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What is the risk of stock market crashes?  Answering this question is complicated by two features

of stock market returns: the fact that conditional volatility evolves over time, and the fat-tailed

nature of daily stock market returns.  Each issue affects the other.  What we identify as outliers

depends upon that day’s assessment of conditional volatility.  Conversely, our estimates of current

volatility from past returns can be disproportionately affected by outliers such as the 1987 crash.

In standard GARCH specifications, for instance, a 10% daily change in the stock market has 100

times the impact on conditional variance revisions of a more typical 1% move.

This paper explores whether recently proposed continuous-time specifications of time-

changed Lévy processes are a useful way to capture the twin properties of stochastic volatility and

fat tails.  The use of Lévy processes to capture outliers dates back at least to Mandelbrot’s (1963)

use of the stable Paretian distribution, and there have been many specifications proposed; e.g.,

Merton’s (1976) jump-diffusion, Madan and Seneta’s (1990) variance gamma; Eberlein, Keller and

Prause’s (1998) hyperbolic Lévy; and Carr, Madan, Geman and Yor’s (2002) CGMY process.  As

all of these distributions assume identical and independently distributed returns, however, they are

unable to capture stochastic volatility. 

More recently, Carr, Geman, Madan and Yor (2003) and Carr and Wu (2004) have proposed

combining Lévy processes with a subordinated time process.  The idea of randomizing time dates

back to at least to Clark (1973).  Its appeal in conjunction with Lévy processes reflects the increasing

focus in finance – especially in option pricing – on representing probability distributions by their

associated characteristic functions.  Lévy processes have log characteristic functions that are linear

in time.  If the time randomization depends on underlying variables that have an analytic conditional

characteristic function, the resulting conditional characteristic function of time-changed Lévy

processes is also analytic.  Conditional probability densities, distributions, and option prices can then

be numerically computed by Fourier inversion of simple functional transforms of this characteristic

function.

Thus far, empirical research on the relevance of time-changed Lévy processes for stock

market returns has largely been limited to the special cases of time-changed versions of Brownian
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1Li, Wells and Yu (2008) use MCMC methods to estimate some models in which Lévy
shocks are added to various stochastic volatility models.  However, the additional Lévy shocks are
i.i.d., rather than time-changed.

2See Broadie, Chernov, and Johannes (2006) for a Monte Carlo study of unhedged 1-month
excess returns for puts on S&P 500 futures over August 1987 to June 2005.  They find excess return
estimates often lack statistical significance, especially when volatility is stochastic.

motion and Merton’s (1976) jump-diffusion.  Furthermore, there has been virtually no estimation

of newly proposed time-changed Lévy processes solely from time series data.1  Papers such as Carr

et al (2003) and Carr and Wu (2004) have relied on option pricing evidence to provide empirical

support for their approach, rather than providing direct time series evidence.  The reliance on options

data is understandable.  Since the state variables driving the time randomization are not directly

observable, time-changed Lévy processes are hidden Markov models – a challenging problem in

time series econometrics.  Using option prices potentially identifies realizations of those latent state

variables, converting the estimation problem into the substantially more tractable problem of

estimating state space models with observable state variables.

While options-influenced parameter and state variable estimates should be informative under

the hypothesis of correct model specification, the objective of the paper is to provide estimates of

crash risk based solely upon time series analysis.  Such estimates are of interest in their own right,

and can exploit a longer history of extreme stock market movements than can studies constrained

by the availability of options data only since the 1980’s.  For instance, the  stock market crash

of October 19, 1987 was the only daily stock market movement over 1945-2006 to exceed 10% in

magnitude, whereas there were seven such movements over 1929-32.  Furthermore, time-series

based estimates can be relevant even for testing option pricing hypotheses.  For instance, it has been

asserted that deep OTM index put options appear overpriced, based on their surprisingly large

negative returns since the ‘87 crash.  But all such tests require reliable estimates of downside risk;

and it can be difficult to establish whether puts are indeed overpriced based only on the limited

amount of data since the 1987 crash.2  Time series estimates can exploit a longer history of downside

risk, and can be used to generate estimates of option prices that can be compared with observed

option prices.  
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This paper provides direct time series estimates of some proposed time-changed Lévy

processes, using the Bates (2006) approximate maximum likelihood (AML) methodology.  AML is

a filtration methodology that recursively updates conditional characteristic functions of latent

variables over time given observed data.  Filtered estimates of the latent variables are directly

provided as a by-product, given the close link between moments and characteristic functions.  The

paper primarily focuses on the time-changed CGMY process, which nests various other processes

as special cases.  The approach will also be compared to the time-changed jump-diffusions

previously estimated in Bates (2006).

A concern with any extended data set is the possibility that the data generating process may

not be stable over time.  Indeed, this paper identifies a major instability in the autocorrelation of

daily stock market returns.  Autocorrelation estimates appear to be nonstationary, and peaked at the

extraordinarily high level of 35% in 1971, before trending downwards to the near-zero values

observed since the 1980’s.  The instability is addressed directly, by treating the autocorrelation as

another latent state variable to be estimated from observed stock market returns.  The paper also

finds apparent instabilities or specification issues in the 1-factor volatility process used, and explores

the implications for volatility filtration and option pricing.  

Overall, the time-changed CGMY process is found to be a slightly more parsimonious

alternative to the Bates (2006) approach of using finite-activity stochastic-intensity jumps drawn

from a mixture of normals, although the fits of the two approaches are not dramatically different.

Interestingly, one cannot reject the hypothesis that stock market crash risk is adequately captured

by a time-changed version of the Carr-Wu (2003) log-stable process.  That model’s implications for

upside risk, however, are strongly rejected, with the model severely underpredicting the frequency

of large positive outliers.

Section I of the paper progressively builds up the time series model used in estimation.

Section I.1 discusses basic Lévy processes and describes the processes considered in this paper.

Section I.2 discusses time changes and the equivalence with stochastic volatility.  Section I.3

contains further modifications of the model to capture leverage effects, time-varying

autocorrelations, and day-of-the-week effects.  Section I.4 describes how the model is estimated,
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3Carr et al (2003) call  the “unit time log characteristic function.”  Bertoin (1996) uses
the characteristic exponent, which takes the form .

using the Bates (2006) AML estimation methodology for hidden Markov models.

Section II describes the data on excess stock market returns over 1926-2006, and presents

parameter estimates, diagnostics, and and filtered estimates of latent autocorrelation and volatility.

Section III examines option pricing implications, while Section IV concludes.

I. Time-changed Lévy processes

I.1 Lévy processes

A Lévy process  is an infinitely divisible stochastic process; i.e., one that has independent and

identically distributed increments over non-overlapping time intervals of equal length.  The Lévy

processes most commonly used in finance have been Brownian motion and the jump-diffusion

process of Merton (1976), but there are many others.  All Lévy processes without a Brownian

motion component are pure jump processes.  Such processes are characterized by their Lévy density

, which gives the intensity (or frequency) of jumps of size x.  Alternatively and equivalently,

Lévy processes can be described by their generalized Fourier transform

where u is a complex-valued element of the set  for which (1) is well-defined.  If  is real,

is the characteristic function of , while  is the cumulant generating function of

.  Its linearity in time follows from the fact that Lévy processes have i.i.d. increments.

Following Wu (2006), the function  will be called the cumulant exponent of .3 

The Lévy-Khintchine formula gives the mapping between jump intensities  and the

cumulant exponent for arbitrary .  Lévy processes in finance are typically specified for the

log asset price, and then exponentiated: .   For such specifications, it is convenient

to write the Lévy-Khintchine formula in the form

where  is the continuously-compounded expected return on the asset:

(1)

(2)
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Pure-jump Lévy processes can be thought of as a drift term plus an infinite sum  of

independent point processes, each drift-adjusted to make  a martingale:

where  is an integer-valued Poisson counter with intensity  that counts the occurrence of

jumps of fixed size x.  The log characteristic function of a sum of independent point processes is the

sum of the log characteristic functions of the point processes, yielding equation (2).  Exponential

martingale processes of the form  for  defined in (4) will be termed compensated

Lévy processes, as will also diffusions of the form .

As discussed in Carr et al (2002), Lévy processes are finite-activity if , and

infinite-activity otherwise.  Finite-activity jumps imply there is a non-zero probability that no jumps

will be observed within a given time interval.  Lévy processes are finite-variation if

, and infinite-variation otherwise.  An infinite-variation process has sample paths

of infinite length – a property also of Brownian motion.  All Lévy processes must have finite

, in order to be well-behaved, but need not have finite variance  –

the stable distribution being an counterexample.  A priori, all financial prices must be finite-activity

processes, since price changes reflect a finite (but large) number of market transactions.  However,

finite-activity processes can be well approximated by infinite-activity processes, and vice versa; e.g.,

the Cox, Ross and Rubinstein (1979) finite-activity binomial approximation to Brownian motion.

Activity and variation will therefore be treated as empirical specification issues concerned with

identifying which functional form  for jump intensities best fits daily stock market excess

returns.

I will consider two particular underlying Lévy processes for log asset prices.  The first is

Merton (1976)’s combination of a Brownian motion plus finite-activity normally distributed jumps:

where  is a Wiener process,

(3)

(4)

(5)
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 is a Poisson counter with intensity , 

 is the normally distributed jump conditional upon a jump occurring, and

 is the expected percentage jump size conditional upon a jump.

The associated intensity of jumps of size x is

while the cumulant exponent takes the form

The approach can be generalized to allow alternate distributions for – in particular, a mixture of

normals:

Second, I will consider the generalized CGMY process of Carr, Madan, Geman and Yor

(2003), which has a Lévy density of the form

where  and .  The associated cumulant exponent is

where  is a mean-normalizing constant determined by ;

V is the variance per unit time, and

 is the fraction of variance attributable to the downward-jump component.

The corresponding intensity parameters  in (8) are

(6)

(7)

(8)

(9)
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where  is the gamma function.

As discussed in Carr et al (2002), the  parameters are key in controlling jump activity near

0, in addition to their influence over tail events.  The process has finite activity for , finite

variation for , but infinite activity or variation if   is greater or equal to 0 or

1, respectively.  The model conveniently nests many models considered elsewhere.   For instance,

 is the finite-activity double exponential jump model of Kou (2002), while

 includes the variance gamma model of Madan and Seneta (1990).  As  and 

approach 2, the CGMY process converges to a diffusion, and the cumulant exponent converges to

the corresponding quadratic form

As G and M approach 0 (for arbitrary ,  and fixed ), the Lévy density (8)

approaches the infinite-variance log stable process advocated by Mandelbrot (1963), with a “power

law” property for asymptotic tail probabilities.  The log-stable special case proposed by Carr and

Wu (2003) is the limiting case with only negative jumps ( ).  While infinite-variance for log

returns, percentage returns have finite mean and variance under the log-stable specification.  For

daily stock market returns of less than 25% in magnitude, the log-stable process is well

approximated by a finite-variance CGMY process with minimal exponential dampening; e.g.,

.

The cumulant exponent of any finite-variance Lévy process can written in the form

where  is variance per unit time and  is a standardized cumulant exponent with

unitary variance.  One can also combine Lévy processes, to nest alternative specifications within a

broader specification.  Any linear combination  of Lévy densities for nonnegative

(10)

(11)

(12)
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weights that sum to one  is also a valid Lévy density, and generates an associated standardized

weighted cumulant exponent of the form , where  is the standardized

cumulant exponent associated with  for 1,2.  The various  specifications that will

be considered in this paper are listed in Table 1.

I.2 Time-changed Lévy processes and stochastic volatility

Time-changed Lévy processes generate stochastic volatility by randomizing time in equation (1).

Since the log transform (1) can be written as , randomizing time is funda-

mentally equivalent to randomizing variance.  As the connection between time changes and

stochastic volatility becomes less transparent once “leverage” effects are added, I will use an explicit

stochastic volatility (or stochastic intensity) representation of stochastic processes.

The leverage effect, or correlation between asset returns and conditional variance

innovations, is captured by directly specifying shocks common to both.  I will initially assume that

the log asset price  follows a process of the form

The log increment  consists of the continuously-compounded return, plus increments to two

exponential martingales.   is a Wiener increment, while  is the increment to a compensated

Lévy process, with finite instantaneous variance .  Further refinements will be added

below, to match properties of stock market returns more closely.

This specification has various features or implicit assumptions.  First, the approach allows

considerable flexibility regarding the distribution of the instantaneous shock  to asset returns,

which can be Wiener, compound Poisson, or any other fat-tailed distribution.  Three underlying

Lévy processes are considered:

       1) a second diffusion with variance  that is independent of  (Heston, 1993);

       2) finite-activity jumps drawn from a normal distribution or a mixture of normals; and

       3) the generalized CGMY (2003) Lévy process from (8) above.

Combinations of these processes will also be considered, to nest the alternatives.

(13)
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Second, the specification assumes a single underlying variance state variable  that follows

an affine diffusion, and which directly determines the variance of diffusion and jump components.

This approach generalizes the stochastic jump intensity model of Bates (2000, 2006) to arbitrary

Lévy processes. 

Two alternate specifications are not considered, for different reasons.  First, I do not consider

the approach of Li, Wells and Yu (2008), who model log-differenced asset prices as the sum of a

Heston (1993) stochastic volatility process and a constant-intensity fat-tailed Lévy process that

captures outliers.  Bates (2006, Table 7) found the stochastic-intensity jump model fits S&P returns

better than the constant-intensity specification, when jumps are drawn from a finite-activity normal

distribution or mixture of normals.  Second, the diffusion assumption for  rules out volatility-jump

models, such as the exponential-jump model proposed by Duffie, Pan and Singleton (2000) and

estimated by Eraker, Johannes and Polson (2003).  Estimation on simulated data indicates that the

AML filtration methodology described below has difficulty identifying whether there are jumps in

an underlying conditional variance state variable that is not directly observed.

Define  as the discrete-time return observed over horizon , and define

 as the cumulant exponent of  conditional upon knowing .  By

construction,  is a standardized cumulant exponent, with  and variance .

A key property of affine models is the ability to compute the conditional generalized Fourier

transform of .  This can be done by iterated expectations, conditioning initially on the

future variance path:

for .  This is the generalized Fourier transform of

the future spot variance  and the average future variance . This is a well-known

(14)
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(17)

(18)

(19)

(20)

(21)

problem (see, e.g., Bakshi and Madan, 2000), with an analytic solution if  follows an affine

process. For the affine diffusion above,  solves the Feynman-Kac partial differential

equation

subject to the boundary condition .  The solution is

where

The specifications of  considered in this paper are listed above in Table 1.

I.3 Autocorrelations and other refinements

That stock indexes do not follow a random walk was recognized explicitly by Lo and MacKinlay

(1988), and implicitly by earlier practices in variance and covariance estimation designed to cope

(15)

(16)
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with autocorrelated returns; e.g., Dimson (1979)’s lead/lag approach to beta estimation.  The

positive autocorrelations typically estimated for stock index returns are commonly attributed to stale

prices in the stocks underlying the index.  A standard practice in time series analysis is to pre-filter

the data by fitting an ARMA specification; see, e.g., Jukivuolle (1995).  Andersen, Benzoni and

Lund (2002), for instance, use a simple MA(1) specification to remove autocorrelations in S&P 500

returns over 1953-96; a data set subsequently used by Bates (2006).

Prefiltering the data was considered unappealing in this study, for several reasons.  First, the

1926-2006 interval used here is long, with considerable variation over time in market trading

activity and transactions costs, and structural shifts in the data generating process are probable.

Indeed, Andersen et al (2002, Table 1) find autocorrelation estimates from their full 1953-96 sample

diverge from estimates for a 1980-96 subsample.  Second, ARMA packages use a mean squared

error criterion that is not robust to the fat tails observed in stock market returns.   Finally, explicit

consideration of autocorrelation is needed when assessing the variance of relevance to option

pricing.  

Consequently, autocorrelations were treated as an additional latent variable, to be estimated

as part of the overall time series model.  I will explore below two alternate models for daily log-

differenced stock index excess returns :

or

where

 is the effective length of a business day,  determines is the daily autocorrelation,  is the

instantaneous intradaily underlying shock to log asset prices, and  is the

instantaneous conditional variance of .  The intradaily shocks  are given by (13) above.

(22)

(23)

(24)
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4See, e.g., Andersen, Benzoni and Lund (2002, Table I), who estimate different
autocorrelations for 1953-96 and 1980-96.

5Jukivuolle (1995) distinguishes between the “observed” and “true” stock index when trading
is infrequent, and proposes using a standard Beveridge-Nelson decomposition to identify the latter.
This paper differs in assuming that the parameters of the ARIMA process for the observed stock
index are not constant.

Both models add an autocorrelation state variable  that captures the fact that auto-

correlations of stock market returns are not constant over time.4  Following the literature on time-

varying coefficient models, the autocorrelation is modeled as a simple random walk, to avoid

constraining estimates of .  Estimation of the autocorrelation volatility parameter  endogenously

determines the appropriate degree of smoothing to use when filtering the current autocorrelation

value  from past data.

The two models differ in ease of use, in their implications for the interaction between

volatility and autocorrelation, and in the pricing of risks.  Model 1 assumes the stock market excess

return residual   is stationary (i.e., with a stationary conditional variance process),

and that the current value of  affects only the conditional mean of .  Autocorrelation filtration

in the model is consequently closer to standard autocorrelation estimation, and becomes identical

when  is i.i.d. Gaussian and the autocorrelation is constant ( ).  Model 1 is also somewhat

more convenient for estimation, in that it has a “semi-affine” structure that can be directly estimated

using the methodology of Bates (2006).

In Model 2, is the permanent impact of daily shocks to stock index excess returns, and

is again assumed stationary.  The model assumes that infrequent trading in the component stocks

(proxied by ) slows the incorporation of such shocks into the observed stock index, but that the

index ultimately responds fully once all stocks have traded.5  Unlike Model 1, Model 2 is consistent

with LeBaron’s (1992) observation that annual estimates of daily stock market volatility and

autocorrelation appear inversely related.  Higher autocorrelations smooth shocks across periods,

reducing observed market volatility. Furthermore, the model is more suitable for pricing risks; i.e.,

identifying the equity premium, or the (affine) risk-neutral process underlying option prices.  The

current value of  affects both the conditional mean and higher moments of , resulting in a
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6Gallant, Rossi and Tauchen (1992) use a similar approach, and also estimate monthly
seasonals.

7Dilip Madan informs me that practitioners distinguish between time-scaled and space-scaled
models of time-varying volatility.  GARCH models are typically space-scaled, whereas Model 1 is
a time-scaled model of stochastic volatility.  Model 2 contains both (stationary) time scaling via 
and the time dummies, and (non-stationary) space scaling via .

significantly different filtration procedure for estimating  from past excess returns.  The time

series model is not semi-affine, but I develop below a transformation of variables that makes

filtration and estimation as tractable as for Model 1.

Both models build upon previous time series and market microstructure research into stock

market returns.  For instance, the effective length  of a business day is allowed to vary based upon

various periodic effects.  In particular, day-of-the-week effects, weekends, and holidays are

accommodated by estimated time dummies that allow day-specific variation in .  In addition, time

dummies were estimated for the Saturday morning trading available over 1926-52, and for the

Wednesday exchange holidays in the second half of 1968 that are the focus of French and Roll

(1986).6  Finally, the stock market closings during the “Bank Holiday” of March 3-15, 1933 and

following the September 11, 2001 attacks were treated as - and -year returns, respectively.

Treating the 1933 Bank Holiday as a 12-day interval substantially reduces the influence of its

+15.5% return on parameter estimation.  September 17, 2001 saw a smaller movement, of -4.7%.

For Model 1, the cumulant generating function of future returns and state variable

realizations conditional upon current values is analytic, and of the semi-affine form

where , and  and  are given in (17) and

(18) above.  For model 2, the conditional cumulant generating function is of the non-affine form

given the shocks to  are scaled by .7

(25)

(26)
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I.4 Filtration and maximum likelihood estimation

If the state variables  were observed along with returns, it would in principle be possible to

evaluate the joint transition densities of the data and the state variable evolution by Fourier inversion

of the joint conditional characteristic function , and to use this in a maximum

likelihood procedure to estimate the parameters of the stochastic process.  However, since 

are latent rather than directly observed, this is a hidden Markov model that must be estimated by

other means.

For Model 1, the assumption that the cumulant generating function (25) is affine in the latent

state variables  implies that the hidden Markov model can be filtered and estimated using

the approximate maximum likelihood (AML) methodology of Bates (2006).  The AML procedure

is a filtration methodology that recursively updates the conditional characteristic functions of the

latent variables and future data conditional upon the latest datum.  Define as

the data observed up through period t, and define

as the joint conditional characteristic function that summarizes what is known at time t about

.  The density of the observation  conditional upon  can be computed by Fourier

inversion of its conditional characteristic function:

Conversely, the joint conditional characteristic function  needed for the next

observation can be updated given  by the characteristic-function equivalent of Bayes’ rule:

The algorithm begins with an initial joint characteristic function  and proceeds

recursively through the entire data set, generating the log likelihood function  used

in maximum likelihood estimation.  Filtered estimates of the latent variables can be computed from

derivatives of the joint conditional moment generating function, as can higher conditional moments:

(27)

(28)

(29)
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The above procedure, if implementable,  would permit exact maximum likelihood function

estimation of parameters.  However, the procedure would require storing and updating the entire

function  based on point-by-point univariate numerical integrations.  As such a procedure

would be slow, the AML methodology instead approximates  at each point in time by a

moment-matching joint characteristic function, and updates the approximation based upon updated

estimates of the moments of the latent variables.  Given an approximate prior  and a datum

, (30) is used to compute the posterior moments of , which are then used to create

an approximate . The overall procedure is analogous to the Kalman filtration procedure

of updating conditional means and variances of latent variables based upon observed data, under the

assumption that those variables and the data have a conditional normal distribution.  However, the

equations (29) and (30) identify the optimal nonlinear moment updating rules for a given prior

, whereas standard Kalman filtration uses linear rules. It will be shown below that this

modification in filtration rules is important when estimating latent autocorrelations and variances

under fat-tailed Lévy processes.  Furthermore, Bates (2006) proves that the iterative AML filtration

is numerically stable, and shows that it performs well in estimating parameters and latent variable

realizations.

Autocorrelations can be negative or positive, while conditional variance must be positive.

Consequently, different two-parameter distributions were used to summarize conditional

distributions of the two latent variables: Gaussian for autocorrelations, gamma for variances.

Furthermore, since volatility estimates mean-revert within months whereas autocorrelation estimates

evolve over years, realizations of the two latent variables were assumed conditionally independent.

These assumptions resulted in an approximate conditional characteristic function of the form

The following summarizes key features of joint conditional distributions of the latent variables.

(30)

(31)
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8The FFT approach used in Carr et al (2002) uses 16,384 functional evaluations.
 

Autocorrelation spot variance 

Distribution

conditional
cumulant
generating function 

initial CGF

 assumed independent for all t.    

Initial variance was assumed drawn from its unconditional gamma distribution, with the

parameters  given above.  Since autocorrelations were assumed nonstationary, no

unconditional distribution exists.  Consequently, the AML algorithm for Model 1 was initiated using

a relatively diffuse conditional distribution for the initial autocorrelation – one much wider than the

plausible (-1, +1) range.

The parameters  – or, equivalently the moments 

–  summarize what is known about the latent variables.  These were updated daily using the latest

observation  and equations (29) - (30).  For each day, 5 univariate integrations were required:

1 for the density evaluation in (29), and 4 for the mean and variance evaluations in (30).  An upper 

was computed for each integral which upper truncation error would be less than  in magnitude.

The integrands were then integrated over  to a relative accuracy of , using

IMSL’s adaptive Gauss-Legendre quadrature routine DQDAG and exploiting the fact that the

integrands for negative  are the complex conjugates of the integrands evaluated at positive .

On average between 234 and 448 evaluations of the integrand were required for each integration.8

The non-affine specification  in Model 2 necessitates additional

restrictions upon the distribution of latent .  In particular, it is desirable that the scaling factor

 be nonnegative, so that the lower tail properties of  originating in the underlying Lévy
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9 Schwert also has daily data extending back to 1885, based on the (price-weighted) Dow
Jones Industrial Average. 

specifications do not influence the upper tail properties of .  Consequently, the distribution of

latent  for Model 2 is modeled as inverse Gaussian – a 2-parameter unimodal distribution with

conditional mean  and variance .  Appendix A derives the resultant filtration procedure

for this model, exploiting a useful change of variables procedure.  The filtration is initiated at

, and it is again assumed that  and  are conditionally independent for all t.

II. Properties of U.S. stock market returns, 1926 - 2006

II.1 Data

There are two readily available value-weighted measures of the U.S. stock market: the CRSP value-

weighted index, and the S&P Composite Index.  This paper will primarily focus upon the former for

time series analysis, but will also consider the latter when assessing options on S&P 500 futures. The

CRSP data consist of 21,519 daily cum-dividend returns over January 2, 1926 through December

29, 2006.  CRSP daily returns for each month were converted to daily log excess returns using

Ibbotson and Associates’ data on monthly Treasury bill returns, and the formula

where  is the daily CRSP cum-dividend return;

 is that month’s return on Treasury bills of at least 1 month to maturity;

N is the number of calendar days spanned by the monthly Treasury bill return; and 

 is the number of calendar days spanned by the “daily” return .

The monthly interest rate data were downloaded from Ken French’s Web site, and extended

backwards through 1926 using data in Ibbotson and Associates’ SBBI Yearbook.

The Schwert (1990) data set of daily U.S. stock market returns provides cum-dividend

returns on the S&P Composite Index from January 4, 1928 onwards.9  The S&P index was based

upon 90 stocks until March 4, 1957, and 500 stocks thereafter. I updated Schwert’s data through

2006 using Schwert’s data methodology:  ex-dividend daily S&P 500 returns from CRSP were

augmented by an average daily dividend yield computed from monthly S&P 500 dividend yields

(32)
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10Estimates from other specifications were virtually identical, with estimates typically within
±0.01 of the YY model’s estimates.

11Saturday trading was standard before 1945.  Over 1945-51, it was increasingly eliminated
in summer months, and was permanently eliminated on June 1, 1952.

12As the time dummy estimates are estimated jointly with the volatility and autocorrelation
filtrations, the estimates of weekend variances with versus without Saturday trading control for
divergences in volatility and autocorrelation levels in the two samples.

from Bloomberg.  Cum-dividend returns were then converted into log excess returns using (32).

Furthermore, CRSP value-weighted returns were used instead of the S&P 90 returns prior to March

5, 1957, for two reasons.  First, that delivers data over 1926 and 1927, which is important for

volatility assessment prior to the 1929 stock market crash.  Second, the S&P Composite Index is

only reported to two decimal places, which creates significant rounding error issues for the low S&P

index values (around 5) observed in the 1930’s. 

II.2 Parameter estimates

Table 2 describes and provides estimates of the time dummies from the most general time-changed

CGMY model,10  with Wednesday returns (Tuesday close to Wednesday close) arbitrarily selected

as the benchmark day.  Daily variance tended to be highest at the beginning of the week and decline

thereafter, but day-of-the-week effects do not appear to be especially pronounced.  The major

exception is the Saturday morning (10 AM to noon) trading generally available over 1926-52.11

Saturdays were effectively 43% as long as the typical Wednesday.  Total weekend variance (Friday

close to Monday close) was (.43 + 1.05) / 1.10 - 1 = 34.5% higher when Saturday trading was

available (over 1926-52) than when it was not (over 1945-2006).12  This is qualitatively similar to

but less pronounced than the doubling of weekend variance found by Barclay, Litzenberger and

Warner (1990) in Japanese markets when Saturday half-day trading was feasible.  Barclay et al

lucidly discuss market microstructure explanations for the increase in variance.

Holidays generally did not have a strong impact on the effective length of a business day –

with the exception of holiday weekends spanning 4 calendar days.  Consistent with French and Roll

(1986), 2-day returns spanning the Wednesday exchange holidays in 1968 (Tuesday close to

Thursday close) had a variance not statistically different from a typical 1-day Wednesday return, but
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substantially less than the 1 + .94 = 1.94 two-day variance observed for returns from Tuesday close

to Thursday close in other years.  Overall, the common practice of ignoring day-of-the-week effects,

weekends, and holidays when analyzing the time series properties of daily stock market returns

appears to be a reasonable approximation, provided the data exclude Saturday trading.

Tables 3A and 3B report estimates for various specifications listed in Table 1, while Figure

1 presents associated normal probability plots for model 2.  (The plots for Model 1 were similar.)

As noted above, all specifications capture the leverage effect by a correlation  with the diffusion

shock to conditional variance.  The specifications diverge in their modeling of the Lévy shocks 

orthogonal to the variance innovation.  SV is the Heston model, while SVJ1 and SVJ2 have a

diffusion for small asset return shocks, plus finite-activity normally-distributed jumps to capture

outliers.  The other models examine the generalized time-changed CGMY model, along with

specific parameter restrictions or relaxations.

Most specifications using either Model 1 or Model 2 have similar estimates for the

parameters determining the conditional mean and stochastic variance evolution.  The evidence for

a variance-sensitive equity premium ( ) is stronger for Model 2 specifications, but  is not

typically significantly different from zero for either model.  Latent permanent variance in Model 2

mean-reverts towards an estimated average level around , with a half-life about 1.6 months.

The SV and LS models are the outliers, with different estimates of the equity premia and variance

process from other specifications.  As discussed below in section II.6, this reflects these two

specifications’ substantially different approach to variance filtration, given different assessments of

tail risk.

The various specifications primarily diverge in how they capture tail risk.  The Merton-based

SVJ1 and SVJ2 results in Table 3B largely replicate the jump risk results in Bates (2006).  The SVJ1

model has symmetric normally-distributed jumps with standard deviation 3 - 3.4% and time-varying

jump intensities that occur on average  = 3.3 - 3.7 jumps per year.  As shown in Figure 1,

this jump risk assessment fails to capture the substantial 1987 crash.  By contrast, the SVJ2 model

adds a second jump component that directly captures the 1987 outlier.  The resulting increase in log

likelihood from is statistically significant under a likelihood ratio test, with a marginal significance
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level around 3% for Models 1 and 2.

The various CGMY models primarily diverge across the specification of the 

parameters – whether they are set to specific levels, and whether they diverge for the intensities of

positive versus negative jumps.  The DEXP model with  is conceptually similar to the

jump-diffusion model SVJ1, but uses instead a finite-activity double exponential distribution for

jumps.  Despite the fatter-tailed specification, Figure 1 indicates the DEXP model has difficulties

comparable to SVJ1 in capturing the 1987 crash.  The VG model replaces the finite-activity double

exponential distribution with the infinite-activity variance process ( ), and does slightly

better in fit.  Both models include a diffusion component, which captures 73-74% of the variance

of the orthogonal Lévy shock .

Specifications Y, YY, and LS involve pure-jump processes for the orthogonal Lévy process

, without a diffusion component.  Overall, higher values of Y fit the data better – especially the

1987 crash, which ceases to be an outlier under these specifications.  Relaxing the restriction

 leads to some improvement in fit, with the increase in log likelihood (YY versus Y) having

P-values of 1.8% and 0.8% for Models 1 and 2, respectively.  Point estimates of the jump parameters

 governing downward jump intensities diverge sharply from the parameters

 governing upward jump intensities when the  restriction is relaxed,

although standard errors are large.  The dampening coefficient  is not significantly different from

zero, implying one cannot reject the hypothesis that the downward-jump intensity is from a

stochastic-intensity version of the Carr-Wu (2003) log-stable process.  By contrast, the upward

intensity is estimated as a finite-activity jump process – which, however, still overestimates the

frequency of big positive outliers (Figure 1, sixth panel).  

Motivated by option pricing issues, Carr and Wu (2003) advocate using a log-stable

distribution with purely downward jumps.   An approximation to this model generated by setting

 and  fits stock market returns very badly.  The basic problem is that while the LS

model does allow positive asset returns, it severely underestimates the frequency of large positive

returns.  This leads to a bad fit for the upper tail (Figure 1, last panel).  However, the YY estimates

indicate that the Carr-Wu specification can be a useful component of a model, provided the upward
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jump intensity function is modeled separately.

Unrestricted CGMY models generate at least one Y parameter in the infinite-activity,

infinite-variation range [1, 2], and typically near the diffusion value of 2.  This suggests that the

models may be trying to capture considerable near-zero activity.  However, adding an additional

diffusion component to the time-changed YY Lévy specification to capture that activity separately

(specification YY_D) led to no significant improvement in fit. 

Overall, Figure 1 suggests the differences across the alternate fat-tailed specifications are

relatively minor, and fit the data similarly over most of the data range ( ).  The models SV,

SVJ1, DEXP, VG, and LS appear less desirable, given their failure to capture the largest outliers.

The SVJ2, Y, and YY specifications appear to fit about the same.  All models appear to have a small

amount of specification error (deviations from linearity) in the   range and in the upper

tail ( ). 

II.3 Unconditional distributions

A further diagnostic of model specification is the models’ ability or inability to match the

unconditional distribution of returns – in particular, the tail properties of unconditional distributions.

Mandelbrot (1963) and Mandelbrot and Hudson (2004) argue that empirical tails satisfy a “power

law:”  tail probabilities plotted against absolute returns approach a straight line when plotted on a

log-log graph.  This empirical regularity underlies Mandelbrot’s advocacy of the stable Paretian

distribution, which possesses this property and is nested within the CGMY model for .

Mandelbrot’s argument is premised upon i.i.d. returns, but the argument can be extended to

time-changed Lévy processes.  Conditional Lévy densities time-average; if the conditional intensity

of moves of size x is , the unconditional frequency of moves of size x is

.  Since unconditional probability density functions asymptotically approach the

unconditional  Lévy densities for large , while unconditional tail probabilities approach the

corresponding integrals of the unconditional Lévy densities, examining unconditional distributions

may still be useful.
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13Conditional variance sample paths were simulated using the approach of Bates (2006,
Appendix A.6), while Lévy shocks  conditional upon intradaily average variance and data-based
daily time horizons were generated via an inverse CDF methodology, with CDF’s computed by
Fourier inversion. The two shocks spanning the market closings in 1933 and 2001 were omitted.

Figure 2a provides estimates of unconditional probability density functions of stock market

excess return residuals  for various specifications under Model 1, as well as data-

based estimates from a histogram of filtered residuals  .  Given the day-of-the-

week effects reported in Table 2, the unconditional density functions are a horizon-dependent

mixture of densities, with mixing weights set equal to the empirical frequencies.  (The two shocks

spanning the market closings in 1933 and 2001 were omitted.)  The substantial impact of the 1987

crash outlier upon parameter estimates is apparent.  The SVJ2 estimates treat that observation as a

unique outlier, while the CGMY class of models progressively fatten the lower tail as greater

flexibility is permitted for the lower tail parameter .  As noted above, the lower tail approaches

the Carr-Wu (2003) log-stable (LS) estimate.  However, the LS model is unable to capture the

frequency of large positive outliers, and behaves similarly to the SV model in the upper tail.  All

models closely match the empirical unconditional density function in the ±3% range where most

observations occur; and all models underestimate the unconditional frequency of moves of 3% - 7%

in magnitude.

Figure 2b provides similar estimates for unconditional lower and upper tail probabilities.

In addition, 1000 sample paths of stock market excess return residuals over 1926-2006 were

simulated via a Monte Carlo procedure using YY parameter estimates, in order to provide

confidence intervals on tail probability estimates.13  Unsurprisingly, the confidence intervals on

extreme tail events are quite wide.  The underestimation of moves of 3% - 7% in magnitude is again

apparent, and is statistically significant.  This rejection of the YY model does not appear attributable

to misspecification of the Lévy density , which in Figure 1 captures conditional densities quite

well.  Rather, the poor unconditional fit in Figures 2a and 2b appears due to misspecification of

volatility dynamics.  Half of the 3-7% moves occurred over 1929 - 1935 – a prolonged high-

volatility period that simulated volatility realizations from the 1-factor variance process of equation

(13) generally do not match.
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14The data split was chosen so that the second subsample’s estimates could be compared with
estimates from S&P 500 returns, as well as with other studies that use data starting in the 1950’s
(Andersen et al (2002), Bates (2006), Chernov et al (2003)).

Figure 3 plots model-specific tail probability estimates for the YY model on the log-log

scales advocated by Mandelbrot, along with data-specific quantiles for 20,004 stock market residuals

that have roughly a 1-day estimated time horizon (±11%). The lower tail probability does indeed

converge to the unconditional tail intensity 

where  and  is the incomplete gamma function.

Furthermore, given G estimates near 0,   is roughly a power function in y,

implying near linearity when plotted on a log-log scale.  

However, the graph indicates that the convergence of tail probabilities to the tail intensity 

occurs only for observations in excess of 5% in magnitude – roughly 5 standard deviations.  As this

is outside the range of almost all data, it does not appear that log-log scales provide a useful

diagnostic of model specification and tail properties for daily data.  This is partly due to stochastic

volatility, which significantly slows the asymptotic convergence of unconditional tail probabilities

to  for large .  Absent stochastic volatility ( ), the tail probabilities of an i.i.d. YY

Lévy process converge to  for observations roughly in excess of 3% in magnitude (3 standard

deviations).

No power law properties are observed for upper tail probabilities, given substantial estimated

exponential dampening. The failure of both lower and upper unconditional tail probabilities to

capture the frequency of moves of 3-7% in magnitude is again apparent, and statistically significant.

II.4 Subsample estimates

Table 4 provides estimates for data subsamples, as a test of the stability of the time series process.

The mean, stochastic volatility and jump parameters were allowed to differ before and after  March

5, 1957.14  The time dummies (similar to those in Table 2) that capture day-of-the-week effects were

(36)
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kept common across subsamples; but some of those dummies also capture subsample-specific

phenomena (Saturday trading before 1953; exchange holidays in 1968).  The estimation and

filtration over the two subsamples nest the full-sample estimates of Table 3, so that standard

likelihood ratio tests can be used to test whether the divergence in subsample parameter estimates

are statistically significant.

Parameter estimates diverge strongly across subsamples, with P-values less than , but

in different fashions for the SVJ1 and YY models.  For the SVJ1 model, the major divergence was

clearly in the estimated volatility process.  The 1926-57 period includes the highly volatile 1930’s,

yielding an overall average variance of  over 1926-57, as opposed to  over 1957-2006.

The volatility dynamics also diverge, with volatility more volatile and with faster mean reversion

over 1926-57 than over 1957-2006.  Jump risk estimates also diverge, with more frequent but

smaller jumps in the first half than in the second half.  Progressively relaxing full-sample constraints

on parameter categories (mean; ; stochastic volatility parameters; jump parameters) indicates that

between 71% and 86% of the subsample improvement in log likelihood comes from using

subsample stochastic volatility parameters.  Between 8% and 22% of the change in log likelihood

comes from using subsample jump parameters, depending on whether stochastic volatility or jump

parameters are relaxed first.

The 1957-2006 subsample estimates for the YY model are more heavily affected by the 1987

crash than are the full-sample estimates.  The parameter G approaches its lower bound of zero,

implying that the lower tail density is approaching the time-changed version of the infinite-variance

log-stable distribution.  Correspondingly, the subsample estimate of unconditional variance 

=  becomes substantially meaningless, and cannot be compared with estimates from other

models or other periods.  By contrast, the estimates over 1926-57 are strictly finite-variance.   Given

strong interactions between stochastic volatility and jump parameters, it is not clear which is more

responsible for the strong rejections of parameter stability across subsamples.

II.5 Autocorrelation filtration 

Given that the prior distribution  is assumed , it can be shown that the

autocorrelation filtration algorithm (30) for Model 1 updates conditional moments via the robust
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15See Schick and Mitter (1994) for a literature review of robust Kalman filtration.

Kalman filtration approach of Masreliez (1975):

If  were conditionally normal, the log density would be quadratic in , and (33) would

be the linear updating of standard Kalman filtration.  More generally, the conditionally fat-tailed

properties of  are explicitly recognized in the filtration.15  The partial derivatives of log densities

can be computed numerically by Fourier inversion. 

Figure 4 illustrates the autocorrelation filtrations estimated under various models.  For model

1, the autocorrelation revision is fairly similar to standard Kalman filtration for observations within

a ±2% range – which captures most observations, given a unconditional daily standard deviation

around 1%.  However, the optimal filtration for fat-tailed distributions is to downweight the

information from returns larger than 2% in magnitude.  The exceptions are the stochastic volatility

(SV) and Carr-Wu log-stable (LS) specifications.  Those specifications do not particularly

downweight outliers occurring in non-fat tails:  in both tails for SV, in the upper tail for LS.

The autocorrelation filtration under Model 2 is different.  Since  in

that model, large observations of  are attributable either to large values of  (small values

of ), or to large values of the Lévy shocks captured by .  The resulting filtration illustrated in

the lower panels of Figure 2 is consequently sensitive to medium-size movements in a fashion

substantially different from the Model 1 specifications.

Figure 5 presents filtered estimates of the daily autocorrelation from the YY model.  The

most striking result is the extraordinarily pronounced increase in autocorrelation estimates from

1941 - 1971, with a peak of 35% reached in June 1971. Estimates from other models give

(33)

(34)
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16See LeBaron (1992, Figure 1) for annual estimates of the daily autocorrelation of S&P
composite index returns over 1928-1990.

comparable results, as do crude sample autocorrelation estimates using a 1- or 2-year moving

window.16  After 1971, autocorrelation estimates fell steadily, and became insignificantly different

from zero after 2002.  This broad pattern is observed both for Models 1 and 2, although the precise

estimates diverge given the different filtration methodologies.  Filtered autocorrelation estimates

appear inversely related to measures of annual stock turnover computed by French (2008), attaining

values closer to zero in the high-turnover periods before 1933 and after 1982. This is consistent with

the standard stale-price explanation of autocorrelation in stock index returns.

Figure 5 also indicates that the estimates of daily autocorrelation are virtually nonstationary,

indicating that fitting ARMA processes with time-invariant parameters to stock market excess

returns is fundamentally pointless.  The conditional standard deviation asymptotes at about 4½%,

implying a 95% confidence interval of ±9% for the autocorrelation estimates.

II.6 Volatility filtration

When returns follow an autocorrelated process with i.i.d. shocks of the form

there are various ways of measuring variance:

Conditional (or residual) variance:

Unconditional variance of returns:

Conditional permanent variance:

where L is the lag operator.  These measure of variance are also approximately relevant in the above

models with stochastic conditional volatility and slow-moving autocorrelation.  The  values

in Table 3A are estimates of the average level of residual variance for model 1, but estimates of

average permanent variance for model 2; hence the higher estimates for the latter.  Furthermore, the

(35)
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17As  estimates have substantial positive skewness, the median is substantially below the
mean estimate of  reported in Table 3A.

18An exception is Maheu and McCurdy (2004), who put a jump filter sensitive to outliers into
a GARCH model.  They find that the sensitivity of variance updating to the latest squared return
should be reduced for outliers, for both stock and stock index returns.

ratio of return variance to permanent variance is , which is less

than 1 for  and is monotonically decreasing in .  If permanent conditional variance is

stationary and autocorrelation evolves independently of permanent variance, as is assumed in model

2, periods of high autocorrelation will generate periods of low observed variance of returns – a

property consistent with the inverse relationship between annual estimates of daily autocorrelation

and volatility over 1928-1990 reported in LeBaron (1992). 

The left panel of Figure 6 illustrates how the estimated conditional volatility  is

updated for the various specifications under model 1.  The conditional volatility revisions use

median parameter values  for the prior gamma distribution of , implying

a conditional mean  that is close to the  median value observed for 

estimates from the YY model.17  For comparability with GARCH analyses such as Hentschel (1995),

Figure 4 shows the “news impact curve,” or revision in conditional volatility estimates upon

observing a given excess return, using the methodology of Bates (2006, pp.931-2). 

 

All news impact curves are tilted, with negative returns having a larger impact on volatility

assessments than positive returns.  This reflects the leverage effect, or estimated negative correlation

between asset returns and volatility shocks.  All specifications process the information in small-

magnitude asset returns similarly.  Furthermore, almost all specifications truncate the information

from returns larger than 3 standard deviations.  This was also found in Bates (2006, Figure 1) for

the SVJ1 model, indicating such truncation appears to be generally optimal for arbitrary fat-tailed

Lévy processes.  The SV and LS exceptions support this rule. The LS model has a fat lower tail but

not an especially fat upper tail, and truncates the volatility impact of large negative returns but not

of large positive returns.  The fact that volatility revisions are not monotonic in the magnitude of

asset returns is perhaps the greatest divergence of these models from GARCH models, which almost

invariably specify a monotonic relationship.18  However, since moves in excess of ±3 standard
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19“Annualized” volatility refers to the choice of units.  Since time is measured in years, 
is variance per year, while the daily volatility estimate for a Wednesday return with an estimated
length of  years (from Table 2) is approximately .  Since variance mean-reverts
with an estimated half-life of roughly 2 months, it is not appropriate to interpret Figure 5 as showing
the volatility estimate for a 1-year investment horizon.

20The inadequacies of AR(1) representations of conditional variance are already well-known
in volatility research, and have motivated research into long-memory processes.

deviations are rare, all specifications will generate similar volatility estimates most of the time.  The

volatility filtrations for model 2 shown in the right panel of Figure 6 for median parameters 

= (.00385, 6.01) are qualitatively similar to those for model 1.

Figure 7 presents the filtered estimates of conditional annualized permanent volatility over

1926-2006 from the YY model 2, as well as the associated conditional standard deviation.19

Volatility estimates from other models (except SV and LS) are similar – as, indeed, is to be expected

from the similar volatility updating rules in Figure 4.  The conditional standard deviation is about

2.8%, indicating a 95% confidence interval of roughly ±5½% in the annualized volatility estimates.

Because of the 81-year time scale, the graph actually shows the longer-term volatility dynamics not

captured by the model, as opposed to the intra-year volatility mean reversion with 2-month half-life

that is captured by the model.  Most striking is, of course, the turbulent market conditions of the

1930's, unmatched by any comparable volatility in the post-1945 era.  The graph indicates the 1-

factor stochastic variance model is too simple, and suggests that multifactor specifications of

variance evolution are worth exploring.20

The inset to Figure 5 compares adjusted filtered volatility estimates  over

1987-89 with realized volatility estimates computed daily from intradaily 15-minute log-differenced

S&P 500 futures prices.  (Open-to-close futures returns were 86.55% as volatile as close-to-close

futures returns over 1982-2001.)  The inset shows that the AML filtration methodology using daily

data generally tracks realized intradaily volatility quite closely.  The filtered estimates do not capture

major realized volatility spikes – especially over October 19-28, 1987.  The models estimated in this

paper interpret such spikes and the accompanying large daily stock market movements as stock

market jumps.  However, the clustering of high intradaily volatility values is important time series
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21See, e.g., Andersen et al (2005, p.7), who note that GARCH(1,1) models diverge from the
RiskMetrics approach in taking into account mean reversion of conditional variance towards the
unconditional variance.  This implies that GARCH conditional volatility estimates are affected by
sample-specific estimates of the unconditional variance.

evidence against the models’ diffusive-volatility assumption, and supports an alternate volatility-

jump specification.

Filtered volatility estimates do appear sensitive to the data interval used in estimation, via

the underlying parameter estimates.  For instance, the subsample SVJ1 estimates in Table 4 yield

filtered annualized ’s that are 1.86% higher on average over 1926-57 than the full-sample

estimates, and 1.29% lower over 1957-2006.  A significant underlying factor is the estimate of

unconditional volatility  in Table 4, which is higher in the first than in the second subsample,

and which significantly influences volatility filtration.  A similar influence of unconditional variance

estimates upon conditional volatility estimates is observed in GARCH models.21

III. Option pricing implications

Do these alternative models imply different option prices?  Exploring this issue requires identifying

the appropriate pricing of equity, jump, and stochastic volatility risks.  Furthermore, the presence

of substantial and stochastic autocorrelation raises issues not previously considered when pricing

options.  In particular, the observed stock index level underlying option prices can be stale, while

the relevant volatility measure over the option’s lifetime is also affected.  The variance of the sum

of future stock market returns is not the sum of the variances when returns are autocorrelated.

To examine these issues, I will focus upon Model 2, with its interpretation in equations (23) -

(24) of  as the permanent shock to the log stock market level.  Furthermore, I will use the myopic

power utility pricing kernel of Bates (2006) to price the various risks:

This pricing kernel constrains both the equity premium estimated under the objective time

series model, and the transformations of those estimates into the risk-neutral process appropriate for

(36)
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22Carr and Wu (2003) specify a log-stable process for the risk-neutral process underlying
option prices.  This can be generated from a CGMY process for the actual process with only
downward jumps, and with .  

23Wu (2006) discusses this transformation.

pricing options.  In particular, the instantaneous equity premium is

which implies

where  is the fraction of variance attributable to an orthogonal diffusion term.  The

approximation follows from first-order Taylor expansions, and from the fact that jumps account for

a fraction  of overall variance .  The equity premium (37) is well-defined for the

SVJ1 and SVJ2 models.  For the CGMY models, the restriction  is required for a finite equity

premium; the intensity of downward jumps must fall off faster than an investor’s risk aversion to

such jumps.  The log-stable process is inconsistent with a finite equity premium for .22

The change of measure from objective to risk-neutral jump intensities takes the form

under a myopic power utility pricing kernel.  This has assorted implications for parameter

transformations that depend upon the precise specification of the Lévy density .  For the SVJ

models, as discussed in Bates (2006), this modified jump intensity shifts the mean jump size  by

an amount , while leaving the jump standard deviation  unchanged.  For the CGMY model,

the risk adjustment replaces the downward and upward exponential dampening parameters  and

M by  and , respectively, while leaving the C and Y parameters unchanged.23  These

risk adjustments alter the  and  functions in equation (14).  Table 5 summarizes the

parameter transformations under the various models.

(37)

(38)

(39)
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24Wu (2006) proposes an alternate pricing kernel with negative risk aversion for downside
risk, thereby automatically imposing .

The key risk aversion parameter R used for change of probability measure was estimated by

imposing the equity premium restrictions (37), and re-estimating all times series models.  The

additional parameter restriction  was also imposed upon all CGMY models, and was binding

for the YY model.24  Parameter estimates reported in Table 6 changed little relative to those in Table

3B, while risk aversion was estimated at roughly 2.5 for all models.  Furthermore, the restriction of

a purely variance-sensitive equity premium ( ) was not rejected for any model.

I address the potential impact of autocorrelations upon option prices by examining prices of

options on S&P 500 futures.  I assume that stock index futures prices respond instantaneously and

fully to the arrival of news, whereas lack of trading in the underlying stocks delays the incorporation

of that news into the reported S&P 500 stock index levels.  Furthermore, I assume that index

arbitrageurs effectively eliminate any stale prices in the component stocks on days when futures

contracts expire, so that stale stock prices do not affect the cash settlement of stock index futures.

MacKinlay and Ramaswamy (1988) provide evidence supportive of both assumptions.

These assumptions have the following implications under Model 2 (equations 23 and 24):

     1. the observed futures price  underlying options on S&P 500 futures is not stale; 

     2. log futures price innovations equal the intradaily innovations  of equation (13):

Consequently, European options on stock index futures can be priced directly using a risk-neutral

version of (40) – which is affine, simplifying option evaluation considerably.  Furthermore, option

prices do not depend upon , except indirectly through the impact of autocorrelation filtration upon

the filtration of latent permanent variance .  Following Bates (2006), European call prices on an

S&P 500 futures contract can be priced as

(40)

(41)
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25The parameters  are replaced by , while the function 
is replaced by a risk-adjusted function  given in Table 5 for specific models that captures the
risk-adjusted jump intensities from  (39).

26These results differ from Bates (2000, Table 3), who reports substantial divergences
between the SV and SVJ models based substantially upon implicit parameter estimation.  It would
appear that implicit parameter estimates are strongly affected by the prices of deep OTM options.

where  and  are risk-neutral variants25 of those in equations (17)-(21);

 is the effective maturity of the option, given individual days’ length from Table 2;

 is the maturity associated with the continuously compounded Treasury bill yield

, given  calendar days until option maturity; and

 is the filtered cumulant generating function of  that summarizes

what is known about  given past data .

The associated implicit standard deviations (ISD’s) for standardized maturity  can then be

computed using the Black (1976) formula for European options on futures.

The ISD’s from the various models are graphed in Figure 8, and are compared with observed

ISD’s computed from settlement prices for American options on S&P 500 futures with non-zero

trading volume on December 29, 2006.  Figure 8 also shows 95% confidence intervals, computed

as in Bates (2006) based on parameter uncertainty alone, and on parameter and state uncertainty

associated with  estimation.  All models, including the SV model, generate virtually identical

option prices at end-2006 over a range of ±2 standard deviations – a range that contains the most

actively traded options. The estimated level of the ATM ISD was roughly the same across all

specifications, reflecting an absence of recent major outliers that would induce divergences in

estimated volatility from different specifications . The tilt of the volatility smirk for near-the-money

options appears to be driven primarily by the “leverage effect,” or correlation between shocks to

variance and stock market returns.  Only for deep out-of-the-money put options do the divergences

in estimated tail properties generate substantially different ISD patterns across models.26

Furthermore, those divergences across models generally decrease at longer maturities, as the impact

of jumps falls in importance relative to the projected dynamics of stochastic volatility.   The maturity

profile of the YY model is the exception, reflecting the fact that the risk-neutral distribution is

almost infinite-variance.
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Figure 9 chronicles estimated and observed at-the-money ISD’s over 1983-2006 for the

short-term options with maturities of 14 days or more.  The overall evolution is broadly comparable

to the estimates in Bates (2006, Figure 7).  However, the ISD estimates are substantially closer to

observed ISD’s, with average values over 1988-2006 of 15.8% and 16.8%, respectively.  The results

differ from the larger divergences in Bates (2006), for two reasons.  First, the earlier study used

Anderson, Benzoni and Lund’s (2002) data, who prefiltered S&P returns over 1953-1996 by

estimating an MA(1), and then rescaled estimated residuals to match the mean and variance of the

original data.  Prefiltration removes the autocorrelation structure of the data, and consequently

underestimates the average level  of permanent variance relevant for pricing options.  Re-

estimating SVJ2 Model 2 on the raw S&P returns underlying the Anderson et al data over 1953-96

raises  estimates from  to . 

Second, as shown above in Table 6,  estimates are substantially higher when data from

the volatile 1930's are included:  over 1926-2006 for the SVJ2 model, as opposed to 

over 1957-2006.  A higher  estimate affects ISD estimates at all maturities, through its impact

on the filtration algorithm for estimating spot variance  as well as through its impact on forecasts

of future variance.  For instance, some resulting filtered measures of risk-neutral volatility over

1988-2006 using the two sets of SVJ2 parameter estimates are:

Average values over 1988-2006

Estimation
1-month 1-month difference

in ISD’s

1926-2006
1957-2006

18.7%
16.3%

15.9%
14.4%

15.8%
14.4%

16.8%
16.8%

1.0%
2.4%

difference   2.4%   1.5%  1.4%

Nevertheless, the broad assessment of previous studies appears unchanged.  Observed ISD’s

from options on index futures do appear higher on average over the post-1987 period than is justified

by risk-adjusted valuations based upon time series analysis, even when volatility assessments

include data from the 1930's.
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IV. Summary and Conclusions

This paper provides time series estimates of the time-changed CGMY (2003) Lévy process, and

compares them to the time-changed finite-activity jump-diffusions previously considered by Bates

(2006).  Overall, while it is important to use adequately fat-tailed distributions when filtering

volatility and other latent variables, it does not seem especially important which fat-tailed

distribution one uses.  Estimates of the volatility process and realizations are substantially

unchanged across most specifications, while the option pricing implications are virtually identical

for all but the deepest out-of-the-money options.  The exceptions are Heston’s (1993) stochastic

volatility model, which underestimates upper and lower tail risk, and the log-stable model of Carr

and Wu (2003), which underestimates upper tail risk.  This underestimation of tail risk makes

volatility estimates excessively sensitive to outliers, and also affects estimates of the volatility

process.  Conditional upon similar volatility estimates, however, even the Heston model fits option

prices similarly to the fat-tailed distributions for all but deep OTM options.  For these stochastic

volatility/stochastic intensity models, the tilt of the volatility smirk for near-the-money options ( 2

standard deviations) appears primarily driven by the “leverage” effect.

The paper also documents some structural shifts over time in the data generating process.

Most striking is the apparently nonstationary evolution of the first-order autocorrelation of daily

stock market returns, which rose from near-zero in the 1930's to 35% in 1971, before drifting down

again to near-zero values after 1987.  Autocorrelation estimates are inversely related to stock

turnover, and are of considerable importance when assessing stock market volatility.  The paper

develops methods of dealing with time-varying autocorrelation, by treating it as an additional latent

state variable to be filtered from observed data.  Longer-term trends in volatility are also apparent

in the filtered estimates, suggesting a need for multifactor models of conditional variance. 
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Appendix A.  Filtration under Model 2

From equation (26), the cumulant generating function (CGF) for future 

conditional upon knowing  is

The filtered CGF conditional upon only observing past data  can be computed by integrating over

the independent conditional distributions of the latent variables :

where  is the gamma conditional CGF for latent .    Under the change

of variables , and under the assumption that the scaling term

, the Fourier inversion used in evaluating  from (A.2) becomes

where  denotes the real component of complex-valued c, and the 1/x term in the integrand

reflects the Jacobean from the change of variables.  

It is convenient to use the two-parameter inverse Gaussian distribution to approximate

:

where  and  are t-dependent parameters that summarize what is

known about x (and about ) at time t.  Under this specification, the inner integration inside (A.3)

can be replaced by the analytic function

(A.1)

(A.2)

(A.3)

(A.4)
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     1A more “natural” choice would be to represent x by a beta distribution over the range [0, 2].
That would constrain , and results in an  term that involves the confluent
hypergeometric U-function.  However, I could not find a method for evaluating that function that
was fast, accurate, and robust to all parameter values. 

for  .  Consequently, evaluating (A.3) involves only univariate

numerical integration.1

Similar univariate integrations are used for filtering  and  conditional upon observing .

The noncentral posterior moments of  are given by

where the derivatives with respect to  inside the integrand can be easily evaluated from the

specifications for  and  in equations (17) - (18) .  The posterior moments of  can be

computed by taking partials of (A.2) with respect to , and then again using change of variables to

reduce the Fourier inversion to a univariate integration.  The resulting posterior mean and variance

of  are

where

(A.5)

(A.6)

(A.7)

(A.8)
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and

Finally, the conditional distribution function  that is used in QQ plots

takes the form

(A.9)

(A.10)

(A.11)



Table 1
Standardized cumulant exponents (with unitary variance) for various compensated Lévy specifications

diffusion: 

Normally distributed jumps:  

CGMY jump process:

with  such that 

General specification:

Model

Weights
Parameter 
restrictions

SV 1

SVJ1

SVJ2

DEXP

VG

Y 1

YY 1

LS 1

YY_D

For SVJ1 and SVJ2, the fraction  of variance attributable to jumps is  and , respectively.



Table 2:  Effective length of a business day, relative to 1-day Wednesday returns: 1926-2006.  Estimates from YY model.  Estimates from
other models are almost identical.

NOBS
Model 1 Model 2

#days Description estimate std. error estimate std. error

1
1
1
1
1

Monday close 6 Tuesday close
Tuesday close 6 Wednesday close
Wednesday 6 Thursday 
Thursday 6 Friday 
Friday 6 Saturday (1926-52)

3831
4037
3998
3924
1141

1.02
1
.94
.93
.43

(.04)

(.03)
(.03)
(.02)

1.03
1
.94
.92
.44

(.03)

(.03) 
(.03)
(.02)

2
2
2

Saturday close 6 Monday close (1926-52)
Weekday holiday
Wednesday exchange holiday in 1968

1120
341
22

1.05
1.25
.73

(.05)
(.11)
(.33)

1.07
1.26
.81

(.05)
(.10)
(.35)

3
4
5

Weekend and/or holidaya

Holiday weekend
Holiday weekend 

2755
343

      6

1.10
1.58
1.31

(.04)
(.14)

(1.00)

1.10
1.56
1.25

(.04)
(.13)
(.93)

21518

Annualization factor: Wednesday 6
yearly

259.8 (5.6) 260.3 (5.5)

aIncludes one weekday holiday (August 14 - 17, 1945)



Table 3A: Estimates of parameters affecting the conditional means and volatilities.  Data: daily CRSP value-weighted excess returns, 1926-
2006.  See equations (6) - (10), (13), and (25) for definitions of parameters.  Models with  combine Lévy jump processes with an additional
independent diffusion, with variance proportions , respectively.  Standard errors are in parentheses.

Model 1: 

Model
ln L

Conditional mean Stochastic volatility

HL
(mths)

SV
SVJ1
SVJ2
DEXP
VG
Y
YY
YY_D
LS

74,940.85
75,043.90
75,048.49
75,047.33
75,049.09
75,049.63
75,052.56
75,052.81
75,007.86

.013 (.015)

.042 (.015)

.042 (.003)

.043 (.015)

.043 (.015)

.042 (.015)

.041 (.015)

.042 (.015)

.018 (.015)

2.16 (.90)
 .91 (.91)
.87 (.76)
.87 (.90)
.92 (.91)
.90 (.92)
.87 (.92)
.93 (.91)

1.50 (.73)

.029 (.007)

.030 (.006)

.030 (.007)

.031 (.007)

.030 (.006)

.030 (.006)

.030 (.006)

.030 (.006)

.031 (.007)

.153 (.004)

.155 (.005)

.155 (.007)

.155 (.005)

.155 (.005)

.156 (.009)

.158 (.009)

.156 (.006)

.171 (.006)

5.83 (.44)
4.39 (.40)
4.34 (.37)
4.23 (.38)
4.22 (.39)
3.89 (.38)
4.00 (.38)
3.99 (.38)
4.60 (.40)

.452 (.010)

.374 (.011)

.371 (.015)

.368 (.012)

.366 (.012)

.351 (.020)

.360 (.019)

.355 (.013)

.431 (.015)

.625 (.018)
-.641 (.020)
-.642 (.018)
-.587 (.020)
-.586 (.020)
-.576 (.032)
-.571 (.031)
-.579 (.021)
-.541 (.020)

1.4 (.1)
1.9 (.2)
1.9 (.2)
2.0 (.2)
2.0 (.2)
2.1 (.2)
2.1 (.2)
2.1 (.2)
1.8 (.2)

Model 2:  

SV
SVJ1
SVJ2
DEXP
VG
Y
YY
YY_D
LS

74,999.87
75,092.10
75,096.68
75,094.20
75,094.70
75,093.68
75,097.20
75,097.49
75,045.48

-.014 (.020)
 .033 (.020)
 .037 (.020)
 .034 (.020)
 .034 (.020)
 .036 (.021)
 .033 (.020) 
 .035 (.020)
 .053 (.019)

3.04   (.90)
1.69 (1.04)
1.25   (.89)
1.44   (.90)
1.42   (.90)
1.35   (.90)
1.44   (.90)
1.36   (.90)
1.50   (.76)

.043 (.005)
.036 (.005)
.036 (.005)
.036 (.005)
.037 (.005)
.036 (.005)
.036 (.005)
.036 (.005)
.031 (.003)

.170 (.004)

.171 (.004)

.172 (.004)

.171 (.004)

.171 (.004)

.172 (.007)

.172 (.006)

.172 (.005)

.174 (.005)

8.01 (.57)
5.80 (.49)
5.71 (.49)
5.67 (.49)
5.56 (.48)
5.18 (.46)
5.23 (.47)
5.23 (.47) 
4.68 (.41)

.562 (.015)

.457 (.015)

.456 (.015)

.452 (.015)

.447 (.016)

.432 (.021)

.437 (.018)

.436 (.016) 

.436 (.015)

-.658 (.017)
-.674 (.018)
-.673 (.018)
-.625 (.018)
-.623 (.018)
-.613 (.027)
-.613 (.022)
-.616 (.020)
-.576 (.019)

1.0 (.1)
1.4 (.1)
1.4 (.1)
1.5 (.1)
1.6 (.1)
1.6 (.1)
1.6 (.1)
1.6 (.1)
1.8 (.2)



Table 3B: Estimates of jump parameters.  Standard errors in parentheses.

Model 1:  

Model
CGMY parameters Merton parameters

G M

SVJ1 .150 (.017) 142.7 (22.7) .000 (.002) .032 (.002)
SVJ2 .156 (.054) 162.9 (30.9)

   0.5   (1.6)
  .000 (.002)
-.189 (.094)

.029 (.002)

.005 (.189)
DEXP .253 (.027) .49 (.01) 66.1 (6.0) 45.4 (  8.4) -1 
VG .272 (.030)  .52 (.07) 41.1 (5.4) 31.6   (9.1)  0 
Y 1 .59 (.06) 7.0 (4.6) 2.3   (7.3) 1.87 (.03)
YY 1 .88 (.03) 1.6 (4.5) 40.1 (31.3) 1.94 (.01) -.24 (1.36)
YY_D .436 .72 (.15) 6.9 (9.0) 49.2 (34.9) 1.71 (.35) -.72 (1.57)
LS 1 1 .001 1.96 (.01)

Model 2:  
SVJ1 .133 (.015) 114.1 (19.2) -.001 (.003) .034 (.002)
SVJ2 .140 (.015) 126.4 (23.7)

    0.41 (.04)
 .000 (.002)
-.198 (.022)

.031 (.002)

.010 (.046)
DEXP .236 (.026) .53 (.06) 55.4 (5.4) 50.0 (4.8) -1
VG .257 (.030) .54 (.07) 41.1 (4.9) 31.6 (10.7) 0
Y 1 .59 (.05) 6.8 (4.2) 3.2 (8.2) 1.87 (.03)
YY 1 .89 (.03) 2.6 (4.1) 71.1 (57.8) 1.935 (.014) -1.96 (2.62)
YY_D .380 (.158) .90 (.30) 8.1 (8.7) 51.8 (51.7) 1.619 (.403) -1.08 (2.36)
LS 1 1 .001 1.965 (.006)



Table 4: Subsample estimates for Model 2.  Estimates “w/o Oct ’87" exclude daily data observed in October 1987, but include the full month’s return
of -20.6%.  Split-sample estimates involve different parameter values before/after March 5, 1957, apart from time dummies.  Standard errors are in
parentheses.

Model Period
ln L

Conditional mean Stochastic volatility

HL
(mths)

SVJ1 full    75,092.10 .033 (.020) 1.69 (1.04) .036 (.005) .171 (.004) 5.80 (.49) .457 (.015) -.674 (.018) 1.4 (.1)

SVJ1 1926 - 1957
1957 - 2006 75,183.99 .051 (.034)

.003 (.027)
1.35 (1.38)
2.90 (1.61)

.050 (.009)

.027 (.005)
.202 (.007)
.149 (.005)

8.82 (1.03)
4.93 (0.60)

.678 (.035)

.314 (.015)
-.661 (.027)
-.725 (.023)

0.9 (.1)
1.7 (.2)

YY full     75,097.20 .033 (.020) 1.44 (.90) .036 (.005) .172 (.006) 5.23 (.47) .437 (.018) -.613 (.022) 1.6 (.1)

YY w/o Oct ’87     75,065.01 .036 (.020) 1.37 (.91) .035 (.005) .170 (.005) 5.12 (.46) .427 (.016) -.620 (.019) 1.6 (.1)

YY 1926 - 1957
1957 - 2006 75,196.14 .056 (.034)

.012 (.027)
1.03 (1.15)
  .35   (.67)

.051 (.009)

.025 (.005)
.201 (.008)
.365 (.320)

6.81 (.88)
4.89 (.56)

.657 (.033)

.404 (.026)
-.585 (.026)
-.281 (.247)

1.2 (.2)
1.7 (.2)

Model
CGMY parameters Merton parameters

G M

SVJ1 full .133 (.015) 114.1 (19.2)  -.001 (.003) .034 (.002)

SVJ1 1926 - 1956
1957 - 2006

.167 (.015)

.093 (.020)
216.8 (54.9)
  49.5 (12.0)

 .000 (.003)
-.003 (.007)

.028 (.003)

.043 (.004)

YY full 1 .89 (.03) 2.6 (4.1)  71.1 (57.8) 1.94 (.01) -1.96 (2.6)

YY w/o Oct ’87 1 .89 (.03) 5.6 (5.3)  72.0 (60.8) 1.93 (.02) -1.76 (2.6)

YY 1926 - 1957
1957 - 2006

1
1

.86 (.04)

.92 (.15)
20.7 (7.9)
  0.0 (0.0)

97.8
(107.2)
  6.0 (13.4)

1.82 (.05)
1.54 (.41)

 -3.1 (4.5)
1.94 (.03)



Table 5: Change of parameters (objective versus risk-neutral) under a myopic power utility
pricing kernel .

Objective Risk-neutral
Equity premium
     0

General jump intensity

Variance process 

mean reversion  
UC mean

Merton jump process
mean jump size
jump SD

jump intensity

CGMY jump process
G  (must be $0)
M



Table 6: Parameter estimates over 1926-2006 on spliced CRSP/S&P 500 data with constrained equity premium:  , .   

Model
ln L

LR test of

(p-value)

Conditional mean Stochastic volatility

HL
(mths)

SV
SVJ1
SVJ2
DEXP
VG
Y
YYa

74,028.53
74,119.26
74,125.33
75,121.73
74,122.51
74,122.19
74,124.33

.383

.265

.507

.247

.206

.185

.212

2.49 (.62)
2.44 (.61)
2.43 (.57)
2.44 (.61)
2.50 (.61)
2.42 (.61)
2.38 

2.49 (.62)
2.44 (.61)
2.44 (.58)
2.44 (.61)
2.50 (.61)
2.42 (.61)
2.42

.043 (.005)
.038 (.005)
.037 (.005)
.037 (.005)
.037 (.005)
.037 (.005)
.037

.172 (.004)

.173 (.004)

.174 (.004)

.174 (.004)

.174 (.004)

.174 (.006)

.175 

7.18 (.48)
5.76 (.43)
5.76 (.42)
5.68 (.43)
5.62 (.43)
5.29 (.41)
5.26 

.534 (.014)

.448 (.015)

.449 (.015)

.444 (.015)

.441 (.015)

.427 (.018)

.429 

-.649 (.016)
-.678 (.017)
-.679 (.017)
-.632 (.017)
-.631 (.017)
-.623 (.022)
-.621 

1.2 (.1)
1.4 (.1)
1.4 (.1)
1.5 (.1)
1.5 (.1)
1.6 (.1)
1.6      

Estimates on S&P 500 data over 1957-2006

SVJ2 43,707.25 2.97 (.88) 2.98 (.88) .026 (.006) .149 (.006) 3.97 (.44) .289 (.014) -.721 .024) 2.1 (.2)

Model
CGMY parameters Merton parameters

G M

SVJ1 .126 (.015) 108.7 (18.2) -.001 (.003) .034 (.002)
SVJ2 .138 (.021) 122.7 (23.1)

    0.43 (.38)
 .000 (.002)
-.219 (.027)

.031 (.002)

.003 (.150)
DEXP .228 (.026) .55 (.06) 51.6 (5.0) 53.9 (12.7) -1
VG .247 (.028) .53 (.07) 35.9 (4.6) 34.4 (11.1) 0
Y 1 .58 (.05) 5.4 (4.0)   4.5   (8.7) 1.87 (.03)
YYa 1 .90         2.4         64.3      1.94    -1.29 

Estimates on S&P 500 data over 1957-2006

SVJ2 .096 (.050)  81.0 (30.1)
    .55 (1.32)

 .002 (.004)
-.213 (.035)

.030 (.005)

.003 (.020)

aParameter constraint  was binding for the YY model; standard errors could not be computed.
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Figure 1.  Normal probability plots for the
normalized returns ,
for different specifications under Model 2.
    Diagonal line: theoretical quantiles conditional

upon correct specification 
    +: Empirical quantiles
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Figure 2a.  Unconditional probability density functions from Model 1 specifications.  Data-
based estimates are from a histogram of residuals (.25% cell width).
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Figure 2b.  Unconditional tail probability estimates.  The dotted lines give 95% confidence
intervals, based upon 1000 simulations of the 1926-2006 data set under YY parameter estimates.
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Figure 3.  Unconditional tail probabilities and tail intensity functions versus .  Log scales on both axes.  Data-based estimates from
excess returns’ residuals for 20,004 business days with estimated time horizons of approximately 1 day (±11%).  Dotted lines give 95%
confidence intervals, based upon 1000 simulated sample paths under YY parameter estimates.
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Figure 4: Autocorrelation revision   conditional on observing , and conditional
on 
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Figure 5: Autocorrelation estimates and standard errors from YY model, and stocks’ annual 
turnover from French (2008).
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Figure 6: News impact curves for various models
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The graph show the revision in estimated annualized standard deviation  

conditional upon observing a standardized return of magnitude .

        

Figure 7: Estimates of annualized permanent volatility (YY model 2) and standard errors.
Inset compares daily (open to close) filtered volatility estimates over 1987-89 with the realized
volatilities computed daily from 15-minute log-differenced S&P 500 futures prices, on a log scale.



Figure 8: Estimated and observed ISD’s for options on S&P 500 futures on December 29, 2006.  Moneyness is measured in standard deviation units,
given the maturity-specific at-the-money ISD from options.  95% confidence intervals from the SVJ2 model are shown for parameter uncertainty (dark
grey), and parameter and state uncertainty (light grey).
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Figure 9: Estimated and observed at-the-money ISD’s, 1983-2006.  Observed ISD’s are from short-term options on S&P 500 futures
with at least 14 days to maturity, while estimated ISD’s are based on the SVJ2 specification’s parameter and volatility estimates.  The grey
area is the 95% confidence interval for the difference, given both parameter and state uncertainty.
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