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1 Introduction

Asset market data ought to contain valuable information about investors’ behavior (see

Cochrane and Hansen (1992)). It should also contain information about the sources of risks

that concern investors and hence drive asset markets. Asset market features, such as the

low real returns on bills, the equity premium, large returns on value (high book-to-market)

stocks relative to growth (low book-to-market) stocks, among others, provide an important

market laboratory to simultaneously learn about sources of risks and preferences of investors.

A challenging task is to account for these asset market facts with well identified risk sources

and plausible investor behavior. Bansal and Yaron (2004) develop a long-run risks (LRR)

asset pricing model and show that it can account for the risk free rate, equity premium and

volatility puzzles. Further, they suggest that the same long-run risks in consumption should

empirically account for a rich cross-section of asset returns with reasonable risk preferences.

In this paper, we develop methods and empirically evaluate the ability of the LRR model to

account for asset market data using Euler equation based estimation methods.

An elegant approach to evaluate the empirical plausibility of an asset pricing model,

developed in Hansen and Singleton (1982), is to exploit its asset pricing Euler equations

using the Generalized Method of Moment (GMM) estimation technique. This approach

provides a convenient way to impose the model restrictions on asset payoffs and learn about

investor behavior. A priori it is not entirely clear how to proceed with this estimation as

the intertemporal marginal rate of substitution in the LRR model, based on the Krpes and

Porteus (1978), Epstein and Zin (1989) and Weil (1989) recursive preferences, incorporates

the return on the consumption asset, which is not directly observed by the econometrician.

In this paper we present methods for estimating models with these recursive preferences

using Euler equations and a GMM estimator.

To make estimation feasible in the LRR model we exploit the dynamics of aggregate

consumption growth and the model’s Euler restrictions to solve for the unobserved return on

the claim over the future consumption steam. The LRR model has three risk sources in the

aggregate consumption dynamics: (i) high frequency or short-run risks in consumption, (ii)

low frequency or long-run movements in consumption, and (iii) fluctuations in consumption

uncertainty, i.e., consumption volatility risk. We derive expressions for the intertemporal

marginal rate of substitution (IMRS) in terms of these risk sources for a wide range of
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risk aversion and intertemporal substitution parameters. We document that our methods

for characterizing the model’s pricing kernel are very accurate. Earlier work by Epstein

and Zin (1991) also pursues the strategy of exploiting the Euler equation-GMM method for

estimation; however, they assume that the return on the consumption asset coincides with

the observed value-weighted market return. This premise, we show, can distort the estimated

preferences and lead to false rejections of the model.

More recently several other papers explore the ability of long-run risks to account for

asset market data. Bansal, Dittmar, and Lundblad (2005), Hansen, Heaton, and Li (2005)

show that long-run risks in cash flows are an important risk source in accounting for asset

returns. Bekaert, Engstrom, and Xing (2005), Bansal, Gallant, and Tauchen (2005), Kiku

(2006), Malloy, Moskowitz, and Vissing-Jorgensen (2004), and Lettau and Ludvigson (2005),

also explore implication of LRR for asset returns. However, these papers, unlike the focus of

this paper, do not evaluate the empirical plausibility of the LRR model from the perspective

of the Euler equation-GMM based estimation approach for a rich cross-section of assets.

Exploiting the estimation methods we develop, we find considerable empirical support

for the LRR model at plausible preference configurations. Our evidence suggests that

the investor concerns about long-run risks and economic uncertainty are empirically

important for understanding asset returns. More specifically, our Euler equation-GMM based

estimation of the LRR model shows that: (i) the long-run risk component is highly persistent

and displays fluctuations that are longer than those associated with business cycles, and is

economically and statistically significantly predictable by theoretically motivated variables,

(ii) in the cross section, assets with large mean returns (e.g., value and small assets) are more

sensitive to innovations in the long-run risk variable and news about economic uncertainty,

(iii) the long-run risks component accounts for most of the risk premia, (iv) the model is not

rejected by the overidentifying restrictions and can account for considerable portion of the

observed risk premia. In the annual data, the estimated risk aversion is in excess of fifteen

while estimates for the IES are less than one. However, as discussed below, after accounting

for time averaging and finite sample effects, values of risk aversion and IES are closer to 10

and 2, respectively.

Time averaging and finite sample effects play an important role in interpreting our

estimates and evidence. Time averaging arises when the decision interval of the agent and

the frequency with which an econometrician observes consumption data do not coincide. In
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the context of the LRR model, if consumption data is observed only on a coarser interval

(e.g., annual), while the decision interval of the agent is on a finer interval (e.g., monthly),

then the estimates of the IES will be lower than their true values, and typically less than

one. This effect is important as much of the earlier work focuses on the region of high

risk aversion and low IES (e.g., see Campbell (1999) and Hall (1988) for estimation-based

evidence, and Kandel and Stambaugh (1991) for calibration). Finite sample effects seem to

lead to estimates of risk aversion that are too large relative to their true values. Our evidence

indicates that much of the earlier evidence and the associated views regarding low values of

IES and high risk aversion could be an artifact of time averaging and finite sample effects in

estimation.

In sum, the evidence in this paper shows that the long-run risks model is quite capable in

quantitatively pricing the time series and cross section of returns, and doing so with plausible

parameter estimates. These parameter estimates can be quite difficult to precisely estimate

using annual data. They tend to produce a somewhat misspecified model that leads to

preference parameter estimates that are biased towards what is often found in the literature.

The paper continues as follows: Section 2 presents the model and its testable restrictions.

Section 3 presents the data, while Section 4 provides the results of our empirical analysis.

Section 5 presents Monte-Carlo evidence regarding time averaging and finite sample effects.

Section 6 provides SMM based estimates, and Section 7 discusses the implication of

incorrectly using the market return in the pricing kernel. Section 8 provides concluding

remarks.

2 Model

In this section we specify the long-run risks model based on Bansal and Yaron (2004).

The underlying environment is one with complete markets and a representative agent has

Epstein and Zin (1989) type preferences, which allow for a separation of risk aversion and

the elasticity of intertemporal substitution. Specifically, the agent maximizes her life-time

utility, which is defined recursively as,

Vt =

[
(1− δ)C

1−γ
θ

t + δ
(
Et

[
V 1−γ

t+1

]) 1
θ

] θ
1−γ

, (1)
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where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preferences, γ is the

coefficient of risk aversion, θ = 1−γ

1− 1
ψ

, and ψ is the elasticity of intertemporal substitution

(IES). Utility maximization is subject to the budget constraint,

Wt+1 = (Wt − Ct)Rc,t+1 , (2)

where Wt is the wealth of the agent, and Rc,t is the return on all invested wealth.

Consumption growth has the following dynamics:

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1 (3)

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1 ,

where ∆ct+1 is the growth rate of log consumption. The conditional expectation of

consumption growth is given by µc + xt, where xt is a small but persistent component that

captures long-run risks in consumption growth. The parameter ρ determines the persistence

in the conditional mean of consumption growth. For parsimony, as in Bansal and Yaron

(2004), we have a common time-varying volatility in consumption, which, as shown in their

paper, leads to time-varying risk premia. The unconditional variance of consumption is σ̄2

and ν governs the persistence of the volatility process.

It is easily shown that, for any asset j, the first-order condition yields the following asset

pricing Euler condition,

Et [exp (mt+1 + rj,t+1)] = 1 , (4)

where mt+1 is the log of the intertemporal marginal rate of substitution (IMRS), and rj,t+1

is the log of the gross return on asset j.

2.1 The Long-Run Risks Model’s IMRS

For these preferences, the log of the IMRS, mt+1, is

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 , (5)
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where rc,t+1 is the continuous return on the consumption asset, which is endogenous to the

model. Thus, in order to characterize the intertemporal marginal rate of substitution, one

needs to solve for the unobservable return on the consumption claim. To solve for rc,t+1,

we use the dynamics of the consumption growth and the log-linear approximation for the

continuous return, namely,

rc,t+1 = κ0 + κ1zt+1 + ∆ct+1 − zt , (6)

where zt = log(Pt/Ct) is log price-consumption ratio (i.e., the valuation ratio corresponding

to a claim that pays aggregate consumption), and κ’s are constants of log-linearization,

κ1 =
exp(z̄)

1 + exp(z̄)
(7)

κ0 = log(1 + exp(z̄))− κ1z̄ , (8)

z̄ here denotes the mean of the log price-consumption ratio.

To derive the time series for rc,t+1 we require a solution for log price-consumption ratio,

which we conjecture follows,

zt = A0 + A1xt + A2σ
2
t . (9)

The solution coefficients A’s depend on all the preference parameters and the parameters

that govern the dynamics of consumption growth. For notational ease, let Y ′
t = [1 xt σ2

t ]

be the vector of the state variables , and A′ = [A0 A1 A2]. Then the solution for zt = A′Yt,

where1

A′ =
[
A0

1− 1
ψ

1−κ1ρ
− (γ−1)(1− 1

ψ
)

2 (1−κ1ν)

[
1 +

(
κ1ϕe

1−κ1ρ

)2
]]

. (10)

As discussed in Bansal and Yaron (2004) the elasticities of the price-consumption ratio with

respect to the expected growth component, xt, and volatility, σt, depend on the preference

configuration. In particular, for the elasticity A1 to be positive, the IES parameter has to be

greater than one. Moreover, for the price-consumption ratio to exhibit a negative response

to an increase in economic uncertainty, the IES again has to be larger than one given that

risk aversion is greater than one.

Note that the derived solutions depend on the approximating constants, κ0 and κ1, which,

1The expressions for A0 and Γ0 in equation (14) below are given in Appendix A.1.
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in their turn, depend on the endogenous mean of the price-consumption ratio, z̄. In order to

solve for z̄, we first substitute expressions for κ’s (equations (7) and (8)) into the expressions

for A’s and solve for the mean of the price-consumption ratio. Specifically, z̄ can be found

numerically by solving a fixed-point problem,

z̄ = A(z̄)′Ȳ , (11)

where the dependence of A’s on z̄ is given above, and Ȳ is the mean of the state vector Y .

This is quite easy to implement in practice. The endogeneity of z̄ has been also emphasized

in Campbell and Koo (1997).

Given the solution for zt, the IMRS can be stated in terms of the state variables and

innovations,

mt+1 = Γ′Yt −Λ′ζt+1 , (12)

where the three sources of risks are

ζ ′t+1 =
[
σtηt+1 σtet+1 σwwt+1

]
, (13)

and the three dimensional vectors Γ and Λ are given by,

Γ′ =
[
Γ0 − 1

ψ
−(γ − 1)(γ − 1

ψ
)1

2

[
1 + ( κ1ϕe

1−κ1ρ
)2

]]
, (14)

Λ′ =
[
γ (γ − 1

ψ
) κ1ϕe

1−κ1ρ
−(γ − 1)(γ − 1

ψ
) κ1

2 (1−κ1ν)

[
1 + ( κ1ϕe

1−κ1ρ
)2

]]
. (15)

Note that the stochastic discount factor in equation (12) is exact up to an approximation error

emanating from the linearization around the theoretical value of average price-consumption

ratio. We find that this approximation error is quite small and does not materially affect our

empirical results that follow. Appendix A.5 provides a detailed discussion of the magnitude

of the approximation error and a comparison of the above log-linear solution with a solution

based on numerical methods.

Given the expression for the IMRS in equation (12), it follows that the risk premium on

any asset j is,

Et[rj,t+1 − rf,t + 0.5σ2
t,r] =

∑

i={η,e,w}
βi,jλiσ

2
i,t , (16)
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where βi,j is the beta with respect to the ith risk source in ζt+1 for asset j, and λi is the ith

entry of the vector of market prices of risks, Λ .

2.2 Special Case: IES=1

Intertemporal elasticity of substitution is a critical parameter in the LRR model. Many

papers entertain the case, in which IES is set at one (e.g., Giovannini and Weil (1989),

Tallarini (2000), Hansen, Heaton, and Li (2005), Hansen and Sargent (2006)). This provides

analytical convenience in certain situations. Note that our estimation methodology nests

the case of IES=1 in a continuous fashion (details are given in Appendix A.3). Namely, the

IMRS components as given in (12) adjust in a continuous way as one takes the limit of the

IES parameter to one.2 That is,

lim
ψ→1

κ1 = δ lim
ψ→1

Γ′ = Γ′(ψ = 1, κ1 = δ) lim
ψ→1

Λ′ = Λ′(ψ = 1, κ1 = δ) . (17)

The discussion above highlights the fact the generalized pricing kernel (12) does not confine

an econometrician to a prespecified value of the IES. That is, in estimation the IES is a free

parameter.

2.3 Recovering the State Variables

Estimation of the model requires time-series of the latent states, xt and σ2
t . As asset prices

depend on the state variables, the latter two can be recovered from available financial data. In

particular, xt and σ2
t can be extracted from the observed risk-free rate and the price-dividend

ratio for the aggregate market portfolio. Similar to the solution for the price-consumption

ratio, the risk-free rate and the market price-dividend ratio are linear functions of xt and σt

(the exact expressions are provided in Appendix A.2) and, thus, are natural candidates for

recovering the states.

More specifically, the long-run risk component, xt, can be identified by regressing

consumption growth on the risk-free rate and the market price-dividend ratio. Subsequently,

2Evaluating the pricing kernel (12) under the above restrictions gives exactly the same solution as in
Giovannini and Weil (1989), Tallarini (2000) and Hansen, Heaton, and Li (2005).
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the volatility component, σ2
t , can be extracted by projecting the squared consumption

residual on the same set of observables. To summarize, one can recover the state variables

using the following system,

∆ct+1 = b′xYt + σtηt+1 , (18)

σ2
t ≡ Et[(∆ct+1 − b′xYt+1)

2] = b′σYt , (19)

where Yt = (1 zm,t rf,t)
′. The state variables, xt ≡ b′xYt and σ2

t ≡ b′σYt. Given specification

in equation (3), the long-run and volatility innovations, et+1 and wt+1, can be recovered

by fitting independent AR(1) dynamics to the extracted state processes. The short-run

consumption risk, ηt+1, is identified by the above projection in equation (18). Thus, all the

components needed to construct the IMRS in equation (12) are fully recoverable.

3 Data

In this paper, we use data on consumption and asset prices for the time period from 1930

till 2002. We take the view that this sample better represents the overall variation in asset

and macro economic data. Importantly, the long span of the data helps in achieving more

reliable statistical inference. We work with the data sampled on an annual frequency as they

are less prone to measurement errors that arise from seasonalities and other measurement

problems highlighted in Wilcox (1992).

In our empirical tests, we employ portfolios with opposite size and book-to-market

characteristics that are known to have provided investors with quite different premia over the

years. In addition, our asset menu comprises the aggregate stock market portfolio and a proxy

of a risk-less asset. The construction of portfolios is standard (see Fama and French (1993)).

In particular, for the size sort, we allocate individual firms across 10 portfolios according

to their market capitalization at the end of June of each year. Book-to-market deciles are

likewise re-sorted at the end of June by ranking all the firms into 10 portfolios using their

book-to-market values as of the end of the previous calendar year. NYSE breakpoints are

used in both sorts. For each portfolio, including the aggregate market, we construct value-

weighted monthly returns as well as per-share price and dividend series as in Campbell and
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Shiller (1988), Bansal, Dittmar, and Lundblad (2005), and Hansen, Heaton, and Li (2005).

Monthly data are then time-aggregated to an annual frequency and converted to real using

the personal consumption deflator. Table I provides descriptive statics for returns, dividend

growth rates and price-dividend ratios for the five portfolios of interest — small and large

(i.e., firms in the top and bottom market capitalization deciles), growth and value (firms

with the lowest and highest book-to-market ratios, respectively), and the aggregate stock

market. The first column illustrates the well-known size and value premia. Over the sample

period, small stocks have outperformed large firms by about 9%; the spread in returns on

value and growth firms has averaged 6.4%. Both high book-to-market and small firms have

experienced higher growth rate of dividends and have been much more volatile than their

corresponding counterparts. The bottom line of the table reports the mean and the standard

deviation of the risk-free rate. The real interest rate is constructed by subtracting the 12-

month expected inflation from the annualized yield on the 3-month Treasury bill taken from

the CRSP treasury files.

Finally, we take seasonally adjusted per-capita data on real consumption and gross

domestic product (GDP) from the NIPA tables available on the Bureau of Economic Analysis

website. Aggregate consumption is defined as consumer expenditures on non-durables and

services. Growth rates are constructed by taking the first difference of the corresponding log

series.

4 Empirical Findings

Our empirical work is based on the annual data described above. As is common practice, we

assume that the decision interval of the agent and the sampling interval of the data observed

by an econometrician coincide.

4.1 Evidence on Consumption Growth and Uncertainty

As outlined above, we extract the expected consumption growth and the volatility component

from the observed time-series of the market price-dividend ratio and the risk-free rate (see

equations (18) and (19)). Given the dynamics of xa
t , σ2,a

t and the shocks ηa
t+1, ea

t+1 and
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wa
t+1, where we now use superscript a to explicitly denote the fact that we are dealing with

annual data, the pricing kernel in (12) can be computed for any configuration of preference

parameters.3

Table II provides evidence on the consumption dynamics, the extracted long-run

component, xa
t , and the conditional volatility of consumption, σ2,a

t . First, note that

consumption growth is highly predictable with an adjusted R2 of 35%. This evidence

clearly shows that the data are far from an i.i.d. view for consumption growth. The

slope coefficients for the long-run piece, xa
t , are very well estimated. The coefficients for

σ2,a
t are not significant at conventional levels, most likely due to the difficulty in detecting

stochastic volatility components in the presence of time-aggregation (see Drost and Nijman

(1993)). Nonetheless, the signs of these coefficients are consistent with the model implications

discussed in section 2.1 (e.g., negative coefficient on the price-dividend ratio). The estimate

of an AR(1) parameter of the long-run risk process, ρa, is 0.78, and νa is estimated at

0.81. The correlation between the short-run innovation in consumption growth, ηa
t , and the

innovations in the long-run risk variable, ea
t , is small, of about 0.15 — hence, we treat the

correlation between them as zero. The time-series dynamics of the extracted state variables

are presented in Figures 1 and 2: Figure 1 plots the conditional mean of consumption growth

along with its realized values, Figure 2 shows the estimate of the volatility component. Notice

that the conditional volatility exhibits a pronounced variation across time and a considerable

decline in the 90’s.

To assess the magnitude and duration of short and long run risks, Figure 3 provides the

accumulated impulse response of consumption growth to a one standard deviation shock in

xa
t – the long-run risk shock, as well as the response to the short-run shock, ηa

t . As the figure

shows, the impact of the expected growth shock is economically large suggesting that these

shocks significantly alter growth expectations. Furthermore, the expected growth shocks

have long lasting effects on consumption growth — quite distinct from typical business cycle

risks.

3To absorb any residual persistence in consumption growth, we allow for an MA(1) error structure in the
consumption growth dynamics. Subsequently, we appropriately adjust the model solutions, in particular,
the solution for the IMRS, as described in Appendix A.4. Overall, our empirical findings are robust to the
inclusion of the MA(1) term. Note that persistence in annual growth news, ηa

t+1, may arise due to time
averaging of consumption data – this issue is discussed in greater detail in Section 5 below.
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4.2 Returns and Betas

Before formally estimating the model, we provide preliminary evidence on the risk-return

tradeoff by linking mean returns and betas as described in equation (16). To derive asset

betas, we first estimate the expected return for a given asset, r̄a
j,t+1, by projecting the asset

return on the extracted state variables, xa
t and σ2,a

t . The asset’s betas are then measured by

the covariation of the innovation in return, ua
r,j,t+1 = ra

j,t+1 − r̄a
j,t+1, and the corresponding

consumption shock, ηa
t+1, ea

t+1 or wa
t+1.

4

The cross-sectional risk-return relation is characterized by a regression of mean returns

on the three betas, i.e.,

R̄a
j = λa

0 + λa
ηβ

a
η,j + λa

eβ
a
e,j + λa

wβa
w,j + εa

j . (20)

To expand the degrees of freedom, in the regression above we employ the full asset menu

consisting of 10 size and 10 book-to-market sorted portfolios, plus the aggregate stock market.

We find that, together, the three betas explain about 84% of the cross-sectional variation in

mean returns. It is worthy to note that the predictive ability in the cross-section is foremost

attributed to the long-run and volatility betas. Table III provides the betas for the five

returns: small and large, growth and value, and the aggregate market portfolio. As the table

shows, there is a clear link between assets’ average returns and their exposures to long-run

risks measured by βa
e . For example, value and growth portfolios have the long-run risk beta

of 22.9 and 17.23, respectively, reflecting the value premium. Similarly, the dispersion in

long-run risk betas of small and large stocks (28.1 v.s. 15.4) captures the well-known effect

of size on average returns. The volatility betas also significantly contribute to the spread

in expected returns. In particular, small and value stocks seem to be much more sensitive

to fluctuations in economic uncertainty relative to portfolios of large and growth stocks.

Consistent with the model predictions, the volatility betas all have a negative sign. As the

price of the volatility risk is also negative, the cross-sectional dispersion in volatility betas

accounts for a significant portion of variation in risk premia across assets. For comparison,

4Specifically, the long-run consumption beta is defined βa
e,j ≡

Cov(ea
t+1, u

a
r,j,t+1)

Var(ea
t+1)

, the exposure of asset

returns to transient risks in consumption is constructed as βa
η,j ≡

Cov(ηa
t+1, u

a
r,j,t+1)

Var(ηa
t+1)

, finally, the exposure

to volatility (economic uncertainty) risk is computed as βa
w,j ≡

Cov(wa
t+1, u

a
r,j,t+1)

Var(wa
t+1)

.
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the last column of Table III provides the standard CCAPM betas, βa
ccapm. It is evident

that the traditional betas fall short in capturing differences in mean returns, confirming the

well-documented failure of the CCAPM.

4.3 Euler Equation Estimation Evidence

This section provides the main results of our paper. The vector of structural parameters

we seek to estimate includes risk aversion and IES. We estimate preference parameters by

exploiting an annual version of the Euler equation (4) for the six asset returns: the risk-free

rate, market return, value and growth, large and small firm portfolios. Table IV provides the

estimates of the structural parameters of the LRR model for two configurations of the IMRS:

one that excludes the volatility innovations (Panel A), and the one that accounts for time-

varying economic uncertainty (Panel B). In both cases, we use the identity weighting matrix.

Each panel reports estimates of investors’ preferences, namely, IES and risk aversion (ψ and

γ), where we pre-set the time discount rate, δ, to 0.987. In addition, we provide the average

pricing error for each asset in the cross-section, and the J-test statistics for overidentifying

restrictions.

The results are quite illuminating. For the case, in which the IMRS includes the volatility

channel (Panel B), risk aversion is estimated at just above 15 (with the HAC standard error

of about 4), and the IES is estimated at 0.4 (with the HAC standard error of 0.5). The

results in Panel A, where volatility is not accounted for, are quite similar: the estimate

of risk aversion is around 16, and that of IES is 0.5. In both cases, the standard errors

for the IES and risk aversion are quite large. Nevertheless, the model prices assets quite

well. Formally, the model is not rejected as the overidentifying restrictions have p-values of

above 0.5 in Panel A, and 0.4 in Panel B. Furthermore, the pricing errors are quite small.

The largest pricing error is only 0.034 for the return on the portfolio of small stocks (see

Panel B). Moreover, the t-statistics of the pricing errors of the size and value premia are

both statistically insignificant. Figure 4 plots the model-based equity premium at the point

estimates. As can be seen, the model-implied premium declines considerably over the latter

part of the sample.

Table V presents the level of the risk-free rate and risk premia implied by the estimated

LRR model. For comparison, the last two columns of the table report the corresponding
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moments implied by the power utility for two commonly used configurations of risk aversion

of 4 and 40. It is evident that the standard time-separable preferences have considerable

difficulty in pricing the cross-section of assets. Not only the pricing errors are large,

the premium on value-minus-growth and small-minus-large portfolios have the wrong sign,

clearly speaking to the poor performance of the power utility specification.

Table VI provides a decomposition of the assets’ conditional risk premia into the three risk

sources of the long-run risks model. Based on the GMM estimates of Table IV, compensations

for various consumption risks are determined by asset betas and the corresponding prices of

risks. The table demonstrates that the long-run risk component accounts for the lion share,

about 50%, of risk premia, while the short-run and volatility risks account about equally for

the remaining part of the risk premia.

It is worth noting that our results are robust to alternative use of instruments. In addition

to the estimation discussed above, we have analyzed a more elaborate system of instruments

to capture potentially important variations in conditional moments. We find that adding

lagged consumption growth, risk free rate or market return as instruments leads to very

similar estimates, in particular, fairly large estimates of risk aversion (of above fifteen) and

low estimates of the IES.

4.4 Robustness

The above empirical evidence builds on using the risk-free and the price-dividend ratio

as forecasting variables – a choice naturally motivated by the LRR model. To check the

robustness of our empirical evidence and address concerns regarding potential measurement

errors in the data, we also entertain a richer set of predictive variables. In predicting

consumption growth to extract xa
t , we use a two-year moving average of lagged consumption

growth, the log of consumption to GDP ratio, price-dividend ratio of the aggregate market

portfolio, the short interest rate, and the default premium.

Consistent with our earlier evidence in Table II, consumption growth, in the augmented

VAR system, is highly predictable with an adjusted R2 of 37%. The persistence parameter of

expected consumption growth, ρa, is quite large and is estimated at 0.67. The accumulated

impulse response to a long-run shock at 30 years is about 3. These results provide additional
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evidence that the long-run component of consumption growth is distinct from business cycle

fluctuations.5

Consistent with our earlier evidence in Table II, consumption growth, in the augmented

VAR system, is highly predictable with an adjusted R2 of 37%. The implied persistence

parameter of the growth component, ρa, is quite large of about 0.67. Consequently,

news about expected consumption growth persist far into the future. Quantitatively, the

accumulated impulse response of consumption growth to a unit shock in the long-run

risk component reaches 3 at the 30 year horizon. These results, once again, highlight

the low frequency dynamics of consumption growth which are distinct from business cycle

fluctuations.6

Table VII reports the GMM estimation evidence based on the larger predictive system.

Similar to the two-variable set-up, the estimate of risk aversion is quite large, while the

estimate of the IES is below one. As before, the model generates relatively low pricing errors

and is not rejected by the overidentifying restrictions. Overall, we find our GMM evidence

to be robust to alternative empirical specifications for consumption growth.

In sum, our empirical evidence shows that once the return to wealth is appropriately

accounted for, the long-run risks model goes a long way in explaining both the time-series

and cross-sectional variation in returns. A concerning open issue is the fact that the IES

estimate is well below one and the estimate of risk aversion is quite large. This parameter

configuration in simulations of the LRR model is likely to produce counterfactual asset

pricing features. This, consequently, raises an important question of how to interpret the

empirical evidence documented in this paper and in earlier works. In the remaining sections

we address this issue by highlighting the effects of time averaging and finite sample size of

the data at hand.

5One potential important issue is whether the long-run response of consumption growth, based on this
larger system and its AR(1) univariate representation for xa

t , is similar to that obtained from a VAR system.
Indeed we find that the two responses are virtually the same.

6For this predictive system, one potential important issue is whether the long-run response of consumption
growth based on its AR(1) univariate representation for xa

t is similar to that obtained from the VAR. Indeed,
we find that the two responses are virtually the same.
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5 Decision Interval and Time Averaging

As discussed above, while there is considerable empirical support for the long-run risks

model, the magnitudes of the preference parameter estimates are hard to interpret from the

perspective of the model. First, the low value of the IES, implies that asset valuations rise

with higher economic uncertainty; earlier evidence (see Bansal and Yaron (2004), Bansal,

Khatchatrian, and Yaron (2005)) shows that this implication is economically and empirically

implausible. Second, the magnitude of the risk aversion estimate, of about 15, can be viewed

as fairly large. It is also worth noting that the high risk aversion and low IES estimates are

a fairly common empirical finding using alternative estimation procedures (e.g., Campbell

(1999) and Hall (1988)). In this section, we show that the magnitude of preference parameter

estimates is driven by time averaging and finite sample biases. Specifically, we write down

a monthly LRR model of the type specified in equation (3) and show that time averaging to

annual data leads to downward bias in the estimated IES and an upward bias in the estimated

risk aversion, while maintaining the ability of the model to price assets. In particular, we

show that even if the population value of risk aversion is low and that of the IES is larger

than one, the finite-sample GMM applied to time-averaged data will produce estimates, as in

the observed sample, of high risk aversion and low IES. Therefore, the simulation evidence

suggest that the bias corrected magnitude of risk aversion and IES are about 10 and 2

respectively — parameter configuration that is consistent with the economic implications of

the recursive-preferences based models.

5.1 Time Averaging and Finite Sample Effects on Estimation

In this section we examine the effects the misalignment of the sampling frequency with the

agent’s decision interval (time averaging) and finite sample biases on the economic plausibility

of the LRR model and the interpretation of structural parameters.7 In particular, we assess

how these issues affect the estimates reported in the previous section. We calibrate a monthly

version of the LRR model, time aggregate the data to construct simulated annual variables,

and apply the same GMM estimation methodology used earlier for the observed data.

7The role of time averaging in dynamic models has been emphasized in the past; Hansen and Sargent
(1983) highlight its effect in the framework of adaptive expectations models, while Heaton (1995) analyzes
this issue in the context of an asset pricing model with time-nonseparable preferences. In this paper, we
show the importance of this issue in the context of the long-run risks model.
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Time averaging, in our context, arises since the sampling frequency of the data is different

from the decision interval of the agent. Specifically, in simulations that follow we assume

that the decision interval of the agent is monthly while the sampling frequency of the data

used for estimation is annual. Time averaging therefore emanate from replacing monthly

consumption by annual consumption Ca
t =

∑11
j=0 Ct−j, where Ct−j corresponds to month j

consumption in year t. Consequently the estimates of monthly xt and σ2
t are replaced by

their annual counterparts xa
t and σ2,a

t .

It can be shown (see Appendix A.6) that in the presence of time averaging an

econometrician will (i) be able to recover the appropriate state variables xa
t and the

corresponding persistence parameter ρa, which will be just the monthly ρ raised to the twelve

power, (ii) will not be able to recover the true short-run shocks, ηa, and long-run ea
t shocks.

Similar results hold in extracting the volatility component. Thus, an econometrician using

only annual data, while the decision interval is monthly, will not be able to characterize

the model’s IMRS and, hence, estimate the parameters consistently. The message from

this is simple but important. Time averaging can have critical effects for deducing model

parameters. Note, that these potential effects would be absent in a model that focuses on i.i.d

consumption growth, in which case the long-run component is absent, and time averaging

essentially does not effect the estimation of model parameters.

In addition to the time averaging effects, another channel that may distort preference

parameter estimates is finite sample bias. For example, it is well known (see Kendall (1954))

that the persistence parameter in a standard AR(1) process is biased downwards. Since the

market price of long-run risk critically depends on the persistence parameter of expected

consumption growth (ρa), any downward bias in this parameter can have significant effect

on the model implied risk premia and estimated preference parameters. We provide, via

simulations, a decomposition of the bias arising solely due to time averaging and that due

to finite sample effects.

5.2 Consumption, Dividends, and Asset Returns

In order to simulate the model, we need in addition to the consumption dynamics already

given in (3), to specify the dynamics of asset dividends. We assume that for each asset j

16



dividend growth, ∆dj,t+1, follows,

∆dj,t+1 = µd,j + φjxt + πjσtηt+1 + ϕjσtud,j,t+1. (21)

We assume that all shocks are i.i.d normal and are orthogonal to each other, but allow for

cross-sectional correlations in dividend news, ud,j,t+1. Dividends have a levered exposure to

the persistent component in consumption, xt, which is captured by the parameter φj. In

addition, we allow the i.i.d consumption shock ηt+1 to influence the dividend process, and

thus serve as an additional source of risk premia. The magnitude of this influence is governed

by the parameter πj.
8 The dynamics of asset dividends are similar to those in Bansal and

Yaron (2004), Bansal, Dittmar, and Lundblad (2005), and Kiku (2006).9

The model, as discussed above, is assumed to have a monthly decision interval. We set

up the following simulation experiment. First we simulate from the monthly consumption

and dividend dynamics specified in equations (3) and (21). We then construct time series

of annual consumption and dividends, Ca
t and Da

t , respectively. Specifically, we simulate

the model with 876 months, which result in 73 annual observations, as in our data set. We

repeat this procedure 500 times. Panel A in Tables VIII and IX present the parameters

governing the consumption and dividend dynamics respectively. Throughout we use a risk

aversion parameter of 10 and an IES value of 2.

Panel B of Table VIII provides the Monte-Carlo evidence regarding the annual time

series of consumption growth. The columns under the ’model’ heading in Table VIII

provide the median and standard deviation of key moments of annual consumption growth

across simulations. As the table shows, the model successfully matches the mean, standard

deviation, and autocorrelation of annual consumption growth.

Panel B of Table IX provides information regarding the mean, standard deviation of

dividend growth and its correlation with consumption growth for the five assets we consider

for the data and the model. The model’s statistics, again, are based on the median and

standard deviation across the 500 Monte-Carlo simulations. By and large, the model’s output

matches quite well with the data. For example, the correlations between consumption and

8This type of specification is isomorphic to one in which πj = 0 but the correlation between ηt+1 and
ud,j,t+1 is non-zero.

9Note that as we are dealing with dividend per-share, specification (21) does not impose cointegration
between consumption and dividends as in Bansal and Yaron (2006).
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dividend growth are essentially indistinguishable from their point estimates in the data.

The data and the model’s mean dividend growth rates are all within standard error of each

other. More importantly, the relative ranking of mean growth rates across the five assets is

maintained. The volatility of simulated dividend growth for the market, growth and large

portfolios is well within one standard error of the data. For the small and value portfolios,

the model implied median volatility is somewhat smaller than their data counterpart. Given

that these two portfolios’ extreme volatilities are driven by few data points, we chose to

be more conservative with respect to these volatility numbers, while ensuring the model

generates average returns that are comparable to what is observed in the data. Table X

provides the data and model predictions for the mean and volatility of the return, the level

of the price dividend ratio for each portfolio, as well as the level and volatility of the risk

free rate. Again, the model replicates well all of these statistics. The data is well within one

standard error of the model estimates. In particular, note that the model is able to generate

the size and value premium as also highlighted in Kiku (2006).

5.3 Finite Sample Biases and Time Averaging effects on

Estimation

Equipped with plausible model-generated data for returns, we apply GMM to the annual

simulated data using test equation (4) in an analogous fashion to the estimation procedure

we used for the observed data. Table XI provides the distribution of R̄2s of consumption

growth projection, the persistence of the long-run component of consumption growth (ρa),

risk aversion and IES estimates, as well as the J-stat and p-values across the 500 simulations.

This table highlights several important implications. First, the medians of risk aversion and

IES estimates across simulations are quite close to those estimated directly from the annual

data in Table IV. Noteworthy is the fact that the median risk aversion is quite large (14)

and there is apparent dispersion and right skewness in the estimated risk aversion parameter.

The median estimate for the IES is less than 1. Recall, these simulations are based on a

model in which risk aversion is 10 and the IES is 2. Further, note that the model is not

rejected by the overidentifying restrictions. In fact the median J-stat is quite close to that

estimated in the data — the two are well within the 90% confidence interval from each
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other.10 In all, Table XI remarkably replicates the results in Tables IV, providing additional

support in favor of the model proposed and estimated. A natural question to ask is why

the IES is estimated with a downward bias while risk aversion is estimated with an upward

bias? The answer hinges on time averaging and finite sample effects.

To isolate the effects of time averaging from that of having a finite sample we estimate the

model using a very long annualized sample. The results of this experiment are given under

the heading Pop-Values in Table XI. The population values for R̄2 and ρa are somewhat

larger than the data and the median of the finite sample distribution. Thus, finite sample

contributes to a small reduction in the persistence of the long-run component. Importantly,

the IES estimate is still downward biased below 1, while risk aversion at 10.11 is very close

to its true value. Thus, by simply looking at the long sample, one can conclude that time

averaging is quantitatively important for the downward bias in IES, but it is the finite

sample effects that generate the upward bias in risk aversion. Finally, note that based on

the population p-value and J-stat, the misspecification induced by the time-averaging is

sharply detected. In sum, the results in Table XI provide evidence that time averaging and

finite sample effects jointly contribute to the observed biases in the preference parameter

estimates.

6 SMM based Model Estimation

One procedure to account for the time averaging effects is to rely on the SMM estimation

procedure as in Duffie and Singleton (1993). This simulation based approach requires that

one models the monthly consumption and dividend dynamics for all the assets. Given

these inputs, the model implications for asset returns can be derived using the results of

section 5.2. This allows to compute the annual data counterpart from a model in which the

decision interval is monthly. Furthermore, using long simulated draws from the model one

can evaluate the implications of finite sample biases.

Table XII uses the consumption and dividend dynamics used in Tables VIII and IX

effectively as first stage estimates of the cashflow dynamics and then uses SMM to estimate

10In simulations, not reported here, for the case of power utility, the model is rejected and generates
counter-factual risk premia as in Table V. In this respect, the results of imposing the power utility restriction
are similar to those estimated in the data.
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the preference parameters. Risk aversion is estimated at 10.23 with a standard error of

2, while the IES is estimated at 2.43 with a standard error of 1.3. These SMM estimates

are very close to the parameter configuration used earlier in section 5.2, and demonstrate

that an IES of 2 and risk aversion of 10 are plausible from the perspective of this model.

The fact the SMM procedure naturally takes into account time averaging and that the IES

estimate is now larger than one, indicates that time averaging play an important role in the

downward bias in estimation of the IES. Finally, note that the pricing errors are small and

are insignificantly different from zero. Furthermore, the model’s overidentifying restrictions

are not rejected at conventional levels. In all, the SMM approach provides a useful method

of recovering the underlying preference parameters in the presence of time averaging effects.

7 Market versus Consumption Return

Epstein and Zin (1991) pursue a GMM estimation approach but in evaluating the pricing

kernel in equation (5) replace the return on the consumption claim rc,t+1 with the observed

value weighted NYSE stock market return. In Table XIII we use our simulated data to

estimate the model with a pricing kernel based on the market return. The estimated risk

aversion in this case is quite low. This, to a large extent, is due to the large volatility

induced into the pricing kernel by the volatile market return. Finally, and most importantly,

the table shows that the model’s overidentifying restrictions are overwhelmingly rejected.

Finite sample experiments also lead to vast rejections of the model. The implication

of this experiment is that deriving the appropriate return on consumption is critical for

appropriately assessing the LRR model.

8 Conclusions

This paper develops methods for estimating the long-run risks model in Bansal and Yaron

(2004). In particular, the paper shows how to estimate the short-run, long-run and volatility

risk components in aggregate consumption and utilize these to construct the unobservable

return to aggregate wealth — a key input in estimating models with Krpes and Porteus

(1978), Epstein and Zin (1989)-Weil (1989) preferences.
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Empirically we find that the long-run risks model is able to successfully capture the time-

series and cross-sectional variation in returns. The model accounts for the low risk free rate,

and the level of the market, value, and size premia. The model also generates the volatility

of the market return and the risk free rate, as well as the returns of several portfolios and

their price-dividend ratios.

We provide evidence that estimates of risk aversion and the IES are particularly

susceptible to time averaging and finite sample biases. These biases provide a potential

explanation for the large risk aversion and small intertemporal elasticity of substitution

estimates reported in earlier papers. Correcting for these biases we find that the magnitude

of risk aversion is modest and the level of the intertemporal elasticity of substitution is larger

than one. At these values for preference parameters the market price of long-run risks is high

relative to that of the short-run and volatility risks. This evidence highlights that long-run

risks as opposed to short run risks are important for understanding asset prices.
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Appendix

A.1 Consumption Claim

To derive asset prices we use the IMRS together with consumption and dividend dynamics

given in (3) and (21). The Euler condition in equation (4) implies that any asset j in this

economy should satisfy the following pricing restriction,

Et

[
exp

(
θ ln δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 + rj,t+1

)]
= 1 , (A-1)

where rj,t+1 ≡ log(Rj,t+1) and rc,t+1 is the log return on wealth. Notice that the solution to

(A-1) depends on time-series properties of the unobservable return rc. Therefore, we first

substitute rj,t+1 = rc,t+1 and solve for the return on the aggregate consumption claim; after

that, we present the solution for the return on a dividend-paying asset.

We start by conjecturing that the logarithm of the price to consumption ratio follows,

zt = A0 + A1xt + A2σ
2
t . Armed with the endogenous variable zt, we plug the approximation

rc,t+1 = κ0 + ∆ct+1 + κ1zt+1 − zt into the Euler equation above. The solution coefficients,

A’s, can now be easily derived by collecting the terms on the corresponding state variables.

In particular,

A0 =
1

1− κ1

[
log δ + κ0 +

(
1− 1

ψ

)
µc + κ1A2(1− ν)σ̄2 +

θ

2

(
κ1A2σw

)2
]

A1 =
1− 1

ψ

1− κ1ρ
(A-2)

A2 = −
(γ − 1)(1− 1

ψ
)

2 (1− κ1ν)

[
1 +

( κ1ϕe

1− κ1ρ

)2
]

For more details, see the the appendix in Bansal and Yaron (2004).

Notice that the derived solutions depend on the approximating constants, κ0 and κ1,

which, in their turn, depend on the unknown mean of the price to consumption ratio, z̄. In

order to solve for the price of the consumption asset, we first substitute expressions for κ’s
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(equations (7) and (8)) into the expressions for A’s and solve for the mean of the price to

consumption ratio. Specifically, z̄ can be found by numerically solving a fixed-point problem:

z̄ = A0(z̄) + A2(z̄)σ̄2 ,

where the dependence of A’s on z̄ is given above.

The solution for the price-consumption ratio, zt, allows us to write the pricing kernel as

a function of the state variables and the model parameters,

mt+1 = Γ0 + Γ1xx + Γ2σ
2
t − λησtηt+1 − λeσtet+1 − λwσwwt+1 , (A-3)

where

Γ0 = log δ − 1

ψ
µc − 0.5 θ(θ − 1)

(
κ1A2σw

)2

Γ1 = − 1

ψ
(A-4)

Γ2 = (θ − 1)(κ1ν − 1)A2

and

λη = γ

λe = (1− θ)κ1A1ϕe =
(
γ − 1

ψ

) κ1ϕe

1− κ1ρ
(A-5)

λw = (1− θ)κ1A2 = −(γ − 1)
(
γ − 1

ψ

) 0.5 κ1

1− κ1ν

[
1 +

( κ1ϕe

1− κ1ρ

)2]

Note that λ’s represent market prices of transient (ηt+1), long-run (et+1) and volatility (wt+1)

risks respectively. For more detailed discussion see Bansal and Yaron (2004).

A.2 Dividend Paying Assets

The solution coefficients for the valuation ratio of a dividend-paying asset j can be derived

in a similar fashion as for the consumption asset. In particular, the price-dividend ratio for
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a claim to dividends, zj,t = A0,j + A1,jxt + A2,jσ
2
t , where

A0,j =
1

1− κ1,j

[
Γ0 + κ0,j + µd,j + κ1,jA2,j(1− ν)σ̄2 +

1

2

(
κ1,jA2,j − λw

)2

σ2
w

]

A1,j =
φj − 1

ψ

1− κ1,jρ
(A-6)

A2,j =
1

1− κ1,jν

[
Γ2 +

1

2

(
(πj − λη)

2 + (κ1,jA1,jϕe − λε)
2
)]

It follows then that the innovation into the asset return is given by,

rj,t+1 − Et[rj,t+1] = ϕjσtuj,t+1 + βη,jσtηt+1 + βe,jσtet+1 + βw,jσwwt+1 , (A-7)

where the asset’s betas are defined as,

βη,j = πj

βe,j = κ1,jA1,jϕe

βw,j = κ1,jA2,j

The risk premium for any asset is determined by the covariation of the return innovation

with the innovation into the pricing kernel. Thus, the risk premium for rj,t+1 is equal to the

product of the asset’s exposures to systematic risks and the corresponding risk prices,

Et[rj,t+1 − rf,t] + 0.5σ2
t,rj

= −Covt

(
mt+1 − Et(mt+1), rj,t+1 − Et(rj,t+1)

)

= λησ
2
t βη,j + λeσ

2
t βe,j + λwσ2

wβw,j
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A.3 IES=1

When ψ = 1, the log of the IMRS is given in terms of the value function normalized by

consumption, vct = log(Vt/Ct),

mt+1 = log δ − γ∆ct+1 + (1− γ)vct+1 − 1− γ

δ
vct

Conjecturing that vct = B0 + B1xt + B2σ
2
t and using the evolution of vct:

vct =
δ

1− γ
log Et

[
exp{(1− γ)(vct+1 + ∆ct+1}

]
,

the solution coefficients are given by,

B0 =
δ

1− δ

[
µ + B2(1− ν)σ̄2 +

1

2
(1− γ)(B2σw)2

]

B1 =
δ

1− δρ
(A-8)

B2 = −(γ − 1)
0.5 δ

1− δν

[
1 +

( δϕe

1− δρ

)2
]

(A-9)

As above, the pricing kernel can be expressed in terms of underlying preference

parameters, state variables and systematic shocks,

mt+1 = Γ0 + Γ1xt + Γ2σ
2
t − λησtηt+1 − λεσtεt+1 − λwσwwt+1 (A-10)

where:

Γ0 = log δ − µ − 0.5 (1− γ)2(B2σw)2 (A-11)

Γ1 = −1

Γ2 = −(γ − 1)2

2

[
1 +

( δϕe

1− δρ

)2
]
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and

λη = γ (A-12)

λε = (γ − 1)
δϕe

1− δρ

λw = −(γ − 1)2 0.5 δ

1− δρ

[
1 +

( δϕe

1− δρ

)2
]

Finally, note that in the IES=1 case, the wealth to consumption ratio is constant,

namely, Wt

Ct
= 1

1−δ
. The price to consumption ratio, therefore, is equal Pt

Ct
= exp(z̄) = δ

1−δ
.

Consequently, the parameter of the log-approximation of the log-wealth return,

κ1 =
exp(z̄)

1 + exp(z̄)
=

δ
1−δ

1 + δ
1−δ

= δ.

Plugging κ1 = δ and ψ = 1 into equations (A-3), (A-4) and (A-5), yields exactly equation

(A-10), (A-11) and (A-12). It then follows that

lim
ψ→1

κ1 = δ lim
ψ→1

Γ′ = Γ′(ψ = 1, κ1 = δ) lim
ψ→1

Λ′ = Λ′(ψ = 1, κ1 = δ) (A-13)

A.4 Generalized Consumption Dynamics

To absorb any short-run persistence induced by time averaging of consumption data, we

allow for an MA innovation structure when modelling the dynamics of annual growth rates.

Specifically,

∆ct+1 = µc + xt + α σt−1ηt + σtηt+1 (A-14)

The evolution of xt and σt remains the same (see equation (3)). Notice that in this

specification, predictable variations in consumption growth are driven by the long-run risk

component, xt, as well as past consumption innovation, σt−1ηt. Hence, the intertemporal

marginal rate of substitution and asset valuations will reflect information in both. In

particular, the log of the price to consumption ratio will follow, zt = A0 + A1xt + A2σ
2
t +
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A3σt−1ηt, where:

A0 =
1

1− κ1

[
log δ + κ0 +

(
1− 1

ψ

)
µc + κ1A2(1− ν)σ̄2 +

θ

2

(
κ1A2σw

)2
]

A1 =
1− 1

ψ

1− κ1ρ
(A-15)

A2 =
0.5 θ

1− κ1ν

[(
1− 1

ψ
+ κ1A3

)2

+
(
κ1A1ϕe

)2
]

A3 = α
(
1− 1

ψ

)

The log of the IMRS can now be expressed as,

mt+1 = Γ0 + Γ1xt + Γ2σ
2
t + Γ3σt−1ηt − λησtηt+1 − λεσtεt+1 − λwσwwt+1 ,(A-16)

where the loadings (Γ’s) and risk prices (λ’s) are given by,

Γ0 = log δ − 1

ψ
µc − 0.5 θ(θ − 1)

(
κ1A2σw

)2

Γ1 = − 1

ψ

Γ2 = (θ − 1)(κ1ν − 1)A2

Γ3 = −α

ψ
(A-17)

λη =
(
γ − 1

ψ

)
κ1α + γ

λe = (1− θ)κ1A1ϕe =
(
γ − 1

ψ

) κ1ϕe

1− κ1ρ

λw = (1− θ)κ1A2 = −(γ − 1)
(
γ − 1

ψ

) 0.5 κ1

1− κ1ν

[
1 +

( κ1ϕe

1− κ1ρ

)2]

It is straightforward to derive analogues solutions for the case of IES=1; for brevity, they

are not presented here.
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A.5 Pricing Kernel Approximation Error

In our empirical work, we rely on the approximate analytical solutions of the model

presented above. In this section, we evaluate the accuracy of the log-linear approximation

by comparing the approximate analytical solution for the price to consumption ratio to

its numerical counterpart. The magnitude of the approximation error allows us to assess

the reliability of the log-linear solution for the stochastic discount factor, and consequently,

model implications based on the log-linear approximation.

Notice that the value function in the Epstein-Zin preferences is given by,

Vt = (1− δ)
ψ

ψ−1 Wt(Wt/Ct)
1

ψ−1 , (A-18)

i.e., the life-time utility of the agent, normalized by the level of either consumption or wealth,

is proportional to the wealth to consumption ratio. Hence, the solution to the wealth-

consumption ratio (or, alternatively, price to consumption) based on the log-linearization of

the wealth return in equation (6) determines the dynamics of the value function. Recall also

that the evolution of the IMRS (see equation (5)), through the return on wealth, depends

on the valuation of the consumption claim. Thus, the log-linear solution for the IMRS, as

well, hinges on the accuracy of the log-linear approximation of the price-consumption ratio.

Our numerical solutions are based on the approach proposed by Tauchen and Hussey

(1991). This method relies on a discrete representation of the conditional density of the

state variables, x and σ2, which allows us to solve the pricing equation by approximating

the integral in (4) with a finite sum using the Gauss-Hermite quadrature. Note that the

resulting solutions are subject to a discretization error. In order to minimize the error and

ensure the high quality of the benchmark numerical solutions, we use a sufficiently large

number of grid points in the quadrature rule.11 In addition, in this exercise we shut-off

the channel of time-varying consumption volatility. Aside from this restriction, we evaluate

and compare numerical and log-linear analytical solutions using the same parametrization

of consumption growth dynamics that we employ in our simulation experiment (see Section

5.2 and Panel A of Table VIII. Table XIV presents the mean level of the price-consumption

11Specifically, we discretize the dynamics of the expected growth component, xt, using a 100-point rule.
We find that increasing the number of grid points leads to virtually identical numerical solutions.
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ratio and its volatility for various combinations of risk aversion and IES; the time-discount

preference paprameter δ is set at 0.9989.

Overall, we find approximate analytical and numerical solutions to be remarkably close

to each other. In particular, for risk aversion of 10 and IES of 2, the mean and the volatility

of the log price to consumption ratio implied by the log-linear approximation are 4.716 and

0.0321. Numerical solutions yield 4.724 and 0.0318, respectively.12 The approximation error,

expressed as a percentage of the corresponding numerical value, is about 0.17% for the mean

and 0.86% for the standard deviation of the log price-consumption ratio. As the elasticity of

intertemporal substitution decreases to 0.5, the percentage error falls to about 0.02% for z̄

and 0.42% for σz. Although the accuracy of the log-linearization slightly deteriorates as the

magnitude of risk aversion increases, deviations between analytical and numerical solutions

remain quite small. For example, holding IES at 2 and varying risk aversion between 5

and 15 results in 0.03%–0.51% error band for the mean and 0.17%–2.17% for the standard

deviation of the log price to consumption ratio.

As discussed above, the dynamics of the price to consumption ratio has a direct

bearing on the time-series properties of the IMRS. The fairly small approximation error

in the price-consumption ratio that we document guarantees the accuracy of the pricing

implications based on the log-linear solutions. Indeed, we find that approximate analytical

and numerical solutions deliver very similar quantitative implications along all dimensions of

the model, including levels and variances of the risk-free rate, price-dividend ratios, returns

on consumption and dividend claims, and the pricing kernel.13 This evidence confirms that

empirical findings presented in the paper are robust to the log-linearization of the model.

A.6 Mapping between Monthly and Annual Dynamics

Let Ca
12t denote the level of the agent’s consumption in year t. In what follows, we count

time in calendar months; thus, subscript 12t refers to December of year t. Superscript a

labels annual quantities measured over the past 12 months. Given the above notation, the

12All the numbers reported in this section are in monthly terms.
13Available upon request, the detailed evidence is not reported here for brevity.
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growth rate of annual consumption from year t to t + 1 is defined as,

∆ca
12(t+1) ≡ log

Ca
12(t+1)

Ca
12t

= log

∑11
j=0 C12(t+1)−j∑11

j=0 C12t−j

, (A-19)

where C12(t+1)−j is consumption over {12(t+1)−j}–month. Specifically, C12(t+1)−0 is

consumption in December of year t + 1, C12(t+1)−1 is the November consumption, and so

on.

It can be shown that annual growth in (A-19) can be approximated by a weighted sum

of monthly consumption growth rates. First, factor our C12t and rewrite the numerator in

the expression above as,

log
11∑

j=0

C12(t+1)−j = log C12t + log
11∑

j=0

C12(t+1)−j

C12t

(A-20)

Notice that each term in the summation on the right-hand side can be presented as a product

of monthly growth rates, i.e.,
C12(t+1)−j

C12t

=
11∏

k=j

C12(t+1)−k

C12(t+1)−k−1

. Consequently,

log
11∑

j=0

C12(t+1)−j ≈ log C12t + log 12 +
11∑

j=0

j + 1

12
∆c12(t+1)−j (A-21)

Applying a similar approximation to the denominator in (A-19), we can now express annual

growth as,

∆ca
12(t+1) ≈

22∑
j=0

τj ∆c12(t+1)−j (A-22)

where

τj =





j + 1

12
, j < 12

23− j

12
, j ≥ 12

(A-23)

Equation (A-22) provides a mapping between monthly and annual growth rates. It follows

that growth in annual consumption can be approximated by a weighted average of the current

and past monthly growth rates with weights taking on a ∧-shape.

The derived approximation allows us to describe the time-series dynamics of annual
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consumption growth in terms of the underlying monthly model as specified in equation (3).

In particular,

∆ca
12(t+1) ≈ φa

c xa
12(t+1)−23 + ηa

12(t+1) (A-24)

xa
12(t+1) = ρ12 xa

12t + ϕee
a
12(t+1)

where the loading of annual growth on the long-run risk component and composite

innovations are given by,

φa
c =

22∑
j=0

τj ρj

ηa
12(t+1) =

22∑
j=0

τj

[
σ12(t+1)−j−1η12(t+1)−j + ϕe

22−j∑

k=1

ρk−1σ12(t+1)−j−1−ke12(t+1)−j−k

]

ea
12(t+1) =

11∑
j=0

ρj σ12(t+1)−j−1e12(t+1)−j (A-25)

Note that the time subscript in (A-24) is measured in yearly increments (i.e., t = 0, 1, 2 ...),

correspondingly, all the variables progress on an annual basis.

Equations (A-24) and (A-25) yield several important observations. First, the long-run risk

component sampled on an annual frequency coincides with its December counterpart, xa
12t ≡

x12t. Thus, annual observations on x, can be extracted by regressing annual consumption

growth onto the past price-dividend ratio and the risk-free rate. Similar result holds for the

volatility component. Given that σ2,a
12t ≡ σ2

12t and E12(t+1)−23[(η
a
12(t+1))

2] = ϕa
cσ

2,a
12(t+1)−23,

consumption volatility as of end of December can be identified from an annual projection

of the squared consumption residual onto the market price-dividend ratio and the riskless

bond. The innovations that characterize the true annual pricing kernel, however, cannot be

recovered from annual regressions.

Further, consistent with the result documented in Working (1960), time averaging

introduces an MA(1) error structure in consumption growth dynamics. As follows from

(A-25), ηa
12t exhibits a non-zero first-order serial correlation. The evolution of annual
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consumption growth, therefore, can be equivalently described as,

∆ca
12(t+1) ≈ φa

c xa
12(t+1)−23 + η̃a

12(t+1) + ωη̃a
12t , (A-26)

where Cov(η̃a
12t, η̃

a
12(t+k)) = 0 for k 6= 0. Another side effect of time averaging is distortion

of the innovation correlation structure. Note that even if underlying monthly shocks η and

e are uncorrelated, synthesized innovations in annual consumption growth and the long-run

risk component, ηa and ea, will display a non-trivial covariation.

Since all the data we rely on are sampled on an annual frequency, in our empirical work we

exploit a slightly modified specification for consumption growth. We consider the following

dynamics,

∆ca
12(t+1) ≈ φa∗

c xa
12(t+1)−12 + η̃a∗

12(t+1) + ω∗η̃a∗
12t . (A-27)

All the implications of time averaging discussed above apply to (A-27) as well. In particular,

it can be shown that Cov(η̃a∗
12t, η̃

a∗
12(t+k)) = 0 for k 6= 0.
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Table I

Summary Statistics

Returns Div Growth Log(P/D)

Mean StdDev Mean StdDev Mean StdDev

Size Portfolios
Small 0.166 0.40 0.066 0.27 4.07 0.62
Large 0.076 0.19 0.003 0.11 3.30 0.43

B/M Portfolios
Growth 0.070 0.22 -0.003 0.16 3.71 0.62
Value 0.134 0.33 0.047 0.29 3.42 0.68

Market 0.083 0.20 0.007 0.11 3.33 0.46

Risk-free Rate 0.008 0.01

Table I presents descriptive statistics for returns, dividend growth rates and logarithms of price-dividend
ratios of size and book-to-market sorted portfolios, and the aggregate stock market. Small and large portfolios
represent firms in the top and bottom market capitalization deciles, growth and value correspond to the lowest
and highest book-to-market decile. Returns are value-weighted, dividends and price-dividend ratios are
constructed on the per-share basis, growth rates are measured by taking the first difference of the logarithm
of dividend series. The bottom line reports the mean and the standard deviation of the annualized yield on
the 3-month Treasuary bill. All asset data are real, sampled on an annual frequency and cover the period
from 1930 to 2002.
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Table II

Consumption Growth Dynamics

Cons Growth Variance

Regressor Estimate t-stat Estimate(×100) t-stat

Log(P/D) 0.025 3.10 -0.027 -1.28

Short Interest Rate -0.213 -2.04 0.151 0.74

MA(1) 0.536 4.91

R̄2 = 35% R̄2 = 2.8%

Table II presents predictability evidence for consumption growth. The second column reports estimated
projection coefficients on lagged price-dividend ratio of the aggregate market portfolio and the risk-free rate,
and the estimated MA(1) parameter. The corresponding t-statistics are calculated using the Newey-West
variance-covariance estimator with 4 lags. The data employed in the regression are annual and span the
period from 1930 to 2002.
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Table III

Consumption Betas

Mean Ret βa
η βa

e βa
w βa

ccapm

Small 0.166 4.82 28.05 -3222.7 0.71
Large 0.076 2.49 15.36 -1830.6 0.69
Growth 0.070 2.62 17.23 -2021.5 0.82
Value 0.134 3.41 22.91 -2746.7 0.14
Market 0.083 2.69 16.74 -1984.8 0.59

Table III presents mean returns and consumption betas for firms in the lowest and highest deciles of size
and book-to-market sorted portfolios — small and large, and growth and value, respectively, as well as the
aggregate stock market. Consumption betas are calculated as the covariation between consumption news and
innovations in asset returns scaled by the variance of the corresponding consumption shock. βa

η represents
the return exposure to transient shocks in consumption, βa

e and βa
w measure risks related to fluctuations in

the long-run growth and consumption uncertainty. Long-run and discount-rate risks are extracted by fitting
AR(1) processes to the estimated expected growth and volatility components. The frequency of the data is
annual, the sample covers the period from 1930 to 2002.
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Table IV

Estimation Evidence: Long-Run Risks Model

Panel A: No Vol Panel B: With Vol

Parameters Estimate SE Estimate SE

RA 16.33 5.96 15.12 4.08
IES 0.47 1.20 0.37 0.50

Assets PrError t-stat PrError t-stat

Small 0.041 0.33 0.034 0.34
Large -0.016 -0.17 -0.015 -0.19
Growth -0.027 -0.28 -0.026 -0.32
Value 0.015 0.14 0.011 0.12
Market -0.014 -0.15 -0.014 -0.17
Risk-Free 0.006 0.04 0.011 0.10

Small-Large 0.057 1.38 0.049 1.31
Value-Growth 0.042 1.46 0.037 1.28

J-stat 3.44 4.30
P-value 0.49 0.37

Table IV presents GMM estimates of the long run risks model: the risk aversion parameter (RA) and
the elasticity of intertemporal substitution (IES). The two panels differ in their treatment of the volatility
channel: it is ignored in Panel A, while being incorporated in Panel B. In both cases, moments are weighted
using the identity matrix. The asset menu consists of firms with small and large market capitalization,
low and high book-to-market ratio (growth and value, respectively), aggregate stock market and the risk-
free rate. Average pricing errors and their t-statistics are presented for each asset. The bottom two lines
report J-statistics for overidentifying restrictions and the corresponding p-values. The data employed in the
estimation are annual and cover the period from 1930 to 2002.
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Table V

Implied Risk Premia and Risk-free Rate

Data Long-Run Risks CRRARA=4 CRRARA=40

Risk Premia
Small 0.158 0.139 -0.002 -0.100
Large 0.068 0.093 0.000 0.029
Growth 0.062 0.099 0.001 0.050
Value 0.126 0.131 -0.003 -0.050
Market 0.075 0.100 0.000 0.020

Risk-Free Rate 0.008 0.003 0.097 0.153

Table V presents model-implied unconditional risk premia for the five portfolios of assets and the mean of
the risk-free rate. The first column reports corresponding moments in the data. The asset data are real and
span the period from 1930 to 2002.
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Table VI

Model-Implied Conditional Risk Premia Decomposition

Short-Run Long-Run Volatility Total

Small 0.028 0.083 0.026 0.137
Large 0.015 0.045 0.015 0.075
Growth 0.016 0.051 0.016 0.083
Value 0.020 0.068 0.022 0.110
Market 0.016 0.049 0.016 0.081

Table VI presents the decomposition of conditional risk premia implied by the long-run risks model.
Compensations for various consumption risks are determined by asset betas and the corresponding prices
of risks. Specifically, the short-run risk premium is computed as λa

ησ̄2,a
η βa

η , compensations for long-run and
volatility risks correspond to λa

e σ̄2,a
e βa

e and λa
wσ2,a

w βa
w, respectively. Risk prices are based on the GMM

estimates in Table IV. The data employed in the estimation are annual and cover the period from 1930 to
2002.

41



Table VII

Robustness Evidence

GMM Evidence

Parameters Estimate SE

RA 27.70 8.67
IES 0.59 2.57

Assets PrError t-stat

Small 0.038 0.30
Large -0.020 -0.18
Growth -0.032 -0.29
Value 0.021 0.18
Market -0.018 -0.16
Risk-Free 0.012 0.09

J-stat 5.60
P-value 0.23

Table VII reports GMM estimates of long run risks model: the risk aversion parameter (RA) and the
elasticity of intertemporal substitution (IES). The asset menu consists of firms with small and large market
capitalization, low and high book-to-market ratio (growth and value, respectively), aggregate stock market
and the risk-free rate. Average pricing errors and their t-statistics are presented for each asset. The bottom
two lines report J-statistic for overidentifying restrictions and the corresponding p-value. The data employed
in the estimation are annual and cover the period from 1930 to 2002.
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Table VIII

Consumption Growth Dynamics

Panel A: Calibration of Monthly Consumption Growth

µc ρ ϕe σ̄ ν σw

0.0015 0.982 0.042 0.0054 0.98 0.0000068

Panel B: Dynamics of Annual Consumption Growth

Statistic — Data — — Model —

E[∆c] 1.96 (0.34) 1.83 (0.62)

σ(∆c) 2.21 (0.38) 2.27 (0.37)

AC(1) 0.44 (0.13) 0.47 (0.12)

Panel A of Table VIII summarizes the calibration of parameters that govern the dynamics of monthly
consumption growth:

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1

Panel B reports the mean, the volatility and the first-order autocorrelation of annual consumption growth.
“Data” column presents summary statistics of observed per-capita consumption of non-durables and services
over the period from 1930 till 2002. Numbers in parentheses are robust standard errors calculated using the
Newey-West variance-covariance estimator with 4 lags. The entries reported in “Model” column are based
on 500 simulated samples, each with 876 months, time-aggregated to 73 annual observations. Model-implied
statistics represent the median and the standard deviation (in parentheses) of the corresponding statistics
across simulations.
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Table IX

Dividend Growth Dynamics

Panel A: Calibration of Monthly Dividend Growth Rates

Asset µd φ π ϕ

Small 0.0058 5.4 1.5 7.3
Large 0.0015 2.3 3.3 5.7
Growth 0.0015 2.0 3.6 7.1
Value 0.0040 4.4 1.9 5.2
Market 0.0015 2.3 3.8 5.4

Panel B: Dynamics of Annual Dividend Growth Rates

Asset Statistic — Data — — Model —

Small E[∆d] 6.57 (4.15) 6.63 (3.71)
σ(∆d) 27.2 (4.19) 15.4 (2.15)
Corr(∆c, ∆d) 0.44 (0.09) 0.45 (0.14)

Large E[∆d] 0.34 (1.09) 1.87 (2.05)
σ(∆d) 10.5 (1.69) 12.4 (1.60)
Corr(∆c, ∆d) 0.50 (0.15) 0.54 (0.11)

Growth E[∆d] -0.26 (1.65) 1.77 (2.41)
σ(∆d) 16.3 (1.94) 14.4 (1.80)
Corr(∆c, ∆d) 0.47 (0.10) 0.47 (0.11)

Value E[∆d] 4.67 (3.40) 4.74 (2.81)
σ(∆d) 28.6 (3.61) 11.8 (1.78)
Corr(∆c, ∆d) 0.51 (0.07) 0.57 (0.12)

Market E[∆d] 0.74 (1.18) 1.87 (2.02)
σ(∆d) 11.0 (1.92) 12.3 (1.63)
Corr(∆c, ∆d) 0.60 (0.14) 0.60 (0.10)

Panel A of Table IX presents the calibration of monthly dividend growth rates for the cross-section of assets:

∆dj,t+1 = µdj + φjxt + πjσtηt+1 + ϕjσtud,j,t+1

The asset menu comprises small and large market capitalization firms, growth and value portfolios that
represent low and high book-to-market firms respectively, and the aggregate stock market. Panel B reports
the mean and the volatility of dividend growth rates, as well as their correlation with consumption growth.
“Data” column presents summary statistics of the per-share dividend series observed over 1930-2002 time
period. Numbers in parentheses are robust standard errors calculated using the Newey-West variance-
covariance estimator with 4 lags. The entries reported in “Model” column are based on 500 simulated
samples, each with 876 months, time-aggregated to 73 annual observations. Model-implied statistics
represent the median and the standard deviation (in parentheses) of the corresponding statistics across
simulations. 44



Table X

Asset Pricing Implications

Asset Statistic — Data — — Model —

Small E(R) 16.60 (4.18) 15.40 (4.32)
σ(R) 40.4 (3.84) 35.7 (6.48)
E(pd) 4.07 (0.15) 3.59 (0.15)

Large E(R) 7.58 (2.19) 7.90 (2.20)
σ(R) 19.1 (1.79) 19.2 (2.74)
E(pd) 3.30 (0.10) 3.22 (0.05)

Growth E(R) 7.01 (2.40) 6.87 (2.59)
σ(R) 21.6 (1.89) 21.1 (3.11)
E(pd) 3.71 (0.15) 3.48 (0.05)

Value E(R) 13.37 (3.03) 12.58 (3.05)
σ(R) 33.1 (3.89) 26.4 (4.45)
E(pd) 3.42 (0.15) 3.18 (0.11)

Market E(R) 8.27 (2.10) 8.10 (2.17)
σ(R) 20.1 (1.88) 19.6 (2.75)
E(pd) 3.33 (0.11) 3.15 (0.05)

Risk-Free Rate E(R) 0.76 (0.27) 1.08 (0.34)
σ(R) 1.12 (0.22) 0.87 (0.18)

Table X presents asset pricing moments for five equity portfolios and the risk-free rate. Small and large
are portfolios of firms with low and high market capitalization, growth and value correspond to the top
and the bottom book-to-market deciles. E(R), σ(R) and E(pd) denote expected returns, return volatilities
and means of log price-dividend ratios respectively. “Data” column presents summary statistics of the
observed annual data that span the period from 1930 to 2002. Numbers in parentheses are robust standard
errors calculated using the Newey-West variance-covariance estimator with 4 lags. The entries reported in
“Model” column are based on 500 simulated samples, each with 876 months, time-aggregated to 73 annual
observations. Model-implied statistics represent the median and the standard deviation (in parentheses) of
the corresponding statistics across simulations.
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Table XI

Simulation Evidence: Long Run Risks Model

Data Pop Values 5% 50% 95%

ρa 0.78 0.81 0.63 0.77 0.87
R̄2 0.34 0.47 0.25 0.43 0.65

RA 15.12 10.11 5.42 13.60 25.16
IES 0.37 0.74 0.29 0.62 3.51

J-stat 4.30 11.84 0.91 3.96 7.80
P-value 0.37 0.01 0.10 0.41 0.92

Table XI presents population values and monte-carlo distributions of various parameters of interest:
persistence in the extracted long-run component (ρa), predictability of consumption growth (R̄2), GMM
estimates of the long-run risks model, J-statistic for overidentifying restrictions and the corresponding
p-value. RA and IES denote risk aversion and the elasticity of intertemporal substitution, respectively.
Population values are based on a simulated sample with 20,000 annual observations. Percentile cutoffs are
obtained by simulating 500 samples, each with 876 months, time-aggregated to 73 annual observations. The
asset menu consists of firms with small and large market capitalization, low and high book-to-market ratio,
aggregate stock market and the risk-free rate. For comparison, the first column reports data estimates.
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Table XII

SMM Evidence

Parameters Estimate SE

RA 10.28 1.99
IES 2.43 1.33

Assets PrError SE

Small 0.02 3.64
Large -0.49 1.34
Growth -0.07 1.82
Value -0.46 1.24
Market -0.17 1.01
Risk-Free 0.00 0.15

J-stat 4.10
P-value 0.39

Table XII presents the SMM estimates of the IES and risk aversion (RA), the pricing errors of the

assets used in estimation, the J-statistic for overidentifying restrictions, and the corresponding p-value. The

parameters governing the consumption and dividend dynamics are those given in Tables VIII and IX. The

data employed in the estimation are annual and cover the period from 1930 to 2002.
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Table XIII

Simulation Evidence: Pricing Kernel based on Market Return

Long Sample

RA 1.78
IES 1.71
P-value 0.00

Table XIII presents GMM estimates of the long-run risks model, and the p-value of J-statistic of the
overidentifying restrictions, for a pricing kernel, in which the return on consumption, rc,t, is replaced with
the market return, rm,t. The model and estimation are based on monthly frequency. RA and IES denote
risk aversion and the elasticity of intertemporal substitution respectively. The asset menu comprises firms
with small and large market capitalization, low and high book-to-market ratio, aggregate stock market and
the risk-free rate. The entries are based on a sample with 120,000 monthly observations.
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Table XIV

Approximation Error

Panel A: Approximate Analytical Solutions

Mean log(P/C) Vol log(P/C)

IES IES
0.5 1.5 2 0.5 1.5 2

5 3.592 4.754 5.058 0.059 0.021 0.032

RA 10 3.789 4.572 4.716 0.060 0.021 0.032

15 4.055 4.421 4.470 0.062 0.021 0.032

Panel B: Numerical Solutions

Mean log(P/C) Vol log(P/C)

IES IES
0.5 1.5 2 0.5 1.5 2

5 3.594 4.755 5.060 0.059 0.021 0.032

RA 10 3.788 4.576 4.724 0.060 0.021 0.032

15 4.033 4.436 4.493 0.061 0.021 0.031

Panel C: Approximation Error (as a % of numerical values)

Mean log(P/C) Vol log(P/C)

IES IES
0.5 1.5 2 0.5 1.5 2

5 0.05 0.01 0.03 0.04 -0.16 -0.17

RA 10 -0.02 0.10 0.17 -0.42 -0.83 -0.86

15 -0.54 0.32 0.51 -1.84 -2.16 -2.17
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Figure 1. Realized and Expected Growth of Consumption

Figure 1 plots time series of realized (dash-dotted line) and expected (thick line) growth in consumption.
Consumption is defined as the per-capita expenditure on non-durables and services. The expected
consumption growth is constructed according to the predictability evidence presented in Table II. The
data are real, sampled on an annual frequency and cover the period from 1930 to 2002.
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Figure 2. Conditional Volatility of Consumption Growth

Figure 2 plots time series of the extracted volatility component of consumption growth. Consumption is
defined as the per-capita expenditure on non-durables and services; data are real, sampled on an annual
frequency and cover the period from 1930 to 2002.
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Figure 3. Accumulated Impulse Response of Consumption

Figure 3 plots the accumulated impulse response of consumption to a short-run shock, ηa
t (dash line) and to

a long-run shock, ea
t . These Impulse response functions are based on the estimated system (18).
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Figure 4. Conditional Equity Premium

Figure 4 plots time series of the conditional equity premium. The risk premium on the aggregate market
portfolio is constructed using the GMM estimates of the long-run risks model. The data employed in
estimation are real, sampled on an annual frequency and cover the period from 1930 to 2002.
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