is substantially higher, while the estimate

of n in the GRV model is lower. All estimates of γ1 and γ2 are positive in all cases, as expected,

but the estimate of γ2 in the GERV model is surprisingly small. Estimates of ρ are much higher.

Also, processes and components are more persistent compared to Table 1. In the case of the

GERV model, both components are now very persistent.
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Table 5 contains results for realized volatility constructed using 60-minute intervals. The

ranking of the models is similar to Table 4, but the overall conclusion is that the models containing

realized volatility perform somewhat worse compared to Table 4. For the purpose of option

valuation, modeling realized volatility using higher frequency data therefore seems preferable.

Parameter estimates are also largely consistent with those in Table 4, although the estimate of

γ2 in the GERV model is now larger, and the persistence of the volatility process associated with

lagged squared returns for the GERV model is less persistent compared to Table 4.

Overall the results from model estimation based on option data confirm the main conclusions

from QMLE estimation on realized volatility and returns in Section 3. First, realized volatility

contains important information that is not contained in lagged squared returns. Second, modeling

expected realized volatility is superior to modeling realized volatility directly.

5.3 Model Fit by Moneyness, Maturity, and Volatility Level

We now dissect the overall IVRMSE results reported in Tables 4 and 5 sorting the data by

moneyness and maturity, as in Table 3, as well as by the level of market volatility captured by

the VIX volatility index obtained from cboe.com. Table 6 contains the results for the 5—minute

RV estimates and Table 7 has the results for the 60-minute intervals. In Tables 8 and 9 we study

the extent to which the IVRMSE results may be driven by bias defined as market IV less model

IV.

Consider first Panel A of Table 6 which reports the IVRMSE for the 5-minute RV models by

moneyness bins corresponding to those used in Table 3. We also report results for the benchmark

HN GARCH model. Looking across columns we see that the GERV model which had the lowest

overall IVRMSE in Table 4 indeed has the lowest IVRMSE in each of the six moneyness categories

considered. The benefits offered by the GERV model is therefore not restricted to any particular

subset of strike prices. The performance of the GRV and ERV models is also quite robust across

strikes. Notice also that all models tend to perform worst for deep out-of-the-money put options

(F/X > 1.06) which have the highest average implied volatility (see Table 3).

Consider now Panel B in Table 6 which reports the IVRMSE across maturity categories.

Again we see that the GERV model performs the best in all six maturity categories. All models

have relatively more difficulty fitting the very short maturity and the longest-maturity options.

Panel C reports the IVRMSE across VIX levels. The GERV model is now best in five of the

six categories. When VIX is in the 20-25% range the ERV model is slightly better. Perhaps not

surprisingly, all models have most difficulty fitting options when the level of market volatility is

high. The performance of the HN and RV models is particularly poor when VIX is above 35%.

Table 7 reports the IVRMSE by moneyness, maturity and VIX level for the models using
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60-minute RVs. The patterns from Table 7 remain. The GERV performs the best in 17 out of

18 categories with the exception again being when the VIX is between 20 and 25%.

The mean squared error criterion is a sum of two components: Bias squared and variance.

We therefore next consider how the IV bias in the different models may shed light on the general

model performance across categories as well as on the relative performance across models.

Table 8 contains the results for the 5-minute RVs and thus relates to the IVRMSE numbers in

Table 6. Considering first moneyness in Panel A it is clear that all models underprice deep out—

of-the-money puts which to some extend drives the poor IVRMSE performance for this category.

However all the RV-based models perform better than the benchmark HN model where the bias

(market less model IV) is close to +2.5%. Notice also that all models tend to overprice at-

the-money options. This bias is smallest for the GERV model which performed best in terms

of IVRMSE. The GERV model does tend to underprice deep out-of-the-money calls, however.

These results suggest the role for augmenting the models with non-normal shocks or perhaps a

richer specification of the leverage effect.

Panel B shows that all models tend to underprice long-maturity options (except for GRV)

and overprice short-maturity options. This pattern is particularly pronounced for the GERV

and ERV models and suggest that richer volatility dynamics may be needed. Panel C in Table 8

shows that not surprisingly all models underprice options when VIX is high and overprice options

when VIX is low. The ERV and GERV models perform relatively better than other models in

this regard but the bias is still substantial for extreme levels of the VIX. Table 9 using 60-day

RVs confirm the results from Table 8.

5.4 Model Fit Over Time

In Figures 6 and 7 we complement the results in Tables 6-9 by plotting the weekly IVRMSE and

weekly IV bias over time.

Figure 6 shows that the RV model in particular and the GRV and ERV models to a lesser

extent exhibit a tendency for the IVRMSE to spike up to 10% or higher in certain weeks which

of course will drive the overall IVRMSE higher in those models. The GERV model on the other

hand only shows one such dramatic spike towards the end of 1998. The weekly IVRMSE for

the HN model is shown in dots in Figure 6. It is clear that the HN model also shows evidence

of weekly spikes but perhaps less so than the RV and GRV models. Figure 6 also shows that

towards the end of the sample, the IVRMSE rises in the RV, GRV and HN models but much less

so in the ERV and GERV models. The overall volatility level decreases at the end of the sample

which is captured best by the models incorporating expected realized volatility.

Figure 7 tries to understand the weekly IVRMSE patters in Figure 6 but plotting the cor-
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responding weekly IV bias (average market IV less model IV) over time. Clearly some of the

spikes in the IVRMSE in the RV model is explained by spikes in the IV bias. It appears that

when realized volatility spikes, the RV model prices spike up too much causing a large negative

IV bias in the RV model. The GRV model inherits some of these negative spikes where as the

ERV and particularly GERV models show less evidence of negative bias spikes. Notice that all

models tend to overprice options at the beginning of the sample. At the end of the sample the

HN, RV and GRV model tend to overprice the options as well but the ERV and GERV models

fare much better. The improvement in weekly IVRMSE in these models during this period found

in Figure 6 seems at least partly to be explained by a smaller (absolute) bias.

Overall Tables 6-9 suggest that the superior IVRMSE performance in the GERV model arises

from a superior fit across moneyness, maturity and VIX categories. Figures 6-7 suggest that the

dynamic properties of the GERV model are the most appropriate.

6 Summary and Conclusions

We develop a class of affine discrete-time models that allow for option valuation in closed form.

The models’ volatility dynamic contains both a GARCH component and a realized volatility

component. We find that incorporating realized volatility leads to a better fit on returns and

realized volatility, and that it significantly reduces the pricing errors of the benchmark Heston-

Nandi GARCH model. Modeling expected realized volatility is superior to directly modeling

realized volatility. Higher conditional moments for our newly proposed models are very different

from those of the benchmark GARCH model.

There are several promising avenues for future research. First, the rich literature on realized

volatility estimation should provide useful guidance for choosing a more robust estimators than

the simple 5-minute and 60-minute RVs currently used. Our results suggest that richer volatility

dynamics may be needed. Extending our models to allow for longer lags in RV and squared

return could prove valuable. Finally, the leverage effect is modeled differently in the GARCH

and RV dynamics. Exploring further the optimal strategy for modeling is key asymmetry is likely

to yield important benefits.

21



7 Appendix

In this appendix we first derive the variance persistence properties and the stationarity conditions

of the GRV and GERV models. We also provide some detail on our variance and equity premium

estimation strategy. Subsequently, we derive the moment generating functions needed for option

valuation.

7.1 Persistence, Stationarity and Targeting: The GRV Model

Note first that

Et [ht+1] = ω1 + α1 +
¡
β1 + α1γ

2
1n
¢
ht + α1γ

2
1(1− n)RVt. (14)

Therefore from (5) and (14)

Et

µ
ht+1
RVt+1

¶
= φ0 + φ1

µ
ht
RVt

¶
,

where

φ0 = (ω1 + α1, ω2 + α2)
0

φ1 =

"
β1 + α1γ

2
1n α1γ

2
1(1− n)

α2γ
2
2n β2 + α2γ

2
2(1− n)

#
.

If the largest eigenvalue of φ1 has a modulus smaller than one we have

E

∙µ
ht+1
RVt+1

¶¸
= (I2 − φ1)

−1 φ0. (15)

We can therefore derive the following necessary conditions for stationarity

β1 < 1, β2 < 1, |γ1| <
r
1− β1
α1n

, |γ2| <
sµ

1− β2
1− β1

¶µ
1− (β1 + α1γ21n)

α2(1− n)

¶
,

which we impose when estimating the models.

We also use variance and equity premium targeting in estimation, which greatly facilitates

estimation. In variance targeting we set the model-implied long-run mean of the variance, h̄,

equal to the sample variance of returns.4 Using (15) and imposing E [ht+1] = E [RVt+1] and

4For examples of variance targeting see Engle and Mezrich (1996). For the use of the variance targeting
technique in option valuation see Christoffersen, Dorion, Jacobs and Wang (2009).
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E [ht+1] = h̄ we get

ω1 =
¡
1−

¡
β1 + α1γ

2
1

¢¢
h̄− α1

ω2 =
¡
1−

¡
β2 + α2γ

2
2

¢¢
h̄− α2. (16)

We impose (16) in estimation, which makes the numerical problem better behaved, and allows

us to estimate two fewer parameters, ω1 and ω2. In the empirical results below we report ω1 and

ω2 as implied by the other parameter estimates and (16).

To further facilitate estimation, we use equity premium targeting for λ. We have

E (Rt+1 − r) =

µ
λ− 1

2

¶
E
¡
h̄t
¢
,

and since we also impose variance targeting, we have E (ht) = E (RVt) = E
¡
h̄t
¢
= h̄, therefore

E (Rt+1 − r) =

µ
λ− 1

2

¶
h̄,

which will be set to the sample mean of excess returns to provide an estimate of λ.

7.2 Persistence, Stationarity and Targeting: The GERV Model

In order to derive stationarity conditions and impose variance targeting in the GERV model,

note that

Et [ht+1] = ω1 + α1 +
¡
β1 + α1γ

2
1n
¢
ht + α1γ

2
1(1− n)mt

Et (mt+1) = ω2 + (θ + β2)mt.

The vector (ht+1,mt+1)
0 therefore follows

Et

µ
ht+1
mt+1

¶
= φ0 + φ1

µ
ht
mt

¶
,

where

φ0 = (ω1 + α1, ω2)
0

φ1 =

"
β1 + α1γ

2
1n α1γ

2
1(1− n)

0 β2 + θ

#
.
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The stationarity conditions are therefore β1 + α1γ
2
1n < 1 and β2 + θ < 1. Under these two

conditions we can compute the unconditional mean

E

∙µ
ht+1
RVt+1

¶¸
= (I2 − φ1)

−1 φ0. (17)

For variance targeting we impose E [ht+1] = E [RVt+1] and E [ht+1] = h̄ to get

ω2 = (1− (β2 + θ))h̄

ω1 =
¡
1−

¡
β1 + α1γ

2
1

¢¢
h̄− α1.

We also use equity premium targeting as in the GRV model.

7.3 Moment Generating Function of the GRV Model

Using (1), (3) and (4) we have

Et [exp (u1Rt+1 + u2ht+1 + u3RVt+1)] (18)

= Et

⎡⎢⎢⎢⎢⎢⎣exp
⎛⎜⎜⎜⎜⎜⎝

u1
³
r +

¡
λ− 1

2

¢
nht +

¡
λ− 1

2

¢
(1− n)RVt +

p
h̄tε1,t+1

´
+u2

µ
ω1 + β1ht + α1

³
ε1,t+1 − γ1

p
h̄t
´2¶

+u3

µ
ω2 + β2RVt + α2

³
ε2,t+1 − γ2

p
h̄t
´2¶

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ .

Collecting terms we get

Et [exp (u1Rt+1 + u2ht+1 + u3RVt+1)] (19)

= exp

Ã
u1
¡
r +

¡
λ− 1

2

¢
nht +

¡
λ− 1

2

¢
(1− n)RVt

¢
+u2 (ω1 + β1ht) + u3 (ω2 + β2RVt)

!
(20)

×Et

∙
exp

µ
u1
p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2
+ u3α2

³
ε2,t+1 − γ2

p
h̄t
´2¶¸

. (21)

Now consider the conditional expectation in (19)

Et

∙
exp

µ
u1
p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2
+ u3α2

³
ε2,t+1 − γ2

p
h̄t
´2¶¸

(22)

= Et

∙
exp

µ
u1
p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2¶

Et

∙
exp

µ
u3α2

³
ε2,t+1 − γ2

p
h̄t
´2¶

|ε1,t+1
¸¸

.
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We first consider the second component of (22). Since ε2,t+1|ε1,t+1 ∼ N (ρε1,t+1, 1− ρ2) we have

Et

∙
exp

µ
u3α2

³
ε2,t+1 − γ2

p
h̄t
´2¶

|ε1,t+1
¸

= Et

⎡⎣exp
⎛⎝u3α2

¡
1− ρ2

¢Ãε2,t+1 − ρε1,t+1p
1− ρ2

+
ρε1,t+1 − γ2

p
h̄tp

1− ρ2

!2⎞⎠ |ε1,t+1
⎤⎦ .

Furthermore for Z ∼ N (0, 1) we have

E
£
exp

¡
a(Z + b)2

¢¤
= exp

µ
−1
2
ln (1− 2a) + ab2

1− 2a

¶
. (23)

Therefore

Et

∙
exp

µ
u3α2

³
ε2,t+1 − γ2

p
h̄t
´2¶

|ε1,t+1
¸

= exp

⎛⎜⎜⎜⎝−12 ln ¡1− 2u3α2 ¡1− ρ2
¢¢
+

u3α2 (1− ρ2)

µ
ρε1,t+1−γ2

√
h̄t√

1−ρ2

¶2
1− 2u3α2 (1− ρ2)

⎞⎟⎟⎟⎠
= exp

⎛⎜⎝−1
2
ln
¡
1− 2u3α2

¡
1− ρ2

¢¢
+

u3α2
³
ρε1,t+1 − γ2

p
h̄t
´2

1− 2u3α2 (1− ρ2)

⎞⎟⎠ .

Using these results in (22)

Et

∙
exp

µ
u1
p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2
+ u3α2

³
ε2,t+1 − γ2

p
h̄t
´2¶¸

= Et

⎡⎢⎣exp
⎛⎜⎝ u1

p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2

−1
2
ln (1− 2u3α2 (1− ρ2)) +

u3α2 ρε1,t+1−γ2
√

h̄t
2

1−2u3α2(1−ρ2)

⎞⎟⎠
⎤⎥⎦

= exp

µ
−1
2
ln
¡
1− 2u3α2

¡
1− ρ2

¢¢¶
(24)

×Et

⎡⎣exp
⎛⎝ u1

p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2

+u∗3α2
³
ε1,t+1 − γ∗2

p
h̄t
´2

⎞⎠⎤⎦ , (25)
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where u∗3 =
u3ρ2

1−2u3α2(1−ρ2) and γ∗2 =
γ2
ρ
. Rewriting (24)

Et

∙
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µ
u1
p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2
+ u∗3α2

³
ε1,t+1 − γ∗2

p
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´2¶¸

= exp

µ¡
u2α1γ

2
1 + u∗3α2γ

∗2
2 − (u2α1 + u∗3α2)γ

2
3

¢
h̄t + (u2α1 + u∗3α2)

³
ε1,t+1 − γ3

p
h̄t
´2¶

,

where γ3 =
u2α1γ1+u

∗
3α2γ

∗
2− 1

2
u1

u2α1+u∗3α2
. Again using (23) we therefore have

Et

∙
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µ
u1
p
h̄tε1,t+1 + u2α1

³
ε1,t+1 − γ1

p
h̄t
´2
+ u∗3α2

³
ε1,t+1 − γ∗2

p
h̄t
´2¶¸

= exp

Ã
(u2α1γ

2
1 + u∗3α2γ

∗2
2 − (u2α1 + u∗3α2)γ

2
3) h̄t

−1
2
ln (1− 2(u2α1 + u∗3α2)) +

(u2α1+u∗3α2)γ
2
3

1−2(u2α1+u∗3α2)
h̄t

!

= exp

Ã ³
u2α1γ

2
1 + u∗3α2γ

∗2
2 − (u2α1 + u∗3α2)γ

2
3 +

(u2α1+u∗3α2)γ
2
3

1−2(u2α1+u∗3α2)

´
h̄t

−1
2
ln (1− 2(u2α1 + u∗3α2))

!

= exp

Ã ³
u2α1γ

2
1 + u∗3α2γ

∗2
2 +

2(u2α1+u∗3α2)
2γ23

1−2(u2α1+u∗3α2)

´
h̄t

−1
2
ln (1− 2(u2α1 + u∗3α2))

!

= exp

" ³
u2α1γ

2
1 + u∗3α2γ

∗2
2 +

2(u2α1γ1+u
∗
3α2γ

∗
2− 1

2
u1)2

1−2(u2α1+u∗3α2)

´
h̄t

−1
2
ln (1− 2(u2α1 + u∗3α2))

#
≡ exp

£
a (u1, u2, u3) h̄t + b (u1, u2, u3)

¤
. (26)

Now using (26) in (19) and (18) we obtain

Et [exp (u1Rt+1 + u2ht+1 + u3RVt+1)]

= exp (A1 (u1, u2, u3)ht +A2 (u1, u2, u3)RVt +B (u1, u2, u3)) .

where

A1 (u1, u2, u3) = u1

µ
λ− 1

2

¶
n+ u2β1 + na (u1, u2, u3)

A2 (u1, u2, u3) = u1

µ
λ− 1

2

¶
(1− n) + u3β2 + (1− n) a (u1, u2, u3)

B (u1, u2, u3) = u1r + u2ω1 + u3ω2 + b (u1, u2, u3)−
1

2
ln
¡
1− 2u3α2

¡
1− ρ2

¢¢
.

Since the model is affine, we conjecture that the multi-period conditional moment generating
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function is of the form

Ψt,t+M (u) ≡ Et

"
exp

Ã
u

MX
j=1

Rt+j

!#
= exp (C1 (u,M)ht + C2 (u,M)RVt +D(u,M)) .

This gives

Ψt,t+M (u) = Et

"
Et+1

"
exp

Ã
u
M+1X
j=1

Rt+j

!##

= Et

"
exp(uRt+1)Et+1

"
exp

Ã
u
M+1X
j=2

Rt+j

!##

= Et

"
exp(uRt+1)Et+1

"
exp

Ã
u

MX
k=1

Rt+1+k

!##
= Et [exp(uRt+1 + C1 (u,M)ht+1 + C2 (u,M)RVt+1 +D(u,M))]

= exp

Ã
A1 (u,C1 (u,M) , C2 (u,M))ht +A2 (u,C1 (u,M) , C2 (u,M))RVt

+B (u,C1 (u,M) , C2 (u,M)) +D(u,M)

!
.

Therefore we have

C1 (u,M + 1) = A1 (u,C1 (u,M) , C2 (u,M))

C2 (u,M + 1) = A2 (u,C1 (u,M) , C2 (u,M))

D(u,M + 1) = B (u,C1 (u,M) , C2 (u,M)) +D(u,M)

with the initial conditions

C1 (u, 1) = A1 (u, 0, 0)

C2 (u, 1) = A2 (u, 0, 0)

D(u, 1) = B (u, 0, 0)

7.4 Moment Generating Function of the GERV Model

Using (7), (8), (10), and (9) we have

Et [exp (u1Rt+1 + u2ht+1 + u3mt+1)]

= Et

⎡⎢⎣exp
⎛⎜⎝ u1

³
Et [Rt+1] +

p
h̄tε1,t+1

´
+u2

µ
ω1 + β1ht + α1

³
ε1,t+1 − γ1

p
h̄t
´2¶

+ u3 (ω2 + (β2 + θ)mt + β2zt+1)

⎞⎟⎠
⎤⎥⎦ .
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Rewriting, we get

Et [exp (u1Rt+1 + u2ht+1 + u3mt+1)]

= exp
¡
u2ω1 + u3ω2 + u1Et [Rt+1] + u3 (β2 + θ)mt + u2β1ht − α2β2u3(1 + γ22h̄t)

¢
×

Et
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p
h̄t
´2
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p
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. (27)

Denoting β2u3 = u∗2 the second part of (27) can be written as

Et

∙
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µ
u1
p
h̄tε1,t+1 + α1u2

³
ε1,t+1 − γ1

p
h̄t
´2
+ α2u

∗
2
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(28)

= Et

∙
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p
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p
h̄t
´2¶

Et

∙
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u∗2α2

³
ε2,t+1 − γ2

p
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|ε1,t+1
¸¸

.

Using the fact that ε2,t+1|ε1,t+1 ∼ N (ρε1,t+1, 1− ρ2)
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∙
exp
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u∗2α2

³
ε2,t+1 − γ2

p
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´2¶

|ε1,t+1
¸

= Et
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⎤⎦ ,

and using (23) we can rewrite as
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This gives for (28)
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where u∗4 =

u∗2ρ
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and γ∗2 =

γ2
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. The second part of (29) can be written as
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where γ3 =
u2α1γ1+u

∗
4α2γ
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2− 1

2
u1

u2α1+u∗4α2
. Using (23) we have
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where u∗1 = u2α1 + u∗4α2. Therefore
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This gives for (29)
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Collecting these results gives

Et [exp (u1Rt+1 + u2ht+1 + u3mt+1)]

= exp

Ã
u2ω1 + u3ω2 + u1Et [Rt+1] + u3 (β2 + θ)mt + u2β1ht
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with
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2β2u3n+ a (u1, u2, u3)n
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B (u1, u2, u3) = u1r + u2ω1 + u3ω2 − α2β2u3 + b (u1, u2, u3) .

Since the model is affine, we conjecture that
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= exp (C1 (u,M)ht + C2 (u,M)mt +D(u,M)) .
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Therefore

Et

"
exp
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u
M+1X
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= Et
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Et+1
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exp
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exp(uRt+1)Et+1
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= Et [exp(uRt+1 + C1 (u,M)ht+1 + C2 (u,M)mt+1 +D(u,M))]
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A1 (u, 0, C1 (u,M) , C2 (u,M))ht +A2 (u, 0, C1 (u,M) , C2 (u,M))RVt

+B (u, 0, C1 (u,M) , C2 (u,M)) +D(u,M)

!
.

This yields

C1 (u,M + 1) = A1 (u, 0, C1 (u,M) , C2 (u,M))

C2 (u,M + 1) = A2 (u, 0, C1 (u,M) , C2 (u,M))

D(u,M + 1) = B (u, 0, C1 (u,M) , C2 (u,M)) +D(u,M),

with the following initial conditions

C1 (u, 1) = A1 (u, 0, 0, 0)

C2 (u, 1) = A2 (u, 0, 0, 0)

D(u, 1) = B (u, 0, 0, 0) .
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Figure 1: Daily Returns and Daily Realized Volatilities from Intraday Data. 1983-2006
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Notes to Figure: In the top panel we plot the daily returns on the S&P500 index from February 2,

1983 to August 31, 2006. In the middle and bottom panels we plot the square root of the realized

variance, RVt, using sum of squared of 5-minute and 60-minute intraday returns, respectively.

The RV measures have been rescaled to match the unconditional variance of daily returns.

34



Figure 2: Daily Conditional Volatility from 5-min RV Models. 1983-2006
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Notes to Figure: We plot the square root of the daily conditional variance, h̄t = V art (Rt+1)

from each of the four models that incorporate daily realized variance.
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Figure 3: Daily Conditional Volatility of Variance in 5-min RV Models. 1983-2006
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Notes to Figure: We plot the square root of the daily conditional variance of variance, V art
¡
h̄t+1

¢
from each of the four models that incorporate daily realized variance.
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Figure 4: Daily Correlation of Return and Variance in 5-min RV Models. 1983-2006
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Notes to Figure: We plot the daily conditional correlation of return and variance, Corrt
¡
Rt+1,h̄t+1

¢
from each of the four models that incorporate daily realized variance.
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Figure 5: Conditional Daily Moments in the HN GARCH Model. 1983-2006.
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Notes to Figure: We plot the square root of the daily conditional variance, the square root of the

conditional variance of variance, and the conditional correlation between return and variance for

the HN GARCH model.

38



Figure 6: Weekly IVRMSE from at-the-money Options. 5-min RV. 1996-2004

1996 1998 2000 2002 2004
0

2

4

6

8

10
RV and HN

A
T

M
 I

V
R

M
SE

1996 1998 2000 2002 2004
0

2

4

6

8

10
GRV and HN

A
T

M
 I

V
R

M
SE

1996 1998 2000 2002 2004
0

2

4

6

8

10
ERV and HN

A
T

M
 I

V
R

M
SE

1996 1998 2000 2002 2004
0

2

4

6

8

10
GERV and HN

A
T

M
 I

V
R

M
SE

Notes to Figure: On each Wednesday we plot the implied volatility root mean squared error

(IVRMSE) for options that are at-the-money. The solid line in each panel corresponds to an

RV-based model and the dashed line corresponds to the HN GARCH based model.
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Figure 7: Weekly IV Bias from at-the-money Options. 5-min RV. 1996-2004
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Notes to Figure: On each Wednesday we plot the implied volatility bias (IV Bias) defined

as market IV less model IV for options that are at-the-money. The solid line in each panel

corresponds to an RV-based model and the dashed line corresponds to the HN GARCH based

model.
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Parameters GARCH RV GRV ERV GERV

n 1.0000 0.0000 0.4497 0.0000 0.2017
(5.90E-02) (1.10E-01)

λ 2.6722 2.6722 2.6722 2.6722 2.6722

α1 4.532E-06 2.048E-06 2.210E-05
(4.56E-07) (1.30E-06) (1.47E-05)

β1 0.8806 0.4778 0.1093
(9.79E-03) (9.24E-02) (1.52E-01)

γ1 130.7 495.7 176.2
(1.14E+01) (1.62E+02) (6.50E+01)

ω1 2.417E-10 1.327E-09 -6.078E-11

α2 1.193E-05 9.820E-06 4.846E-07 8.095E-07
(9.07E-07) (1.17E-06) (2.11E-08) (3.71E-08)

β2 1.124E-05 2.081E-05 5.408E-01 4.802E-01
(1.42E-06) (8.58E-06) (9.42E-02) (8.44E-02)

θ 0.4371 0.5067
(1.00E-01) (8.80E-02)

Table 1: QML Estimates on Daily Returns and 5 min RVs. 1983-2006. 

γ2 271.2 304.3 6839.4 4005.1
(9.63E+00) (1.99E+01) (6.19E+02) (2.28E+02)

ω2 1.333E-06 5.471E-10 2.388E-06 1.415E-06

ρ 0.1028 0.1080 0.1033 0.1010
(1.61E-02) (1.78E-02) (1.78E-02) (1.64E-02)

Volatility Persistence
   From Returns 0.9581 0.7041 0.2477
   From RV 0.8773 0.5003 0.9779 0.9869
Log Likelihoods
   Joint Returns and RV 68,100 69,340 69,294 69,416
   Marginal for Returns 18,564 19,445 19,457 19,517
   Marginal for RV 49,473 49,826 49,768 49,835
   Maximized on Returns 19,589 18,564 19,678 19,602 19,678

Notes: We estimate five models using daily close-to-close returns and realized variance data for the S&P500 
index, for the period February 2, 1983 to August 31, 2006. Realized variance is constructed using five-minute 
intervals. Standard errors are indicated in parentheses. The parameters are estimated using variance targeting 
to 16.5% per year and equity premium targeting to 6% per year, thus certain parameters do not have standard 
errors.



Parameters GARCH RV GRV ERV GERV

n 1.0000 0.0000 0.4979 0.0000 0.3549
(5.91E-02) (8.29E-02)

λ 2.6722 2.6722 2.6722 2.6722 2.6722

α1 4.532E-06 5.966E-06 1.674E-05
(4.56E-07) (1.38E-06) (6.42E-06)

β1 0.8806 0.0680 0.0370
(9.79E-03) (1.27E-01) (1.16E-01)

γ1 130.7 375.3 219.7
(1.14E+01) (1.90E+02) (4.97E+01)

ω1 2.417E-10 3.935E-06 3.029E-10

α2 3.224E-05 2.785E-05 1.202E-06 1.228E-06
(5.54E-06) (1.08E-06) (1.16E-07) (5.64E-08)

β2 2.179E-06 9.917E-06 5.768E-01 5.384E-01
(1.48E-06) (2.32E-06) (9.41E-02) (1.32E-01)

θ 0.3962 0.4426
(9.23E-02) (1.37E-01)

Table 2: QML Estimates on Daily Returns and 60 min RVs. 1983-2006. 

γ2 147.5 163.2 5024.6 4737.8
(1.81E+01) (1.79E+01) (1.00E+03) (6.99E+02)

ω2 1.063E-10 3.182E-11 2.918E-06 2.047E-06

ρ 0.1212 0.1163 0.1122 0.1005
(2.21E-02) (1.76E-02) (2.04E-02) (1.61E-02)

Volatility Persistence
   From Returns 0.9581 0.4865 0.3237
   From RV 0.7017 0.3727 0.9730 0.9811
Log Likelihoods
   Joint Returns and RV 64,174 65,351 65,762 65,969
   Marginal for Returns 18,558 19,445 19,490 19,524
   Marginal for RV 45,537 45,832 46,191 46,381
   Maximized on Returns 19,589 18,558 19,695 19,655 19,699

Notes: We estimate five models using daily close-to-close returns and realized variance data for the S&P500 
cash index, for the period February 2, 1983 to August 31, 2006. Realized variance is constructed using sixty-
minute intervals. Standard errors are indicated in parentheses. The parameters are estimated using variance 
targeting to 16.5% per year and equity premium targeting to 6% per year, thus certain parameters do not 
have standard errors.



By Moneyness F/X<0.96 0.96<F/X<0.98 0.98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06 All
Number of Contracts 1,162 961 3,294 1,325 951 2,445 10,138
Average Price 17.41 22.37 30.59 25.55 22.13 17.51 23.69
Average Implied Volatility 19.63 18.71 19.50 21.23 22.22 25.73 21.42
Average Bid-Ask Spread 1.187 1.378 1.572 1.400 1.298 1.154 1.361

By Maturity DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150 All
Number of Contracts 695 3,476 2,551 1,063 1,332 1,021 10,138
Average Price 12.11 17.97 24.47 27.51 31.20 35.36 23.69
Average Implied Volatility 20.69 21.04 21.62 21.86 21.75 21.87 21.42
Average Bid-Ask Spread 0.830 1.184 1.452 1.539 1.588 1.610 1.361

Table 3: S&P500 Index Option Data. 1996-2004.

Notes: We use Wednesday closing out of the money (OTM) call and put option data from OptionMetrics from January 1, 1996 through 
December 31, 2004. F denotes the implied Futures price of the S&P500 index, X denotes the strike price, and DTM denotes the number of 
calendar days to maturity. The average bid-ask spread is reported in dollars.calendar days to maturity. The average bid ask spread is reported in dollars.



Parameters GARCH RV GRV ERV GERV

n 1.0000 0.0000 0.1232 0.0000 0.6841
(7.60E-05) (1.32E-03)

α1 1.950E-06 1.349E-06 1.057E-06
(2.34E-07) (1.81E-09) (3.95E-08)

β1 0.9021 0.9724 0.9916
(6.91E-03) (3.43E-05) (3.13E-04)

γ1 205.6 112.0 0.0012
(6.06E+00) (9.22E-03) (1.05E-04)

ω1 2.105E-10 3.065E-13 -3.960E-20

α2 7.768E-06 3.356E-06 4.189E-05 5.246E-06
(2.31E-09) (4.22E-09) (2.40E-08) (5.03E-07)

β2 0.0000 0.0000 0.0848 0.2166
(0.00E+00) (0.00E+00) (6.23E-05) (1.72E-03)

Table 4: NLS Estimates on Options using 5 min RVs. 1996-2004.

θ 0.8870 0.7737
(9.65E-05) (2.03E-03)

γ2 347.6 538.5 523.1 4013.0
(5.51E-02) (3.48E-01) (4.73E-01) (6.33E+01)

ω2 9.126E-14 8.015E-14 3.554E-06 1.216E-06

ρ 0.6346 1.0000 0.5825 0.4935
(5.21E-05) (0.00E+00) (1.82E-04) (3.23E-03)

IVRMSE(%) 3.904 3.923 3.503 3.485 3.067
IVRMSE Ratio 1.000 1.005 0.897 0.893 0.786
Volatility Persistence
  From Returns 0.9845 0.9745 0.9916
  From RV 0.9384 0.8535 0.9718 0.9904

Notes: We estimate five models using option data for the period January 1, 1996 to December 31, 2004. 
Realized variance is constructed using five-minute intervals.  Standard errors, computed using the outer 
product of the gradient, are indicated in parentheses. The parameters are estimated using variance targeting 
to 17.3% per year and equity premium targeting to 6% per year.



Parameters GARCH RV GRV ERV GERV

n 1.0000 0.0000 0.8634 0.0000 0.8422
(2.33E-03) (1.16E-03)

α1 1.950E-06 2.412E-06 5.701E-06
(2.34E-07) (8.16E-08) (6.12E-08)

β1 0.9021 0.8671 0.6533
(6.91E-03) (2.32E-03) (7.47E-04)

γ1 205.6 217.2 230.0
(6.06E+00) (2.08E+00) (1.14E+00)

ω1 2.105E-10 2.894E-10 7.638E-10

α2 9.097E-06 1.024E-06 4.155E-05 1.470E-05
(2.27E-09) (4.57E-08) (3.18E-08) (8.51E-07)

β2 0.0000 0.8180 0.0400 0.0288
(0.00E+00) (2.40E-03) (7.12E-05) (5.12E-04)

Table 5: NLS Estimates on Options using 60 min RVs. 1996-2004. 

θ 0.9468 0.9688
(1.05E-04) (5.86E-04)

γ2 319.4 412.1 770.7 4016.6
(4.29E-02) (6.77E+00) (9.93E-01) (4.18E+01)

ω2 1.242E-12 4.437E-10 1.661E-06 3.044E-07

ρ 0.5583 0.7726 0.5551 0.3737
(4.56E-05) (4.44E-03) (2.59E-04) (1.76E-03)

IVRMSE 3.904 4.330 3.833 3.349 3.142
IVRMSE Ratio 1.000 1.109 0.982 0.858 0.805
Volatility Persistence
  From Returns 0.9845 0.9653 0.9072
  From RV 0.9279 0.8417 0.9868 0.9976

Notes: We estimate five models using option data for the period January 1, 1996 to December 31, 2004. 
Realized variance is constructed using sixty-minute intervals. Standard errors, computed using the outer 
product of the gradient, are indicated in parentheses. The parameters are estimated using variance targeting 
to 17.3% per year and equity premium targeting to 6% per year.



Model F/X<0.96 0.96<F/X<0.98 0.98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06
HN 3.5535 3.3616 3.3777 3.3808 3.4910 5.1428
RV 3.7865 3.4900 3.7696 3.7673 3.7609 4.4579

GRV 3.1645 3.0431 3.2956 3.2435 3.2599 4.2427
ERV 3.3211 3.0465 3.3742 3.3761 3.4350 3.9184

GERV 2.8368 2.4940 2.8074 2.9409 3.0588 3.7125
Average 3.3325 3.0870 3.3249 3.3417 3.4011 4.2949

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150
HN 4.1795 3.8601 3.8627 3.6176 3.9104 4.2266
RV 4.4570 3.9053 3.7060 3.7303 4.0441 4.1503

GRV 3.7423 3.4589 3.3603 3.2875 3.6783 3.7988
ERV 4.0070 3.5049 3.1656 3.2490 3.6632 3.7793

GERV 3.1908 3.0019 2.8365 2.9228 3.3623 3.4683
Average 3.9153 3.5462 3.3862 3.3615 3.7316 3.8847

Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35
HN 5.0345 3.2704 3.2199 4.1722 5.1322 7.0269

Panel C. IVRMSE by VIX Level

Panel A. IVRMSE by Moneyness

Panel B. IVRMSE by Maturity

Table 6: In-Sample IVRMSE (%) by Moneyness, Maturity, and VIX Level. 5-min RV.

RV 5.7170 3.3897 2.6832 4.3998 5.3163 7.2152
GRV 5.0589 3.0191 2.8606 3.7862 4.2374 5.8201
ERV 5.1403 3.1490 2.6417 3.9024 4.4791 5.1772

GERV 3.7289 2.3087 2.6497 3.5782 4.1802 4.9599
Average 4.9359 3.0274 2.8110 3.9677 4.6690 6.0398

Notes: We report the IVRMSE from the models estimated in Table 4 by moneyness, maturity and VIX level. 



Model F/X<0.96 0.96<F/X<0.98 0.98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06
HN 3.5535 3.3616 3.3777 3.3808 3.4910 5.1428
RV 4.4823 3.8836 4.0973 4.0357 4.1669 4.9044

GRV 3.7162 3.3856 3.3831 3.3328 3.4570 4.8751
ERV 3.6827 2.9243 3.0709 3.1292 3.2274 3.8245

GERV 3.2923 2.6005 2.8427 2.9782 3.0550 3.7148
Average 3.7454 3.2311 3.3544 3.3713 3.4794 4.4923

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150
HN 4.1795 3.8601 3.8627 3.6176 3.9104 4.2266
RV 4.4794 4.3855 4.2542 4.0137 4.2340 4.6496

GRV 4.1147 3.8049 3.7578 3.5166 3.8562 4.1860
ERV 3.7799 3.4128 3.0908 2.8987 3.4950 3.6625

GERV 3.5391 3.1232 2.8915 2.7881 3.3850 3.5150
Average 4.0185 3.7173 3.5714 3.3670 3.7761 4.0480

Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35
HN 5.0345 3.2704 3.2199 4.1722 5.1322 7.0269

Panel C. IVRMSE by VIX Level

Panel A. IVRMSE by Moneyness

Panel B. IVRMSE by Maturity

Table 7: In-Sample IVRMSE (%) by Moneyness, Maturity, and VIX Level. 60-min RV.

RV 5.6126 3.3383 2.7833 5.0048 6.3478 9.5626
GRV 4.9147 3.2673 3.1334 4.1924 4.9704 6.7159
ERV 4.1949 2.4487 2.7519 3.9232 5.1347 5.2613

GERV 3.7850 2.3770 2.7821 3.5022 4.4529 4.9862
Average 4.7083 2.9403 2.9341 4.1590 5.2076 6.7106

Notes: Notes: We report the IVRMSE from the models estimated in Table 5 by moneyness, maturity and VIX level. 



Model F/X<0.96 0.96<F/X<0.98 0.98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06
HN -0.4799 -1.3771 -1.0445 -0.0463 0.4182 2.4985
RV 0.3188 -0.8125 -1.1486 -0.9283 -0.7526 0.6220

GRV -0.3247 -1.3550 -1.4766 -0.9241 -0.5639 1.1835
ERV 0.1096 -1.0074 -1.2768 -0.9493 -0.8336 0.3303

GERV 0.4535 -0.2700 -0.4368 -0.1436 -0.0350 0.8197
Average 0.0155 -0.9644 -1.0767 -0.5983 -0.3534 1.0908

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150
HN -0.4647 -0.0857 0.2423 0.4478 0.2106 0.3623
RV -1.8552 -0.8832 -0.2396 0.1879 0.0602 0.0702

GRV -1.6218 -0.9191 -0.3712 0.0661 -0.1580 -0.0012
ERV -2.2923 -1.2610 -0.3363 0.1283 0.0365 0.3523

GERV -1.4929 -0.6126 0.2920 0.8149 0.7533 1.1380
Average -1.5454 -0.7523 -0.0826 0.3290 0.1805 0.3843

Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35
HN -4.6098 -1.9193 0.3539 1.9827 3.4822 5.7049

Table 8: In-Sample Bias by Moneyness, Maturity, and VIX Level. 5-min RV.

Panel A. Bias by Moneyness

Panel C. Bias by VIX Level

Panel B. Bias by Maturity

RV -5.5034 -2.6994 0.0244 1.3920 3.1558 4.1616
GRV -4.7651 -2.1949 -0.2413 0.9255 2.2825 3.7110
ERV -4.9424 -2.4668 -0.0150 0.9571 1.7793 2.3446

GERV -3.3138 -1.2933 0.3537 1.2448 2.2973 2.9464
Average -4.6269 -2.1147 0.0951 1.3004 2.5994 3.7737

Notes: We report the IV Bias from the models estimated in Table 4 by moneyness, maturity and VIX level. Bias is 
defined as average market IV less average model IV.



Model F/X<0.96 0.96<F/X<0.98 0.98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06
HN -0.4799 -1.3771 -1.0445 -0.0463 0.4182 2.4985
RV 0.5372 -0.4968 -0.6857 -0.4394 -0.2633 1.3417

GRV -0.3359 -1.3343 -1.1322 -0.2798 0.1306 2.0618
ERV 0.1680 -0.8091 -0.9497 -0.6486 -0.5265 0.6183

GERV 0.3325 -0.3957 -0.6828 -0.4253 -0.3347 0.5721
Average 0.0444 -0.8826 -0.8990 -0.3679 -0.1151 1.4185

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150
HN -0.4647 -0.0857 0.2423 0.4478 0.2106 0.3623
RV -0.6076 -0.2336 0.2017 0.4600 0.2251 0.2613

GRV -0.6825 -0.2829 0.0515 0.3510 0.1116 0.1931
ERV -1.6456 -0.9715 -0.1420 0.3949 0.1072 0.7457

GERV -1.6520 -0.8284 -0.0379 0.5019 0.4414 1.2506
Average -1.0105 -0.4804 0.0631 0.4311 0.2192 0.5626

Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35
HN -4.6098 -1.9193 0.3539 1.9827 3.4822 5.7049
RV -5.4108 -2.6842 0.2755 2.2922 4.8359 7.1191

Panel A. Bias by Moneyness

Panel B. Bias by Maturity

Panel C. Bias by VIX Level

Table 9: In-Sample Bias by Moneyness, Maturity, and VIX Level. 60-min RV.

GRV -4.5088 -1.9810 0.2604 1.5805 3.1278 4.8075
ERV -3.9100 -1.7217 -0.0361 0.7733 1.9283 2.9970

GERV -3.2249 -1.3428 0.0683 0.6705 1.9341 3.1636
Average -4.3329 -1.9298 0.1844 1.4598 3.0617 4.7584

Notes: We report the IV Bias from the models estimated in Table 5 by moneyness, maturity and VIX level. Bias is 
defined as average market IV less average model IV.
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