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Abstract

We present a model where arbitrageurs operate on an asset market that can be

hit by information shocks. Before entering the market, arbitrageurs are allowed to

optimize their capital structure, in order to take advantage of potential underpricing.

We �nd that, at equilibrium, some arbitrageurs always receive funding, even in low

information environments. Other arbitrageurs only receive funding in high information

environments. The model makes two easily testable predictions: �rst, arbitrageurs with

stable funding should experience more mean-reversion in returns, in particular following

low performance. Second, this larger mean-reversion should be lower, if many other

funds have stable fundings. We test these predictions on a sample of hedge funds, some

of which impose impediments to withdrawal to their investors.
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1 Introduction

In the literature on limits to arbitrage, a widening of the mispricing of an asset may lead

arbitrageurs to unwind their positions, which further ampli�es the initial mispricing (Shleifer

and Vishny, 1997, Gromb and Vayanos, 2002). Such forced unwinding occurs because, as

arbitrageurs lose money on their trades, their investors (brokers, banks, limited partners

etc) demand early reimbursement of their claims. Thus, existing theories of the limits to

arbitrage assume that arbitrageurs cannot design their capital structure ex ante (for instance,

by taking on long term debt) in order to avoid such value destroying events.

This paper starts from the simple fact that this assumption does not always hold in reality,

and investigates its theoretical and empirical consequences. In the hedge fund industry,

investors often agree to limit their ability to withdraw their funds. About 20% of the hedge

funds in our sample have lock up periods of typically one, or even two years, during which

investors cannot redeem their shares (Aragon, 2007, has a similar proportion). Once they are

able to do so, they must give the fund advance notice (typically a month) and then obtain

redemption at �xed dates (typically a quarter). For the average hedge fund in our sample, we

estimate the minimum duration of funds to be equal to 5 months, and 10 months for funds

with lock-up periods. Interestingly, such share restrictions can be found with hedge funds

investing in illiquid securities (such as �xed income), but also with funds dealing with stocks

(such as �long short equity� funds). They are what we call �limits of limits of arbitrage�:

thanks to them, some market participants can a¤ord to underperform in the short run while

they hold on to ultimately pro�table arbitrage opportunities.

Thus, at least some arbitrageurs choose the maturity of their investors�claims. To under-
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stand the determinants and consequences of such a capital structure decision, we �rst build

a model where arbitrageurs optimally design the securities that they issue, and then engage

in arbitrage on the same market. Arbitrageurs di¤er in skill. We posit that arbitrageur

skill a¤ects long term asset payo¤s in some states of nature only (�low information states�).

We �rst �nd that, at equilibrium, prices in low information states are lower, because scarce

arbitraging skills are needed to trade in these states. Furthermore, at equilibrium investors

guarantee funding to skilled arbitrageurs in low information (low price) states, while unskilled

arbitrageurs only receive funding in high information (high price) states. The intuition comes

from the asset price equilibrium: if investors did not guarantee funds to some arbitrageurs

in low information states, asset prices in these states would collapse, which would make

investment attractive. Even when arbitrageur skill is not contractible upon, the equilibrium

capital structure choice is separating: skilled arbitrageurs choose guaranteed funding, while

unskilled arbitrageurs choose funding only contingent on high (high prices) information.

Thus, there is optimal di¤erentiation at equilibrium.

Our model generates two easily testable predictions. First, conditional on past bad

performance, funds with guaranteed funding outperform other funds. As argued above, in

low information states, scarce skills are needed which lowers current prices. Thus, funds

with guaranteed funding invest more often in states where the assets are underpriced, and

thus outperform other funds who take less advantage of underpricing. Our second prediction

is cross sectional: in industries where the fraction of arbitrageurs with guaranteed funding

is large, these arbitrageurs overperform other funds less. The mechanism is deeply rooted

in the model: if more arbitrageurs receive guaranteed funding, underpricing in the low

information state will be reduced. Since these arbitrageurs bene�t from underpricing, their
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overperformance will be reduced.

We then test these two predictions on hedge fund data. We use the fact that, in our data,

funds with impediments to withdrawal (such as long redemption periods, or lock-up periods)

experience less out�ows when they underperform (Ding et al, 2008, �nd similar evidence in

a smaller sample). Thus, these share restrictions, which we can observe from the data, are a

good proxy for �guaranteed funding�in our model. We �nd that the �rst prediction of our

model holds in the data: conditional on bad past performance, funds with impediments to

withdrawal do �bounce back more�, i.e. have higher expected returns. We also �nd some

support for the second prediction. To test it, we look at investment styles where impediments

to withdrawal are prevalent. We �nd that, in these styles, funds with such share restrictions

overperform other funds relatively less than in styles where such impediments are relatively

rare, although these results are somewhat less robust.

This paper contributes to two strands of literature. First, we extend Shleifer and Vishny�s

model of limits of arbitrage by allowing arbitrageurs to optimally choose their capital struc-

ture in order to avoid ine¢ cient liquidation. In this sense, our paper is closely related to

independent work by Stein (2009), which is the only paper, to the best of our knowledge,

that explictly seeks to endogenize arbitrageurs�capital structures. Compared to his model,

our theory endogenizes the cost of external �nance more explicitly and makes testable pre-

dictions on observed arbitrageur returns, that we can bring to the data. What is common

to the two models is that underpricing in bad states of nature leads to more investment in

these states, through the optimal structure choice. This feedback mechanism is not present

in Shleifer and Vishny (1997) nor in Stein (2005), who does not endogeneize prices. The rest

of the limits to arbitrage literature considers the destabilizing feedback that goes through
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the wealth of arbitrageurs. Gromb and Vayanos (2002), Acharya and Viswanathan (2007)

and Brunnermeier and Pedersen (2008) model intermediaries that need to unwind their po-

sitions when collateral prices decrease, which ampli�es price drops. In all these models, even

if mispricing can be very large, there is no contractual way to take advantage of this.1

Second, we shed new light on existing evidence from the (mostly hedge) funds literature.

First, our �ndings are related to a recent paper on open end mutual funds by Coval and

Sta¤ord (2008): they look at asset �re sales following massive redemptions at mutual funds,

and �nd a signi�cant price impact. Thus, their paper suggests (but does not test) that mu-

tual fund performance should display some persistence, in particular conditional on past low

performance. We propose a theory why some funds may seek protection against massive re-

demptions, and what returns dynamics should look like in protected and unprotected funds.

Second, some papers show that the presence of impediments to withdrawal is correlated with

unconditional fund performance (Aragon, 2007, Agarwal, Daniel and Naik, 2008): their ex-

planation is that investors earn a premium for the illiquidity of their investment. Other

1Also related to this paper is Lerner and Schoar (2004). They test a model where (private equity) fund

managers make their shares illiquid in order to select �patient�investors. Their capital structure focus di¤ers

from ours in an important way: they look at the ability to sell shares to other investors, while we look at

the ability to sell shares to the fund. In addition, if we were to transpose their mechanism in our setting

where funds interact through buying and selling the same asset, funds would screen �patient investors�until

mispricing disappears. There would be no prediction on the link between share restriction and fund returns

dynamics.

Casamatta and Pouget (2008) solve a model where investors give fund managers incentives to search for

information on assets. In their model, the optimal contract features short term performance pay. The cost

of such contracts is that they reduce market e¢ ciency by deterring information acquisition.
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papers have informally argued that hedge funds act as liquidity providers (see e.g. Agarwal,

Fung, Loon and Naik, 2008). The present article suggests a potential reason why illiquid

funds can a¤ord to issue illiquid shares in the �rst place: because illiquidity allows them to

reap the gains of arbitrage, they can pay the illiquidity premium to their investors. Third,

we develop and test a theory of the mean reversion of fund returns. Interestingly, some of

the existing hedge funds literature has focused on the positive relation between autocorre-

lation and share restrictions (see e.g. Aragon, 2007) while we �nd clear evidence of such a

negative relation. The di¤erence between these studies and ours is the frequency at which

autocorrelation is computed: we work at the annual level, while existing papers work at the

monthly level. At the monthly frequency, the existing literature argues that reported returns

of illiquid assets are smoothed. At the annual frequency, this paper argues that arbitrage

induces a mean reversion in fund returns. To some extent, such evidence is reminiscent from

insights from the strategic allocation literature (Campbell and Viceira, 2002) which argues

that long term investors have a comparative advantage at investing in mean reverting assets.

The rest of the paper follows a simple structure. Section 2 describes, solves the model and

derives predictions and comparative statics. Section 3 tests the model. Section 4 concludes.

2 Model

2.1 Set-Up

This framework borrows from Hombert (2007)�s model of �re sales in equilibrium. There

are competitive, risk neutral, investors. Investors want to purchase an asset which is in
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unit supply, but cannot do so themselves. They delegate this task to a measure 1 of fund

managers. Fund managers are risk neutral and limitedly liable; each of them starts with

initial wealth A.

2.1.1 Sequence of Events

There are four periods t = 0; 1; 2; 3 and the discount rate is zero. At t = 0, investors contract

with managers. The optimal contract will specify the amount of funds that the investor will

entrust to the manager, both in t = 1 and 2, and conditional on the state of nature in t = 2

(see below) .

At date t = 1, each fund manager learns about the asset he will be trading: the acquired

knowledge will only be useful in period t = 2 (see below). Learning e¤ort costs C to the

manager. We assume here that learning e¤ort is not contractible but this is not necessary

(more on this below). With high learning e¤ort, the manager becomes skilled with probability

�; with low learning e¤ort, with probability ����. The manager does not know whether he

is skilled until period 3. After the learning phase, managers use entrusted funds to purchase

assets at unit price P . The market for assets clears.

At date t = 2, the market can be in one of three states. With probability 1 � � � ",

the market is in state U : in this state, knowledge acquired in period 1 is useless (think

for instance of a bull market where everyone can generate high returns). It becomes public

knowledge that the asset will generate t = 3 cash �ows of V > 0. All fund managers liquidate

their positions from t = 1, pay o¤ their investors, and use newly entrusted funds (as speci�ed

in the optimal contract) to repurchase the same assets. The market clears again at price PU .

With probability �, the market is in state M . In this state, we assume that a second
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asset, which is a priori not distinguishable from the �rst asset, appears. Because they cannot

be di¤erentiated from each other, both assets trade at the same price, but we assume that

the second asset has zero present value, while the �rst asset has, as in state U , a PV of V .

Furthermore, we assume that only a fraction � of the managers picks the �right�asset. The

important hypothesis is that, in state M , the asset PV does not depend on t = 1 e¤ort.

Thus, compared to state U , stateM is a bad state, in the sense that there is less information

than in state U , but the state is equally bad for all managers, irrespective of their t = 1

learning decisions. In this state, the market for assets clears at price PM .

Last, with probability ", the market is in state D. Exactly as in state M , a second asset

appears that has a PV of zero, but this time skilled managers can di¤erentiate between the

two. Thus, an important di¤erence between states M and D is that in state D, date 1

learning e¤ort matters. In this sense, state D also is a bad state, but it is worse for managers

who did not learn in t = 1. In this state, the �right�asset market clears at price PD (which

is also the price of the �wrong�asset, whose market we do not model).

At date t = 3, assets held in portfolios mature and payo¤s are realized. If the �right�

asset is held, its payo¤ is V . In states M and D, we assume that only V �B can be pledged

to the investors. We think of B as the rent of an unmodelled agency con�ict in period 3:

for instance, the manager can sell the asset on a black market for price B and consume the

proceeds. To simplify exposition, we assume that this agency con�ict does not exist in state

U (in which case the entire present value of the asset V can be pledged to investors). All

intuitions of this model would carry through without this assumption.

All in all, states U , M and D vary along two key dimensions. First, in state U , expected

cash �ows from assets are higher than in states M and D. Expected present value in U is
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always V ; in state M it is only �V . In state D only skilled managers will be able to buy

good assets, so the expected payo¤ is at most �V . This feature of the model (� < 1) is not

entirely necessary for most intuitions to carry through; we will explain why later on. The

second di¤erence between the three states is that, in state D, managerial skill matters more.

Thus, a manager who is commited more funds in state D will have more incentive to learn.

This second dimension of our model is essential.

2.1.2 Contracts

We assume that the �nancial contract speci�es four amounts entrusted to the manager:

I, in period 1, and (IU ; IM ; ID) in period 2, conditional on states U , M and D. Thus,

we make two implicit (and mostly simplifying) assumptions. First, we assume that date 1

learning e¤ort cannot be contracted upon. This assumption is not necessary to obtain our

results, but it simpli�es calculations (more on this later). Second, we assume that the date

2 state of nature is contractible. This could be the case for instance if period 2 returns were

contractible. It is precisely the goal of this paper to study the impact of the contingent

�nancing of arbitrageurs.2

Given these assumptions on veri�ability, there is no need to increase the contract space

in our model: the four instruments I, IU , IM and ID are su¢ cient to reach the second best

optimum. For instance, assume the investors commits to paying a given amount to the

manager in case of success (positive asset pay o¤) at date t = 3 in order to induce learning

e¤ort at date t = 1. As it turns out, such transfer would only consume part of the income

2An alternative to making t = 2 state of nature contractible could be to implement contingent control

rights allocation à la Aghion and Bolton (1992).
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pledgeable to the investor, so IU , IM or ID would have to decrease. This would reduce the

assets under management, and hence the NPV of the fund. Thus, adding an incentive fee

on top of the private bene�t B per unit of asset would not be part of an optimal contract.

In the empirical application, we will think of contracts where ID > 0 as contracts with

impediments to withdrawals. Such contracts guarantee t = 2 in�ows even when the fund

underperforms (asset prices go down in state D).

2.1.3 Modelling Strategy

Before we solve the model, it is worthwhile to discuss our modelling strategy. With moral

hazard, another possible strategy could have been to think of withdrawals as an ex ante

optimal �punishment�strategy. Underperforming managers are punished for low e¤ort pro-

vision, while well performing managers are rewarded through continuation. Such a model

delivers similar comparative static properties as the one we study in this paper, but the

implied contract has the important drawback of not being renegotiation-proof. Once low

e¤ort has been provided, assets are fairly priced in equilibrium, and their expected return

is non negative. Thus, shutting down the fund is never an optimal decision ex post and the

punishment is non credible.

One second alternative would have been to model limits of arbitrage as arising because

investors learn about the fund manager�s skill, assuming such a skill is �xed from the be-

ginning (i.e. not obtained through learning). If the fund underperforms, then it becomes

optimal to withdraw investment because the chances that the manager is incompetent are

high. In such a model, there would be no reason for an investor to lock his money up in the

fund because there is no e¢ ciency gain to do so.
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To make impediments to withdrawals optimal from a contracting perspective, they must

have an incentive property, so we choose a moral hazard setting (learning entails an �e¤ort�).

An alternative model would be to assume that managers have �xed types (skilled or unskilled)

and that investors seek to design separating contracts. Such a model would be almost

identical to the model we present in this paper, except that learning is exogenous. Such a

model would generate identical predictions to the ones we derive and test here.

2.2 Solving the Model

We �rst derive the optimal contracts for given expected asset prices, and then solve for the

rational expectations equilibrium of the asset market. This allows us to (1) characterize the

equilibrium and (2) �nd a relationship between impediments to withdrawals (ID > 0), and

the equilibrium returns of the funds.

2.2.1 Optimal Contracts

In this Section, we take the sequence of future prices P , PU , PM and PD as given. The

optimal contract solves the manager�s objective function, which is the project�s NPV, under

the constraints that the pro�t pledgeable to investors is nonnegative and that the manager

exerts the desired level of learning e¤ort (Tirole, 2006).
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We �rst focus on high learning e¤ort funds:

max
I;IU ;IM ;ID

8>>>>>><>>>>>>:
I: [(1� �� ")PU + �PM + "PD � P ]

+ (1� �� ") IU : [V � PU ]

+�IM : [�V � PM ] + "ID: [�V � PD]

9>>>>>>=>>>>>>;
s.t. I: [(1� �� ")PU + �PM + "PD � P ] + (1� �� ") IU : [V � PU ]

+�IM : [� (V �B)� PM ] + "ID: [� (V �B)� PD] + A � 0

"��:B:ID > C

The objective function is the overall NPV of the fund. The �rst term is the total pro�t made

between period 1 and 2, which is equal to the expected price increase times the amount

invested in t = 1. Given that this pro�t is free from any agency consideration, it can be

pledged to the investor at 100%, which is why it also appears as such in the �rst (investor

participation) constraint. The second term is the t = 2 NPV realized in state U , which can

also be fully pledged. The third term is the expected NPV in state M . In this case, the

manager will purchase the right asset with probability � (since learning e¤ort has been made)

and, as appears in the �rst constraint, only �(V � B) per asset purchased can be pledged

at t = 0. In state D, the conditional expected payo¤ per asset is the same, because the

manager puts in high e¤ort. The second constraint is the manager�s incentive compatibility

constraint which ensures that, in period 1, high learning e¤ort is always prefered. Given our

parameters restrictions below, this constraint will never binds at equilibrium.

It is clear from the above problem that:

P = (1� �� ")PU + �PM + "PD

will have to hold in equilibrium. If this is not the case, I will be equal to +1 or �1.
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Hence, markets in t = 1 are fully e¢ cient in this model because there is no agency friction in

t = 1: any pro�t from arbitrage is pledgeable, so that in�nite amount of funds can be used

to �nance arbitrageurs. This reduces arbitrage opportunities to zero. For the same reason,

the same happens in state U : PU = V . Thus, all funds receive an indeterminate amount of

funding in state U .

Moreover, it is easy to see that PM 6 �V and PD 6 �V have to hold in equilibrium,

otherwise no fund would be willing to hold the asset in state M or in state D. At the same

time, PM > � (V �B) and PD > � (V �B). This comes from the fact that the marginal

pledgeable income of investment has to be strictly negative in equilibrium. If this is not the

case, fund managers could raise money to invest more, as the NPV of doing so is strictly

positive. This would contradict the equilibrium.

Given these properties and the convenient linearity of the problem, we obtain that:

IM =
1

�

A

PM � �(V �B)
;

ID = 0;

NPV =
A

PM � �(V �B)
:�(V � PM)� C;

if PM 6 PD. Hence, if the price in state M is low enough compared to the price in state D,

it is then e¢ cient (in terms of NPV) to allocate all pledgeable income in state M where the

asset is relatively cheap. In contrast, as soon as PM > PD:

IU = 0;

ID =
1

"

A

PD � �(V �B)
;

NPV =
A

PD � �(V �B)
(�V � PD)� C:
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When the asset is cheap in state D, it is e¢ cient to allocate all pledgeable income in state

D.

Computations and expressions are very similar when the optimal learning e¤ort is low.

In this case, the fund will invest only in state D if and only if PM > �
����PD. This leads us

to the following lemma:

Lemma 1 For given asset prices PM � V and PD � �V , there are �ve regimes:

In all regimes, all funds receive funding in state U . In addition.

1. PM < PD. In this case, both high and low learning e¤ort funds invest only in state M .

2. PM = PD. High e¤ort funds are indi¤erent between investing in state M and D. Low

e¤ort funds invest only in state M .

3. PD < PM < �
����PD. Then, high e¤ort funds only invest in state D, low e¤ort funds

only in state M .

4. PM = �
����PD. High e¤ort funds invest in state D and low e¤ort funds are indi¤erent

between investing in state M and D.

5. �
����PD < PM . Both high and low e¤ort funds only invest in state D.

The results of this lemma are intuitive: high PM discourages funds to invest in state M .

In addition, high e¤ort funds have higher returns to investing in state D, since this is when

learning e¤ort pays o¤. Hence, high e¤ort funds are ready to invest in state D for higher

levels of PD (i.e. lower expected returns).
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The above lemma also indicates that cases 1 and 5 cannot be equilibrium outcomes, since

in these cases there is no demand for assets in either state D or M . Putting aside the knife-

edge cases 2 and 4, this suggests that in equilibrium both levels of learning e¤ort coexist:

high e¤ort funds only invest in state D, while low e¤ort funds invest in M only.3 We now

turn to the description of the equilibrium.

2.2.2 Equilibrium

Following the discussion above, we restrict ourselves to PD 6 PM 6 �
����PD. Let � be

the equilibrium fraction of high e¤ort funds. In equilibrium, since both categories of funds

coexist, funds have to be indi¤erent, ex ante, between putting in high e¤ort (and buy in

state D) or low e¤ort (and buy in state M):

�V � PD
PD � � (V �B)

� C
A
=

�V � PM
PM � � (V �B)

: (1)

We now need to compute equilibrium prices PM and PD. Aggregate asset demand by

funds in state M and state D has to be equal to supply (assumed equal to 1). Hence:

PM = � (V �B) + �(1� �)A
�

(2)

PD = �(V �B) + ��A
"
: (3)

The price in each state is higher, the higher the expected payo¤, the higher the equity of

managers, and the higher the number of funds operating in this state. Plugging back (2)

3Case 2 cannot actually arise in equilibrium, otherwise a high training e¤ort fund would be indi¤erent in

t = 2 between investing in state M or D. In t = 1, it would then be optimal to make low e¤ort and invest

in state M only, to save the training e¤ort cost, hence there would be not demand for the asset in state M .

By contrast, case 4 can be an equilibrium outcome for some parameter values. To clarify exposition, we rule

them out in the following.
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and (3) into indi¤erence condition (1), we obtain the following equation for the equilibrium

�:

"

�
� C
B
=

�

1� �: (4)

It is straightforward to see that � 2]0; 1[. Moreover, � is increasing in ", and decreasing in �

and C=B. When the cost of making e¤ort (C) decreases, or when the gains of making e¤ort

(") are larger, there will be more high e¤ort funds operating in equilibrium.

So far we have assumed that, once the contract is signed, the fund manager puts in the

expected amount of e¤ort. It is straightforward to see that a manager with ID = 0 will make

no learning e¤ort, since it will never pay o¤. A fund manager with ID > 0 puts in high e¤ort

if and only if his incentive constraint is satis�ed:

ID =
1

��
>

C

"B��
: (5)

i.e. ID is large enough to make the gain of learning "��B:ID larger than the e¤ort cost C.

Finally, we need to ensure that asset prices in period 2 are below their fundamental value

in equilibrium (else conditions (2) and (3) do not apply). This occurs if and only if:

A <
�B

1� �: (6)

Intuitively, if fund managers have little equity, their demand will be so low that prices not

reach their fundamental values, even in state M .

Hence, an equilibrium is de�ned by equation (4), under conditions (5) and (6). Equilib-

rium prices also have to satisfy PD 6 PM 6 �
����PD. The following proposition characterises

such an equlibrium, and provides a parameter condition for its existence:

Proposition 2 Equilibrium Characterization
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There exists A and �� < � such that, if:

�� > �� and A < A

1. The only equilibrium is an equilibrium where � 2]0; 1[ funds make learning e¤ort and

are only committed funds in states U and D, and 1�� funds make low learning e¤ort

and are only entrusted funds in states U and M .

2. � is de�ned by equation (4). Equilibrium prices are such that PM > PD.

3. The ex ante optimal contract is renegotiation-proof in equilibrium.

Proof. Let �� be the (unique) positive solution of equation (4). Let A = �B=(1 � ��).

The condition A < A is equivalent to condition (6) which is therefore satis�ed. Let �� =

C���="B: this ensures that the incentive compatibility constraint for high e¤ort funds holds.

From (4), it is easy to see that �� < �.

From equilibrium prices (2) and (3), it is easy to obtain that:

PD � PM = �A:

�
��

�
� 1� �

�

�

�
< 0

which is negative by virtue of (4). QED

The optimal contract is renegotiation-proof because, in equilibrium, the asset price is

always above the marginal pledgeable payo¤, but below the marginal NPV. As a result,

the manager cannot raise new funds (he can only promise a negative income V � B � Pi,

i =M;D) nor is he willing to cut down investment (he obtains utility B per asset invested).

Put di¤erently, the contract is renegotiation proof because continuation is as optimal ex post

as it is ex ante: the size of the surplus does not increase nor decrease and there is thus no

scope for renegotiation.
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One can compute the relative underpricing in state D as the di¤erence PM � PD. Given

that the expected PV of the assets is � (V �B) in both states, PM �PD measures the price

di¤erence that is not due to a di¤erence in expected payo¤, but simply a lack of invested

funds. This underpricing is given by:

PM � PD =
�
1� �
�

� �
"

�
�A; (7)

therefore it is an increasing function of C=B. It is equal to 0 if C=B = 0. As the cost of

learning tends to zero, more and more funds are willing to raise money in state D. This

brings prices in state D closer to fundamental value.

This remark extends the model of Shleifer and Vishny (1997) to a full contracting frame-

work, where investors are also able to commit funding in the low state of nature (i.e. when

the asset is underpriced). What we show is that, when assets are underpriced, there is

an incentive for another class of fund to specialize in this state. Yet, because arbitrage in

this state is costly (managers need to learn enough about the asset), state D prices cannot

increase too much.

A related point is that learning is necessary in our model to obtain underpricing. Assume

that �� < ��, so that it is never optimal for funds with positive in�ows in state D to learn

in period 1. In this case, we are looking for an equilibrium where both funds investing in

states M , and in state D, make no learning e¤ort. In this case, it is easy to verify that there

is no price distorsion. The intuition is that entering state D is now costless as it entails no

learning e¤ort: free entry in the two states makes returns identical.

18



2.3 Predictions of the Model

Our �rst prediction is related to net of fee conditional returns. For both types of funds,

expected returns conditional on good performance in period 2 (i.e. in state U) are equal to

zero, since PU = V . This comes from the fact that there is no agency friction B in this state.

Including one would not change the results: both types of funds would still have the same

expected returns in this state, since they would purchase the same asset at the same price.

Our model has more interesting predictions on returns conditional on low performance

in period 2:

E(R3jR2 is low; ID > 0) = �(V �B)� PD = �
��A

"
; (8)

E(R3jR2 is low; ID = 0) = � (V �B)� PM = ��(1� �)A
�

: (9)

It appears clearly that expected returns of high e¤ort funds are larger than expected returns

of low e¤ort funds, since high e¤ort funds invest in state D, where assets are signi�cantly

underpriced (PD < PM). What is interesting is that this prediction holds in equilibrium,

even though �entry�in both states of nature is free at the contracting stage.

Prediction 1 High e¤ort funds exhibit more mean reversion in returns, in particular when

past returns are low. More precisely:

1. Conditional on high past returns, both funds have similar expected returns.

E(R3jR2 is high; ID > 0) = E(R3jR2 is high; ID = 0)

2. Conditional on low past returns, high e¤ort funds overperform low e¤ort ones.

E(R3jR2 is low; ID > 0) > E(R3jR2 is low; ID = 0)
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Before we procced, we note that the model would have exactly the same properties

(under slightly weaker conditions on parameters) is learning e¤ort was contractible. Thus,

the di¤erential mean reversion does not hinge on the contractibility or incontractability of

learning e¤ort; it is just slightly easier to obtain under full contracting.

The above prediction is related to Aragon (2007) and Agarwal et al (2008), who �nd

empirically that hedge funds with impediments to withdrawal tend to exhibit superior per-

formance (even after controlling for usual risk factors). They interprete this correlation as

evidence that investors demand a premium for holding illiquid (i.e. locked up) shares.4 And

indeed, given the loss of (put) option value, the cost of illiquidity to investors can be quite

sizeable (Ang and Bollen, 2008, perform a calibration using a real option model). Our model

has the feature that high e¤ort funds may exhibit higher performance under some circum-

stances. Using (8) and (9), we �nd easily that the excess unconditional performance of high

e¤ort funds is given by:

E(R3jhigh e¤ort)� E(R3jlow e¤ort) = � (1� 2�)A

High e¤ort funds outperform in our model as long as � < 1=2. If � is small enough, fewer

funds invest in state D while more funds invest in state M . Thus, underpricing in state D

is large enough to make high e¤ort funds outperform low e¤ort ones.

Our model does not only predict that high e¤ort fund�returns mean revert more, but

4It is interesting to note that the presence of impediments to withdrawals does not necessarily mean that

investment is illiquid. One possibility is that shares, even though not immediately redeemable, can be traded

among investors on a secondary market (for the description of such a market, see for instance Ramadorai,

2008).
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also makes predictions on the relative size of the mean reversion. Intuitively, as the share of

high e¤ort funds � increases, there is more investment in state D, which increases PD and

reduces PM . Given that high e¤ort funds invest in state D, their outperformance should

therefore be reduced. Thus, across asset markets, � and the overperformance of high e¤ort

funds conditional on past low returns should be negatively correlated. Given that � and the

extent of mean-reversion are both endogenous, we need to verify that this intuition holds in

the model. We do this in the proposition below:

Prediction 2 When C decreases:

1. � increases

2. The outperformance of high e¤ort funds, conditional on bad performance:

� = E(R3jR2 is low; ID > 0)� E(R3jR2 is low; ID = 0)

decreases.

Proof. From (8) and (9):

� = ��A:
�
�

"
� 1� �

�

�
which is a decreasing function of �. As C=B decreases, � increases, which reduces �.

We now turn to formal tests of this proposition. We do not observe learning e¤ort in

the data, but we know from the model that learning e¤ort is high for funds who still receive

funding in state D, i.e. when past performance has been relatively poor. We use the fact

that, in our data, funds with impediments to withdrawal face lower reductions in assets

under management conditional on bad performance (see also Ding et al, 2008, for related

evidence). Thus, we use the presence as strong impediments to withdrawal as our measure

that ID > 0, and test the two predictions derived here.
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3 Empirical Section

3.1 Data Description

We start from a June 2008 download of EurekaHedge, a hedge fund data provider. The

download provides us with monthly data from june 1987 until june 2008. 6,070 funds are

initially present in the sample, with a total of 366,728 observations. Every month, each fund

reports asset under management and net of fee returns. We delete from the data set all

funds that have less than $20m under management.

Our main results use annual data, but we also use higher frequency information on

returns (monthly and quarterly, see below). Descriptive statistics on returns, and AUM are

provided at the annual frequency in Table 1, panel A. Mean annual return about 11% net of

fees. Mean assets under management are 300 million dollars. Also available from the data

are fund level characteristics that do not change over time, whose descriptive statistics are

reported in panel B, Table 1. Using these information, we contruct two dummy variables

capture the presence of �strong�impediments to withdrawal:

� Lock up dummy: In some cases, investors agree to lock their investment in the fund

for a given period of time for certain length of time after their investment.. Out of

5,154 funds for which share restrictions are known, the mean lock-up period is about

2.6 months. This mean conceals a lumpy distribution: 21% of the funds have lock up

periods, 15% have a lock up period of 12 months, and only 2% have a longer lock up

period. The percentage of funds with lock-up periods that we have in our dataset is

similar to what Aragon (2007) has in his TASS extract.
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� Redemption dummy: Once the lock-up period has passed, investors can redeem

their shares, but still face constraints. Redemption can only occur at �xed moments of

the year. For 3,152 funds (53% of the total), redemption is monthly. It is quarterly for

25% of the funds (1,499), and annual in 151 cases. In addition, investors have to notify

the fund of their withdrawal before the redemption period. This notice period is lower

than 1 month in 30% of the cases, equal to 1 month in 30% of the cases, and is equal

or above one quarter in 15% of the cases. We construct a dummy variable equal to one

when the sum of the redemption and notice periods is equal or longer than a quarter

(90 days). The mean value of this sum is equal to 92 days; for 38% of the funds, it is

equal or larger than a quarter.

Finally, the spearman correlation between the lock-up dummy and the redemption dummy

is 41% (using one data point per fund). Thus, even though this correlation is positive and

statistically signi�cant, which indicates some complementarity between the two forms of

share restriction, it is far from being equal to 1. In particular, 23% of the funds without lock

up have �redemption periods�.

[Table 1 about here]

How e¤ectively constrained are hedge fund investors? To answer this question, we com-

pute the mean duration of capital, for each fund, separately for each year. We do this by

including the e¤ects of lock up periods, redemption date and advance notice. We use the
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following formula:

Durationit = Noticei +
Redemption Periodi

2

+
1

AUMit

:

0@ X
06s6L-U pdi

Net In�it�s � 1fNet In�it�s>0g � (L-U Pdi � s)

1A
The �rst part of this formula accounts for the e¤ect of notice and redemption periods. The

implicit assumption behind this formula is that fund�s distance to the next redemption period

is uniformly distributed. The second part accounts for the e¤ect of lock up periods. For

each past net in�ow into the fund, it computes the remaining lock up duration (for instance,

5 month old in�ows have a duration of 7 months if the lock up period is one year). We

then normalize by current assets under management. We use monthly data. Following the

literature on fund �ows (Chevalier and Ellison, 1997, Sirri and Tufano, 1998), we compute

net in�ows by taking the di¤erence between monthly AUM growth and monthly returns,

and remove outliers. Overall, the above formula is an approximation. First, past in�ows are

computed net of out�ows. This procedure leads us to underestimate gross in�ows if they

occur at the same time as gross out�ows. Second, when shares are still locked up, the notice

and redemption periods are in part ine¤ective. This leads the above formula to overestimate

duration.

[Figure 1 about here]

We plot the sample distribution of estimated durations in Figure 1. Taking all fund-

months in the sample, the sample mean of this measure is 3 months. On average, the

contributions of potential lock up periods and redemption and notice are of similar sizes.

The 25th, 50th and 75th percentiles of the distribution are respectively 1, 1.5 and 3.5 months.
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The time series of the mean duration exhibits a clear downward trend, from 3.5 months in

1996 to about 2.6 months in 2007. If we focus on the subgroup of funds with lock up periods

(21% of our sample), mean duration is, unsurprisingly, much larger: 8.2 months (median is

5.8). Thus even though most funds have relatively short duration of liabilities, there is a

group of funds for which the mean dollar of AUM is secured for at least half a year.

As expected, such impediments to withdrawals do indeed prevent out�ows from happen-

ing in the data. To check this, we run the following regression on annual data:

Out�owit = 
i + �:1frit�1<rrft�1g + �:1frit�1<rrft�1g � Impedimenti + "it

where Out�owit is a variable equal to 0 if the fund experiences net in�ows in year t, and equal

to net in�ows if net in�ows are negative. Net in�ows are computed as the di¤erence between

AUM growth (between t and t � 1) and net-of-fee returns, as is standard in the literature.

1frit�1<rrft�1g is a dummy variable equal to 1 if past year�s returns have been lower than the

safe rate of return (as measured by the yield on 3 months Treasury bill). Impedimenti is one

of the two measures described above: lock-up period of at least a year, or redemption period

of at least a quarter. We include a fund speci�c �xed e¤ect 
i and cluster error terms at the

year level.

[Table 2 about here]

Regression results are reported in Table 1. As shown in the �rst column, if past perfor-

mance is below the safe rate of return, out�ows increase by 11% of AUM on average. This is

sizeable, compared to mean annual out�ows of 13% in the data, and a cross sectional stan-

dard deviation of 22% (see Table 2). As shown in columns 2 and 3, such a large sensitivity
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is somewhat reduced, yet not totally erased, by the presence of impediments to withdrawal.

Conditional on low performance, funds with such share restrictions experience out�ows of

8% of AUM, compared to 12% without such restrictions. Hence, the sensitivity is reduced

by about one third.

3.2 Evidence from Conditional Returns

We test here our prediction 1: illiquid funds overperform liquid funds relatively more after

bad performance than after good performance. We �rst provide graphical evidence in �gure 2.

To obtain it, we regress current and past returns on fund dummies to absorb individual �xed

e¤ects. Then, we plot the residuals of current returns against the residuals of past returns

for locked up funds and for liquid funds. It appears from �gure 2 that the returns of locked

funds exhibit more mean reversion than the returns of liquid funds. It also appears that,

consistently with the model, such mean reversion is more prevalent when past performance is

low. In the following, we test these two dimensions (excess mean reversion, and asymmetry)

in turn.

[Figure 2 about here]

We �rst run the following regression:

rit = 
i + �:1frit�1<rrft�1g + �:1frit�1<rrft�1g � Impedimenti + "it (10)

where rit is the annual return of fund i in year t. We use annual data because at the annual

frequency returns are less likely to be polluted by asset illiquidity problems (Lo, 2008; more

on this below). 
i is a fund-speci�c �xed e¤ect, designed to capture heterogeneity in risk
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exposure and alphas, across funds (but our results are unchanged in the absence of �xed

e¤ects). We cluster error terms at the year level. Our theory predicts that the extent of

mean reversion in returns should be larger for illiquid funds, i.e. � > 0.

[Table 3 about here]

Table 3 reports the results. Column 1 indicates that there is, in the data, a slight mean

reversion of fund returns. After a performance below the risk-free rate, annual returns are on

average 3.8 points higher, but the statistical signi�cance is small. Columns 2 and 3 separate

out liquid and illiquid funds. Consistently with the �rst prediction of our model, the mean

reversion of returns signi�cantly increases with impediments to withdrawal. After returns

below the risk-free rate, annual returns increase by 2.6 points for funds with no lock-up and

by 7.7 points for funds with a lock-up: the di¤erence is strongly signi�cant. When we look

at redemption periods, we �nd that returns increases by 3.4 points after low performance

when the notice + redemption period is shorter than a quarter, and by 6.7 when it is longer

than a quarter. Again, the di¤erence is strongly signi�cant.

Thus, results from Table 3 show that there is a signi�cantly larger tendency for returns

of illiquid funds to mean revert, but it does not di¤erentiate between mean reversion in bad

states of nature and mean reversion in good states of nature. Our model, however, does

predict such an asymmetry. Prediction 1 suggest that most of the mean reversion should be

conditional on bad states of nature. This comes from the fact that, in the model, bad states

of nature are states where assets are underpriced, while there is no mispricing in the good

states of nature. Such a prediction holds even if � = 1, i.e. expected asset payo¤s are similar

in states U , M , and D.
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To test it, we check if there is a di¤erence in mean reversion between funds with past

low returns, and events with past high returns. We de�ne low returns as above, i.e. as cases

when returns are below the safe rate of return (as measured by the 3 month.T-bill rate).

This corresponds to approximately 21% of the observations in our dataset. Against this

background, we de�ne high returns as cases where past annual returns are above 20% net of

fee: this threshold is chosen because it isolates about 21% of our fund-year observations, so

the identifying power of the data should be similar for mean reversion conditional on high

and low returns.

[Table 4 about here]

We then run regressions similar in spirit to (10): we also introduce a dummy variable equal

to one if past returns have been above 20%, and its interaction with the fund�s impediments to

withdrawal. Results are reported in Table 4. In column 1, we do not control for impediments.

It appears that the amount of mean reversion is fairly symmetric across the two extreme

states, albeit weakly signi�cant. Conditional on low past returns, expected returns are

larger by about 3 percentage points. Conditional on high past returns, expected returns

are lower by about 2.7 ppoints. In column 2, we interact these two terms with the lock-up

dummy. The asymmetry appears clearly: conditional on bad peformance, funds with lock-

ups overperform funds without lock-ups by about 5 percentage points. Conditional on good

past performance, both categories of funds experience the same decline in expected returns.

The same asymmetry is present with our second measure of impediment to withdrawal.
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3.3 Mean Reversion, conditional on other funds Capital Struc-

tures

In this Section, we test our prediction 2. This prediction states that the di¤erence between

high and low e¤ort funds expected returns, conditional on low past performnce, is a decreas-

ing function of �. When the fraction of funds with ID > 0 decreases, the price di¤erence

between states D and M will expand, which will increase the scope for mean reversion for

funds that invest in state D. In our model, � is determined in equilibrium but the proof of

prediction 2 ensures that this negative covariation should be there as underlying parameters

change.

Econometrically, prediction 2 rewrites, for fund i at date t operating on asset market s:

rist = 
i + �:1frist�1<rrft�1g + �:1frist�1<rrft�1g � Impedimenti

+�:1frist�1<rrft�1g � �s + �:1frist�1<rrft�1g � Impedimenti � �s + "it (11)

where �s corresponds to � in the model; �s is the fraction of other illiquid funds. Ideally,

to compute �s, we should focus on pure players on the same asset market where fund i

operates. It is, however, not feasible, �rst because in general funds may operate on several

assets markets, and also because the data does not provide us with the positions of funds

on each market. Thus, we use the style classi�cation of the database, implictly assuming

that funds operating within a given style buy the same assets. Thus, �s will be the fraction,

in the style where fund i is operating, of funds a lock-up period of at least 1 year, or the

fraction of funds with at least a quarterly redemption. Our model unambiguously predicts

that the di¤erence in mean reversion should be lower in styles where there are more other

funds with impediments to withdrawal, so that � < 0.
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[Table 5 about here]

Table 5 reports estimates of equation (11) on our sample. Column 1 measures impedi-

ments as lock-ups. Conditional on past low performance, illiquid funds outperform by about

13 percentage points if there no other illiquid funds at all in the style. If the fraction of other

funds with lock-ups is 20% (the sample average), the outperformance of illiquid funds goes

down to 7 percentage points. The di¤erential e¤ect of �s is statistically signi�cant at 5%.

In column 2, we use quarterly redemptions as our measure of impediments to withdrawals,

both at the fund level and to compute �s. For this speci�cation, the result is less favorable

to our theory: the estimate of � is insigni�cant and economically negligible.

3.4 Comparison with Existing Literature

Our main empirical result is thus that funds experience more mean reversion in returns

when they have share restrictions. In this Section, we show how our results complement the

existing literature on hedge funds.

Getmansky, Lo and Makarov (2004) have designed a measure of returns �smoothing�by

funds (named �0). This measure is econometrically complex to put in place, but the principle

is to look at autocorrelation of monthly returns. If monthly returns are very autocorrelated,

then it is likely that funds smooth returns across months to minimize volatility. Such a

strategy is easier to put in place for assets whose prices cannot easily marked to market, so �0

is also considered as a proxy for asset illiquidity. Consistent with the idea that impediments

to withdrawals help funds to buy illiquid assets, such interpretation, Aragon (2007), Ding et

al (2008) and Liang and Park (2008) have shown that high �0 funds also tend to have share
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restrictions.

This contradiction with our results (we �nd less returns persistence for funds with share

restrictions) is only apparent, because we focus on annual returns, who are less likely to be

smoothed. Illiquidity and window dressing issues should therefore generate less autocorrela-

tion at this frequency. In fact, as we show in Tables 3 and 4, column 1, annual returns are

more likely to mean-revert, for the average hedge fund in our sample.

This di¤erence between existing results and ours paper does not come from the fact

that we are using a di¤erent dataset (most papers use Lipper/TASS), but really from the

fact that we work with annual data. To check this, we look at the correlation between

impediments to withdrawal and the autocorrelation of monthly returns. First, we compute,

for each fund, a measure of the �rst order autocorrelation in monthly returns: we �nd an

average of 0.10. This �gure is consistent with what can be found in papers using other

datasets: for instance, Lo (2008) �nds that the mean �rst order autocorrelation of fund

returns is 0.08 using the TASS/Lipper database (his Table 2.6). Consistently with Liang

and Park (2008), we also �nd that autocorrelation is positively correlated with the presence

of a lock-up period: in our dataset, the correlation is 0.08 (compared to 0.09 in their study),

statistically signi�cant at 1%. Thus, our data generates the same pattern as existing papers:

impediments to withdrawal are associated with more autocorrelated monthly returns.

To further check this, we ran regression (10) with monthly, instead of yearly, data, on

all funds. We �nd, in the �rst column of Panel A of Table 6, that coe¢ cient on low past

performance is �0:38 and the interaction term is �0:14, but signi�cant at 10% only. Thus,

at very high frequency, our data, like others, generate the positive autocorrelation pattern

found in the literature.
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[Table 6 about here]

This analysis suggests that the correlation between impediments to withdrawals and

autocorrelation of returns is a¤ected by two opposite forces: at the annual frequency, illiquid

funds mean revert more because they take advantage of temporary mispricing, while at

the monthly frequency, they exhibit more autocorrelation because they hold illiquid assets

whose prices display a signi�cant inertia. To disentangle these two e¤ects, we run regression

(10) on di¤erent groups of hedge funds, depending on the liquidity of the asset market they

operate on. If we focus on funds managing liquid assets such as (long-short) equity funds,

we �nd some evidence that persistence of monthly returns is weaker for funds with lock-up

periods (Panel A, column 2), although the relation is not statistically signi�cant. So even

with monthly data, the evidence from �liquid styles� is more in line with our theory. For

�xed income funds, the pattern is reversed (Panel A, column 3): for this strategy, as the

existing literature would predict, share restrictions means more smoothing, and therefore

more autocorrelation. In unreported regressions, we �nd similar results when we measure

impediments to withdrawal with redemption periods.

With quarterly data, our predictions start to have more bite. In Panel B of Table 6, we

re-estimate equation (10), using as the LHS variable quarterly, instead of monthly, returns.

On the whole panel of funds, we �nd evidence of more mean reversion for funds with lock-up

periods (Panel B, column 1), while there was less reversion at the monthly frequency (Panel

A, column 1). For equity funds, the e¤ect is even more spectacular (Panel B, column 2). For

�xed income funds, the movement of persistence is still present at the quarterly frequency,

but less signi�cant (Panel B, column 3). In unreported regressions, we �nd similar results
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when we measure impediments to withdrawal with redemption periods.

4 Conclusion

In this paper, we have developed and tested a model of delegated fund management in

equilibrium. The starting point was Shleifer and Vishny (1997): arbitrageur invest in a

common market. Arbitrage opportunities may generate temporary underperformance. Our

model explicitly models the contract that ties the investor and the fund manager. Because

in some cases the underpricing can be so severe, we �nd that it is always optimal for the

investor to commit not to redeem his shares, for some funds only. Hence, we predict that

funds with share restrictions will outperform those without such restrictions after past bad

performance. We �nd evidence consistent with this in the data.
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Figure 1: Duration of Fund Liabilities
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Figure 2: Conditional Returns and Lock-Ups
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B Tables

All funds with AUM>20m

Mean Std Obs

Panel A: Annual variables

Return 10.5 13.5 7,041

AUM 301 554 7,041

Net In�ows 18.0 75.3 7,041

Net In�ows� (Net In�ows<0) -13.0 22.6 7,041

Panel B: Fixed Characteristics

Long Short 0.44 - 5,310

Global Macro 0.06 - 5,310

Fixed income 0.05 - 5,310

Lock-up Period (months) 2.6 5.8 5,154

Lock-up dummy 0.21 - 5,154

Notice + Redemption Periods 92 84 4,805

Quarterly Not.+Red. dummy 0.38 - 4,805

Source: Annual data from EurekaHedge, restricted to all funds with more than $20m under man-
agement.

Table 1: Summary Statistics
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Dependent variable Net in�owsit � (Net in�owsit < 0)

Impediment to withdrawal None Lock Up Quart. Redemption

(1) (2) (3)

(rit�1 < r
rf
t�1) -0.11��� -0.12��� -0.14���

(0.2) (0.2) (0.02)

(rit�1 < r
rf
t�1) - 0.04�� 0.04���

� Impedimenti (0.02) (0.01)

Fund FE Yes Yes Yes

Observations 4,825 4,690 4,162

Adj: R2 0.54 0.54 0.55

Data: EurekaHedge, 1994-2007. Annual data, excluding funds with AUM lower than 20 million
USD. The dependent variable is equal to annual net in�ows if they are negative, and zero else.
Net in�ows are computed as the di¤erence between the growth in AUM minus net-of-fee returns.
All speci�cations include fund speci�c �xed e¤ects. In column (1), the only regressor is a dummy
equal to 1 if the past annual return was lower than the yield on the 3 month T-bill. In column
(2), we interact with the fact that fund i has a lock-up period of at least a year. In column (3)
we interact with the fact that redemption + notice periods is at least 120 days. Error terms are
clustered at the year level. �, ��, and ��� means statistically di¤erent from zero at 10, 5 and 1%
levels of signi�cance.

Table 2: Out�ows and Impediments to Withdrawal
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Dependent variable rit

Impediment to withdrawal None Lock Up Quart. Redemption

(1) (2) (3)

(rit�1 < r
rf
t�1) 3.8� 2.6 3.4

(2.1) (2.3) (2.0)

(rit�1 < r
rf
t�1) - 5.1��� 3.3���

� Impedimenti (1.4) (1.0)

Fund FE Yes Yes Yes

Observations 4,541 4,412 3,902

Adj: R2 0.48 0.48 0.49

Data: EurekaHedge, 1994-2007. Annual data, excluding funds with AUM lower than 20 million
USD. The dependent variable is the annual net-of-fee return. All speci�cations include fund speci�c
�xed e¤ects. In column (1), the only regressor is a dummy equal to 1 if the past annual return was
lower than the yield on the 3 month T-bill. In column (2), we interact with the fact that fund i
has a lock-up period of at least a year. In column (3) we interact with the fact that redemption +
notice periods is at least 120 days. Error terms are clustered at the year level. �, ��, and ��� means
statistically di¤erent from zero at 10, 5 and 1% levels of signi�cance.

Table 3: Conditional Returns and Impediments to Withdrawal
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Dependent variable rit

Impediment to withdrawal None Lock Up Quart. Red.

(1) (2) (3)

(rit�1 < r
rf
t�1) 3.0� 1.8 2.8

(1.7) (1.9) (1.7)

(rit�1 > 20%) -2.7� -2.9� -2.1

(1.5) (1.5) (2.0)

(rit�1 < r
rf
t�1) - 5.0��� 2.8���

� Impedimenti (1.4) (0.8)

(rit�1 > 20%) - 0.5 -1.0

� Impedimenti (1.0) (2.1)

Fund FE Yes Yes Yes

Observations 4,541 4,412 3,902

Adj: R2 0.48 0.48 0.49

Data: EurekaHedge, 1994-2007. Annual data, excluding funds with AUM lower than 20 million
USD. The dependent variable is the annual net-of-fee return. All speci�cations include fund speci�c
�xed e¤ects. In column (1), the two regressors are a dummy equal to 1 if the past annual return
was lower than the yield on the 3 month T-bill, and a dummy equal to 1 if the past annual return
was above 20%. In column (2), we interact with the fact that fund i has a lock-up period of at
least a year. In column (3) we interact with the fact that redemption + notice periods is at least
120 days. Error terms are clustered at the year level. �, ��, and ��� means statistically di¤erent
from zero at 10, 5 and 1% levels of signi�cance.

Table 4: Conditional Returns and Impediments to Withdrawal: Good States versus Bad

States
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Dependent variable rit

Impediment to withdrawal Lock-Up Quart. redemption

(1) (2)

(rit�1 < r
rf
t�1) 0.1 4.5��

(2.4) (2.0)

(rit�1 < r
rf
t�1) 12.7��� 3.8

� Impedimenti (3.3) (5.5)

(rit�1 < r
rf
t�1) 13.7�� -4.4

� �st (5.1) (3.3)

(rit�1 < r
rf
t�1) -31.1�� 0.3

� Impedimenti � �st (13.8) (12.0)

Fund FE Yes Yes

Observations 4,412 3,902

Adj: R2 0.49 0.49

Data: EurekaHedge, 1994-2007. Annual data, excluding funds with AUM lower than 20 million
USD. The dependent variable is the annual net-of-fee return. All speci�cations include fund speci�c
�xed e¤ects. In column (1), we use as measure of impediment to withdrawal the fact that fund
i has a lock-up period of at least a year. In column (2) the impediment dummy is equal to 1 if
redemption + notice periods is at least 120 days. Error terms are clustered at the year level. �, ��,
and ��� means statistically di¤erent from zero at 10, 5 and 1% levels of signi�cance.

Table 5: Mean Reversion: The Impact of Other Funds�Illiquidity
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Dep. Variable rit

Panel A: Monthly frequency

All Long short equity Fixed Income

(1) (2) (3)

(rit�1 < r
rf
t�1) -0.38�� -0.44�� -0.45���

(0.18) (0.21) (0.14)

(rit�1 < r
rf
t�1) -0.14� 0.14 -0.49���

� Lock-Upi (0.08) (0.13) (0.14)

Fund FE Yes Yes Yes

Observations 120,734 51,963 6,929

Adj: R2 0.06 0.05 0.10

Panel B: Quarterly frequency

All Long short equity Fixed Income

(1) (2) (3)

(rit�1 < r
rf
t�1) -0.10 -0.42 -0.49

(0.42) (0.58) (0.40)

(rit�1 < r
rf
t�1) 0.53�� 1.37��� -1.24��

� Lock-Upi (0.26) (0.24) (0.55)

Fund FE Yes Yes Yes

Observations 34,447 14,828 1,989

Adj: R2 0.15 0.15 0.18

Data: EurekaHedge, 1994-2007. Annual data, excluding funds with AUM lower than 20 million
USD. The dependent variable is the net-of-fee return. Panel A uses monthly returns, while Panel
B uses quarterly returns. All speci�cations include fund speci�c �xed e¤ects. In column (1), we
look at all funds. In column (2), we restrict the sample to the long-short equity style. In column
(3), we restrict the sample to funds operating in the �xed income style. Error terms are clustered
at the month (panel A) and quarterly (panel B) level. �, ��, and ��� means statistically di¤erent
from zero at 10, 5 and 1% levels of signi�cance.

Table 6: Conditional Returns and Impediments to Withdrawal: Higher Frequency Evidence
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