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Abstract

The recent financial literature has paid considerable attention to idiosyncratic
volatility. Whether average idiosyncratic volatility is a good predictor of aggregate
market returns and whether idiosyncratic volatility has a positive relationship with
expected returns in the cross-section are matters of active debate. We propose to mea-
sure such idiosyncratic variance by the cross-sectional variance of stock returns. Two
key advantages of this measure are its observability at any frequency and its model-free
nature. Previous studies have measured idiosyncratic risk only at a monthly frequency
based on asset pricing models. We show that this cross-sectional measure provides
a very good proxy for average idiosyncratic risk as implied by standard asset pricing
models and that it predicts well aggregate returns, especially at the daily frequency.
Another advantage of such a cross-sectional approach is that it can be extended to
higher moments. We find that the introduction of a robust proxy for cross-sectional
skewness induces a very substantial increase in the explanatory power of idiosyncratic
risk for the market return.

∗We thank Vijay Vaidyanathan, Abraham Lioui, Stéphane Gregoir, Volker Ziemann and seminar par-
ticipants at Edhec Business School for useful discussions and comments. The second author gratefully
acknowledges financial support from Edhec Risk Institute. René Garcia is Professor of Finance at Edhec
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1 Introduction

The recent financial literature has paid considerable attention to idiosyncratic volatility.

Campbell et al. (2001) and Malkiel and Xu (2002) document that idiosyncratic volatility

increased over time, while Brandt et al. (2009) show that this trend completely reversed itself

by 2007, falling below pre-1990s levels and suggest that the increase in idiosyncratic volatility

through the 1990s was not a time trend but rather an “episodic phenomenon”. Bekaert

et al. (2008) confirm that there is no trend both for the United States and other developed

countries. A second fact about idiosyncratic volatility is also a source of contention. Goyal

and Santa-Clara (2003) put forward that idiosyncratic volatility has forecasting power for

future excess returns, while Bali et al. (2005) and Wei and Zhang (2005) find that the positive

relationship is not robust to the sample chosen. Finally, while standard asset pricing models

will not support the notion that idiosyncratic volatility represents a source of risk that

commands a premium in equilibrium, Ang et al. (2006) find a significant relation between

the returns on a cross-section of portfolios ranked according to their level of idiosyncratic

volatility and their risk exposure to such a factor.

An underlying issue in all these studies is the measurement of idiosyncratic volatility.

Campbell et al. (2001) use a value-weighted sum of individual firm idiosyncratic variances,

computed as the variances of residuals of differences between individual firm returns and

the return of an industry portfolio to which the firm belongs1. In addition to this measure,

Bekaert et al. (2008) use also the individual firm residuals of a standard Fama and French

three-factor model to compute a value-weighted aggregate idiosyncratic volatility2.

We revisit the issues regarding the dynamics and forecasting power of idiosyncratic

variance by using instead the cross-sectional dispersion of stock returns. Through central

limit arguments, we provide the conditions under which the cross-sectional variance (CSV) of

stock returns converges towards the average idiosyncratic variance.3 This is the case whether

we use a market-cap weighted setting or an equally-weighted scheme. The advantage of this

measure is obviously its observability at any frequency, while the previous approaches have

used monthly measures based on time series of daily returns. A second important feature is

that this measure is model-free, since we do not need to obtain residuals from a particular

model to compute it.

We verify empirically that the CSV measure leads to the same conclusions that other

studies (in particular Goyal and Santa-Clara (2003) and Bali et al. (2005)) have reported at

1This amounts to imposing unit beta restrictions in an industry-market model.
2This is also the approach followed in Ang et al. (2006).
3Goyal and Santa-Clara (2003) argue informally that their measure can be interpreted as a measure

of cross-sectional dispersion of stock returns, but do not establish a formal link between the two. In the
practitioners’ literature (see DiBartolomeo (2006), cross-sectional dispersion of returns is called variety of
returns and is used in estimating correlations of assets, risk management and performance analysis.
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the monthly frequency. We report new results at the daily frequency. Specifically, we show

that the predictive power of idiosyncratic volatility is much stronger both quantitatively

and statistically at the daily frequency than at the monthly frequency. We also estimate a

regime switching model for CSV time series at both the daily and monthly frequencies and

find remarkably coherent results in terms of parameter estimates. This is not the case when

we use the idiosyncratic variance measure based on the Fama-French residuals as in Ang

et al. (2006) and Bekaert et al. (2008).

Another advantage of the cross-sectional approach is that it extends naturally to higher

moments. Ang et al. (2006) rationalize the relation between idiosyncratic volatility and

average returns by the fact that firms with greater sensitivities to aggregate volatility should

have larger idiosyncratic volatilities relative to the Fama-French model since they will show

up in the residuals of the latter. By the same token, since skewness has been shown to be a

priced factor by Harvey and Siddique (2000), a measure of cross-sectional skewness of returns

may have some forecasting power for average future returns. 4 We provide conditions under

which cross-sectional skewness is a good measure of aggregate idiosyncratic skewness and

use a robust measure of cross-sectional skewness in a predictive regression together with

CSV to show that skewness is a strong predictor of future returns. The adjusted R2 of the

regression climbs to 6% from a 0.6% with only CSV at daily horizon and to 4.6% from 0.8%

at monthly horizon.

Our results indicate that the relation is much stronger and stable across periods between

the equally-weighted measure of aggregate idiosyncratic volatility and the returns on the

equally-weighted index than for the market-cap weighted equivalents. Economic sources of

heterogeneity between firms, as diverse as they can be, are better reflected in an equally

weighted measure, all other things being equal. This argument is consistent with previous

findings in Bali et al. (2005), who argue that the relationship between equal-weighted average

idiosyncratic risk and the market-cap weighted index on the sample ending in 1999:12 is

mostly driven by small stocks traded in the NASDAQ. Of course, when the bubble burst,

the market capitalization of dot.com small firms was relatively more affected causing the

relationship to break down in 2000 and 2001. This effect is not prevalent in an equally-

weighted index, for which the relationship remains strong.

The statistical significance of the moments of the cross-sectional distribution in these

predictive regressions of future returns is not the same as the cross-sectional pricing of stocks

or portfolios. However, as emphasized in Ang et al. (2006) and Goyal and Santa-Clara

(2003), the two pieces of evidence are related. Theoretical rationalizations of a positive

relation between idiosyncratic volatility and expected returns can be found in the asset

4Boyer et al. (2009) find a significant relationship between expected idiosyncratic skewness and future
returns at the stock level.
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pricing literature. The Levy (1978), Merton (1987), Markowitz (1990) and Malkiel and Xu

(2002) extensions of the CAPM argue that an important portion of investors’ portfolios

may differ from the market. Their holdings may be affected by corporate compensation

policies, borrowing constraints, heterogeneous beliefs and include non-traded assets that

add background risk to their traded portfolio decisions (e.g. human capital and private

businesses). Levy (1978), Merton (1987) and Malkiel and Xu (2002) pricing models relate

stock returns to their beta with the market and their beta to market-wide measures of

idiosyncratic risk. Furthermore, Campbell et al. (2001) mentioned that some investors try

to approximate a well-diversified portfolio using the rule of thumb of holding between 20 to

30 stocks hoping to eliminate all idiosyncratic risk, which may depend on the current level of

average idiosyncratic risk. Under these considerations, investors can be affected by changes

in idiosyncratic volatility just as much as by changes in market volatility. More recently,

Guo and Savickas (2008) argue that changes in average idiosyncratic volatility provide a

proxy for changes in the investment opportunity set and that this proxy is closely related

to the book-to-market factor. Ang et al. (2006) and Ang et al. (2008) find results that are

opposite to these theories since stocks with high idiosyncratic volatility have low average

returns but cannot fully rationalize this result. However, Huang et al. (2009) find that the

negative sign in the relationship between idiosyncratic variance and expected returns at

the stock level becomes positive after controlling for return reversals. Similarly, Fu (2009)

documents that high idiosyncratic volatilities of individual stocks are contemporaneous with

high returns, which tend to reverse in the following month.

Goyal and Santa-Clara (2003) also point out that considering individual stocks as a proxy

for idiosyncratic income of investors, allows us to interpret average stock risk as a measure of

cross-sectional variance of income shocks among investors. This would provide supporting

evidence for models based on heterogeneity to explain the market risk premium, such as

Constantinides and Duffie (1996), where income shocks must be persistent and their average

variance counter-cyclical (which is the case for the average stock variance). Alternative

explanations of the relation between idiosyncratic risk and return are the firm’s assets’ call-

option interpretation by Merton (1974) where equity is a function of total volatility as in

Black and Scholes (1973) as well as Barberis et al. (2001) prospect theory asset pricing

model with loss aversion over (owned) individual stock’s variance.

The frequency at which predictive regressions are run has an impact on the results,

since at lower frequencies the sign of the relation between idiosyncratic volatility and future

returns changes. Guo and Savickas (2008) find that at a quarterly frequency the relation is

negative, in contrast with the positive monthly and daily results that we document. They

attribute this puzzling result to the fact that the value-weighted volatility is negatively
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correlated with the consumption-wealth ratio.5

The rest of the paper is organized as follows. In Section 2, we provide a formal argument

for choosing the cross-sectional variance of returns as a measure of average idiosyncratic

volatility, explore its properties and the assumptions behind its use, and compare it to other

measures formerly selected in the literature. Section 3 provides an empirical implementation

of the concept by studying its time-series behavior and the presence of regimes and counter-

cyclical property again in comparison with other measures. In section 4, we naturally

extend the cross-sectional concept and formally explore the link between cross-sectional

and idiosyncratic skewness. In Section 5, we provide new results on the predictability of

returns by idiosyncratic volatility and skewness. Section 6 sketches an interpretation of our

results in relation with previous evidence. Section 7 concludes and a technical appendix

collects proofs and more formal derivations.

2 Idiosyncratic Risk and the Cross-Sectional Variance

(CSV) of Realized Returns

In this section, we provide the conditions and assumptions under which the cross-sectional

variance of stock returns provides a good measure of idiosyncratic volatility. We discuss

some of its properties and advantages with respect to competing measures in the literature.

Previous studies that have used the CSV to capture idiosyncratic volatility, have not pro-

vided a thorough discussion about it can be considered as a “good” measure of (average)

idiosyncratic variance and the implications of the different assumptions that stand behind

its use.

2.1 A Formal Argument for Choosing the CSV as a Measure of

Idiosyncratic Volatility

To set a framework for measuring idiosyncratic risk, we assume without loss of generality

the following conditional single factor model for excess stock returns of an asset or portfolio

i:

rit = βitFt + εit. (1)

Given T observations of the returns and the factor, one can use the residuals of a

regression to obtain a measure of the idiosyncratic variance of asset i by: σ2
i = 1

T

∑T
t=1 ε

2
it.

An aggregate measure of idiosyncratic variance over the T observations (say a month) can

be obtained by averaging over N assets these individual idiosyncratic variances. This is the

5This tends to be consistent with the findings of Ang et al. (2006) but Fu (2009) argues that these
findings are largely driven by the return reversal of stocks that have high idiosyncratic volatilities.
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approach that has been followed by most papers with observations of the returns at a daily

frequency to compute monthly idiosyncratic variances. We propose instead to measure at

each time t the cross-sectional variance of observed asset or portfolio returns. We motivate

below under simplifying assumptions that such a cross-sectional measure provides a very

good approximation to aggregate idiosyncratic variance.

Let Nt be the total number of stocks in the universe at day t, (wt)t≥0 a weight vector

process. The return on the portfolio defined by the weight vector process (wt) is denoted by

r
(wt)
t and given by:

r
(wt)
t =

Nt
∑

i=1

witrit. (2)

In general, the factor Ft can be different from the market index r
(wt)
t . We restrict our

attention to non-trivial weighting schemes, ruling out situations such that the index is

composed by a single stock. We also restrict the weights to be positive at every given point

in time. Hence, a weighting scheme (wt), is a vector process which satisfies 0 < wit < 1 ∀ i, t.

This condition seams reasonable since our focus is to measure average idiosyncratic risk in

the market.

The cross-sectional variance measure is defined as follows:

Definition (CSV ): The cross-sectional variance measure under the weighting scheme

(wt), denoted by CSV
(wt)
t , is given by

CSV
(wt)
t =

Nt
∑

i=1

wit

(

rit − r
(wt)
t

)2

. (3)

A particular case of interest is the equally-weighted CSV , denoted by CSV EW
t and

determined by the weighting scheme wit = 1/Nt ∀ i, t:

CSV EW
t =

1

Nt

Nt
∑

i=1

(

rit − rEW
t

)2
, (4)

where rEW
t is the return on the equally-weighted portfolio.

If we denote by cit be the market capitalization of stock i at the beginning of the month

corresponding to day t, Ct =
∑Nt

i=1 cti the total market capitalization and rCW
t the return

on the market capitalization-weighted portfolio, let the cap-weighted CSV be define as:

CSV CW
t =

Nt
∑

i=1

wCW
it

(

rit − rCW
t

)2
(5)

where wCW
it =

∑Nt

i=1
cit

Ct
.
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The advantage of such a cross-sectional measure is obviously its observability at any

frequency, while the previous approaches have used monthly measures based on time series

of daily returns. A second important feature is that this measure is model-free, since we do

not need to obtain residuals from a particular model to compute it.

While Goyal and Santa-Clara (2003) and Wei and Zhang (2005) consider the equal-

weighted CSV in conjunction with other measures, they do not provide conditions under

which it can be interpreted as a proxy for idiosyncratic variance. To study the nature of

CSV, we will make three assumptions and use them at various stages to derive the properties

of the CSV as an estimator of idiosyncratic variance.

Assumption 1 ∀i, t, εit is independently distributed in time with homogeneous second mo-

ment across assets, with

E(εit) = 0.

E(ε2
it) = σ2

ε (t) .

Corr (Ft, εit) = 0.

This assumption is consistent with the usual assumptions made in factor models. The

next assumption, made by previous authors in the idiosyncratic risk literature (see Campbell

et al. (2001) and Goyal and Santa-Clara (2003) in particular), reduces to zero the cross-

sectional dispersion of betas.

Assumption 2 βit = βt = 1 ∀ i, t

Later in this section we discuss the implications in terms of bias of this assumed homo-

geneity in betas and in the next section we will assess the importance of this bias empirically.

For the next proposition, we consider the simple case where the factor Ft is the market

portfolio defined by the set of weights, wt, hence Ft = r
(wt)
t . Under assumptions 1 and 2,

we the following Corollary draws a direct relationship between the dynamics of the cross-

sectional variance of realized returns and the dynamics of idiosyncratic variance.

Proposition 1 (CSV as proxy for idiosyncratic variance): with a positive weighting

scheme and under assumptions 1 and 2, we have that,

CSV
(wt)
t =

Nt
∑

i=1

wit

(

rit − r
(wt)
t

)2

−→
Nt→∞

σ2
ε (t) almost surely (6)

(E[CSV ] as average idiosyncratic variance measure): Moreover,

E
[

CSV
(wt)
t

]

=

Nt
∑

i=1

witσ
2
εi
(t) (7)
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This result holds even for the more general case where the factor(s) is not necessarily

the market portfolio defined by the weighting scheme wt. In Appendix A we present the

proof of Proposition 1 in this more general case. Appendix A.1 presents a similar derivation

to that proof for the equally-weighted CSV , which follows in a similar but simpler manner.

For the simple case above, the proof is quite simple.

Proof From the single factor decomposition (1), it follows that the difference between any

individual return and the return on the market factor is

rit − r
(wt)
t = (βit − 1) r

(wt)
t + εit.

The homogeneous beta assumption implies:

rit − r
(wt)
t = εit. (8)

Replacing expression (8) in the definition of the CSV (3) we have

CSV
(wt)
t =

Nt
∑

i=1

wit

(

rit − r
(wt)
t

)2

=

Nt
∑

i=1

witε
2
it. (9)

For independently distributed εi with homogeneous idiosyncratic variance across-stocks,

the approximation
∑Nt

i=1witε
2
i (t) ≃ σ2

ε (wt), follows from the definition E [ε2
i ] ≡ σ2

ε of As-

sumption 1, which implies

CSV
(wt)
t =

Nt
∑

i=1

witε
2
it ≃ σ2

ε (wt) (10)

The proof of the second part of the proposition follows simply from taking the expectation

in equation (9).

Proposition 1 is a rather intuitive argument to motivate the CSV as a measure of id-

iosyncratic variance in general. It is an approximation that relies on the assumption that all

idiosyncratic variances are equivalent across stocks (E[ε2
i ] = σ2

ε). This approximation allows

us to use only instantaneous information from the cross-section to estimate idiosyncratic

risk in the market. Although, from a purely statistical standpoint it is more natural to

give equal probabilities to every observation in the sample (which will be the case for the

equal-weighted CSV), sometimes a different type of weighting scheme (or weighted average)

is of interest for economic or comparison reasons, i.e. the market capitalization weighting

scheme.

The second part of the proposition draws a direct relationship between the expected value

of the CSV and the average idiosyncratic variance of the market, which actually relaxes the

assumption of homogeneous idiosyncratic variances across stocks.
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Notice that the weighting scheme defining the CSV and the weighted average are assumed

to be the same. The proof for the more general case where the factor is not exactly the

market portfolio defined by the weighting scheme wt, uses the additional assumption of

a strict factor model and an arbitrarily large number of stocks, as described in detail in

section 2.3.

Assumption 3 A strict factor model implies

Corr (εit, εjt) ≡ ρε
ijt = 0 ∀i 6= j, t

Assumption 3 is similar to the single index, or diagonal, model of Sharpe (1963) and is

also used by statistical factor models. It implies that all commonalities are explained by

the factor model in place. One should notice that the very definition of idiosyncratic risk

relies precisely on this assumption about the factor model. Assuming that the model is the

“true” one implies that the “true” idiosyncratic risk is the one measured with respect to

that model, which in turn implies that no commonalities should be left and neither “matter”

since no residual correlations should be significant. Relaxing the assumption that the factor

model in place is strict means that idiosyncratic risk is not truly “idiosyncratic”, and hence

it should rather be interpreted as a relative measure with respect to the benchmark model.

In section 2.3, where we study the properties of the CSV, we illustrate in a more concrete

way the implications for the CSV when this assumption does not hold.

In the next section, we explore the bias associated with the assumption of homogeneous

betas.

2.2 Implications of the Homogeneous Beta Assumption

The assumption that βit = βt for all i is obviously a simplistic one. We now look at the

CSV when this assumption is not introduced. Noting that
∑Nt

i=1witβit = 1, we have

CSV
(wt)
t =

Nt
∑

i=1

wit (rit − Ft)
2 (11)

=

Nt
∑

i=1

wit [(βit − 1)Ft + εit]
2 (12)

= F 2
t

Nt
∑

i=1

wit (βit − 1)2 +
Nt
∑

i=1

witε
2
it + 2Ft

Nt
∑

i=1

wit (βi − 1) εit (13)

We now look at the expectation of the CSV. Define CSV β
t =

∑Nt

i=1wit (βit − 1)2 as the

cross-sectional variance of stock betas. Applying the expectation operator in equation (13)
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and assuming Ft orthogonal to βt we get,

E
[

CSV
(wt)
t

]

= E
[

F 2
t CSV

β
t

]

+

Nt
∑

i=1

witE
[

ε2
it

]

+ 2E [Ft]

Nt
∑

i=1

wit(βit − 1)E [εit]

Assuming E[εit] = 0 yields,

E
[

CSV
(wt)
t

]

= E
[

F 2
t CSV

β
t

]

+
Nt
∑

i=1

witσ
2
εit

(14)

The first term in equation (14) represents a (positive) bias for the CSV as an estimator of

average idiosyncratic variance, introduced by the betas’ cross-sectional dispersion. A similar

derivation for the bias in the more general case where the factor is not the same as the market

portfolio defined by wt is provided in Appendix B. Under the additional assumption of a

strict factor model, the bias of the CSV turns out to be the same expression. The implication

of not assuming a strict factor model are shown in section 2.3.

In section 3.1 we measure the bias of the CSV as a measure of average idiosyncratic risk

with respect to standard asset pricing models in the literature (CAPM and Fama-French)

and find that the size of the CSV’s bias is negligible. As we will see, although the cross-

sectional dispersion of betas has a non-negligible magnitude, once it is multiplied by the

squared of the return of the market portfolio its relative size with respect to the level of

idiosyncratic risk becomes very small.

2.3 CSV properties

In this section, we study the properties of the CSV estimator. These properties are of

particular interest to compare the equal-weighted and cap-weighted versions of the CSV .

The equal-weighted CSV appears as a consistent and asymptotically efficient estimator of

idiosyncratic variance in the class of CSV estimators defined under any positive weighting

scheme.

2.3.1 Expectation and Bias

Proposition 1 follows only in the case where Ft = r(wt). When it is not the case, the

CSV estimator is a biased measure of average idiosyncratic variance, where the bias is

proportional to the concentration index implied by the set of weights wt. The bias reaches a

minimum for the equally-weighted scheme and tends to zero as the number of stocks grows

to infinity. This result is illustrated in Corollary 1 below.
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Lemma 1 (CSV EW asymptotically unbiased estimator): For an arbitrarily large

number of stocks the equal-weighted CSV is an asymptotically unbiased estimator of av-

erage idiosyncratic variance. For a small number of stocks, it has the smallest bias among

the class of estimators defined by the CSV with a weighting scheme 0 < wit < 1.

E
[

CSV EW
t

]

−→
Nt→∞

1

Nt

Nt
∑

i=1

σ2
εit

Proof of Lemma 1

In the more general case where the factor is not necessarily the portfolio defined by wt,

under the factor model decomposition (1) and equation (2) and using the homogeneous beta

assumption, we have

rit − r
(wt)
t =

(

βit −

Nt
∑

j=1

wjtβjt

)

Ft + εit −

Nt
∑

j=1

wjtεjt

rit − r
(wt)
t = εit −

Nt
∑

j=1

wjtεjt (15)

Replacing result (15) in equation (3) we have

CSV
(wt)
t =

Nt
∑

i=1

wit

(

εit −
Nt
∑

j=1

wjtεjt

)2

=
Nt
∑

i=1

witε
2
it +

Nt
∑

i=1

wit

(

Nt
∑

j=1

wjtεjt

)2

− 2
Nt
∑

i=1

Nt
∑

j=1

wjtwitεitεjt

and noting that

(

Nt
∑

j=1

wjtεjt

)2

=
Nt
∑

j=1

w2
jtε

2
jt + 2

Nt−1
∑

i6=j

witwjtεitεjt =
Nt
∑

i=1

Nt
∑

j=1

wjtwitεitεjt

we get

CSV
(wt)
t =

Nt
∑

i=1

witε
2
it −

Nt
∑

i=1

Nt
∑

j=1

wjtwitεitεjt (16)

By definition, E [εitεjt] = ρε
ijtσεitσεjt and E(ε2

it) = σ2
εit

. Applying the Expectation operator
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in equation (16)6 we get,

E
[

CSV
(wt)
t

]

=
Nt
∑

i=1

witσ
2
εit

−
Nt
∑

i=1

Nt
∑

j=1

witwjtρ
ε
ijtσεitσεjt (17)

Separating variance and covariance terms in equation (17) we have,

E
[

CSV
(wt)
t

]

=

Nt
∑

i=1

witσ
2
εit

−

Nt
∑

i=1

w2
itσ

2
εit

−

Nt
∑

i=1

Nt
∑

j 6=i

witwjtρ
ε
ijtσεitσεjt (18)

For a strict factor model as in Assumption 3 7 it follows that

E
[

CSV
(wt)
t

]

=
Nt
∑

i=1

witσ
2
εit

−
Nt
∑

i=1

w2
itσ

2
εit

(19)

The second term in (19) implies that the CSV would tend to underestimate average idiosyn-

cratic variance. However, for the equal weighted CSV we can derive the following result in

this context.

Considering the case where wit = 1/Nt∀i in (19) simplifies to

E
[

CSV EW
t

]

=

(

1 −
1

Nt

)

1

Nt

Nt
∑

i=1

σ2
εit

for N → ∞

E
[

CSV EW
t

]

−→
Nt→∞

1

Nt

Nt
∑

i=1

σ2
εit

2.3.2 Variance and Efficiency

Consider equation (16) in matrix form. Let wt and εt be column vector of the weighting

scheme and residuals respectively and Ωt = wtw
′
t, Λt = diag (wt), Nt ×Nt matrices,

CSV
(wt)
t = ε′tΛtεt − ε′tΩtεt (20)

6Equation (16) can be re-written in matrix form: Let Ωt = wtw
′

t be the Nt × Nt matrix composed by a
weighting scheme wt and ε the column vector of residuals,

CSV
(wt)
t = w′ε2 − ε′Ωtε

.
7Relaxing the strict factor model and assuming without loss of generality that ρε

ijt = ρε
t ∀i 6= j we obtain:

E
[

CSV
(wt)
t

]

= σ2
εt

(

1 −
∑Nt

i=1 w2
it

)

(1 − ρε
t ). Therefore, depending on the sign of ρε

t the average idiosyn-

cratic variance can be over or under estimated. Moreover, the bias is proportional to the concentration
index (also known as the Herfindahl index) of the corresponding CSV, given by

∑Nt

i=1 w2
it. In section 3.1 we

measure and estimate the size of the CSV bias through comparison with the average idiosyncratic variance
implied by CAPM and the three factor Fama-French model.
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We shall also consider the simpler case where the factor is given by the portfolio defined by

the set of weights, wt, in matrix form

CSV
(wt)
t = ε′tΛtεt (21)

We know the variance of quadratic forms for multivariate normal (distributed) variables8;

denoting Σε the variance covariance matrix of the residuals we have9,

V ar (ε′tΛtεt) = 2tr (ΛtΣ
ε
tΛtΣ

ε
t ) (22)

V ar (ε′tΩtεt) = 2tr (ΩtΣ
ε
tΩtΣ

ε
t ) (23)

Cov (ε′tΛtεt; ε
′
tΩtεt) = 2tr (ΛtΣ

ε
tΩtΣ

ε
t ) (24)

due to the quadratic from of the CSV, in order to analyze its variance we further assume

normality of the residuals,

Assumption 4

ε ∼ N(0,Σε)

In the context where Ft = r(wt) and further taking Assumption 4 we are able to derive the

following Corollary,

Lemma 2 As the number of stocks in the universe increases, the variance of the equally-

weighted CSV decreases and collapses to zero in the limit

V ar
(

CSV
(EW )
t

)

−→
Nt→∞

0

Proof of Lemma 2. Replacing result (22) in equation (21) we get,

V ar
(

CSV
(wt)
t

)

= 2

Nt
∑

i=1

w2
itσ

4
εit

(25)

consider the equal-weighted CSV for which wit = 1/Nt∀i

V ar
(

CSV
(wt)
t

)

=
2

Nt

(

1

Nt

Nt
∑

i=1

σ4
εit

)

when Nt → ∞ it follows

V ar
(

CSV
(EW )
t

)

−→
Nt→∞

0 (26)

In Appendix C, we treat the more general case where the factor is not necessarily the

portfolio defined by wt.

8See for instance Kachman (1999)
9tr stands for the trace of a matrix, which is the sum of the diagonal terms.
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Proposition 2 (CSV EW consistent estimator): The equal-weighted CSV is a consis-

tent estimator of idiosyncratic variance.

Proposition 2 follows from Corollaries 1 and 2 above.

We have shown that in the simple case where the factor is equal to the portfolio with the

same weighting scheme defining the CSV, the equal-weighted CSV is a consistent estimator

of average idiosyncratic variance in the market.

For the more general case where the factor is not necessarily given by the portfolio defined

by the CSV weighting scheme, we find for a strict factor model that the variance and the

bias of the CSV are proportional to the level of concentration implied by the corresponding

vector of weights. In this context, the equal-weighted CSV is the most efficient estimator in

the class of estimators given by the CSV under a weighting scheme satisfying 0 < wi < 1 ∀i.

Proposition 1 and subsequent results in this section provide motivation to use the ex-

pected value of the CSV as a measure of average idiosyncratic variance. This implies that a

window of CSV observations should be used to estimate its expected value (which is typi-

cally done by taking an average over a month of daily observations). However, Proposition

1 also motivates the CSV as a proxy for idiosyncratic risk in the market, which allows us to

use even instantaneous observations of the CSV for this purpose.

2.4 Competing Measures of Idiosyncratic Risk

Broadly speaking, our measure of idiosyncratic risk has three main advantages with respect

to existing measures: it is instantaneous, readily observable, and leads to a straightforward

extension to higher moments (see section 4). In what follows, we provide information

regarding existing measures that have been used in the literature, and which will be used

for comparison purposes in subsequent sections of the paper.

The standard approach consists of considering idiosyncratic variance either relative to

the CAPM and or to the Fama-French model (Fama and French (1993)):

rit = b0it + b1itMKTt + b2itSMBt + b3itHMLt + εFF
it (27)

where rit denotes the excess return at time t of stock i, MKT is the excess return on the

market portfolio, SMB is the size factor and HML is the value factor10.

The idiosyncratic variance for asset i is the variance of the residual of the regression,

that is, σ2(εFF
it ). To obtain an estimate for average idiosyncratic variance, Bekaert et al.

(2008) and Wei and Zhang (2006) use a market capitalization weighting

FFCW
t =

Nt
∑

i=1

witσ
2(εFF

it ). (28)

10Data on Fama-French factors and the risk-free rate are obtained from Kenneth French data library.
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For comparison purposes we also look at the equally-weighted average of FF idiosyncratic

variance in what follows. An alternative approach to average (mostly) idiosyncratic risk

estimation has been suggested by GS, with a measure given by:

GSEW
t =

1

Nt

Nt
∑

i=1

[

Dt
∑

d=1

r2
id + 2

Dt
∑

d=2

ridrid−1

]

, (29)

where rid is the return on stock i in day d and Dt is the number of trading days in month

t.11

Campbell et al. (2001) propose yet an alternative measure of average idiosyncratic vari-

ance, under a very particular setting which allows one to avoid running regressions each

period. However, their measure is not instantaneous since a window of data is still needed

to estimate individual variances. In what follows, we do not repeat the analysis with this

measure because Bekaert et al. (2008) have shown that it is very closely related to the mea-

sure obtained from standard asset pricing models. In particular, Bekaert et al. (2008) find

a correlation of 98% between the measure of Campbell et al. (2001) and the FF-based one.

They also find that most structural breaks are identical for both measures.

3 Empirical Implementation

In order to perform an empirical analysis of our measure of idiosyncratic risk, we collect daily

US stock returns (common equity shares only) and their market capitalization from CRSP

(daily returns availability). We also extract the FF factors and the one-month Treasury bill

from Kenneth French web-site data library for the same sample period. Each month, we drop

stocks with missing returns and with non-positive market capitalization at the beginning of

the month. Then we estimate cap-weighted idiosyncratic variance as in equation (28), and

also the equal-weighted version every month 12. Similarly, we estimate the cap-weighted

and equal weighted average idiosyncratic variance relative to CAPM. We also estimate the

GS average variance measure as in equation (29) and its cap-weighted version. Finally, we

estimate on a daily basis the equal and cap-weighted (sometimes abbreviated by EW and

CW) versions of the CSV as in equations (4) and (5). In order to construct the monthly

series of our cross-sectional measure, we estimate the average of the daily series at the end of

each month. For comparison purposes we also estimate the FF-based average idiosyncratic

variance (EW and CW) on a daily basis using a rolling window sample of one month. We

annualize all figures in order to compare results obtained with daily and monthly data.

11As in GS, when the second term makes the estimate negative, it is ignored. This measure has been
originally used in French et al. (1987)

12We use previous period market capitalization and assume it is constant within the month.
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Following Bekaert et al. (2008), we also fit a regime-switching model to the monthly and

daily series, which allows us to further compare the different measures.

3.1 Measuring the CSV bias

Previous researchers analyzing average idiosyncratic volatility have assumed homogeneous

betas across stocks. As we uncovered in section 2.2, non-homogeneous betas introduce a

positive bias on the CSV as an estimator of average idiosyncratic variance, which is given

by the first term in equation (14). We now measure the impact of this bias taking as a

benchmark model the CAPM13.

First we estimate the bias every month in the sample using beta estimates for every

stock and the observed market portfolio return (both equal and cap weighted versions).

More importantly we look at the size of the ratio of E
[

F 2
t CSV

β
t

]

(the bias) to the average

idiosyncratic variance, also measured with respect to the CAPM14.

Table 1 presents a summary of the unconditional distribution of the cross-sectional

dispersion of betas, its product with the squared return of the market portfolio (hence the

bias itself) and the proportion of this bias with respect to the average idiosyncratic variance

at the end of every month. Although the cross-sectional dispersion of betas is sizable, once

it is multiplied by the squared return of the market portfolio, the size of the bias remains

fairly small: the median of the distribution of the proportion of the bias with respect to the

average idiosyncratic variance,
F 2

t CSV β
t

σ2
εt

, is 0.65% for the equal-weighted and 0.31% for the

cap-weighted measures and the quantile 97.5 of this time series during the whole sample

period (July 1963 to December 2006) is 6.67% and 2.81% correspondingly. The average of

this proportion is 1.61% for the equal-weighted and 0.71% for the cap-weighted one.

On the other hand, the formal discussion about the properties of the CSV as a mea-

sure of idiosyncratic variance on section 2.3 also uncovered the fact that, when the factor

model is not exactly equal to the portfolio determined by the weighting scheme under which

the CSV is defined, another bias (but negative in sign) coming from the CSV’s weighting

scheme concentration15 is also introduced. Equation (19) predicts two properties about this

weighting bias : first, it should be negative and minimal for an equally-weighted scheme.

Second, it should be very small for a high number of stocks. It should be noted that this

bias is somehow competing with the beta’s cross-sectional dispersion bias, because they

have opposite signs. The beta-bias then is more likely to dominate the weighting one when

using an equal-weighting scheme. Additionally, if the biases are measured with respect to

13Using as the benchmark multi-factor models, such as the Fama-French one, is likely to increase the size
of the bias, since a similar term would appear for each additional factor.

14This is measured similar as in equation (28) for the corresponding weighted average.
15Concentration measured as the Herfindahl index
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idiosyncratic risk implied by a multi-factor model, they are more likely to have a higher

impact.

In order to determine the impact of these biases (both the betas and the weighting

one), we measure the total bias as the intercept of a regression of the CSV on the average

idiosyncratic variance estimated with respect to the CAPM or the Fama-French three-factor

model, as follows

CSV wt

t = bias + ψσ2
model (wt) + ζt (30)

where wt would be either equal-weighted or market-cap weighting schemes and model would

be either the CAPM or the Fama-French three factor model.

Table 2 presents summary statistics of regression (30). The bias of the CSV measured

with respect to standard asset pricing models is small in magnitude for both weighting

schemes (in the order of 10−5, but remain statistically significant. Overall, we can safely

consider that the impact of the bias remains immaterial for any practical purposes. Another

interesting fact is the sign of the biases. For the equal weighted quantities, the sign of the

bias is positive, while the same intercept for the cap-weighted ones is negative. This means

that the beta bias dominated the weighting bias for equal-weighted averages in both models.

This is consistent with the prediction made by the theoretical analysis regarding the relative

impact of the weighting-bias for different weighting schemes. On the other hand, the bias

has, in both cases, a higher magnitude when measured with respect to the Fama-French

model than when measured with respect to the CAPM16.

3.2 Comparison with other Measures

In this section we compare the CSV measure to the afore-mentioned, more conventional,

measures of idiosyncratic risk (i.e. FF-based, CAPM-based and GS). To obtain these other

measures, we need to re-estimate the relevant factor model using a rolling window of one

month worth of daily data to allow for time-variation in beta estimates (or total variance

variation for the GS). Table 3 presents summary statistics for the monthly time-series of an-

nualized idiosyncratic variances based on 516 observations from January 1964 to December

200617.

On the monthly series, the annualized mean of the equally-weighted CSV, FF-based

and CAPM-based measures are 38.42%, 38.32% and 38.79%, respectively, with a difference

of less than 0.5%, while the EW GS variance is 34.24%. The standard deviations are

16The adjusted R2 of around 99% in this regression should not surprise the reader since these two quanti-
ties (the regressor and the CSV) have Pearson correlation coefficients of around 90% as well, as documented
in Section 3.2.

17In this section of the paper, we start the sample period in January 1964 to allow for direct comparison
with Bekaert et al. (2008). In the predictability section, we instead start the sample in July 1963.
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8.52%, 8.60%, 8.66% for the CSV, FF-based and CAPM-based measures and 6.99% for the

GS measure. For the cap-weighted version, the CSV, FF and CAPM idiosyncratic variance

measures have an annualized mean of 8.52%, 7.62%, 8.04% respectively and the GS measure

mean is 11.23%. The standard deviations are also closer among CSV, FF and CAPM than

with the one of GS. Although GS argue that their measure fundamentally constitutes a

measure of idiosyncratic risk, with the idiosyncratic component accounting for about 85%

of the total EW average measure, it is strictly speaking an average of total stock variance.

Our measure generates empirical results that are close to idiosyncratic variance measures

derived from traditional asset pricing models, suggesting that the assumption about the beta

homogeneity does not constitute a major problem to capture idiosyncratic risk. That our

measure agrees with previously introduced measures is confirmed by the cross-correlation

analysis reported in Table 4.

The smallest correlation coefficient in Table 4 is 56.98% between the GSCW and FFEW

measure. The highest correlation in the table is 99.93% between the CSV EW and the

FFEW . Among the CW measures, the highest correlation is 99.49% between CSV and

CAPM, followed by 99.19% between CAPM and FF and the lowest between GS and FF

with 88.19%. Among the EW measures the cross-correlations with the GS measure are also

the lowest.

Table 5 provide mean and standard deviation estimates for the average idiosyncratic

variance measures when daily estimates are used. The mean of the equally-weighted CSV

is 39.54% while the EW idiosyncratic variance relative to the FF model is 38.33%. For

the cap-weighted measures the CSV has slightly higher mean than the FF-based one. In

contrast with the monthly frequency, the CSV daily series presents a higher standard de-

viation with respect to the FF-based average idiosyncratic variance in both cap-weighted

and equal-weighted forms. This is not surprising given that the daily CSV measures are

instantaneous, since they only include information of the cross-section. This contrasts with

the FF idiosyncratic variance measure that contains a built-in artificial smoothing element

because it requires a window of data to estimate the Nt ×NF (with NF being the number

of factors of the asset pricing model) coefficients of the factor model in addition to the Nt

idiosyncratic variances. Hence, each estimate for idiosyncratic variance relative to a factor

model differs from the previous one only by two observations out of approximately 21 trad-

ing days in a month (for a monthly rolling window sample), the first and last day of the

each sample. In this sense, today’s estimate is about 90% yesterday’s estimate18.

The intuition that the rolling-window methodology inherent in standard measures gen-

erates a smoothed estimate of current idiosyncratic risk level is confirmed in Figures 1 and

2 which plots daily CSV and FF-relative idiosyncratic variance, using an equal-weighted

18This is because 21−2
21 = 90.48%
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and a cap-weighted average, respectively. It should also be noted that the estimation of the

FF-measure is computationally much more expensive than for the CSV measure, which is

based on observable quantities.

Table 6 presents cross-correlations for the daily series idiosyncratic variance measures.

Although the coefficients are considerably smaller than for the monthly series, the relation-

ship remains strong provided the comparison is done for the same weighting scheme. The

difference with the monthly series correlations may again be explained by the presence of

the smoothed estimation procedure inherent to the FF-based measure.

3.3 Extracting Regimes in Idiosyncratic Risk

Following Bekaert et al. (2008), we fit a Markov regime switching model with a one-lag

autocorrelation structure(see Hamilton (1989)). In this model, two regimes are indexed by

a discrete state variable, st, which follows a Markov Chain process with constant transition

probabilities. Let the current regime be indexed by i and the past regime by j and xt be

the original idiosyncratic variance. In this parsimonious model, xt follows an AR(1) model:

xt − µi = φ(xt−1 − µj) + σiet, i, j ∈ {1, 2} (31)

The transition probabilities are denoted by p = P [st = 1|st−1 = 1] and q = P [st =

2|st−1 = 2]). The model involves a total of 7 parameters, {µ1, µ2, σ1, σ2, φ, p, q}.

The estimation results for the monthly series of both FFCW , CSV CW , FFEW and CSV EW

are reported in Table 7. For corresponding weighting schemes, the parameters in both

regimes are similar between the two measures. For both measures the low-mean low-variance

regime presents a higher probability of remaining in the same state.

We then fit the same model to the daily time series and present the parameter estimates

in Table 8. It should be stressed that for our CSV measure, the parameter values of average

level of idiosyncratic variance µ in both regimes are notably close to the values obtained with

the monthly series. This result suggests that the process observed at the daily frequency is

not just a noisy series but it actually captures the same underlying process observed at the

monthly frequency. This contrasts with the FF-based measure, for which the maximum-

likelihood estimation procedure could not recognize two regimes when daily data is used, as

evidenced by the fact that the parameter values for the mean level of idiosyncratic variance

are basically the same for the two regimes. This problem combined with an autocorrelation

parameter very close to one is likely caused by the overlapping data problem present in

the daily FF measure, which corresponds to the smoothing effect mentioned in the previous

subsection.

In Figures 3 and 4 we plot the smoothed probability of remaining in state 1 (high-mean
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-high variance regime)19, as well as the monthly CSV and FF average idiosyncratic variance

time series for the CW and EW weighting schemes, respectively. In the legend for the x

axis, we have identified selected months that mark obvious changes in regime dates. At the

monthly frequency, our measure and the FF-based appear to be remarkably close for both

the equal-weighted and cap-weighted average schemes. Also, we find that the dates of regime

changes, marked by the smoothed probability, are the same most of the times for the cap-

weighted and the equal-weighted measures 20. We also find that periods in the higher-mean

and higher-variance regime are more persistent for the equally-weighted measure compared

to the cap-weighted measure (except during the tech bubble period). Overall, our smoothed

probability series resembles closely the one presented in Bekaert et al. (2008) for the cap-

weighted FF and Campbell et al. (2001) measures. The small difference might come from

the fact that Bekaert et al. (2008) fit a model with two different autocorrelation coefficients

(one for each regime) as opposed to one. However, they find the two coefficients to be

fundamentally equal in both regimes, which supports using a more parsimonious model.

Finally in Figures 6 and 5 we plot again the smoothed (conditional) probability of

remaining in the high-mean high-variance regime together with the NBER recession (or

contraction) periods (shaded areas). The peaks in the probability coincides most of the

times with the NBER recession periods, which confirms the counter-cyclical property of the

CSV measure.

4 Idiosyncratic Skewness and Cross-Sectional Third-

Order Moments

Recent research have found that idiosyncratic skewness may also have a relationship with

expected returns. For instance Boyer et al. (2009) find a significant relationship between

expected idiosyncratic skewness and future returns at the stock level. In order to explore

this relationship at the aggregate level, we now use an approach similar the one used in

section 2.1.

Let us look at the relationship between aggregate idiosyncratic skewness and third or-

der generalizations of our cross-sectional variance measure of equation (4). Consider the

standardized 3th central moment or (cross-sectional) skewness measure:

19Smoothed probabilities are estimations of the transition probability conditional to information up to
time t.

20One notable exception is the regime change of 1980 : 05, which is present for the cap-weighted measure
and absent for the equally-weighted one.
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Definition (CSS): The cross-sectional skewness , denoted by CSS t, is given by

CSSt =
cm3t

cm
3/2
2t

=
1

Nt

∑Nt

i=1(rit − rt)
3

(

1
Nt

∑Nt

i=1(rit − rt)2
)3/2

where rit is the ith stock return, r̄t is the equal-weighted portfolio return, cm3 is the cross-

sectional third central moment, and cm2 is the cross-sectional variance, hence cm2t =

CSV EW
t . For completeness, we also consider a market-cap weighted version of this measure

denoted by CSSCW .

Denote the idiosyncratic skewness of the ith stock as

skεi (t) =
m3 (εit)

m2 (εit)
3/2

(32)

A similar simplification to Assumption 1 but on the third central moment allows us to

establish a link between the CSS and idiosyncratic skewness in the market.

Assumption 5 ∀i, t, εit is independently distributed in time with homogeneous third central

moment across assets

E(ε3
it) ≡ m3 (εt)

For illustration purposes, again, let us first look at the simple case with homogeneous

betas. In this case and under Assumptions 1 and 5, the following Corollary holds.

Proposition 3 (CSS as proxy for idiosyncratic skewness): Under assumptions 1,

2 and 5,

CSSt −→
Nt→∞

skε (t) almost surely (33)

In the single index case where Ft = r(wt) this result actually follows in an exact manner,

meaning CSSt = skε (t). The proof of Corollary 3 goes as follows

Proof Using the factor decomposition for returns we have,

rit − rEW
t = εit −

1

Nt

Nt
∑

j=1

εjt

From the strong law of large numbers, we know that 1
Nt

∑Nt

j=1 εjt −→
Nt→∞

0 almost surely.

In other words, for large Nt, we have that rit − rEW
t → εit

21. Replacing this result in the

CSS definition yields,

CSSt −→
Nt→∞

1
Nt

∑Nt

i=1 ε
3
it

(

1
Nt

∑Nt

i=1 ε
2
it

)3/2

21When Ft = rEW this result actually follows in an exact manner: rit − rEW
t = εit

20



From Assumptions 1 and 5 and the definition of skewness it follows

CSSt −→
Nt→∞

skε (t) almost surely

Corollary 3 is an intuitive argument that draws a direct relationship between the CSS

and idiosyncratic skewness, however it holds under the simplistic assumption of homogenous

betas across assets. Let us now look at the impact of the beta’s cross-sectional distribution

but relax as well the homogeneous central moments Assumptions 1 and 5. Consider the

factor decomposition for the case where Ft = rEW (sometimes denoted as rt)

rit − rEW
t = (βit − 1) rEW

t + εit (34)

Replacing (34) in the CSS definition,

CSSt =
cm3t

cm
3/2
2t

=
1

Nt

∑Nt

i=1

(

(βit − 1) rEW
t + εit

)3

(

1
Nt

∑Nt

i=1 ((βit − 1) rEW
t + εit)

2
)3/2

(35)

The numerator in (35), the third central moment cm3t expands to,

cm3t = rt
3 1

Nt

Nt
∑

i=1

(βit − 1)3 + 3rt
2 1

Nt

Nt
∑

i=1

(βit − 1)2 εit + 3rt
1

Nt

Nt
∑

i=1

(βit − 1) ε2
it +

1

Nt

Nt
∑

i=1

ε3
it

Taking the expectation of cm3t above, denoting mβ
3t the third central moment of betas’

cross-sectional distribution and noting that E[εit] = 0 yields,

E [cm3t] = E
[

rt
3mβ

3t

]

+ 3rt
1

Nt

Nt
∑

i=1

(βit − 1)σ2
εit

+
1

Nt

Nt
∑

i=1

m3 (εit)

= E
[

rt
3mβ

3t

]

+ 3rt

(

1

Nt

Nt
∑

i=1

βitσ
2
εit

− σ2
εit

)

+
1

Nt

Nt
∑

i=1

m3 (εit)

The second term is likely to be small if the dispersion of betas and/or the heterogeneity

of idiosyncratic variances is not too large. In fact the term disappears under Assumption

1 (homogenous idiosyncratic variances) although allowing for heterogeneous third central

moment yields,

E [cm3t] = E
[

rt
3mβ

3t

]

+
1

Nt

Nt
∑

i=1

m3 (εit) (36)

Equation (36) suggests that the cross-sectional third central moment is a biased proxy of

average idiosyncratic 3th central moment. The size of its bias (the first term in (36)) would

be small for an approximately symmetric beta’s cross-sectional distribution.
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Regarding the denominator in (35), from (13) in section 2.2 we know that

CSV EW
t = cm2t = rt

2 1

Nt

Nt
∑

i=1

(βit − 1)2 +
1

Nt

Nt
∑

i=1

ε2
it + 2rt

1

Nt

Nt
∑

i=1

(βi − 1) εit

Which after taking the expectation and assuming rt orthogonal to βt,

E
[

CSV EW
t

]

= E [cm2t] = E
[

rt
2CSV β

t

]

+
1

Nt

Nt
∑

i=1

σ2
εit

(37)

Provided that the magnitude of the biases in equations (36) and (37) be negligible, our

results suggests that the expected value of cross-sectional third and second central moments

are good proxies for their average idiosyncratic counterparts. However, this does not directly

implies that their ratio (taking cm
3/2
2 ) would be a good proxy for the average idiosyncratic

skewness, as one might be tempted to think by looking at equation (35). The reasons for this

are two properties of the expectation operator: First, E[cm
3/2
2 ] is not equal to E[cm2]

3/2,

although it is well known that for the square root approximation (standard deviation) this

does not introduce a meaningful bias for a large sample, the third power is more likely to

have a sensible impact. Second, the expectation of a ratio of two variables x and y, is not

the ratio of the expectations, but instead22

E

[

x

y

]

=
E [x]

E [y]

[

1 +
σy

µy2

−
σxy

µxµy

]

(38)

In different contexts, some authors23 have used “the simplifying assumption that the ex-

pected value of a ratio is approximately the ratio of the expected values”, which, on the one

hand would imply from equation (35) that

E [CSSt] = E

[

cm3(t)

cm2(t)3/2

]

≈
E [cm3(t)]

E [cm2(t)3/2]
(39)

The expected value of a ratio is greater than or equal to the ratio of the expected values,

hence, the right side of (39) is a lower limit. Using the further approximation E[cm
3/2
2 ] ≈

E[cm2]
3/2, could probably compensate this underestimation24 given E[cm2]

3/2 might be

lower than E[cm
3/2
2 ]. On the other hand, from results (36) and (37) and ignoring the

corresponding biases, we have

E [cm3(t)]

E [cm2(t)]
3/2

≈
1

Nt

∑Nt

i m3t (εi)
(

1
Nt

∑Nt

i m2t (εi)
)3/2

(40)

22Taken from equation (16) of Durmaz and Baydere (2004)
23For instance Brennan (2005) and Azzam et al. (1988) use this approximation
24This would be the case if for instance the correlation between cm2

2 and cm2 is positive, since E[x3] =
E[x]3 + E[x]V ar[x] + Cov(x2, x)
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together with (39) would imply that the CSS could be a rough approximation for average

idiosyncratic skewness25 .

E [CSSt] ≈
1

Nt

Nt
∑

i=1

skεi(t) (41)

The relationship outlined above together with Corollary 3 provides the motivation to look

at some measure of cross sectional skewness as a proxy for aggregate idiosyncratic skewness.

The main advantage of using an estimate of cross-sectional skewness as proxy for idiosyn-

cratic skewness as opposed to aggregating individual skewness estimates is twofold. First,

we do not need to choose a particular factor model and hence we avoid any possible (betas)

estimation issues (which for individual stock returns are rather common). Second, we have

observable series even at the daily frequency, which could not be obtained without using our

cross-sectional approximation. The formal motivation for using third order cross-sectional

moments to approximate aggregate idiosyncratic skewness (and average idiosyncratic third

order central moment) provided in this section, which further exploits the natural link of

the cross-sectional distribution with idiosyncratic risk, is entirely new to our knowledge.

In terms of empirical estimation, we follow Kim and White (2004) who argue in favor of

the the quantile-based coefficient of skewness (see Bowley (1920)), generalized by Hinkley

(1975), as a robust measure of skewness:

RCS =
F−1(1 − α1) + F−1(α1) − 2Q2

F−1(1 − α1) + F−1(α1)
(42)

for any α1 between 0 and 0.5 and Q2 = F−1(0.5). The Bowley coefficient of skewness is

a special case of Hinkley’s coefficient when α1 = 0.25 and satisfies the Groeneveld and

Meeden (1984)’s properties for reasonable skewness coefficients. It has upper and lower

bounds {−1, 1}.

Table 9 presents summary statistics for the distribution of the cross-sectional skewness

measures mentioned above. The sample period is 1963:07-2006:12. One can see that the

distribution of the non-robust measures are highly dispersed and unlikely to convey tractable

information. On the other hand the robust measure of skewness is (by construction) much

better behaved.

In the next section, we look at the predictability power of idiosyncratic risk on the

market return using the cross-sectional CSV before adding as a predictive variable the

robust measure of skewness.

25At the stock level, Zhang (2009) finds an empirical relationship between peer group cross-sectional
skewness and individual stock skewness and Kapadia (2009) uses cross-sectional skewness to explain the
puzzling finding in Ang et al. (2006) that stocks with high idiosyncratic volatility have low subsequent
returns.
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5 New Evidence on the Predictability of the Market

Return

There is an ongoing debate on the predictive power of average idiosyncratic variance over

average (or aggregate) stock market returns. Goyal and Santa-Clara (2003) find a signifi-

cantly positive relationship between the equal-weighted average idiosyncratic stock variance

and the cap-weighted portfolio returns for the period 1963:07 to 1999:12. They find that

their measure of average (mostly) idiosyncratic variance has a significant relation with next

month’s return on the cap-weighted portfolio. The regression in GS is as follows:

rCW
t+1 = α + βνEW

t + εt+1, (43)

where νEW
t corresponds to GSEW

t . In a subsequent analysis, Bali et al. (2005) argue that

this relationship disappeared for the extended sample 1963:07 to 2001:12, and attribute

the relationship observed in GS to high-tech-bubble-type stocks (i.e., stocks traded on the

NASDAQ) and a liquidity premium. In a similar way, Wei and Zhang (2005) find that the

significance of the relationship found by GS disappeared for their sample 1963:07 to 2002:12

and argue that the presumably temporary result of GS was driven mainly by the data in the

1990s. Wei and Zhang (2005) criticize the fact that GS looked at the relationship between

an equally-weighted average stock variance and the return on a cap-weighted average stock

return, as opposed to an equally-weighted portfolio return. Moreover, both Bali et al.

(2005) and Wei and Zhang (2005) find no significant relationship between the cap-weighted

measures and the cap-weighted portfolio return in all three sample periods (ending in 1999,

2001 and 2002, respectively). Also, Wei and Zhang (2005) find a significantly positive

relation between the equal-weighted GS measure and the equal-weighted market return

for the initial sample and a significant positive relation between the equal-weighted cross-

sectional variance (i.e. the CSV calculated using monthly returns) and the equal-weighted

portfolio return for most sample periods they look at. Nevertheless Wei and Zhang (2005)

underweight this last finding and conclude that the relationship is insignificant upon their

findings using the competing measures that average idiosyncratic risk.

5.1 Monthly Evidence

In this section we confirm existing results, and extend them in a number of dimensions,

including a longer sample period. Table 10 presents the predictability regression of equal-

weighted variance measures on the cap-weighted return as in Goyal and Santa-Clara (2003)

and Bali et al. (2005) for their sample periods and the extended sample up to 2006:12. The

regression is as in equation 43, where νEW
t corresponds to the EW CAPM-based measure
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and the CSV 26. For comparison purposes we start the sample period in this section in

1963:07, as in Goyal and Santa-Clara (2003), Bali et al. (2005) and Wei and Zhang (2005).

For the monthly series, we confirm that there is a significant positive relationship in the

first sample, and also that it weakens for the subsequent extended samples27. The t-stat

of the β coefficient of both CSV and the CAPM-based measures goes from 3.2 for the first

sample period down to 1.6 for the largest sample. Consequently, the adjusted R2 goes from

2.11% down to 0.49%. This result confirms the finding of Bali et al. (2005) and Wei and

Zhang (2005) for the further extended sample. In section 6 we propose an explanation for

this puzzling finding. However, as argued in Wei and Zhang (2005), it seems more natural

to look at the relationship between similar weighting schemes in both average measures

(return and variance).

In Table 11 we present the results of the regression between the equal-weighted average

return with the lagged equal-weighted average idiosyncratic variance measures given by:

rEW
t+1 = α + βνEW

t + εt+1 (44)

where νEW
t is taken as the CAPM-based average idiosyncratic variance or as the CSV

measure. In contrast with the former regression, the relationship is found to be significantly

positive for the three sample periods (for both measures).

In Table 12 we present the results for the three sample periods of the one-month-ahead

predictive regression of the cap-weighted market portfolio using the cap-weighted idiosyn-

cratic variance return as a predictor. In this case, the beta of the idiosyncratic variance is

significant for none of the three sample periods. This result confirms the findings of Bali

et al. (2005) and Wei and Zhang (2005) for the extended sample.

5.2 New Predictability Evidence at Daily Frequency

Prevailing measures in the literature need a sample of past data to estimate additional pa-

rameters, constraining existing evidence to the monthly estimations. Fu (2009) find that

high idiosyncratic volatilities of individual stocks are contemporaneous with high returns,

which tend to reverse in the following month. Huang et al. (2009) find that the negative

relationship between idiosyncratic variance and expected returns at the stock level found

in Ang et al. (2006) and Ang et al. (2008) is positive after controlling for the return rever-

sals. This provides additional motivation to look at the predictability relation at a higher

frequency than the monthly basis. Using the CSV as a proxy for aggregate idiosyncratic

26As explained before, the monthly CSV is the average of its daily estimations during the month.
27We found a similar result using the GS measure of equal-weighed average variance. We do not present

these regression results for the sake of brevity given that they generate a similar result, which has also been
confirmed in Bali et al. (2005) and Wei and Zhang (2005).
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variance allows us to check this relationship at the aggregate (market) level in a more direct

way (without having to control for reversals). Taking advantage of the instantaneous nature

of the CSV, we run the same predictability regression (44) on the one-day-ahead portfolio

return using the average idiosyncratic variance.

Table 13 shows that at a daily basis, this relationship is much stronger, with (Newey-West

autocorrelation corrected) t-stats of coefficient for the the average idiosyncratic variance

across the three samples between 4 and 4.9. However, the R2 deteriorates with respect to

the first sample period, going from 0.93% of the sample ending in December 1999 down

to 0.59% for the most updated data set. Table 14 presents the results for the one-day-

ahead predicting regression on the cap-weighted pairs (CSV and market return) and find

the relation also to be positive and significant, but with a much more obvious deterioration

of the t-stat of the cap-weighted idiosyncratic variance coefficient, going from about 5.7

in the first sample down to 2.08. For this reason and for brevity, we now focus on the

relationship between aggregate idiosyncratic risk and the equal weighted market return28.

5.3 Robustness

In order to check wether the relationship between the market portfolio expected return and

the aggregate level of idiosyncratic variance that we document at the monthly and daily

frequency, is robust to the inclusion of the variance of the market portfolio, we run the

following joint regression,

rEW
t+1 = α + βCSVt + ϑV ar

(

rEW
t

)

+ ǫt+1. (45)

We also run the univariate regression

rEW
t+1 = α + ϑV ar

(

rEW
t

)

+ ǫt+1. (46)

For the monthly estimations of V ar
(

rEW
t

)

we use the realized sample variance over the

month (from daily returns). For daily estimations we fitted an AR(1)-EGARCH(1,1) model

on the overall sample29. Table 15 presents the regression results at the monthly and daily

frequency of both (45) and (46). On the latter univariate regression, the variance of the mar-

ket portfolio presents a positive non-significant relationship (with ϑ = 1.5) with the market

expected return at the monthly basis. This relationship is negative and non-significant at

the daily frequency with a coefficient value ϑ of −1.5.

28The corresponding results using a market cap-weighted scheme can be obtained from the authors upon
request.

29Using the overall sample to estimate the parameters would only give the portfolio variance an advantage
to predict future returns. However, from the results we see that even using this forward looking estimates
for V ar

(

rEW
t

)

the significance of the CSV remains strong.
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Consistent with results in Goyal and Santa-Clara (2003), on the joint regression, the

coefficient of V ar
(

rEW
t

)

is negative and non-significant at monthly frequency. On the daily

horizon regression, the coefficient was found still negative and (marginally) significant. The

significance of the CSV coefficient, at both monthly and daily basis, improved slightly after

the inclusion of the portfolio variance.

Finally, through the following regression we explore i) wether the predictability power

is the same for both, the returns to the left and right of the cross-sectional distribution,

ii) wether the relationship is driven by one of the sides and iii) wether both sides would

have the same sign on their coefficient. In order to do this we define the CSV +
t as the

cross-sectional variance of the returns to the right of the cross-sectional distribution (right

meaning that include all stocks such that rit > rEW
t ) and conversely define the CSV −

t as the

cross-sectional variance of the returns to the left of the cross-sectional distribution. Then

we run the following regression.

rEW
t+1 = α + β+CSV +

t + β−CSV −
t + ǫt+1 (47)

Table 16 presents the results of regression (47) for daily and monthly estimates which

has a couple of interesting facts. First, splitting the CSV into right and left sides of the

cross-sectional distribution, made the adjusted R2 of the predictive regression jump from

0.8% to 1.17% on monthly data and from 0.6% to 1.36% on daily data. Second, there is

an asymmetric relationship between the CSV of the returns to the right and left of the

cross-sectional distribution and the expected market return: the coefficient of the CSV +
t is

positive while the one of CSV −
t is negative in both daily and monthly regressions. However,

the coefficients (of both right and left CSVs) are significant only on the daily regression.

These facts suggest that a measure of asymmetry of the cross-sectional distribution

would be pertinent in the context of exploring the relationship between market expected

returns and aggregate idiosyncratic risk.

5.4 Improved Predictability Evidence with Cross-Sectional Skew-

ness

In order to further test for the predictive power of aggregate idiosyncratic risk in a broader

sense, we now integrate cross-sectional skewness. To the best of our knowledge, this addi-

tional factor, which was provided here as a natural extension of the CSV in section 4, is

entirely new in this context30. Using the same setting we run the following one-day-ahead

30At the stock level, Kapadia (2009) uses cross-sectional skewness to explain the puzzling finding in Ang
et al. (2006) that stocks with high idiosyncratic volatility have low subsequent returns.
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and one-month-ahead regression

rEW
t+1 = α + β1CSV

EW
t + β2CSSt + εt+1 (48)

where β2 is the OLS coefficient of the Robust Cross-sectional Skewness (estimated as given

in equation (42)) and β1 the coefficient associated with the CSV .

The inclusion of the robust measure of cross-sectional skewness has a remarkable impact

in the predictive power of idiosyncratic risk on the market portfolio return. Table 17 presents

the results of the one-day-ahead regression as described in equation (48). The combined

effect of the CSV EW and the robust measure of cross-sectional skewness on the next period

equal-weighted return generates an adjusted R2 of 7.4% on the sample ending in 1999 and

of 5.8% on the most updated series (ending in December 2006). The coefficient of the CSV

remained strong (in fact for the first sample t-stat is slightly higher) after introducing the

cross-sectional skewness into the predictive regression, with Newey-West t-stats between 4

and 5 for the three samples considered. The significance of the second regressor (the robust

cross-sectional skewness) is remarkably high, with Newey-West autocorrelation corrected

t-stats between 19.8 and 20. The coefficient values are stable across sample periods, β1 took

values of between 0.4 and 0.52 while β2 was 0.4% for the three samples.

The monthly regressions, displayed in Table 18 present a similar pattern. The adjusted

R2 are again (comparatively) high, between 4.6% and 5% for the three periods. The CSV EW

coefficient t-stat remains very significant and positive, with Newey-West autocorrelation

corrected of around 2.6 for all three samples, while the robust c-skewness coefficient’s t-

stats are of 4.12 (for the sample ending in Dec. 99), 4.28 (Dec. 01) and 4.45 for the whole

sample (up to Dec. 06). The coefficient values are also stable across sample periods on the

monthly regression with β1 taking values between 0.25 and 0.27 and β2 between 7.3% and

7.8% for the three samples 31.

6 Interpretation

In what follows we offer some interpretation of our results and of previous evidence regarding

the relation between average idiosyncratic risk and aggregate market return. We provide

an explanation for previous puzzling findings and regroup them with the positive evidence

on the relevance of idiosyncratic risk.

31In unreported results, we have also run regression (48) using the conventional measure of skewness as
the second explanatory variable, but it did not generate any better results. This last negative result is
not very surprising given the high instability of the measures, which is illustrated in Section 4 and more
specifically in Table 9.
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6.1 On the Market-Cap Puzzle

After seeing the presented evidence on the predictability of idiosyncratic risk on average

market return, a natural question to ask would be: why does this relationship differ across

weighting schemes in different sample periods?

There are multiple reasons for which average idiosyncratic risk should be related to

average returns, or in other words, there is no unique reason for this relation to exist.

It is precisely the nature of idiosyncratic risk that makes this relationship heterogeneous.

By construction, idiosyncratic risk represents the residual part of the return that is not

captured by the explicit factor(s) of a particular asset pricing model. As such, the nature

and importance of omitted factors may vary across periods. Interestingly, this paper and

previous research suggest that most results on the properties and dynamics of idiosyncratic

risk are robust across different measures of average idiosyncratic variance, given a particular

defined weighting scheme is chosen.

As mentioned in the introduction, Campbell et al. (2001)(2001) and Goyal and Santa-

Clara (2003) recall some of the possible explanations for the relevance of idiosyncratic risk.

From this perspective, one may see findings on Bali et al. (2005) and Wei and Zhang (2005)

supporting an additional explanation by stressing the fact that the particular dot.com bubble

companies played an important role in the relation with the average market-capitalization

return during the end of the 1990s, which (obviously) weakened after the burst of the bubble.

In this sense Bali et al. (2005) argues that the relation between (equal-weighted) average

idiosyncratic risk and the market-cap weighted index on the sample ending in 1999:12 is

mostly driven by small stocks traded in the NASDAQ.

Our results confirmed findings on Bali et al. (2005) and Wei and Zhang (2005). It is

well documented that during the dot.com bubble “abnormal” returns inflated the valuation

of several small NASDAQ companies. The strongest omitted factors of that period (call it

the irrational.com factor) partially captured by the equally weighted idiosyncratic variance,

started to be increasingly represented in the market-cap index, due to the suddenly-higher

market capitalization of precisely the group of companies carrying this temporarily strong

omitted factor. The posterior reversal of the situation (i.e. the burst of the bubble) ex-

plains the sharp fade in the relationship between the average idiosyncratic variance and

the market-cap portfolio, precisely due to the posterior sudden deterioration of the market

capitalization of most stocks carrying this irrational.com factor, and hence notably reducing

their representability in the market-capitalization index.
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6.2 On the Equal-Weighted Relation: from Monthly and Daily
Evidence

Some intuition behind the far more robust relationship between the equally-weighted average

idiosyncratic variance and the equally weighted portfolio comes precisely from the logic of

standard asset pricing. According to CAPM, only systematic risk (i.e. covariance with the

market index) should explain future returns. However, if during a certain period of time

there exists an anomaly of any kind (e.g. value, size, irrational.com), which presumably

does not automatically affect the current market capitalization of the companies carrying

that factor, then this omitted factor is more likely to explain the returns of a portfolio

where all kinds of firms are represented in a similar manner as opposed to a portfolio where

big companies are proportionally better represented than smaller ones. This is of course

because the omitted factors are not necessarily proportionally affecting firms according to

their current market capitalization. Nevertheless, as we have seen, this situation may occur,

like during the dot.com bubble, but this kind of situation will only hold during the time

when the idiosyncratic factors (or anomalies) are strongly contemporaneously reflected by

the market capitalization of firms (which in the case of the irrational.com anomaly was

indeed contemporaneous and approximately proportionally reflected).

One fair remark upon the results of the predictability regressions, is that at a higher

frequency (i.e. daily), the relationship seems to be comparatively stronger than at the

monthly basis. This should not come as a surprise given the evidence presented by Fu

(2009) at the stock level, who finds that high idiosyncratic volatilities of individual stocks

are contemporaneous with high returns, which tend to reverse in the following month.

Our measures of idiosyncratic risk, i.e. CSV and its higher-moments extension, are

basically a dynamic picture of the cross-sectional distribution of realized returns. They

allow us to extract information about the diversity of the companies with respect to each

other by subtracting the effect of the aggregate return. As we have formally shown, they

are natural measures for idiosyncratic risk, which proxy for any (temporary or permanent)

factors omitted in standard asset pricing models. We are inclined to privilege an equal-

weighting of firm observations into the global measure of average idiosyncratic variance,

since we find no intuitive arguments, statistical advantage nor empirical motivation for

using a market-capitalization weighted measure.

7 Conclusion

In this paper we formally introduce a measure of aggregate idiosyncratic risk that has the

distinct advantage of being readily observable, with no need to estimate other parameters.

It is an instantaneous cross-sectional measure of average idiosyncratic variance, available at
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any given data frequency and that generalizes to higher moments.

We extensively show how this measure is related to previous proxies of idiosyncratic

variance, such as the Goyal and Santa-Clara (2003) measure and measures relative to the

classic Fama and French (1993) and CAPM models, which have been previously shown to be

very close to the Campbell et al. (2001) (2001) proxy as well. We confirm previous findings

of Goyal and Santa-Clara (2003), Bali et al. (2005) and Wei and Zhang (2005) on the

monthly predictability regressions for the extended sample period using our cross-sectional

measure and more standard measures of idiosyncratic variance. We find that the results

are robust across these measures. Thanks to the instantaneous nature of our measure, we

are able to extend to daily data the evidence on the predictability power of idiosyncratic

volatility on the future market portfolio return. Furthermore, we find that the inclusion

of a robust measure of cross-sectional skewness into the predictability regression strongly

increases the explanatory power of idiosyncratic risk on the equal-weighted portfolio return

for both, daily and monthly horizons.

We provide a statistical argument to support the choice of an equally-weighted measure

of average idiosyncratic variance as opposed to a market-cap weighted and explain why

both empirically and theoretically such a measure should forecast better the equal-weighted

market return.
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A Proof of Proposition 1

Proof Consider the factor model decomposition

r
(wt)
t =

Nt
∑

i=1

witβitFt +

Nt
∑

i=1

witεit

and

rit − r
(wt)
t =

(

βit −
Nt
∑

j=1

wjtβjt

)

Ft + εit −
Nt
∑

j=1

wjtεjt

Using homogeneous betas as in Assumption 2 we have

rit − r
(wt)
t = εit −

Nt
∑

j=1

wjtεjt (49)

In a recent paper, Cuzick (1995) proved the Marcinkiewcz−Zygmund strong law of large

numbers for weighted sums of i.i.d. variables

1

N

N
∑

i=1

aNiXi −→ 0 almost surely (50)

when {X,XN , N ≥ 1} is a sequence of i.i.d. random variables with EX = 0 and

E|X| < ∞ and {aNi, 1 ≤ i ≤ N,N ≥ 1} is an array of constants uniformly bounded

satisfying32

sup |aNit| <∞. (51)

We want to rewrite expression (50) taking aNit = Ntwit and replacing Xi with εi. For

result (50) to hold aNit needs to be uniformly bounded and to satisfy condition (51).

We restrict our attention to non-trivial weighting schemes, ruling out the situation such

that the index is composed by a single stock. Please note that this condition together with

the fact that
∑

iwit = 1 implies Nt > 1 and also restrict the weights to be (strictly) positive

at every given point in time. Hence, a weighting scheme (wt), is defined as a vector process

which satisfies 0 < wit < 1 ∀ i, t. This condition seams reasonable since our focus is to

measure idiosyncratic risk in the market.

By definition, the weighting scheme wit and aNit is uniformly bounded by Nt and the

following condition holds,

0 < wit < 1 ∀ i, t (52)

32See Theorem 1.1, particular case of Cuzick (1995).

35



Multiplying by Nt, we get

0 < Ntwit < Nt

0 < Ntwit <∞

0 < aNit <∞

|aNit| <∞ ∀ i, t

Which implies that condition (51) holds. Thus, for a positive weighting scheme from the

strong law of large numbers for weighted sums of i.i.d. variables, it follows that

Nt
∑

i=1

witεit −→
Nt→∞

0 a.s.,

which corresponds to the second term at the right hand side of equation (49). Using this

result in the definition of the CSV we have that

CSV
(wt)
t =

Nt
∑

i=1

wit

(

rit − r
(wt)
t

)2

−→
Nt→∞

Nt
∑

i=1

witε
2
it. (53)

Finally, for a diverse weighting scheme, wt, and i.i.d. εi, the approximation
∑Nt

i=1witε
2
i (t) ≃

σ2
ε (t), follows from the definition E [ε2] ≡ σ2

ε . For a positive weighting scheme, the weights

can be interpreted as probabilities on the expectation, which implies

CSV
(wt)
t −→

Nt→∞

Nt
∑

i=1

witε
2
it ≃ σ2

ε (t) almost surely (54)

A priori, from a purely statistical standpoint, it is more natural to give equal probabilities

to every observation in the sample (which will be the case for the equal-weighted CSV), but

sometimes a different type of weighting scheme is of interest, i.e. capitalization weighted

scheme.

A.1 Equally-Weighted CSV and Idiosyncratic Variance

Let the return on the equal-weighted market portfolio be:

rEW
t =

1

Nt

Nt
∑

i=1

rit (55)

where Nt is the number of stocks in the universe at the given month to which day t belongs.

Using the factor model decomposition, we have that:

rEW
t =

1

Nt

Nt
∑

i=1

βitFt +
1

Nt

Nt
∑

i=1

εit
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and

rit − rEW
t =

(

βit −

∑Nt

j=1 βjt

Nt

)

Ft + εit −
1

Nt

Nt
∑

j=1

εjt = (βit − 1)Ft + εit −
1

Nt

Nt
∑

j=1

εjt

Assume now for simplicity that βit = βt = 1 for all i (as in equation (6) in Campbell

et al. (2001)). We obtain:

rit − rEW
t = εit −

1

Nt

Nt
∑

j=1

εjt

From the strong law of large numbers, we know that 1
Nt

∑Nt

j=1 εjt −→
Nt→∞

0 almost surely.

In other words, for large Nt, we have that rit − rEW
t → εit and

CSV EW
t =

1

Nt

Nt
∑

i=1

(

rit − rEW
t

)2
−→

Nt→∞

1

Nt

Nt
∑

i=1

ε2
it ≃ σ2

ε (t) almost surely (56)

In other words, we draw a direct relationship between the dynamics of the cross-sectional

dispersion of realized returns and the dynamics of average idiosyncratic variance. Section 2.2

analyzes a situation with a non-trivial dispersion of beta parameters across stocks. Together

with the results of section 3.2, suggests that the homogeneous beta assumptions does not

represent a material problem for the CSV as an estimator of idiosyncratic variance.

B Taking into Account the Cross-Sectional Betas dis-

persion: The general case

The assumption that βit = βt for all i is obviously a simplistic one and is done only for

exposure purposes. Using the single factor decomposition on the definition of the CSV we

have,

CSV
(wt)
t =

Nt
∑

i=1

wit

(

rit − r
(wt)
t

)2

=

Nt
∑

i=1

wit

[(

βit −

Nt
∑

j=1

wjtβjt

)

Ft + εit −

Nt
∑

i=1

wjtεjt

]2

= F 2
t

Nt
∑

i=1

wit

(

βit −

Nt
∑

j=1

wjtβjt

)2

+

Nt
∑

i=1

wit

(

εit −

Nt
∑

i=1

witεjt

)2

+

2Ft

Nt
∑

i=1

wit

(

βi −

Nt
∑

j=1

wjtβjt

)(

εit −

Nt
∑

i=1

wjtεjt

)
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After simple rearrangement of terms we get

CSV
(wt)
t = F 2

t

Nt
∑

i=1

wit

(

βit −
Nt
∑

j=1

wjtβjt

)2

+
Nt
∑

i=1

witε
2
it −

Nt
∑

i=1

Nt
∑

j=1

wjtwitεitεjt

+ 2Ft

Nt
∑

i=1

witεit(βit −
Nt
∑

j=1

wjtβjt)

Denote the cross-sectional variance of stock betas asCSV β
t =

∑Nt

i=1wit

(

βit −
∑Nt

j=1wjtβjt

)2

.

Applying the expectation operator and assuming a strict factor model, the last expression

simplifies to33,

E
[

CSV
(wt)
t

]

= E
[

F 2
t CSV

β
t

]

+
Nt
∑

i=1

witσ
2
εit

−
Nt
∑

i=1

w2
itσ

2
εit

under an equal-weighting scheme,

E
[

CSV EW
t

]

=

(

1 −
1

Nt

)

1

Nt

Nt
∑

i=1

σ2
εit

when Nt → ∞,

E
[

CSV EW
t

]

−→
Nt→∞

E
[

F 2
t CSV

β
t

]

+
1

Nt

Nt
∑

i=1

σ2
εit

C Variance of the CSV estimator with a general factor

structure

Apply the variance operator to equation (20),

V ar
(

CSV
(wt)
t

)

= V ar (ε′tΛtεt) + V ar (ε′tΩtεt) − 2Cov (ε′tΛtεt; ε
′
tΩtεt) (57)

Replacing results (22) (23) and (24) in equation (57) yields

V ar
(

CSV
(wt)
t

)

= 2
Nt
∑

i=1

(

witσ
2
εit

)2
+ 2

(

Nt
∑

i=1

Nt
∑

j 6=i

witwjtσεijt

)2

(58)

− 4

Nt
∑

k=1

wktσ
2
εkt

Nt
∑

i=1

Nt
∑

j 6=i

witwjtσεijt
(59)

In order to compare the CSV variance under different weighting schemes, we now consider

the case with a strict factor model ρε
ijt = 0 ∀i, j and with σ2

εit
= σ2

εt
∀i. All things being

equal, this does not represent a loss of generality. In this context the following Corollary

holds.
33See section 2.3 for the detail on the expected value of the third and second terms. The fourth term

disappears since E [εi] = 0
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Lemma 3 The variance of the CSV is proportional to the concentration index implied by

the weighting scheme as,

V ar
(

CSV
(wt)
t

)

= 2σ4
εt

(

Nt
∑

i=1

w2
it

)

Consequently, the equally-weighted CSV is the most efficient estimator among the class of

estimators defined by the CSV under a weighting scheme satisfying 0 < wit < 1

Proof of Lemma 3

Consider equation (59) with ρε
ijt = ρε

t ∀i, j and σ2
εit

= σ2
εt
∀i

V ar
(

CSV
(wt)
t

)

= 2



σ4
εt

Nt
∑

i=1

w2
it +

(

ρε
tσ

2
εt

Nt
∑

i=1

Nt
∑

j 6=i

witwjt

)2

− 2ρεt
σ4

εt

Nt
∑

i=1

Nt
∑

j 6=i

witwjt





= 2



σ4
εt

Nt
∑

i=1

w2
it + ρ2

εt
σ4

εt

(

1 −
Nt
∑

i=1

w2
it

)2

− 2ρε
tσ

4
εt

(

1 −
Nt
∑

i=1

w2
it

)





Then we obtain,

V ar
(

CSV
(wt)
t

)

= 2σ4
εt





Nt
∑

i=1

w2
it + ρ2

εt

(

1 −

Nt
∑

i=1

w2
it

)2

− 2ρε
t

(

1 −

Nt
∑

i=1

w2
it

)



 (60)

Considering a strict factor model as described in Assumption 3, then all communalities are

captured by the factor(s) and the idiosyncratic components are independent among stocks

with ρε
ijt = 0 ∀i 6= j, yielding,

V ar
(

CSV
(wt)
t

)

= 2σ4
εt

(

Nt
∑

i=1

w2
it

)

(61)

By definition, a weighting scheme that satisfies 0 < wi < 1, implies that the term
∑Nt

i=1w
2
it

is minimum for wit = 1/Nt ∀i. Using the equal-weighted scheme in equation (61) we have,

V ar
(

CSV
(EW )
t

)

= 2σ4
εt

(

1

Nt

)

(62)
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D Tables and Figures

Table 1: Impact of the Betas’ Cross-Sectional Dispersion: This table contains a
summary of the distribution of the following time series: the cross-sectional dispersion
of betas CSV β

t , estimated with respect to the CAPM at the end of the every month using
daily time series; the product of the square return of the market portfolio F 2

t and CSV β
t ; the

average idiosyncratic variance σ2
εt

and the proportion of the product F 2
t CSV

β
t to σ2

εt
. This

illustrates the magnitude of the bias introduced by the assumption of null cross-sectional
dispersion of betas. The upper part of the table contains the beta estimates based on an
equally-weighted market portfolio and an equal-weighted average Idiosyncratic variance.
The lower part of the table presents the corresponding series for a market capitalization
weighting scheme. The σ2

εt
is presented in annualized terms. The period is July 1963 to

December 2006.
Equal-Weighted Q2.5 Q25 Q50 Q75 Q97.5

CSV β
t 0.72 1.38 2.23 4.11 11.17

F 2
t CSV

β
t 0.00% 0.07% 0.33% 1.05% 3.88%

σ2
εt

0.11 0.16 0.24 0.59 1.02
F 2

t CSV β

σ2
εt

0.00% 0.15% 0.65% 2.08% 6.67%

Cap-Weighted

CSV β
t 0.22 0.37 0.48 0.67 1.27

F 2
t CSV

β
t 0.00% 0.01% 0.04% 0.12% 0.39%

σ2
εt

0.02 0.05 0.07 0.09 0.20
F 2

t CSV β

σ2
εt

0.00% 0.09% 0.31% 0.97% 2.81%
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Table 2: Homogeneous Betas Bias estimation: This table contains the output summary
of the regression CSV wt = bias + ψσ2

model (wt) + ζ . Where σ2
model (wt) represents monthly

estimates of the weighted average idiosyncratic variance estimated using the corresponding
model (either CAPM of FF). The weighting scheme for the average is taken consistent with
the weighting scheme of the CSV and is either cap-weighted (CW) or equal-weighted (EW).
The period is July 1963 to December 2006.

Betas bias CAPMEW FFEW CAPMCW FFCW

bias 1.1e-005 2.2e-005 -2.0e-005 -3.7e-005
NW t-stat 1.757 2.369 -2.731 -4.708
Std 3.0e-006 5.9e-006 2.0e-006 3.5e-006
ψ 0.983 0.988 1.124 1.243
NW t-stat 154.808 100.062 39.161 38.802
Std 0.002 0.003 0.005 0.009

R
2
(%) 99.868 99.494 98.990 97.064

Table 3: Summary Statistics Monthly Idiosyncratic Variance: This table contains
the mean and standard deviation of the monthly time series for: the CSV, the average
idiosyncratic variance based on the CAPM and the FF models and the average (mostly
idiosyncratic) variance measure ala Goyal and Santa-Clara (2003) as in equations (4), (28)
and (29) using both, equal-weighted and cap-weighted schemes. The period is January 1964
to December 2006.

CSV EW FFEW CAPMEW GSEW

Mean 38.42% 38.32% 38.79% 34.24%
Std.Dev. 8.52% 8.60% 8.66% 6.99%

CSV CW FFCW CAPMCW GSCW

Mean 8.52% 7.62% 8.04% 11.23%
Std.Dev. 2.03% 1.61% 1.80% 2.91%

Table 4: Correlations Monthly Time Series: This table contains the cross-correlation
for the monthly time series of: the CSV, the average idiosyncratic variance based on the
CAPM and the FF models and the average (mostly idiosyncratic) variance measure ala
Goyal and Santa-Clara (2003) as in equations (4), (28) and (29) using both, equal-weighted
and cap-weighted schemes. The period is January 1964 to December 2006.

CSV EW FFEW CAPMEW GSEW CSV CW FFCW CAPMCW GSCW

1 99.75% 99.93% 95.47% 72.33% 75.20% 73.08% 61.49%
1 99.86% 93.71% 68.68% 72.38% 69.70% 56.98%

1 94.89% 70.89% 73.95% 71.81% 60.27%
1 82.47% 83.04% 82.54% 76.75%

1 98.52% 99.49% 92.67%
1 99.19% 88.19%

1 92.04%
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Table 5: Summary Statistics Daily Time Series: This table contains the mean and
standard deviation of the daily time series for: the CSV and the average idiosyncratic
variance based on the FF model as in equations (4) and (28) using both, equal-weighted
and cap-weighted schemes. The period is January 1964 to December 2006.

Statistic CSV EW FFEW CSV CW FFCW

Mean 38.44% 38.22% 8.52% 7.77%
Std.Dev. 9.79% 8.54% 2.48% 1.65%

Table 6: Correlations Daily Time Series: This table contains the cross-correlation of
the daily time series for: the CSV and the average idiosyncratic variance based on the FF
model as in equations (4) and (28) using both, equal-weighted and cap-weighted schemes.
The period is January 1964 to December 2006.

CSV EW FFEW CSV CW FFCW

CSV EW 1 81.41% 61.17% 62.31%
FFEW 1 52.98% 72.55%
CSV CW 1 73.67%

Table 7: Regime Switching Parameters Monthly Series: This table contains the
parameter estimates of the Markov regime-switching model specified in equation 31 using
the monthly time series of the CSV and the average idiosyncratic variance based on the FF
model as in equations (4) and (28) using both, equal-weighted and cap-weighted schemes.
µi is the average level of the variable on regime i, σi is the standard deviation level of the
variable on regime i, φ is the autocorrelation coefficient, p and q are the probabilities of
remaining in regimes 1 and 2 correspondingly. The period is January 1964 to December
2006.

FFCW CSV CW FFEW CSV EW

µ1 11.48% 10.69% 36.04% 39.91%
µ2 6.09% 6.54% 27.33% 29.71%
σ1 7.33% 9.99% 21.40% 23.29%
σ2 1.13% 1.25% 3.09% 3.46%
φ 83.92% 83.86% 98.13% 98.05%
p 90.64% 85.71% 82.24% 83.87%
q 98.99% 98.00% 95.10% 96.26%
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Table 8: Regime Switching Parameters Daily Series: This table contains the parame-
ter estimates of the Markov regime-switching model specified in equation 31 using the daily
time series of the CSV and the average idiosyncratic variance based on the FF model as
in equations (4) and (28) using both, equal-weighted and cap-weighted schemes. µi is the
average level of the variable on regime i, σi is the standard deviation level of the variable
on regime i, φ is the autocorrelation coefficient, p and q are the probabilities of remaining
in regimes 1 and 2 correspondingly. The period is January 1964 to December 2006.

FFCW CSV CW FFEW CSV EW

µ1 2.69% 10.96% 12.91% 44.56%
µ2 2.68% 6.41% 12.92% 30.40%
σ1 0.70% 14.56% 2.97% 62.06%
σ2 0.10% 1.49% 0.32% 4.79%
φ 99.99% 82.54% 99.98% 96.40%
p 89.23% 77.83% 83.96% 71.05%
q 98.00% 97.04% 96.12% 95.41%

Table 9: Cross-sectional Skewness Distribution: This table contains the minimum,
maximum and the 2.5%, 25%, 50%, 75% and 97.5% quantiles of the distribution for the
time series of skewness using conventional (EW), cap-weighted (CW) and robust estimates
as in equations (4) and (42). The monthly series are calculated as the average over the
month of the daily estimates. The period is July 1963 to December 2006.

Daily Frequency Min Q2.5 Q25 Q50 Q75 Q97.5 Max
CSSEW -5.369 -0.917 0.592 1.387 2.462 10.149 68.239
CSSCW -20.252 -2.119 -0.155 0.569 1.180 3.832 176.908
Robust -1.000 -1.000 -0.220 0.026 0.252 1.000 1.000

Monthly Frequency Min Q2.5 Q25 Q50 Q75 Q97.5 Max
CSSEW -0.339 0.173 1.066 1.719 2.702 6.482 9.115
CSSCW -1.376 -0.533 0.159 0.592 0.960 2.760 10.999
Robust -0.449 -0.304 -0.055 0.017 0.092 0.342 0.533
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Table 10: Predictability Regression on CW market portfolio using EW average measures of idiosyncratic risk:
This table presents the results of a one-month ahead predictive regression of the excess cap-weighted monthly portfolio returns,
denoted by rCW , on the monthly lagged equal-weighted average idiosyncratic variance for two different measures and for three
sample periods. CAPMEW is the average idiosyncratic variance derived from CAPM and CSV EW is the cross-sectional variance
estimated as the average of the daily estimations of the month obtained as in equation (4). TThe intercept, the regression coefficient
of the corresponding lagged idiosyncratic variance denoted by β, the standard error of the regression coefficients denoted by Std,

the Newey-West autocorrelation corrected t-stats and the adjusted coefficient of determination denoted by R
2

are reported. The
sample periods are 1963:08 - 1999:12, 1963:08 - 2001:12 and 1963:08 - 2006:12.

Monthly series 1963:08 - 1999:12 1963:08 - 2001:12 1963:08 - 2006:12
Forecasting rCW CAPMEW CSV EW CAPMEW CSV EW CAPMEW CSV EW

Intercept -0.001 -0.002 8.1e-004 9.4e-004 0.002 0.002
NW t-stat -0.442 -0.504 0.228 0.257 0.676 0.696
Std 0.003 0.003 0.003 0.003 0.003 0.003
Coefficient 0.291 0.302 0.169 0.167 0.129 0.126
NW t-stat 4.255 4.334 1.744 1.623 1.398 1.305
Std 0.090 0.093 0.081 0.082 0.077 0.078

R
2
(%) 2.106 2.148 0.728 0.673 0.349 0.312
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Table 11: Predictability Regression on EW market portfolio with EW average measures of idiosyncratic risk: This
table presents the results of a one-month ahead predictive regression of the excess equal-weighted monthly portfolio returns,
denoted by rEW , on the monthly lagged equal-weighted average idiosyncratic variance for two different measures and for three
sample periods. CAPMEW is the average idiosyncratic variance derived from CAPM and CSV EW is the cross-sectional variance
estimated as the average of the daily estimations of the month obtained as in equation (4). The intercept, the regression coefficient
of the corresponding lagged idiosyncratic variance denoted by β, the standard error of the regression coefficients denoted by Std,

the Newey-West autocorrelation corrected t-stats and the adjusted coefficient of determination denoted by R
2

are reported. The
sample periods are 1963:08 - 1999:12, 1963:08 - 2001:12 and 1963:08 - 2006:12.

Monthly series 1963:08 - 1999:12 1963:08 - 2001:12 1963:08 - 2006:12
Forecasting rEW CAPMEW CSV EW CAPMEW CSV EW CAPMEW CSV EW

Intercept 0.002 0.002 0.001 0.001 0.002 0.003
NW t-stat 0.370 0.336 0.208 0.238 0.543 0.569
Std 0.004 0.004 0.004 0.004 0.004 0.004
Coefficient 0.265 0.274 0.260 0.259 0.236 0.235
NW t-stat 2.317 2.341 2.603 2.537 2.484 2.428
Std 0.118 0.121 0.107 0.109 0.102 0.104

R
2
(%) 0.917 0.927 1.060 1.002 0.833 0.789
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Table 12: Predictability Regression on CW market portfolio with CW idiosyncratic variance measures: This table
presents the results of a one-month ahead predictive regression of the excess cap-weighted monthly portfolio returns, denoted
by rCW , on the monthly lagged cap-weighted idiosyncratic variance for two different measures and for three sample periods.
CAPMCW is the cap-weighted idiosyncratic variance derived from CAPM and CSV CW is the cross-sectional variance estimated
as the average of the daily estimations of the month obtained as in equation (5). The intercept, the regression coefficient of
the corresponding lagged idiosyncratic variance denoted by β, the standard error of the regression coefficients denoted by Std,

the Newey-West autocorrelation corrected t-stats and the adjusted coefficient of determination denoted by R
2

are reported. The
sample periods are 1963:08 - 1999:12, 1963:08 - 2001:12 and 1963:08 - 2006:12.

Monthly series 1963:08 - 1999:12 1963:08 - 2001:12 1963:08 - 2006:12
Forecasting rCW CAPMCW CSV CW CAPMCW CSV CW CAPMCW CSV CW

Intercept 6.7e-004 0.002 0.007 0.008 0.008 0.009
NW t-stat 0.151 0.370 2.200 2.449 2.702 2.966
Std 0.004 0.004 0.003 0.003 0.003 0.003
Coefficient 1.098 0.890 -0.169 -0.217 -0.274 -0.309
NW t-stat 1.478 1.232 -0.370 -0.550 -0.663 -0.865
Std 0.680 0.625 0.387 0.341 0.370 0.328

R
2
(%) 0.368 0.236 -0.176 -0.130 -0.087 -0.021
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Table 13: Daily predictability Regression on EW portfolio with EW average
idiosyncratic variance measures: This table presents the results of a one-day ahead
predictive regression of the excess equal-weighted daily portfolio returns, denoted by rEW , on
the daily lagged equal-weighted cross-sectional variance denoted as CSV EW estimated as in
equation (4) for three sample periods. The intercept, the regression coefficient corresponding
to the CSV, the standard error of the regression coefficients denoted by std, the Newey-
West autocorrelation corrected (30 lags) t-stats and the adjusted coefficient of determination

denoted by R
2

are reported. The sample periods are 1963:07 to 1999:12, 1963:07 to 2001:12
and 1963:07 to 2006:12.

Daily series 63:07-99:12 63:07-01:12 63:07-06:12

Forecasting rEW CSV EW CSV EW CSV EW

Intercept -0.000 -0.000 -0.000
NW t-stat -0.896 -0.816 -0.102
Std 0.000 0.000 0.000
β 0.582 0.521 0.442
NW t-stat 4.943 4.666 4.044
Std 0.062 0.057 0.054

R
2
(%) 0.932 0.835 0.591
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Table 14: Daily predictability Regression on CW portfolio with CW average
idiosyncratic variance measures: This table presents the results of a one-day ahead
predictive regression of the excess equal-weighted daily portfolio returns, denoted by rCW , on
the daily lagged equal-weighted cross-sectional variance denoted as CSV CW estimated as in
equation (4) for three sample periods. The intercept, the regression coefficient corresponding
to the CSV, the standard error of the regression coefficients denoted by std, the Newey-
West autocorrelation corrected (30 lags) t-stats and the adjusted coefficient of determination

denoted by R
2

are reported. The sample periods are 1963:07 to 1999:12, 1963:07 to 2001:12
and 1963:07 to 2006:12.

Daily series 63:07-99:12 63:07-01:12 63:07-06:12

Forecasting rCW CSV CW CSV CW CSV CW

Intercept -0.001 -0.000 -0.000
NW t-stat -3.454 -0.824 -0.809
Std 0.000 0.000 0.000
β 3.775 1.389 1.358
NW t-stat 5.724 2.039 2.083
Std 0.396 0.259 0.256

R
2
(%) 0.966 0.286 0.248
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Table 15: Daily and Monthly predictability with and without market volatility: This table presents summary statistics for
three regressions. The upper panel corresponds to daily estimations and the lower panel its counterpart on the monthly predictions.
In each panel, the first row corresponds to the regression rEW

t = α + βCSVt + ǫt the second row to rEW
t = α + ϑV ar

(

rEW
t

)

+ ǫt
and the third one to rEW

t = α + βCSVt + ϑV ar
(

rEW
t

)

+ ǫt. The sample period is July 1963 to December 2006

Daily Estimates Intercept NW t-stat CSV NW t-stat V ar
(

rEW
)

NW t-stat R
2
(%)

Forecasting rEW -0.000 -0.102 0.442 4.044 0.591
Forecasting rEW 0.001 4.928 -1.496 -0.656 0.010
Forecasting rEW 0.000 0.518 0.502 4.647 -4.173 -2.115 0.717

Monthly Estimates Intercept NW t-stat CSV NW t-stat V ar
(

rEW
)

NW t-stat R
2
(%)

Forecasting rEW 0.003 0.569 0.235 2.428 0.789
Forecasting rEW 0.010 3.276 0.073 0.053 -0.192
Forecasting rEW 0.003 0.628 0.253 2.456 -0.742 -0.642 0.668
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Table 16: Predictability Regression on EW portfolio with right and left CSV EW

average idiosyncratic variance measures: This table presents the results of a one-day
and one-month ahead predictive regression of the excess equal-weighted portfolio returns,
denoted by rEW , on the daily or monthly (correspondingly) lagged equal-weighted cross-
sectional variance of the returns to the right (higher than) of the cross-sectional distribution
mean (which is actually rEW

t ) denoted as CSV + and the cross-sectional variance of the re-
turns to the left (lower than) the mean of the cross-sectional distribution rEW

t , denoted as
CSV −. The intercept, the regression coefficients corresponding to the CSV + and CSV −,
the standard error of the regression coefficients denoted by Std, the Newey-West autocor-

relation corrected t-stats and the adjusted coefficient of determination denoted by R
2

are
reported. The sample period is 1963:07 to 2006:12.

Forecasting rEW MonthlyEW DailyEW

Intercept 0.005 6.8e-004
NW t-stat 0.959 3.828
Std 0.004 1.2e-004
CSV + 0.377 0.490
NW t-stat 1.999 3.292
Std 0.166 0.040
CSV − -0.440 -1.108
NW t-stat -0.783 -3.174
Std 0.444 0.151

R
2
(%) 1.178 1.368
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Table 17: Daily predictability with skewness for rEW : This table presents the results
of one-day ahead predictive regressions of the excess equal-weighted daily portfolio returns,
denoted by rEW . The first explanatory variable is the daily lagged estimate of the equal-
weighted CSV estimated as in equation (4); The second explanatory variable is the robust
estimate of skewness estimated as in equations (42). The intercept, the corresponding
regression coefficients together with their Newey-West autocorrelation corrected t-stats with

30 lags and standard errors are reported. R
2

denotes adjusted coefficient of determination.
The regression is reported for three different sample periods: 1963:07 to 1999:12, 1963:07
to 2001:12, 1963:07 to 2006:12.

1963:07-2006:12 Coeff. t-stat Std.Dev. R
2
(%)

Intercept -3.7e-005 -0.234 0.000 5.833
CSV EW 0.402 4.013 0.053
Skewness 0.004 20.190 0.000

1963:07-2001:12
Intercept -1.7e-004 -1.056 1.1e-004 6.800
CSV EW 0.477 4.717 0.056
Skewness 0.004 20.040 1.5e-004

1963:07-1999:12
Intercept -1.8e-004 -1.095 1.1e-004 7.442
CSV EW 0.522 5.008 0.060
Skewness 0.004 19.864 1.4e-004
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Table 18: Monthly predictability with skewness for rEW : This table presents the
results of one-month ahead predictive regressions of the excess equal-weighted monthly
portfolio returns, denoted by rEW . The first explanatory variable is the monthly lagged
equal-weighted CSV and the second explanatory variable is the lagged robust skewness,
both estimated as the average at the end of the month of their corresponding daily estimates
as in equations (4) and (42). The intercept, corresponding regression coefficients together
with Newey-West autocorrelation corrected t-stats with 12 lags and standard errors are

reported. R
2

denotes adjusted coefficient of determination. The regression is reported for
three different sample periods: 1963:07 to 1999:12, 1963:07 to 2001:12, 1963:07 to 2006:12.

1963:07-2006:12 Coeff. t-stat Std.Dev. R
2
(%)

Intercept 0.000 0.107 0.004 4.587
CSV EW 0.250 2.518 0.102
Skewness 0.078 4.458 0.017

1963:07-2001:12
Intercept -9.2e-004 -0.205 0.004 4.847
CSV EW 0.271 2.644 0.107
Skewness 0.075 4.287 0.017

1963:07-1999:12
Intercept -8.8e-005 -0.020 0.004 5.076
CSV EW 0.272 2.456 0.119
Skewness 0.073 4.123 0.016
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Figure 1: Annualized cap-weighted idiosyncratic variances, daily estimation: The yellow line
is the time series of the cap-weighted idiosyncratic variance with respect to the FF model
estimated daily as in equation 28. The darker line shows the time series of the cap-weighted
version of CSV estimated daily as in equation 5. The sample period is January 1964 up to
December 2006.
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Figure 2: Annualized equally-weighted idiosyncratic variances, daily estimation: The yellow
line is the time series of the equal-weighted average idiosyncratic variance with respect to
the FF model estimated daily similar to equation 28. The darker line shows the time series
of the CSV EW estimated daily as in equation 4. The sample period is January 1964 up to
December 2006.
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Figure 3: Smoothed probability and annualized cap-weighted CSV and FF cap-weighted
Idiosyncratic Variance, monthly estimation: The red line plots the Smoothed (conditional)
probability of the CSV CW being in the high-mean high-variance regime of a Markov regime-
switching model specified in equation 31. The green line plots the cap-weighted idiosyncratic
variance with respect to the FF model estimated every month as in equation 28. The blue
line shows the monthly time series of the CSV CW estimated at the end of each month as the
average of the daily estimations (as in equation 5) during the month. The sample period
is January 1964 up to December 2006. In the x axis appear selected months that mark
obvious changes in regime by the smoothed probability.
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Figure 4: Smoothed probabilities and annualized equal-weighted CSV and FF average
idiosyncratic variance monthly estimation: The red line plots the Smoothed (conditional)
probability of the CSV EW being in the high-mean high-variance regime of a Markov regime-
switching model specified in equation 31. The green line plots the equal-weighted average
idiosyncratic variance with respect to the FF model estimated daily similar to equation 28.
The blue line shows the monthly time series of the CSV EW estimated at the end of each
month as the average of the daily estimations (as in equation 4) during the month. The
sample period is January 1964 up to December 2006. In the x axis appear selected months
that mark obvious changes in regime by the smoothed probability.
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Figure 5: Smoothed probabilities and annualized cap-weighted CSV monthly estimation:
The green line plots the Smoothed (conditional) probability of the CSV CW being in the
high-mean high-variance regime of a Markov regime-switching model specified in equation
31. The blue line shows the monthly time series of the CSV CW estimated at the end of
each month as the average of the daily estimations (as in equation 4) during the month.
The shaded areas are the NBER recessions. The sample period is July 1963 to December
2006.
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Figure 6: Smoothed probabilities and annualized equal-weighted CSV monthly estimation:
The green line plots the Smoothed (conditional) probability of the CSV EW being in the
high-mean high-variance regime of a Markov regime-switching model specified in equation
31. The blue line shows the monthly time series of the CSV EW estimated at the end of
each month as the average of the daily estimations (as in equation 4) during the month.
The shaded areas are the NBER recessions. The sample period is July 1963 to December
2006.
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