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1. Introduction

The recent availability of observations on financial returns at increasingly higher frequencies has

prompted the development of methodologies designed to test the specification of suitable models for

these data. Motivated both by mathematical tractability and the need to avoid introducing arbitrage

opportunities in the model, these models often consist of semimartingales.

We focus here on testing for the presence of jumps, which has been among the first issue to

be considered in the literature. Existing tests for jumps include Aı̈t-Sahalia (2002) (based on the

transition function of the process), Carr and Wu (2003) (based on short dated options), Barndorff-

Nielsen and Shephard (2004) (based on bipower variations), Jiang and Oomen (2008) (based on a

swap variance) Lee and Mykland (2008) (based on detecting large increments) and Aı̈t-Sahalia and

Jacod (2009) (based on power variations sampled at different frequencies).

When implemented on high frequency data, as most of them are designed to be, these tests are

confronted by the presence of market microstructure noise. Furthermore, that measurement error

tends to grow as the sampling frequency increases, which distinguishes this problem from the classical

measurement error in statistics. This issue has received a fair amount of attention in the recent

literature, but focused on the base case of quadratic variation estimation. There are currently three

main approaches to quadratic variation estimation, using nonparametric methods that are robust

to market microstructure noise: linear combination of realized volatilities obtained by subsampling

(Zhang et al. (2005) and Zhang (2006)), linear combination of autocovariances (Barndorff-Nielsen

et al. (2008)) and pre-averaging (Jacod et al. (2009) and Jacod et al. (2010)).

In this paper, we examine the possibility of robustifying one of these tests for jumps, that of Aı̈t-

Sahalia and Jacod (2009), using the pre-averaging method. The test, whose asymptotic properties

were derived without allowing for the possibility of noise, is based on comparing variations of power

greater than 2, at two different frequencies, and taking their ratio. If jumps are present, the two

variations converge asymptotically as ∆n → 0 to the same limit, which is simply the sum of the pth

power of the jumps recorded between 0 and T ; as a result their ratio converges to 1. On the other

hand, if no jumps are present, the sum of the pth power of the jumps recorded between 0 and T is

zero, and both variations then converge to 0. They do so at a rate that depends on the sampling

interval ∆n and so the ratio will pick up the difference between the two sampling frequencies: if the

1



two sampling intervals are ∆n and k∆n, then the limit of the ratio will be kp/2−1.

In this paper, we consider what happens to the test statistic when market microstructure noise

is taken into account. First, we study the impact of the noise on the statistic as defined. In the

presence of noise, the limits of the statistic become respectively 1/k and 1/k1/2 in the two polar

cases of additive noise and noise due to a rounding error. Then, using the pre-averaging approach,

we show how to robustify the test statistic to restore its discriminating power between jumps and

no jumps even in the presence of market microstructure noise.

The paper is organized as follows. Section 2 presents the model’s setting and assumptions. Section

3 presents the test statistic, studies its properties when noise is taken into account, describes its

robustification by pre-averaging and derives its asymptotic properties after robustification. Sections

4 and 5 report the results of simulations and of an empirical application to high frequency stock

returns data. Proofs are in Section 6.

2. The setting

2.1. The underlying process.

We have a one-dimensional underlying process X = (Xt)t≥0, sampled at regularly spaced discrete

times i∆n over a fixed time interval [0, T ], with a time lag which eventually goes to 0. The basic

assumption is that X is an Itô semimartingale on a filtered space (Ω(0),F (0), (F (0)
t ),P(0)), which

means that it can be written as

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs + (δ1{|δ|≤1}) ? (µ− ν)t + (δ1{|δ|>1}) ? µ

t
, (1)

where W is a Brownian motion and µ and ν are a Poisson random measure on R+ × E and its

compensator ν(dt, dz) = dt⊗ λ(dz) where (E, E) is an auxiliary space and λ a σ-finite measure (all

these are defined on the filtered space above, and for unexplained but usual notation we refer for

example to Jacod and Shiryaev (2003)). We further assume:

Assumption 1. a) the process (bt) is optional and locally bounded;

b) the processes (σt) is càdlàg (i.e., right-continuous with left limits) and adapted;
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c) the function δ is predictable, and there is a bounded function γ in L2(E, E , λ) such that the

process supz∈E(|δ(ω(0), t, z)| ∧ 1)/γ(z) is locally bounded;

d) we have almost surely
∫ t
0 σ2

s ds > 0 for all t > 0.

In particular when X is continuous it has the form

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs. (2)

In this case, we sometimes need a stronger assumption on the coefficients, namely:

Assumption 2. We have Assumption 1 and σt is also an Itô semimartingale which can be written

as

σt = σ0 +
∫ t

0
b̃sds +

∫ t

0
σ̃sdWs + Mt +

∑

s≤t

∆σs 1{|∆σs|>v}, (3)

where M is a local martingale orthogonal to W and with bounded jumps and 〈M, M〉t =
∫ t
0 asds, and

the compensator of
∑

s≤t 1{|∆σs|>v} is
∫ t
0 a′sds, and where b̃t, at, and a′t are optional locally bounded

processes, and σ̃t is optional and càdlàg, as well as bt.

Furthermore, we suppose that the processes b̃t, at, a′t are locally bounded, whereas the processes

bt and σ̃t are left-continuous with right limits. 2

2.2. The noise.

Now, the process X is observed with an error: instead of Xt we observe

Zt = Xt + χt. (4)

(Of course, the error χt comes into the picture only at those observation times t = i∆n, but it is

convenient to have it defined for all t.)

Mathematically speaking, this can be formalized as follows: for each t ≥ 0, we have a transition

probability Qt(ω(0), dz) from (Ω(0),F (0)
t ) into R. The space Ω(1) = R[0,∞) is endowed with the

product Borel σ-field F (1) and the “canonical process” (χt : t ≥ 0) and the probability Q(ω(0), dω(1))
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which is the product ⊗t≥0 Qt(ω(0), ·). We introduce the filtered probability space (Ω,F , (Ft)t≥0,P)

and the filtration (Gt) as follows:

Ω = Ω(0) × Ω(1), F = F (0) ⊗F (1),

Ft = F (0)
t ⊗ σ(χs : s ∈ [0, t)), Gt = F (0) ⊗ σ(χs : s ∈ [0, t)),

P(dω(0), dω(1)) = P(0)(dω(0)) Q(ω(0), dω(1)).





(5)

Any variable or process which is defined on either Ω(0) or Ω(1) can be considered in the usual way

as a variable or a process on Ω. Note that X is still a semimartingale, with the same decomposition

(1), on (Ω,F , (Ft)t≥0,P), and W and µ are a Wiener process and a Poisson random measure on this

extended space as well.

We make the following assumption on the noise:

Assumption 3. For each q > 0 there is a sequence of (F (0)
t )-stopping times (Tq,n)n≥1 increasing to

∞, such that
∫

Qt(ω(0), dz) |z|q ≤ n whenever t < Tq,n(ω(0)). We write

β(q)t(ω(0)) =
∫

Qt(ω(0), dz) zq, αt =
√

β(2)t, (6)

and we assume that the processes α and β(3) are càdlàg, and that

β(1) ≡ 0. (7)

The reader can look at Jacod et al. (2009) or Jacod et al. (2010) for various comments on this

assumption. We assume moments of all order for the noise, although only moments up to 2p (where

p ≥ 4 is the power chosen below) should be finite; in practice, this is a very mild restriction. The

regularity properties of the paths of α and β(3) are not needed all the time, but this is again a

weak requirement. The really strong requirement in this assumption is (7), in conjunction with the

conditional independence of the noise at different times. Note however that whereas the noise at

different times is independent, conditionally on F , it is not uncondationally independent.
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2.3. The hypotheses to be tested.

The problem we wish to solve is the same as in Aı̈t-Sahalia and Jacod (2009), namely decide in which

of the two complementary sets the observed path falls (the time T , which the horizon, is fixed):

Ωc
T = {ω(0) : t 7→ Xt

(
ω(0)

)
is continuous on [0, T ]}

Ωj
T = {ω(0) : t 7→ Xt

(
ω(0)

)
is discontinuous on [0, T ]}





(8)

Recall that, when the null hypothesis is either Ω0 = Ωc
T or Ω0 = Ωj

T , the asymptotic level and power

of a sequence Cn of critical regions (Cn is the critical rejection region at stage n, which is measurable

w.r.t. σ(Zi∆n : i = 0, · · · , [t/∆n])) are respectively

α = sup (lim supn P(Cn | A) : A ∈ F , A ⊂ Ω0, P(A) > 0)

β = inf (lim infn P(Cn | A) : A ∈ F , A ⊂ (Ω0)c, P(A) > 0) .





(9)

3. The test statistics

3.1. The case with no noise.

We briefly recall the results of Aı̈t-Sahalia and Jacod (2009). For any process Y and any integer

i ≥ 1 and real p > 0 we write

∆n
i Y = Yi∆n − Y(i−1)∆n

, B(Y, p,∆n)t =
[t/∆n]∑

i=1

|∆n
i Y |p. (10)

We take an integer k ≥ 2 and consider the test statistic

S(p, k,∆n)n =
B(X, p, k∆n)T

B(X, p, ∆n)T
. (11)

When there is no noise, this is computable from the data, and the two tests (with the two possible

null hypotheses Ωc
T and Ωj

T ) are based upon the following behavior, when p > 2:

S(p, k, ∆n)n
P−→





1 on the set Ωj
T

kp/2−1 on the set Ωc
T .

(12)

Moreover a Central Limit Theorem allows to specify, for any given α ∈ (0, 1), a sequence vn → 0

(depending on the observations at stage n) such that the asymptotic level of the rejection region
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Cn = {S(p, k, ∆n)n > 1 + vn} is α (and the asymptotic power is 1), when the null is Ωj
T , and under

Assumption 1. Analogously, under Assumption 2 and when the null is Ωc
T we can do the same thing

for the rejection regions Cn = {S(p, k,∆n)n < kp/2−1 − vn}.

3.2. The behavior of the AJ test when there is noise: simulation results

When there is noise, X is unobservable and the AJ test statistic S(p, k, ∆n)n is infeasible. The seem-

ingly natural alternative would be S′(p, k,∆n)n, computed by replacing the unobservable underlying

process X with the noisy observable process Z. Unfortunately, this naive substitute is ill-behaved.

We illustrate this point by simulation, with p = 4 and k = 2 fixed. We use an observation length

of 5 days, with each day consisting of 6.5 trading hours, and sample the continuous-time process at

every 5 seconds. To focus on the effect of noise, we simulate the underlying process X with constant

volatility. We draw i.i.d. noise from a heavy-tailed distribution in order to capture infrequent but

large bounce-backs in the real data used in the empirical study of Aı̈t-Sahalia and Jacod (2009). We

use three levels of noises to cover the spectrum of cases which are relevant in practice.

Figure 1 plots the histogram of the non-standardized AJ test statistic. In the benchmark case

when there is no noise (top row), the non-standardized statistic is centered at 2 when there is no

jump (shaded area) and at 1 when there is on average 1 large jump per day (solid curve), which

confirms the theoretical prediction of Aı̈t-Sahalia and Jacod (2009). When there are frequent but

small jumps (dashed curve), the center of the distribution drifts slightly from 1 to 2. Sampling

infrequently magnified this drift (right column).

When there is noise (middle row), the distribution of the statistic on continuous path strongly

deviates from the prediction of the theory in Aı̈t-Sahalia and Jacod (2009). Although sampling

infrequently helps reducing the effect of noise, it is clearly unsatisfactory (right column). We remark

the resemblance between the pattern in this simulation and the empirical finding in Figure 5 of

Aı̈t-Sahalia and Jacod (2009).

As the size of noise increases (bottom row), the deviation from asymptotic theory becomes

more significant. Even with infrequent sampling, the statistic seems to be unable to discriminate

continuous paths from discontinuous ones.
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3.3. Pre-averaging.

Before exhibiting the robustified test statistics against noise, we need a rather large number of

notation and conventions.

First, we choose a sequence of integers kn satisfying for some θ > 0:

kn

√
∆n = θ + o(∆1/4

n ). (13)

Next, we consider weight functions g on R, satisfying

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,

s /∈ (0, 1) ⇒ g(s) = 0,
∫

g(s)2ds > 0,



 (14)

and with which we associate the quantities (where p ∈ (0,∞) and i ∈ Z):

gn
i = g(i/kn), g′ni = gn

i − gn
i−1,

ḡ(p) =
∫ |g(s)|p ds, ḡ′(p) =

∫ |g′(s)|p ds.





(15)

With any process Y = (Yt)t≥0 we associate the following random variables

Y (g)n
i =

kn−1∑

j=1

gn
j ∆n

i+jY, Ŷ (g; kn)n
i =

kn∑

j=1

(g′nj ∆n
i+jY )2 (16)

and processes

V (Y, g, q, r)n
t =

[t/∆n]−kn∑

i=0

|Y (g; kn)n
i |q |Ŷ (g; kn)n

i |r (17)

(they – implicitly – depend on the two sequences ∆n and kn)).

Letting p ≥ 4 be an even integer, we define (ρ(p)j)j=0,··· ,p/2 are the unique numbers solving the

following triangular system of linear equations:

ρ(p)0 = 1,

∑j
l=0 2l m2j−2l Cp−2j

p−2l ρ(p)l = 0, j = 1, 2, · · · , p/2,





(18)

where mr denotes the rth absolute moment of the law N (0, 1). These could be explicitly computed,

and for example when p = 4 (the case used in practice),

ρ(4)0 = 1, ρ(4)1 = −3, ρ(4)2 = 0.75. (19)
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Then for any process Y we set

V (Y, g, p)n
t =

p/2∑

l=0

ρ(p)l V (Y, g, p− 2l, l)n
t . (20)

3.4. First order asymptotic properties.

We are now ready to introduce our test statistics. For this, we fix an even integer p ≥ 4 and two

weight functions g and h. For simplicity we set

γ =
ḡ(2)
h̄(2)

, γ′ =
ḡ(p)
h̄(p)

, γ′′ =
γp/2

γ′
, (21)

and we assume that γ′′ > 1 (if γ′′ were smaller than 1 one could always interchange g and h to

get γ′′ > 1, whereas if γ′′ were equal to 1 the tests below would not separate our two hypotheses.

Finally, we also choose a sequence kn satisfying (13), and our test statistics is given by

S(g, h, p)n =
V (Z, g, p)n

T

γ′ V (Z, h, p)n
T

. (22)

Here we describe the limiting behavior of the test statistics S(g, h; p)n given above:

Theorem 1. Under Assumptions 1 and 3, we have

S(g, h; p)n
P−→





1 on the set Ωj
T

γ′′ on the set Ωc
T .

(23)

So we always get an asymptotic behavior which is similar to the behavior of the statistics

S(p, k, ∆n)n when there is no noise. If we take h(s) = g(sk) for some k 6= 1 then ḡ(q) = kh̄(q)

for any q > 0, so γ′′ = kp/2−1 and we even exactly retrieve (12), except that k does not need to be

an integer here.

3.5. Second order properties.

In order to put the above statistics in use for practical test, we need a central limit theorem associated

with the convergence in (23), and there are of course two very distinct behaviors on the two sets Ωc
T

and Ωd
T .
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We start with what happens on the set Ωc
T . We choose a sequence un as follows:

un = α ∆$
n , where α > 0, $ ∈

(
1
12

,
1
4

)
. (24)

These will serve as truncation levels. Next we introduce a number of constants, depending on the

weight functions g and h. These are quite complicated to write, although simple to numerically

compute, and they will be motivated in Section 6. First we write, for any two (possibly identical)

functions φ and ψ and any integers w ≥ 1 and w′ ∈ {0, · · · , 2w}:

a(φ, ψ)t =
∫ 1+1∧t
1∨t φ(u− 1) ψ(u− t) du

a′(φ, ψ; w, w′)t =
∑[w′/2]

r=0 C2r
w′ m2rm2w−2r a(φ, φ)w−w′

1 a(φ, ψ)w′−2r
t

(
a(φ, φ)1 a(ψ, ψ)1 − a(φ, ψ)2t

)r





(25)

(these will be used when φ and ψ are either the weight functions g and h, or their derivatives; observe

that a(g, g; 1) = ḡ(2) and a(g′, g′; 1) = ḡ′(2)). Finally we write for w ∈ N:

A(g, h; w)t =
∑

l,l′∈{0,··· ,p/2},l+l′≤p−w

∑(2w)∧(p−2l′)
w′=(2w−p+2l)+

ρ(p)l ρ(p)l′ C
2w−w′
p−2l Cw′

p−2l′

(2ḡ′(2))l(2h̄′(2))l′ a′(g, h;w,w′)t a′(g′, h′; p− l − l′ − w, p− 2l′ − w′)t

A′(g, h;w) =
∫ 2
0 A(g, h; w)t dt− 2(mp)2 ḡ(2)p/2 h̄(2)p/2 1{w=p}.





(26)

We also complete the notation (17) by a truncated version:

V ∗(Y, g, q, r)n
t =

[t/∆n]−kn∑

i=0

|Y (g)n
i |q 1{|Y (g)n

i |≤un} |Ŷ (g)n
i |r. (27)

We end this series of notation by setting, for any weight function φ:

M∗(g, h, φ)n
t = ∆1−p/2

n

p∑

w=0

θ A′(g, h; w)
m2w 2p−w φ̄(2)w φ̄′(2)p−w

w∑

l=0

ρ(2w)l V
∗(Z, φ, 2w − 2l, p + l − w)n

t . (28)

Theorem 2. Suppose that Assumptions 2 and 3 hold.

a) The variables
1

∆1/4
n

(
S(g, h, p)n − γ′′

)

converge stably in law, in restriction to the set Ωc
T , towards a random variable defined on an extension

of the probability space (Ω,F ,P) and which, conditionally on F , is a centered Gaussian variable, the

variance of which we denote by Σ(g, h, p, θ) (an F-measurable positive variable).

b) For any choice of the auxiliary weight function φ, the variables

Σn =
M∗(g, g, φ; p)n

T − 2γp/2M∗(g, h, φ, p)n
T + γpM∗(h, h, φ; p)n

T(
γ′∆1−p/4

n V (Z, h, p)n
T

)2
(29)

converge in probability to the F-conditional variance Σ(g, h, p, θ), in restriction to the set Ωc
T .
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We now turn to the behavior on the set Ωj
T . For this, we choose another sequence k′n of integers

satisfying

k′n/kn → ∞, k′n∆n → 0. (30)

Recall also the truncation level un of (24). We choose an arbitrary weight function φ (it may be g

or h, or some other), and we consider the variables

η(φ, 0)n
i = 1

kn k′n ∆n

∑k′n
j=1

(
(Z(φ)n

i+j)
2 − 1

2 Ẑ(φ)n
i+j

)
1{|Z(φ)n

i+j)|≤un}

η(φ, 1)n
i = 1

kn k′n ∆n

∑k′n
j=1 Ẑ(φ)n

i+j 1{|Z(φ)n
i+j)|≤un}.





(31)

This allows to define four processes (below, m is either 0 or 1) as follows:

N(φ,m,−)n
t = 1

kn

∑[t/∆n]−kn

i=kn+k′n

(
Z(φ)n

i

)2p−2
η(φ,m)n

i−kn−k′n

N(φ,m, +)n
t = 1

kn

∑[t/∆n]−2kn−k′n+1
i=0

(
Z(φ)n

i

)2p−2
η(φ,m)n

i+kn−1



 (32)

On the other hand, we introduce the numbers (recall that θ and p are fixed):

Γ(−, g)t =
∫ 1
t g(s)p−1g(s− t)ds, Γ′(−, g)t =

∫ 1
t g(s)p−1g′(s− t)ds

Γ(+, g)t =
∫ 1−t
0 g(s)p−1g(s + t)ds, Γ′(+, g)t =

∫ 1−t
0 g(s)p−1g′(s + t)ds.

Ψ±(g, h) =
∫ 1
0 Γ(±, g)t Γ(±, h)t dt, Ψ′±(g, h) =

∫ 1
0 Γ′(±, g)t Γ′(±, h)t dt

Ψ± = Ψ±(g, g) + Ψ±(h, h)− 2Ψ±(g, h), Ψ′± = Ψ′±(g, g) + Ψ′±(h, h)− 2Ψ′±(g, h).





(33)

Theorem 3. Suppose Assumptions 1 and 3 hold.

a) The variables
1

∆1/4
n

(S(g, h, p)n − 1)

converge stably in law, in restriction to the set Ωj
T , towards a random variable defined on en extension

of the probability space (Ω,F ,P) and which, conditionally on F , is a centered variable (nor necessarily

Gaussian, unless both processes σ and α have no jumps occurring at the jump times of X), and the

variance of which we denote by Σ′(g, h, p, θ).

b) For any choice of the auxiliary weight function φ, the variables

Σ′n =
θ p2 k2

n φ̄(p)2(
V (Z, φ, p)n

T

)2

(Ψ−N(φ, 1,−)n
T + Ψ+N(φ, 1,+)n

T

φ̄(2) φ̄(2p− 2)
+

Ψ′−N(φ, 0,−)n
T + Ψ′

+N(φ, 0,+)n
T

2 φ̄′(2) φ̄(2p− 2)

)
(34)

converge in probability to the F-conditional variance Σ′(g, h, p, θ), in restriction to the set Ωj
T .
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Remark 1. As we can see from the previous formulas, we have the two weight functions g and h

used for our basic test statistics, and another one φ used to compute the estimators for the variance.

We could also choose different sequences kn, with different values θ in (13), for defining S(g, h, p)n

and for defining V ∗(Z, φ, r, s)n
t in (28) or for the processes in (32): we thus have a lot of flexibility,

hence also a lot of parameters to tune.

In practice, one takes h(s) = g(sk) for some k > 1, and also φ = g or φ = h, with the same

sequence kn all the time.

Remark 2. There is even more flexibility for the estimators of the conditional variance Σ′n than

what is mentioned in the previous remark. For example in (31) one could truncate also Ẑ(φ)n
i+j at

the level un, or leave out any truncation. In (32) we could truncate Z(g)n
i from below, that is replace

|Z(g)n
i |2p−2 by |Z(g)n

i |2p−2 1{|Z(g)n
i |>un}. The proofs are exactly the same.

3.6. The two tests

We start with the case where the null hypothesis is “no jump”, that is Ωc
T . As before, the two weight

functions g and h are given, as well as the even integer p ≥ 4 (typically, p = 4 and h(t) = g(kt) for

some k > 1; recall that in any case γ′′ > 1). We use the statistics S(g, h, p)n given by (22).

With the aim of constructing a test with a given asymptotic level α ∈ (0, 1), we denote by zα the

α-quantile of N (0, 1), that is P(U ≤ zα) = α where U is N (0, 1).

Theorem 4. We assume Assumptions 2 and 3, and we set

Cn =
{

S(g, h, p)n < γ′′ − zα ∆1/4
n

√
Σn

}
, (35)

where Σn is given by (29). Then the asymptotic level of the critical region (35) for testing the null

hypothesis “no jump” equals α, whereas the asymptotic power is 1.

In a second case, we set the null hypothesis to be that “there are jumps”, that is Ωj
T .

Theorem 5. We assume Assumptions 1 and 3, and we let Σ′n be defined by (34).

a) The asymptotic level of the critical region defined by

C ′
n =

{
S(g, h, p)n > 1 + ∆1/4

n

√
Σ′n/α

}
(36)
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for testing the null hypothesis “there are jumps” is smaller than α, and the asymptotic power is 1.

b) Suppose that we restrict our attention to models in which the processes X never jumps at the

same times as either σ or α. Then the same statements are true for the (bigger) critical region

C ′′
n =

{
S(g, h, p)n > 1 + zα∆1/4

n

√
Σ′n

}
. (37)

4. Simulation results

Throughout the simulations and the empirical study, we fix p = 4 and weigh functions g(x) =

max{0.5− |x− 0.5|, 0} and h(x) = g(2x). We do not provide any theoretical guideline for choosing

the averaging window kn in this paper. However, intuitively, undersmoothing (using a small kn)

induces bias from (a) insufficient noise shrinking and (b) approximation error between Riemann sum

and the correponding limiting integral. On the other hand, oversmoothing (using a large kn) induces

larger dependence in the moving average sequence and reduces the quality of our Central Limit

Theorem. Moreover, oversmoothing tends to kill the small jumps, which reduces the power of our

test. In the simulation, we use different values of kn for sensitivity analysis.

We use the same averaging window for the variance estimator as the window for S(g, h, p)n, i.e.,

k∗n = kn, although this is not required by the asymptotic theory. We also link the truncation level un

with the window k∗n by un = C(ḡ(2)σ2)1/2∆0.47
n (k∗n)1/2, where σ2 is the mean squared volatility and

C = 7. These two restrictions make kn the only tuning parameter in our simulation. The results are

robust to deviations from this benchmark1.

We start with a simulation using the same data generating process as in Figure 1 in order to

compare our test with the AJ test. Since both the volatility (σt)t≥0 and the standard deviation of

noise (αt)t≥0 are constant, this simple data generating process also helps us identifying potential

problems of our test. Table 1 shows the results under the null hypothesis of no jumps with different

levels of noises. The test statistic S(g, h, 4)n is properly centered at 2 (column 3), which confirms

the first-order property predicted by (23). The rejection rate in the simulation is between 4.2% and

6.5% for a 5%-level test (column 4) and is between 8.7% and 12.2% for a 10%-level test (column 5).
1To check robustness, we use k∗n = 1.5kn and k∗n = 2kn. We also use C = 6 and C = 8 to determine the truncation

level. The results are similar to those in the text and thus omitted to save space.
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In most cases, the test slightly over-rejects. An interesting feature is that the rejection rate increases

with the averaging window kn in all cases. Figure 2 compares the Monte Carlo distribution of the

standardized statistic with the asymptotic distribution.

Figure 3 plots the distribution of the non-standardized test statistic S(g, h, 4)n to illustrate how

the test statistic separates continuous paths from discontinuous ones. When there is no noise (top

row), the distribution of S(g, h, 4)n exhibits a similar pattern as in Figure 1, but with much larger

dispersion. However, the distribution of S(g, h, 4)n is insensitive to noise (middle and bottom rows),

which is a clear advantage over the AJ test statistic.

Figure 4 plots the power of the test under the null hypothesis of no jumps when the underly-

ing process X contains compound Poisson jumps with different intensities but constant expected

quadratic variation. When the jumps are infrequent with large size (λ = 1), the null hypothesis is

almost always rejected. As the jumps become frequent and small, the rejection rate drops. Large

averaging window reduces the power of the test, since the small jumps tend to be smoothed away.

We then investigate our test in a more realistic setting, using the same observation length and

sampling frequency as in the previous simulations. We generate the underlying process X using a

stochastic volatility model which is calibrated to a liquid stock trading on the NYSE. We also allow

noise level αt to be time-varying by marking it to σt so that the signal-to-noise ratio is kept constant.

While the noise satisfies Assumption 3, they are unconditional dependent and dependent on X. The

results are quite similar to what we find in the previous simulations with constant volatility and noise

level. Table 2 reports the mean of the non-standardized test statistic and the rejection rate under

the null hypothesis of no jumps. Figure 5 compares the Monte Carlo distribution of the standardized

test statistic with the theoretical asymptotic distribution. Figure 6 shows how the non-standardized

test statistic separates continuous paths from discontinuous paths. Figure 7 plots the power of the

test.

It may appear counterintuitive that as kn decreases, the type 1 error (Tables 1 and 2) and the

type 2 error (Figures 4 and 7) drop simultaneously. This phenomenon may arise from our reduction

of three tuning parameters – the averaging window for the test statistic, the averaging window for

the variance estimator and the truncation level un – into a single parameter kn as described at the

beginning of this section. Consequently, the higher order effect of kn on size and power can be very
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complicated. One caveat is that in practice, a researcher should not simply take a small window

kn with the attempt to minimize both type 1 and type 2 errors based on this phenomenon. When

the window is too small relative to the magnitude of noise, the bias correction may be insufficient.

Indeed, the upward bias of the standardized statistic is visible in Figure 5 when the noise is large

(bottom row) and the window is small (left column) 2. Although in our simulation such bias seems to

help reducing the type 1 error of our one-sided test, this effect is beyond the scope of our asymptotic

theory. The choice of kn involves higher-order asymptotic theory, which is left for future research.

5. Empirical results

We now conduct the test for each of the current (October 29th, 2009) 30 Dow Jones Industrial

Average (DJIA) stocks and each trading day in 2008; the data source is the TAQ database. Each

day, we collect all transactions from 9:30am until 4:00pm, and compute the volume-weighted average

of transaction prices at each time stamp for each one of these stocks. We sample in calendar time

every 5 seconds. Each day and stock is treated on its own. We use filters to eliminate clear data

errors (price set to zero, etc.) as is standard in the empirical market microstructure literature.

We plot in Figure 8 distributions of the non-standardized and the standard statistic under the

null hypothesis of no jumps for different averaging windows, with the tuning parameters kn, k∗n and

un chosen in the same way as in our simulations. The empirical distributions of these statistics are

quite robust to the choice of kn and provide evidence for the presence of jumps. Indeed, the non-

standardized statistic is centered away from 2 (left column) and the distribution of the standardized

statistic deviates significantly from the N (0, 1) distribution towards the left side (or, the “jump

side”). When kn = 100 (middle row), the null hypothesis of no jumps is rejected 30% of the time

for a 5%-level test and 41% of the time for a 10%-level test. Changing kn to 75 or 125 affects these

rejection rates by less than 1 percentage point.
2In the simulations of either Figure 2 or 5, if we take the window kn = 50, the standardized statistic is significantly

upward biased when there is noise. The bias increases with the size of noise. We omit this case in the text for the

clarity of presentation.
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6. The proofs.

6.1. Some known results and their consequences.

In this subsection we recall some properties from Jacod et al. (2010). Below, g and h are two given

weight functions, and p ≥ 4 is an even integer. The sequence kn, hence the number θ coming in (13),

are also fixed.

First, we have some laws of large numbers. Namely, under Assumptions 1 and 3 we have

1
kn ḡ(p)

V (Z, g, p)n
T

P−→ U(p) :=
∑

s≤T

|∆Xs|p (38)

and also, when further X is continuous:

∆1−p/4
n V (Z, g, p)n

T
P−→ V (g, p) := mp θp/2 ḡ(2)p/2

∫ T

0
|σs|p ds. (39)

These two facts allow for a simple proof of Theorem 1:

Proof of Theorem 1. Since U(p) > 0 on the set Ωj
T , the first convergence in (23) readily follows from

(38). For the second convergence in (23) we cannot apply (39) right away, because X is not necessarily

continuous, even though it is so on Ωc
T . We set S = inf(t : ∆Xt 6= 0) and X ′

t = Xt∧S −∆XS 1{S≤t}.

The process X ′ is a continuous semimartingale satisfying Assumption 1 by construction, with the

volatility process σt 1{t≤S}. Furthermore on the set Ωc
T we have S ≥ T and X ′

t = Xt for all t ≤ T : so

the variables V (Z, g, p)n
T associated with X and with X ′ coincide on the set Ωc

T , as well as
∫ T
0 |σs|p ds.

Hence we deduce from (39) applied to X ′ that

∆1−p/4
n V (Z, g, p)n

T
P−→ V (g, p) in restriction to Ωc

T .

Then in view of the definition of S(g, h, p)n, the second convergence in (23) is obvious.

Second, we have some central limit theorems. First, assume that X is continuous and satisfies

Assumptions 2 and 3. To describe the limit we need some notation. Consider two independent Brow-

nian motions W 1 and W 2, given on another auxiliary filtered probability space (Ω′,F ′, (F ′t)t≥0,P′).

Associated with g, we define the following Wiener integral processes

L(g)t =
∫

g(s− t) dW 1
s , L′(g)t =

∫
g′(s− t) dW 2

s , (40)
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and L(h) and L′(h) are defined likewise with h instead of g, with the same W 1 and W 2. The four

dimensional process (L(g), L′(g), L(h), L′(h)) is continuous stationary centered Gaussian. We then

set for η, ζ ∈ R and q, q′ even integers:

mq(g; η, ζ) = E′
(
(ηL(g)1 + ζL′(g)1)q

)

mq,q′(g, h; η, ζ)t = E′
(
(ηL(g)1 + ζL′(g)1)q (ηL(h)t + ζL′(h)t)q′)

µ(g, h; η, ζ) =
∑p/2

r,r′=0 ρ(p)rρ(p)r′
(
2ζ2ḡ′(2)

)r (
2ζ2h̄′(2)

)r′

∫ 2
0

(
mp−2r,p−2r′(g, h; η, ζ)t −mp−2r(g; η, ζ) mp−2r′(h; η, ζ)

)
dt

R(g, h) = θ1−p
∫ T
0 µ(g, h; θσs, αs) ds.





(41)

With all this notation, we then have
(

∆1−p/4
n V (Z, g, p)n

T − V (g, p)

∆1/4
n

,
∆1−p/4

n V (Z, h, p)n
T − V (h, p)

∆1/4
n

)
L−(s)−→ (V (g, p), V (h, p)) (42)

(stable convergence in law), where (V (g, p), V (h, p)) is defined on an extension of the space and,

conditionally on F , is a Gaussian centered vector with the covariance matrix


 R(g, g) R(g, h)

R(g, h) R(h, h)


.

The following proposition is then a simple consequence of this result plus the delta method, together

with the fact that in restriction to Ωc
T we can argue as if the process X were everywhere continuous,

exactly as in the proof of Theorem 1:

Proposition 1. We have (a) of Theorem 2, with

Σ(g, h, p, θ) =
R(g, g)− 2γp/2 R(g, h) + γp R(h, h)

γ′2 V (h, p)2
(43)

Finally we consider the CLT associated with the convergence (38). Under Assumptions 1 and 3,
(

V (Z, g, p)n
T − knḡ(p) U(p)

kn ∆1/4
n

,
V (Z, h, p)n

T − knh̄(p) U(p)

kn ∆1/4
n

)
L−(s)−→ (U(g, p), U(h, p)) (44)

where (U(g, p), U(h, p)) is defined on an extension of the space and, conditionally on F , is a (usually

not Gaussian, unless the processes σ and α do not jump at the same times as X) centered random

vector with covariance matrix


 D(g, g) D(g, h)

D(g, h) D(h, h)


, where

D(g, h)t = p2θ
∑

s≤t

|∆Xs|2p−2

(
Ψ−(g, h)σ2

s− + Ψ+(g, h)σ2
s +

1
θ2

Ψ′
−(g, h)α2

s− +
1
θ2

Ψ′
+(g, h)α2

s

)

(45)

(notation (33)). Therefore, exactly as for Proposition 1, we get
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Proposition 2. We have (a) of Theorem 3, with

Σ′(g, h, p, θ) =
D(g, g)− 2D(g, h) + D(h, h)

U(p)2
(46)

Now we define Σn and Σ′n by (29) and (34). Suppose for a moment that we have the following

behavior:

Proposition 3. a) Under the assumptions of Theorem 2 we have

Σn
P−→ Σ(g, h, p, θ) on the set Ωc

T . (47)

∆1/2
n Σn

P−→ 0 on the set Ω. (48)

b) Under the assumptions of Theorem 3 we have

Σ′n
P−→ Σ′(g, h, p, θ) on the set Ωj

T . (49)

∆1/2
n Σ′n

P−→ 0 on the set Ω. (50)

Then Theorems 2 and 3 immediately follow from the previous three propositions, whereas we

have:

Proof of Theorems 4 and 5. By Theorem 2, the standardized variables Tn = (S(g, h, p)n−γ′′)/∆1/4
n
√

Σn

converge stably in law, in restriction to the set Ωc
T to an N (0, 1) random variable. The claim about

the asymptotic level in Theorem 4 is then obvious. As for the claim about the asymptotic power in

the same theorem, it follows from the first convergence in (23) and from (48).

For Theorem 5 the proof is exactly the same for the power of the two tests (use the second

convergence in (23) and (50)), and also for the level in claim (b) because the variables T ′n =

(S(g, h, p)n− 1)/∆1/4
n

√
Σ′n converge stably in law, in restriction to the set Ωj

T to an N (0, 1) random

variable. For (a) we use the fact that T ′n above converges stably in law, on the set Ωj
T again, to a

centered variable with variance 1, and we use the Bienaymé-Tchebycheff inequality to conclude.

6.2. Preliminaries.

We first derive some estimates for the variables Z(g)n
i and Ẑ(g)n

i , where g is a generic weight

function. Those estimates are valid under strengthened versions of our assumptions, namely
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Assumption 4. We have Assumption 1 and the processes (bt), σt and supz∈E |δ(ω(0), t, z)|/γ(z) are

bounded.

Assumption 5. We have Assumption 3 and the processes β(q)t are all bounded (by a constant

depending on q).

Below the constants are denoted by K and vary from line to line, and may depend on the

characteristics of the process to which they apply, and on the weight function which is used. They

are written Kq if they depend on some extra parameter q.

Lemma 1. Suppose that Assumptions 4 and 5 hold. Let in ≥ 1 be (possibly random) indices, such

that Tn = in∆n are stopping times. Then, recalling un in (24), we have for all q > 0 and j ≥ 1 and

for some sequence ρn → 0 and with L denoting a bound for the jump sizes of X:

E(|Z(g)n
in |q) ≤ Kq

(
∆q/4

n + L(q−2)+∆(q/4)∧(1/2)
n

)
, E(|Ẑ(g)n

in |q) ≤ Kq∆q/2
n . (51)

E
(|X(g)n

in+j−σTnW (g)n
in+j |2∧u2

n

) ≤ K∆n+K∆1/2
n ρn+KE

(∫ Tn+(kn+j−1)∆n

Tn+(j−1)∆n

|σs−σTn |2 ds
)

(52)

E
(|Ẑ(g)n

in − χ̂(g)n
in |q

) ≤ K
(
∆q/2+q∧1

n + ∆3q/4+(q/2)∧1
n

)
. (53)

Proof. The second part of (51) is (5.43) of Jacod et al. (2010), and for the first part we use (5.3) and

(5.4) of that paper, the latter being

X(g)n
i =

∫ (i+kn)∆n

i∆n

gn(s− i∆n) dXs, (54)

where gn(s) =
∑kn−1

j=1 gn
j 1((j−1)∆n,j∆n](s). Then the result follows from the Burkholder-Davis-Gundy

inequality and |gn| ≤ K (the fact that in is random changes nothing, since in∆n is a stopping time).

For (52) we decompose X as X = X ′ + X ′′, where X ′
t =

∫ t
0 bs ds +

∫ t
0 σs dWs. (54) yields

X(g)n
in+j − σTnW (g)n

in+j =
∫ Tn+(kn+j−1)∆n

Tn+(j−1)∆n

gn(s− Tn)
(
bs ds + (σs − σTn) dWs

)
+ X ′′(g)n

in+j .

The expectation of the squared integral above is smaller than K∆n +E
( ∫ Tn+(kn+j)∆n

Tn+j∆n
|σs−σTn |2ds

)
,

because of Assumption 4. On the other hand, an easy adaptation of (6.25) of Jacod (2007) shows

that E(|X ′′(g)n
in+j |2 ∧ u2

n) ≤ ∆1/2
n ρn for some sequence ρn → 0. These two properties yield (52).
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Next, observe that Ẑ(g)n
in
− χ̂(g)n

in
= X̂(g)n

in
+ an + a′n, where

an =
∑[kn/2]

j=1 (g′n2j)
2
(
∆n

in+2j−1X∆n
in+2j−1χ + ∆n

in+2j−1χ∆n
in+2j−1X

)

a′n =
∑[(kn−1)/2]

j=0 (g′n2j+1)
2
(
∆n

in+2jX∆n
in+2jχ + ∆n

in+2jχ∆n
in+2jX

)
.

The summands of an
i are martingale increments. Then by the Burkholder-Davis-Gundy and Hölder

inequalities, plus Assumption 5 and the well known property E(|∆n
in+jX|q) ≤ Kq∆

(q/2)∧1
n and also

|g′nj | ≤ K/kn, we get E(|an|q) ≤ Kq∆
3q/4+(q/2)∧1
n

)
for q ≥ 1, hence also for q ∈ (0, 1) by Hölder’s

inequality again. The same holds for a′n, and another application of Hölder’s inequality yields

E(|X̂(g)n
in
|q) ≤ Kq∆

q/2+q∧1
n Then, upon using the last part of (51), we obtain (53).

Our second preliminary concerns the behavior of the truncated variations V ∗(Z, g, q, r)n of (27):

Lemma 2. Suppose that Assumptions 4 and 5 and (24) hold, and also that X is continuous. Then

if q is an even integer and w ∈ {0, · · · , q/2}, we have

∆1−q/2
n V ∗(Z, g, q − 2w,w)n

t
u.c.p.−→ θ−q

∫ t

0
(2α2

s ḡ
′(2))wmq−2w(g; θσs, αs) ds. (55)

Proof. A classical localization procedure allows to suppose the strengthened Assumptions 4 and 5.

We can reproduce the proof of Theorem 3.4 in Jacod et al. (2010) with the functions fn(x, y, z) =

f(x, y, z) = |x(0) + y(0)|q−2w|z(0)|w to get

∆1−q/2
n V (Z, g, q − 2w,w)n

t
u.c.p.−→ θ−q

∫ t

0
(2α2

s ḡ
′(2))wmq−2w(g; θσs, αs) ds.

Therefore it remains to prove that for any t > 0 we have V ∗(Z, g, q − 2w, w)n
s = V (Z, g, q − 2w,w)n

s

for all s ≤ t, on a set Ωn
t which satisfies P(Ωn) → 1 as n → ∞. The first part of (51) applied with

q = 2
1−4$ and L = 0 and Markov’s inequality yield P(|Z(φ)n

i | > un) ≤ K∆2
n. Therefore the set Ωn

t

on which |Z(φ)n
i | ≤ un for all i = 1, · · · , [t/∆n] satisfies all our requirements.

We need a “local” result of the same type, at least when q = 2, but when X has jumps. We still

have our random integers in such that Tn = in∆n is a stopping time. We also have integers k′n ≥ kn

satisfying (30). Then T ′n = Tn + k′n∆n is also a stopping time, and we consider two cases, where T

is again a stopping time:

case (1): Tn → T and T ′n ≤ T for all n

case (2): T ′n → T and Tn ≥ T for all n.
(56)

19



Below, w takes the values 0 or 1. We consider the variable

G(g, 0) = ḡ(2)σ2
T− + 1

θ2 ḡ′(2)α2
T−, G(g, 1) = 2

θ2 ḡ′(2)αT− in case (1)

G(g, 0) = ḡ(2)σ2
T + 1

θ2 ḡ′(2)α2
T , G(g, 1) = 2

θ2 ḡ′(2)αT in case (2)



 (57)

Lemma 3. Suppose that Assumptions 4 and 5 hold and ln/kn →∞. Let w be either 0 or 1. Then

1
kn k′n ∆n

(
V ∗(Z, g, 2− 2w, w)n

T ′n+kn∆n
− V ∗(Z, g, 2− 2w, w)n

Tn+kn∆n

) P−→ G(g, w). (58)

This is, for q = 2, the local version of the previous lemma, since it can be easily checked (see

later an explicit expression for mq(g; η, ζ)) that G(g, w) in case (2) for example is the value of the

integrand in the right side of (55) evaluated at time T .

Proof. 1) We can again assume Assumptions 4 and 5. Set f0(x, y) = x2 and f1(x, y) = y and

βn
i = σin∆nW (g)n

in+i, β′ni = χ(g)n
in+i, β̂n

i = χ̂(g)n
in+i.

In this step we prove that

H(w)n =
1

kn k′n ∆n
E

( k′n∑

i=1

∣∣∣fw(Z(g)n
in+i, Ẑ(g)n

in+i) 1{|Z(g)n
in+i|≤un}− fw(βn

i + β′ni , β̂n
i )

∣∣
)
→ 0. (59)

By virtue of the definition of fw we have for w = 0, 1:

|fw(x + x′, y + y′)1{x+x′|≤un} − fw(x, y)| ≤ |y′|+ |y| |x + x′|
un

+ εx2 +
2(x′2 ∧ u2

n)
ε

+
2x4

u2
n

+
x2|x + x′|

un

for all ε ∈ (0, 1). Then we take x = βn
i +β′ni and y = β̂n

i and x′ = X(g)n
in+i−βn

i and y′ = Ẑ(g)n
in+i−y

and apply (53) for q = 1 and (51) and (52), plus the Cauchy-Schwarz inequality, to get

H(w)n ≤ K∆1/2
n

kn∆n

(
∆3/4−$

n + ε +
ρn

ε
+ ∆1/2−2$

n + ρ′n
)
,

where

ρ′n =
1

k′n∆1/2
n

k′n∑

i=1

E
(∫ Tn+(kn+i−1)∆n

Tn+(i−1)∆n

|σs − σTn |2 ds
)
≤ KE

(
sup

Tn≤s≤T ′n
|σs − σTn |2

)
.

Since σt is càdlàg and bounded, we see that ρ′n → 0 in both cases (1) and (2). Then since $ < 1/4

we get lim supn H()n ≤ Kε, and (59) follows because ε is arbitrarily small.
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2) If ζn
i = fw(βn

i + β′ni , β̂n
i ), and by (59), it remains to prove that

1
kn k′n ∆n

k′n∑

i=1

ζn
i

P−→ G(g, w). (60)

Set ζ ′ni = E(ζn
i | F(in+i−1)∆n

) and ζ ′′ni = ζn
i − ζ ′ni . Since (in + i − 1)∆n is a stopping time for each

i ≥ 1 and ζn
i is F(in+i+kn−1)∆n

-measurable, we have

E
(( 1

kn k′n ∆n

k′n∑

i=1

ζ ′′ni

)2)
≤ 2

k2
n k′2n ∆2

n

k′n∑

i=1

(kn−1)∧(k′n−i)∑

j=0

∣∣E(ζn
i ζn

i+j)
∣∣ ≤ 2kn

k2
n k′2n ∆2

n

k′n∑

i=1

E(|ζn
i |2).

(51) yields E(|ζn
i |2) ≤ K∆n, so the right side above goes to 0 because kn/ln → 0, and instead of (60)

it is then enough to prove that

1
kn k′n ∆n

k′n∑

i=1

ζ ′ni
P−→ G(g, w). (61)

3) Due to the special form of fw, we can calculate ζ ′ni explicitly:

ζ ′ni =





∑kn
j=1(g

n
j )2σ2

Tn
∆n +

∑kn
j=1(g

′n
j )2α2

(in+i+j−1)∆n
if w = 0

∑kn
j=1(g

′n
j )2

(
α2

(in+i+j−1)∆n
+ α2

(in+i+j)∆n

)
if w = 1

(we heavily use the independence and centering properties of the noise, see Assumption 3). We also

observe that, due to the properties of the weight function, kn
∑kn

j=1(g
′n
j )2 → ḡ′(2) and 1

kn

∑kn
j=1(g

n
j )2 →

ḡ(2). Since σt and αt are càdlàg and (??) holds, we readily deduce that in case (1), |knζ ′ni −θ2 G(g, w)|
goes to 0 (pathwise) and stays bounded, uniformly in i = 0, · · · , ln. Using (13) once more, (61) fol-

lows.

6.3. The behavior of Σn.

Here we prove the first claim (a) of Proposition 3. For this, we begin by showing that M∗(g, h, φ)n
T

is an estimator for R(g, h): in fact another estimator for R(g, h) is already provided in Jacod et al.

(2010); however simulation studies suggest that M∗(g, h, p)n
t behaves better, at least when p = 4.

We start with some calculations:

Lemma 4. With the notation (26), we have

µ(g, h; η, ζ) =
p∑

w=0

η2w ζ2p−2w A′(g, h; w). (62)
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Proof. Consider the processes L(g) and L′(g) defined by (40). We use the notation (25). First, we

have E′(L(g)1 L(h)t) = a(g, h)t, and the process (L(g), L(h)) is stationary Gaussian centered. Then

a well known fact about 2-dimensional centered Gaussian vectors yields that for w a nonnegative

integer and w′ ∈ {0, · · · , w}:

w even ⇒ E′(L(g)w
t ) = mw ḡ(2) E′(L(g)w−w′

1 L(h)w′
t ) = a′(g, h; w/2, w′)t

w odd ⇒ E′(L(g)w
t ) = 0 E′(L(g)w−w′

1 L(h)w′
t ) = 0

We have the same for L′(g) and L′(h), provided we substitute (g, h) with (g′, h′) in the right hand sides

above. Since further (L(g), L(h)) is independent from (L′(g), L′(h)), and upon using the binomial

formula, we deduce that for q, q′ even integers

mq(g; η, ζ) =
q/2∑

l=0

C2l
q η2lζq−2l m2l mq−2l (ḡ(2))l (ḡ′(2))q/2−l (63)

mq,q′(g, h; η, ζ)t =
∑q

l=0

∑q′
l′=0 C2l

q Cq′−2l′
q′ η2l+2l′ ζq+q′−2l−2l′

a′(g, h; l/2 + l′/2, l′)t a′(g′, h′; q/2 + q′/2− l/2− l′/2, q′ − l′)t

=
∑q/2+q′/2

w=0 η2wζq+q′−2w
∑q′∧(2w)

w′=(2w−q)+
C2w−w′

q Cw′
q′ η2l+2l′ ζq+q′−2l−2l′

a′(g, h; w, w′)t a′(g′, h′; q/2 + q′/2− w, q′ − w′)t.

Using (18), we first deduce that

p/2∑

r=0

ρ(p)r(2ζ2ḡ′(2))r mp−2r(g; η, ζ) = mp ηp (ḡ(2))p/2. (64)

Then in view of (26), we end up with (62).

Lemma 5. Under Assumptions 1 and 3, we have

M∗(g, h, φ)n
T

P−→ R(g, h) on the set Ωc
T . (65)

∆p/2−1/2
n M∗(g, h, φ)n

T
P−→ 0. (66)

Proof. For (65) it is enough, by the same argument as in Theorem 1, to consider the case when X

is continuous. Then we can apply (55) with q = p and w substituted with p + l − w and sum over l

between 0 and w: taking advantage of (64) with 2w instead of p, we readily deduce

∆1−p/2
n

w∑

l=0

ρ(2w)l V
∗(Z, φ, 2w− 2l, p + l−w)n

t
u.c.p.−→ 2p−w

θp
(φ̄(2))w (φ̄′(2))p−w m2w

∫ t

0
σ2w

s α2p−2w
s ds.
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At this stage we readily deduce the result from (41), (62) and the definition (28).

Now we turn to (66). Clearly, it is enough to show that
√

∆nV ∗(Z, φ, 2p− 2l, l)n
t

P−→ 0 for each

l ∈ {0, . . . , p}. When l = p, by the second part of (51) with q = p,

E
(
V ∗(Z, φ, 0, p)n

t

) ≤ Kt∆p/2−1
n ,

which implies the result. When l = 0, by the first part of (51) with q = 2,

E
(
V ∗(Z, φ, 2p, 0)n

t

) ≤ u2p−2
n

[t/∆n]−kn∑

i=0

E
(|Z(φ)n

i |2
) ≤ Kt∆(2p−2)$−1/2

n

which again implies the result because $ > 1/12 and p ≥ 4. If 1 ≤ l ≤ p− 1, by Hölder’s inequality,

√
∆nV ∗(Z, φ, 2p− 2l, l)n

t ≤
(√

∆nV ∗(Z, φ, 2p, 0)n
t

) p−l
p

(√
∆nV ∗(Z, φ, 0, p)n

t

) l
p

.

Therefore the result for these values of l follows from the result for l = 0 and l = p.

Proof of Proposition 3-(a). (47) is a straightforward consequence of (39) and (65), whereas (48)

readily follows from (38) and (66).

6.4. The behavior of Σ′
n.

Now we turn to the behavior of Σ′n, that is we prove (b) of Proposition 3. As in the previous

subsection, this essentially amounts to finding the behavior of the processes N(φ,±)n
T and N ′(φ,±)n

T ,

in connection with the four processes which enter the definition (45) of D(g, h), which are

N(φ, 0,−)t = φ̄(2) φ̄(2p− 2)
∑

s≤t σ2
s− |∆Xs|2p−2

N(φ, 0,+)t = φ̄(2) φ̄(2p− 2)
∑

s≤t σ2
s |∆Xs|2p−2

N(φ, 1,−)t = 2
θ2 φ̄′(2) φ̄(2p− 2)

∑
s≤t α2

s− |∆Xs|2p−2

N(φ, 1,+)t = 2
θ2 φ̄′(2) φ̄(2p− 2)

∑
s≤t α2

s |∆Xs|2p−2





(67)

Lemma 6. Under Assumptions 1 and 3 we have for m = 0, 1:

N(φ,m,±)n
T

P−→ N(φ,m,±)T . (68)

Proof. We prove only the statements about N(φ,m,−)n
T , the others being similar (and in fact slightly

simpler: we would not need to introduce below the “bigger” filtration (Gt)). By localization again,

we may suppose Assumptions 4 and 5.
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Step 1 ) We fix ε ∈ (0, 1), and we denote by Sq the successive jump times of the Poisson process

(µ([0, t] × {z : γ(z) > ε}) : t ≥ 0), with the convention S0 = 0. Let i(n, q) be the random integer

such that (i(n, q)− 1)∆n < Sq ≤ i(n, q)∆n. Our aim is to prove that for m = 0, 1 and all q ≥ 1 we

have

η(φ,m)n
i(n,q)−kn−k′n

P−→ ηq(m) =





φ̄(2) σ2
Sq− if m = 0

2
θ2 φ̄′(2)α2

Sq− if m = 1
(69)

For this, consider the processes

X(ε)t = Xt −
∑

q≥1

∆XSq 1{Sq≤t}, Z(ε)t = X(ε)t + χt, (70)

and denote by η′(φ, m)n
i the variables defined by (31), with Z substituted with Z(ε). On the set

{Sq−1 < Sq − (2kn + k′n)∆n}, whose probability goes to 1 as n →∞, we have η(φ,m)n
i(n,q)−kn−k′n

=

η′(φ,m)n
i(n,q)−kn−k′n

. Therefore it is enough to prove (59) with η(φ, m)n
i(n,q)−kn−k′n

substituted with

η′(φ,m)n
i(n,q)−kn−k′n

.

Set in = i(n, q) − kn − k′n and Tn = in∆n. We observe that the left side of (58), written for

Z ′ = Xε) + χ instead of Z = X + χ, is equal to η′(φ, 0)n
in
− 1

2η′(φ, 1)n
in

when w = 0 and to η′(φ, 1)n
in

when w = 1. Then (69) follows from the convergence (58), provided we can apply Lemma 3 with

X(ε) and the above random in.

To check this point, we call (Gt) the smallest filtration containing (Ft) and such that all stopping

times Sq are G0-measurable. On the one hand, Tn is obviously a stopping time with respect to this

bigger filtration. On the other hand, it is well known that X(ε) is a (Gt)-semimartingale satisfying

Assumption 4 with respect to this bigger filtration, whereas Assumption 5 is obviously satisfied with

respect to (Gt) as well. Therefore we are in a position to apply Lemma 3, and (69) is proved.

Step 2) This step is devoted to some estimates, in the same setting as in the previous step.

We denote by Ωn the set on which all Sq ≤ T satisfy Sq−1 + (2kn + k′n)∆n < Sq < T − kn∆n, so

P(Ωn) → 1. We also set

ρ(1)n
i =

(
(Z(φ)n

i )2 − 1
2

Ẑ(φ)n
i

)
1{|Z(φ)n

i+j)|≤un}, ρ(2)n
i = Ẑ(φ)n

i+j 1{|Z(φ)n
i+j)|≤un},

and use the notation ρ′(m)n
i if we substitute Z with Z(ε). Using the initial filtration, and also the big

filtration (Gt) and the fact that if 1 ≤ j ≤ kn we have η′(φ,m)n
in+j = η(φ,m)in+j when we are on the
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set Ωn and Sq ≤ T and j = 1, · · · , kn, we deduce from (51) that for any i ≥ 1 and j = 1, · · · , kn +k′n,

E(|ρ(m)n
i |) ≤ K∆1/2

n , E
(|ρ(m)n

in+j | 1{Sq≤T}∩Ωn

) ≤ K∆1/2
n . (71)

This readily gives the following, for any i ≥ 1 and j = 1, · · · , kn and m = 0, 1:

E(|η(φ, m)n
i |) ≤ K, E

(|η(φ,m)n
in+j | 1{Sq≤T}∩Ωn

) ≤ K. (72)

On the set {Sq ≤ T} ∩ Ωn we have for j = 1, · · · , kn:

η(φ,m)n
in−j − η(φ,m)n

in =
1

kn k′n ∆n

( 0∑

l=1−j

ρ(m)n
in+l −

k′n∑

l=k′n−j+1

ρ(m)n
in+l

)
,

and each sum above has at most kn summands. Therefore (71) yields

E
(|η(φ, m)n

in−j − η(φ,m)n
in | 1{Sq≤T}∩Ωn

) ≤ Kkn/k′n.

Since kn/k′n → 0 and P(Ωn) → 1, we then deduce from (69) that

1
kn

kn∑

j=1

η(φ,m)n
i−kn−k′n−j |φn

j |2p−2 P−→ φ̄(2p− 1) ηq(m). (73)

Finally, since p ≥ 4 and since (51) is also true if we take the conditional expectation with respect

to Gin∆n when we consider Z(ε), that is

E
(|Z(ε)(φ)n

i |2p−2 | Gi∆n

) ≤ K
(
∆p/2−1/2

n + ε2p−4∆1/2
n

) ≤ K∆1/2
n . (74)

Step 3) Recall that the variables in (69) implicitly depend on ε, and set

N(m, ε)t = φ̄(2p− 2)
∑

q:Sq≤t ηq(m) |∆XSp |2p−2

B(m, ε)n
t = 1

kn

∑[t/∆n]−kn

i=kn+k′n
η(φ,m)n

i−kn−k′n
|Z(ε)(φ)n

i |2p−2

N(m, ε)n
t = N(φ,m,−)n

t −B(m, ε)n
t .

By virtue of (67) and (69) and the dominated convergence theorem, we have

N(m, ε)T → N(φ,m,−)T pointwise, as ε → 0.

Observing that η(φ,m)n
i−kn−k′n

is Fi∆n-measurable, by successive conditioning we deduce from (72)

and (74) that

E
(|B(m, ε)n

T |
) ≤ K T

(
∆p/2−3/2

n + ε2p−2
)
,
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which implies

lim
ε→0

lim sup
n→∞

E
(|B(m, ε)n

T |
)

= 0.

Therefore it remains to prove that, for m = 0, 1 and ε fixed and as n →∞, we have

N(m, ε)n
T

P−→ N(m, ε)T . (75)

Step 4) Now we proceed to proving (75). Again ε is fixed, and we use the notation Sq and i(n, q)

of Step 1. In restriction to the set Ωn, we have N(m, ε)n
T =

∑
q≥1 ξ(m)n

q 1{Sq≤T} where

ξ(m)n
q =

1
kn

kn∑

j=1

η(φ,m)n
i(n,q)−kn−k′n−j

(|Z(φ)n
i(n,q)−j |2p−2 − |Z(ε)(φ)n

i(n,q)−j |2p−2
)

because Z(φ)n
i = |Z(ε)(φ)n

i when i is not between i(n, q)− kn + 1 and i(n, q) for some q. Thus (75)

will follow if we prove ξ(m)n
q

P−→ φ̄(2p − 2)ηq(m) |∆XSq |2p−2. In view of (73), it thus remains to

prove that

ξ′(m)n
q =

1
kn

kn∑

j=1

η(φ, m)n
i(n,q)−kn−k′n−j

(|Z(φ)n
i(n,q)−j |2p−2−|Z(ε)(φ)n

i(n,q)−j |2p−2−|φn
j ∆XSq |2p−2

) P−→ 0

goes to 0 in probability.

When 1 ≤ j ≤ kn, and on the set {Sq ≤ T} ∩ Ωn, we have Z(φ)n
i(n,q)−j = Z(ε)(φ)n

i(n,q)−j + wn
j ,

where wn
j = φn

j ∆XSq . Since for any reals x, y we have the estimate

∣∣|x + y|2p−2 − |x|2p−2 + |y|2p−2
∣∣ ≤ K

(|x|2p−2 + |y|2p−3 |x|),

and since |wn
j | ≤ K, and upon using (74), it follows that for 1 ≤ j ≤ kn we have

E
(∣∣|Z(φ)n

i(n,q)−j |2p−2 − |Z(ε)(φ)n
i(n,q)−j |2p−2 − |φn

j ∆XSq |2p−2
∣∣ | G(i(n,q)−j)∆n

)
1{Sq≤T}∩Ωn

≤ K∆1/4
n .

Since η(φ,m)n
i(n,q)−kn−k′n−j is G(i(n,q)−j)∆n

-measurable by successive conditioning we deduce from the

above and from (72) that

E
(|ξ′(m)n

i | 1{Sq≤T}∩Ωn

) ≤ K∆1/4
n ,

and ξ(m)n
q

P−→ 0 follows because P(Ωn) → 1.

Proof of Proposition 3-(b). (49) is a straightforward consequence of (38) and (68), because D(g, g)−
2D(g, h) + D(h, h) is equal to

θ p2
(Ψ−N(φ, 1,−)n

T + Ψ+N(φ, 1,+)n
T

φ̄(2) φ̄(2p− 2)
+

Ψ′−N(φ, 0,−)n
T + Ψ′

+N(φ, 0,+)n
T

2 φ̄′(2) φ̄(2p− 2)

)
.
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As for (50), it needs to be proved on the set Ωc
T only (on Ωj

T it follows from (49)). So by our usual

argument we can assume that X is continuous. Then (39) shows that it is enough to prove that

∆3/2−p/2
n N(φ, m,±)T

P−→ 0 (76)

for m = 0, 1. We can again suppose Assumptions 4 and 5, by localization. Then if we combine

(51) (with L = 0 because X is continuous) and (72), we readily obtain that E(|N(φ,m,±)T |) ≤
KT∆p/2−1

n , and thus (76) holds.
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Std. Dev. kn Mean Value of Rejection Rate
of Noise S(g,h,4)n 5% 10%

α = 0 75 2.011 0.050 0.101
100 2.003 0.058 0.115
125 2.001 0.059 0.116

α = σ
√

5 sec 75 2.013 0.054 0.105
100 2.004 0.061 0.115
125 2.003 0.065 0.114

α = 2σ
√

5 sec 75 2.018 0.042 0.087
100 2.001 0.055 0.107
125 1.995 0.061 0.122

Table 1. Level of the test under the null hypothesis of no jumps.

Note: This table reports the results of 5, 000 simulations of the test statistic under the null hypothesis of no
jumps. The continuous underlying process X is generated using the same model as in Figure 1. The truncation
level is un = 7(ḡ(2))1/2σ∆0.47

n k
1/2
n in the estimation of variance.
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Std. Dev. kn Mean Value of Rejection Rate
of Noise S(g,h,4)n 5% 10%

αt = 0 75 2.009 0.054 0.100
100 1.999 0.064 0.117
125 1.999 0.069 0.125

αt = σt

√
5 sec 75 2.010 0.052 0.098

100 2.000 0.064 0.118
125 1.999 0.068 0.127

αt = 2σt

√
5 sec 75 2.028 0.043 0.085

100 2.004 0.059 0.115
125 2.000 0.065 0.123

Table 2. Level of the test under the null hypothesis of no jumps

Note: This table reports the results of 5, 000 simulations of the test statistic under the null hypothesis of no
jumps, when there is no noise (top row), the time-varying standard deviation of noise αt is equal to (middle
row) or twice as large as (bottom row) the standard deviation of the increment of the continuous martingale
part over 5 seconds. The data generating process is the stochastic volatility model d log(Xt) = σt dWt, with
σt = v

1/2
t , dvt = κ(β − vt) dt + γv

1/2
t dBt, E[dWt dBt] = ρ dt, β1/2 = 0.4, γ = 0.5, κ = 5, ρ = −0.5. The

parameter values are realistic for a stock based on the evidence reported in Aı̈t-Sahalia and Kimmel (2007).
The observed price Zt is generated by log(Zt) = log(Xt) + χt, where the noise χt is drawn independently
from a t(2.5) distribution, properly scaled so that it has standard deviation αt, and then trimmed with
threshold being 100σt

√
5 second. We compute the test statistic using log(Zt). The truncation level is un =

7(ḡ(2)β)1/2∆0.47
n k

1/2
n in the estimation of variance.
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Fig. 1. Simulations of the uncorrected AJ test statistic. The noise level increases from the top to
the bottom row; the sampling frequency decreases from the left to the right column.
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Fig. 2. Monte Carlo (5,000 simulations) and theoretical asymptotic distributions of the standardized
test statistic under the null hypothesis of no jumps. The continuous process X is generated using
the same model as in Figure 1. We gradually increase the noise level α (from top to bottom) and
the averaging window kn (from left to right). The solid curve is the N (0, 1) density.
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Fig. 3. Monte Carlo (5,000 simulations) distribution of the non-standardized test statistic S(g, h, 4)n,
using the same data generating process as in Figure 1. In particular, the jump process is a compound
Poisson process with intensity λ = 0 (shaded area), 1 (solid curve) or 20 (dashed curve). As λ
increases, we shrink the jump size to keep the expected quadratic variation of jumps constant. We
gradually increase the noise level α (from top to bottom) and the averaging window kn (from left to
right).
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Fig. 4. Monte Carlo (5,000 simulations) rejection rates of 5%-level (left column) and 10%-level (right
column) tests under the null hypothesis of no jumps when the underlying process X contains jumps,
using the same data generating process as in Figure 1. In particular, the jump process is a compound
Poisson process with intensity λ (horizontal axis). As λ increases, we shrink the size of jumps to
keep the expected quadratic variation of jumps constant. We gradually increase the noise level α
(from top to bottom) and the averaging window kn: kn = 75 (+), kn = 100 (∗) and kn = 125 (¦).
The dashed line indicates the asymptotic level of the test.
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Fig. 5. Monte Carlo (5,000 simulations) and theoretical asymptotic distributions of the standardized
test statistic under the null hypothesis of no jumps. The continuous process X is generated using
the same model as in Table 2. We gradually increase the noise level α (from top to bottom) and the
averaging window kn (from left to right). The solid curve is the N (0, 1) density.
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Fig. 6. Monte Carlo (5,000 simulations) distribution of the non-standardized test statistic S(g, h, 4)n.
The underlying price process X is generated by dXt/Xt = σtdWt + JtdNt, where σt is the same as
in Table 2, Jt is the product of a uniformly distributed variable on [−2,−1] ∪ [1, 2] times a constant
JS and N is a Poisson process with intensity λ = 0 (shaded area), 1 (solid curve) or 20 (dashed
curve) jumps per day. When λ > 0, JS is determined by β2 = (7/3)J2

Sλ so that the continuous
martingale part contributes 50% of total expected quadratic variation. Since the test is conditional
on a path containing jumps, paths that do not contain any jump are excluded from the simulated
sample and replaced by new simulations. Thus, in the sample, the number of jumps is slightly higher
than specified. We compute the test statistic using log(Zt), which is generated in the same way as
in Table 2. We gradually increase the noise level α (from top to bottom) and the averaging window
kn (from left to right).
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Fig. 7. Monte Carlo (5,000 simulations) rejection rates of 5%-level (left column) and 10%-level (right
column) tests under the null hypothesis of no jumps when the underlying process X contains jumps,
using the same data generating process as in Figure 6. In particular, the jump process is a compound
Poisson process with intensity λ (horizontal axis). As λ increases, we shrink the size of jumps to
keep the expected quadratic variation of jumps constant. We gradually increase the noise level α
(from top to bottom) and the averaging window kn: kn = 75 (+), kn = 100 (∗) and kn = 125 (¦).
The dashed line indicates the asymptotic level of the test.
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Fig. 8. Empirical distributions of the non-standardized statistic S(g, h, 4)n (left column) and the
standardized statistic under the null hypothesis of no jumps (right column) for different averaging
windows: kn = 75 (top row), kn = 100 (middle row) and kn = 125 (bottom row). In the left column,
the dashed line indicates the limit of the non-standardized statistic under the null hypothesis of no
jumps. In the right column, the solid curve is the N (0, 1) density and the dashed lines indicate
the 5% and the 10% quantiles of a standard normal variable. Each sample point is computed using
all the transactions for one of the current (October 29th, 2009) 30 DJIA stocks observed over one
trading day in 2008. This produces 7590 realizations of the statistics. We use the same window for
computing the test statistic S(g, h, 4) and the variance Σn. For each day, the truncation level un

is determined by un = C(ḡ(2)σ2)1/2∆0.47
n k

1/2
n , where C = 7 and the mean squared volatility σ2 is

approximated by k−1
n ḡ(2)−1V (Z, g, 2; kn)n

T .
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