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Abstract

The explosion of algorithmic trading has been one the most recent prominent
trends in the financial industry. Algorithmic trading consists of automated trading
strategies that attempt to minimize transaction costs by optimally placing transac-
tions orders. The key ingredient of many of these strategies are intra-daily volume
predictions. This work proposes a dynamic model for intra-daily volume forecast-
ing that captures salient features of the series such as intra-daily periodicity and
volume asymmetry. Results show that the proposed methodology is able to signif-
icantly outperform common volume forecasting methods and delivers significantly
more precise predictions in a VWAP tracking trading exercise.
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1 Introduction

Portfolio management and asset allocation require the acquisition or liquidation of po-
sitions: when the related volume is sizeable according to prevailing market conditions,
placing an order is potentially able to change the price of that asset. This is particularly
true for actions taken by institutional investors (e.g. pension funds or insurance com-
panies managing large capitals) and for illiquid assets. The interaction between market
participants may determine the creation of positions with the hope to profit from being on
the other side of the large order. By the same token, large orders may need so—called price
concessions in order to attract an adequate counterparty. The decision to buy or sell an
asset in large quantities, in other words, must be informed as of the potential price impact
which that particular trade may have (an effect known as slippage). This may result in
lower profits or higher losses if the order is executed (transaction risk) or in the order not
being executed at all.

In recent years, and increasingly so, services are being offered by specialized firms which
provide program trading to institutional investors under the premise that their expertise
will translate into a more efficient management of the transactions, minimizing slippage,
or even into the assumption of some transaction risk. To be clear, there is no easy solu-
tion to transaction risk: the uncertainty around the actual execution price relative to one’s
own expected price (or of the execution of the order itself) must be weighed against the
unavoidable uncertain market movements to face, should one decide to wait to place the
order (market risk). To this extent, the relevant strategy is to plan how to place the orders
relative to the characteristics of the financial market (rules and regulations, e.g. opening
price formation), of the particular asset (e.g. liquidity, volatility, etc.), and, at a more ad-
vanced level, of that asset relative to other assets in a portfolio (e.g. correlation, common
features, etc.).

Algorithmic trading (a.k.a. algo—trading) is widely used by investors who want to manage
the market impact of exchanging large amounts of assets. It is favored by the development
and diffusion of computer—based pattern recognition, so that information is processed in-
stantaneously and action is taken accordingly with limited (if any) human judgement and
intervention. The size of orders generated and executed by algo—trading is quite large and
is increasing. In October 2006, the NYSE has boosted a mixed system of electronic and
face—to—face auction which brings automated trades to about 50% of total trades, and sim-
ilar trends are valid for other financial markets (smaller proportions when assets are more
complex, e.g. options). It is generally recognized that algorithmic trading has reduced the
average trade size (smaller liquidity) in the markets and hence has pushed institutional
investors to split their orders in order to seek better price execution (cf. Chordia et al.
(2008)).

The daily Volume Weighted Average Price (VWAP) was introduced by Berkowitz et al.
(1988)) as a weighted average (calculated at the end of the day) of intra-daily transaction
prices with weights equal to the relative size of the corresponding traded volume to the
total volume traded during the day (defined as full VWAP in Madhavan (2002)). In the
original paper, the difference between the price of a trade and the recorded VWAP was
used to measure the market impact of that trade. The goal of institutional investors is
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to minimize such impact. VWARP is a very transparent measure, easily calculated at the
end of the day with tick—by—tick data: it allows to evaluate how average traded prices
were favorable to the trader. A VWAP replicating strategy is thus defined as a procedure
for splitting a certain number of shares into smaller size orders during the day, which
will be executed at different prices netting an average price that is close to the VWAP.
Whether the VWAP benchmark is proposed on an agency base or on a guaranteed base
(in exchange for a fee) is a technical aspect which does not have any bearings in what we
discuss.

As we will see, in order to implement a VWARP replicating strategy we need to be able to
forecast volumes in their intra-daily pattern, while it is less important to be able to predict
prices. Reproducing the VWAP is based on estimating and forecasting the relative weight
that volumes have during the day. As we will show in what follows, there are different
components in the dynamics of traded volumes recorded at intra-daily intervals (relative
to outstanding shares). We concentrate on single assets and we record intra-daily behav-
ior at regular intervals. From an initial descriptive analysis of the series we derive some
indications as of what features the model should reproduce. Beside the well documented
U-shaped pattern of intra-daily trading activity which translates into a periodic compo-
nent, we find that there are two other components which relate to a daily evolution of the
volumes and to intra-daily non—periodic dynamics, respectively. We use these findings
as a guideline to specify a Component Multiplicative Error Model where each element
has its own dynamic specification. The model is specified in a semiparametric fashion,
thus avoiding the choice of a specific distribution of the error term. We estimate all the
parameters at once by Generalized Method of Moments. The estimated model can then
be used to dynamically forecast the relative intra-daily volumes.

To be sure, our approach is just the first step into the implementation of an actual VWAP
based strategy. Microstructure considerations put institutional investors in a different po-
sition from those traders who exploit intra-daily volatility and are not constrained by
specific choices of assets. In the interaction between the two types, the latter will scan the
books to detect whether some peculiar activity may reveal the presence of a large order
placed by the former. At any rate, some orders may still be too large (relative to daily
volume) to be filled in one day, so that the market impact is possibly unavoidable.

Our model shares the same logic as the component GARCH model suggested by Engle
et al. (2006b), to model intra-daily volatility. The main difference lies in the evolution of
the daily and intra-daily components. Exploiting the scheme proposed here, all param-
eters of the model can be estimated simultaneously, instead of recurring to a multi-step
procedure. Engle et al. (2006a) propose econometric techniques for transaction cost anal-
ysis. Some connections can be found also with P-GARCH models introduced by Boller-
slev and Ghysels (1996); relative to their suggestion, we achieve a simplification of the
specification by imposing the same periodic pattern to the model coefficients (but see also
Martens et al. (2002)). The literature on econometric models for intra-daily patterns of
financial time series is quite substantial: from the initial contributions on price volume
relationship (cf. the survey by Karpoff (1987)), the idea of relating intra-daily volatility
and trading volumes as a function of an underlying latent information flow is contained
in Andersen (1996). More recently, attention was specifically devoted to measuring the



amount of liquidity of an asset based on the relationship between volume traded and price
changes: Gouriéroux et al. (1999) concentrate on modelling weighted durations, that is
the time needed to trade a given level (in quantity or value) of an asset. Dufour and Engle
(2000) look at the time between trades and how that has an impact on price movements.
Biatkowski et al. (2008) concentrate on volume dynamics and take a factor analysis ap-
proach in a multivariate framework in which there is a common volume component to
all stocks in an index and idiosyncratic components related to each stock which evolves
according to a SETAR model. At any rate, the approach proposed here is quite general,
given that some features of volumes are common to other non-negative intra-daily finan-
cial time series, such as realized volatilities, number of trades and average durations.

In this paper, we start from stylized facts (Section 2) to motivate the Component MEM
(Section 3). Section 3.3 contains the details on the estimation procedure. The empiri-
cal application is divided up between model estimation and diagnostics 3.4 and volume
forecasting and VWARP forecast comparisons 4. Concluding remarks follow (Section 5).

2 The Empirical Regularities of Intra-daily Volumes

We chose to analyze Exchange Traded Funds (ETFs), innovative financial products which
allow straightforward trading in market averages as if they were stocks, while avoiding
the possible idiosyncracies of single stocks. In the present framework, we count on a
dataset consisting of regularly spaced intra-daily turnover and transaction price data for
three popular equity index ETFs: DIA (Dow Jones ETF), QQQQ (Nasdaq ETF) and SPY
(S&P 500 ETF). The corresponding turnover series are defined as the ratio of intra-daily
transaction volume over the number of daily shares outstanding multiplied by 100. The
frequency of the intra-daily data is 30 minutes, leading to 13 intra-daily bins. Volumes
are computed as the sum of all transaction volumes occurred within each intra-daily bin.
Prices are derived as the last recorded transaction price before the end of each bin. The
sample period used in the analysis spans from January 2002 to December 2006 and we
only consider days in which there were no empty bins, which corresponds to 1248 trading
days and 16224 observations. The ultra high—frequency data used in the analysis are
extracted from the TAQ while shares outstanding are taken from the CRSP. Details on the
series handling and management are documented in Brownlees and Gallo (2006).

We first focus on the empirical regularities of the SPY turnover series which later will be
used as a guideline for the suggested model. Similar evidence also holds for the other
tickers for which we report summary descriptive statistics only.

Let us start with a graphic appraisal of the overall turnover (top panel of Figure 1): as
with many financial time series, it clearly exhibits clustering of trading activity. Not sur-
prisingly, turnover clustering is closely connected to clustering in realized volatility, but
it measures a different dimension of market trading activity. Figure 2 plots the turnover
and realized volatility time series (defined as the square root of realized variance based
on 1-minute frequency intervals) together with their scatter plot. Interestingly, the clus-
tering is retained if we take daily averages (cf. the series in the second panel of Figure
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Figure 1: SPY Turnover Data: Original Turnover Data (top); Daily Averages (center),
Intra—daily Component (bottom).
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Figure 2: SPY Turnover Data: Turnover Data (top); (Realized Volatility, Turnover) Scat-
ter Plot (center); Realized Volatility (bottom).
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Figure 3: SPY Turnover Data: Intra—daily Component (top); Intra—daily Periodic Com-
ponent (center); Intra—daily Non-periodic Component (bottom).
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Figure 4: Autocorrelation Function of the Overall Turnover and of the Daily Averages.
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Figure 5: Autocorrelation Function of the Intra-daily (Periodic and Non—periodic) Com-
ponents.

1). Dividing each observation by the corresponding daily average we obtain what we
call an intra-daily pattern (bottom panel of Figure 1); following other stylized facts about
intra-daily data, we suppose to have a periodic component and a non periodic component.
Such descriptive analysis is performed in Figure 3 where we reproduce again, for ease
of reference, the overall intra-daily pattern (top panel). The periodic component can be
evaluated from the above series (i.e. that obtained by dividing data by the daily averages),
as the average of 13 intra-daily bins (center panel). This average turnover by time of day
exhibits the familiar U-shape of other intra-daily financial time series (e.g. average du-
rations) which is consistent with the notion that trading activity is higher at the opening
and closing of the markets and is low around mid-day. The ratio between these two series
gives a non—periodic component which is shown in the bottom panel of Figure 3.

We believe that these three series (daily, intra-daily periodic, and intra-daily non periodic)
have interesting dynamic features, which are confirmed by the analysis (Figure 4) of the
correlograms of the original series (left panel) and of the daily averages (right panel). The
use of unconditional intra-daily periodicity to adjust the original series results in a time
series with a correlogram where periodicity is removed but some short—lived dependence
is retained (Figure 5).



The inspection of the autocorrelations on the components (table 1) of the three tickers
raw series substantially confirms the graphical analysis. The overall time series display
relatively high levels of persistence which are also slowly decaying. The autocorrelations
do not decrease by daily averaging. By dividing the overall turnover by its daily average
(intra-daily component), a substantial part of dependence in the series is removed. Finally,
once the intra-daily periodic component is removed, the resulting series show significant
low order correlations only. Interestingly, the magnitudes of the various autocorrelations
of the series are remarkably similar across the assets.

overall daily intra-daily intra-daily
non-periodic
P1 Piday | P1 Piday | P1 Piday | P1 P1week
DIA 0.65 046 | 0.72 059 | 035 0.27 | 0.13 0.01
QQQQ | 0.70 0.52 | 0.77 0.66 | 048 0.40 | 0.20 0.00
SPY 0.77 0.60 | 0.84 0.75 | 044 034 |0.18 0.00

Table 1: Autocorrelations at selected lags of the turnover time series components.

3 A Multiplicative Error Model for Intra-daily Volumes

The empirical regularities discussed in Section 2 suggest a specification for intra-daily
volumes which decomposes the series in three components: one daily and two intra-daily
(one periodic and one dynamic). Let us first establish the notation used throughout the
paper. Days are denoted with ¢t € {1,...,T}; each day is divided into J equally spaced
intervals (referred to as bins) indexed by j € {1,...,J}. In what follows, in order to
simplify the notation we may label observations indexed by the double subscript ¢ ;7 with
a single progressive subscript 7 = J x (¢ — 1) + j. Correspondingly, we denote the total
number of observations by N (equal to 7" x J if all J bins of data are available for all T’
days).

The non-negative quantity under analysis relative to bin j of day ¢ is denoted as x,; or,
alternatively, as z.. F; ;_; indicates the information about x; ; available before forecasting
it. Usually, we will assume F;, = F;_1 s but, if needed, it is possible to include additional
pieces of information into F;, specifically related to market opening structure.

In what follows we will adopt the following convention: if Xy, . . ., Xk are (m, n) matrices
then (x1;...;Xx) means the (m/K, n) matrix obtained stacking the x; matrices column-
wise.

3.1 Model Definition

Being the , ;’s non-negative, a model for their daily-intra-daily dynamic can be specified
by extending the logic of Multiplicative Error Models (MEM) proposed by Engle (2002).
Moreover, by relying on the stylized facts showed in Section 2, we structure the model
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by combining different components, each one able to capture a different feature of the
dynamic of the time series. We will provide further remarks about the link of the model
with the empirical regularities in Section 3.2.

We then assume a Component MEM (CMEM)
Tj =Mt Sj Htj €ty ey

The multiplicative innovation term &, ; is assumed i.i.d., non-negative, with mean 1 and

constant variance o2
ejlFrja~ (1,0%). 2

The conditional expectation of x, ; is the product of three multiplicative elements:

e 1), a daily component;
e s;, an intra-daily periodic component aimed to reproduce the time—of—day pattern;

® /i, an intra-daily dynamic (non-periodic) component.

In order to simplify the exposition, we assume a relatively simple specification for the
components. If needed, the formulation proposed can be trivially generalized, for instance
by including other predetermined variables or more lags (see the empirical application in
Section 3.4).

The reference formulation for the daily component is

= w® + B0,y + agn)ﬂfgz)l + ’Y%n)x;—(ln) (3)
where 2 is a quantity related to the innovations and 2~  is an *asymmetric version’ of
2™ aimed to capture possible asymmetric effects related to daily returns (more on this
below).

The intra-daily dynamic component is specified as

ey = oW 4+ 5 s+ o) X

where, again, 2" is a quantity related to the innovations and z~ ¥ is an *asymmetric

version’ of 2(*), useful for modeling possible asymmetric effects related to bin returns.
More precisely, the quantities xi‘]‘-), x@ and the corresponding asymmetric effects xt_j(“ ),

z; ™ are defined as follows:

(w) _ g
W = (5)
" U
J
o = 23 (©)
J = Sjth;
xt_j(“) = xi’;) I(ry; < 0) (7)
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oy =21, <0), (8)

where 7, ; indicates the return at bin j of day ¢ and 7, denotes the daily return at day ¢.

The intra-daily non-periodic component can be initialized with the latest quantities avail-
able, namely those computed on the previous day, i.e.

Hio = the—1J l’%) = mﬁﬁ)u %_o(u) = J/’t_—%- )

Both 7, and i ; are assumed to be mean-stationary. Furthermore, 1, ; is constrained to
have unconditional expectation equal to 1 in order to make the model identifiable. This

allow us to interpret it as a pure intra-daily component and implies w") = 1 — ﬁ§“ )

045“ ) _ %“ ) /2. From these assumptions we obtain also that reasonable starting conditions

for the system can be 1jp = 2" = 7, 25 " = T/2, ju0 = xg“g = 1 and xié“) =1/2,

where 7 indicates the sample average of the modeled variable x.

In synthesis, the system nests the daily and the intra-daily dynamic components by alter-
nating the update of the former (from 7,_; to 7;) and of the latter (from p;o = ps—1 to
it 7). M aims to adjust the mean level of the series, whereas the intra-daily component
s ; captures bin—specific departures from such an average level.

Note that defining xg’;) as in (5) implies $§’;) = pujer;. Combining this with (2) one
obtains

Bl |Fim) =y V(@1 Fm) = o (10)
that coincide with the properties of the usual MEM (Engle (2002)). Interestingly, a similar
consideration can be made for xin). In fact, definition (6) implies a;§’7) = €4, Where
g =J! ijl £, 4, and thus

B\ Fis)=m V(@ |Firg) = njo’ /] (11

The intra-daily periodic component s; can be specified in different manners. A conceptu-
ally simple specification resorts to dummy variables:

J
Ins; =Y 6 I(k=j), (12)
k=1

where I(.) denotes the indicator function and the d;’s are coefficients, constrained to sum
to zero. However, such a scheme is not efficient in practice, since it implies a lot of
parameters when small bins are used (for instance, by considering 10-minutes data in
a a market trading day between 9:30AM and 4:00PM, expression (12) would have 38
free parameters) and does not exploit the fact that the periodic intra-daily pattern has a
substantially smooth shape. To this aim, a more parsimonious parameterization can be
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obtained by structuring s; via Fourier (sine/cosine) representation:

K

Ins; =Y [01xcos (fjk)+ dapsin (fk)] (13)
k=1
where [ = 27/J, K = [Z], 61k = 0if J is odd, d,x = 0. However, the num-
ber of terms into (13) can be considerably reduced if the periodic intra-daily pattern is
sufficiently smooth, since few low frequencies harmonics may be enough.

3.2 Discussion

Let us first show that our model responds to the previous motivation based on the descrip-
tive analysis in Section 2.

The daily average 7; = J ! Z;.le x4 ; represents a proxy of the daily component 7,. In
fact, by taking its expectation conditionally on the previous day, we have

J

J
1
E(@, |Fioag) = Uy Z E(p | Fie1) Z (14)

j=1

where the approximate equality can be justified by noting that the non-periodic intra-daily
component i, ; has unit unconditional expectation, so that we can reasonably guess that it
moves around this value.!

Once the daily average is computed, the ratio x( )

whole intra-daily component s ;, since

= x,,;/%;. can be used as a proxy of the

I 775,& € Sillt iE¢ 5
xi]) tojHtjety — 7 tj tJ‘ (15)

s S

(1)

The bin average of the quantities into (15), namely E(i) =71 Zthl Tyjs

proxy of the intra-daily periodic component s;. In fact,

1 o ;1 —
=) ) 2
Tj =7 § Tyj = gjf E it €t (16)
t=1 t=1

By taking its expectation conditionally on the starting information, we have

represents a

T
8; S,
=7 D Bl Fos) ~ gj (7)

( | Fog) = ‘T 2

The last approximation can be motivated by considering that the average of the yi; ;’s for

"We remark as the log formulation of the intra-daily periodic component guarantees szl 5; = 1 but
not 5 = 1. However, for the applications considered 5 is quite close to one.
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bin j converges, in some sense, to the unconditional average 1.

Finally, the residual quantity :pi‘;) / ) = 2,/ ; can be justified as proxy of the intradaily

-J
IlOIl-pCl‘lOdlC component, since

Tij  Sjfj€ii/s o (18)

The CMEM of Section 3.1 has some relationships with the component GARCH model
suggested by Engle et al. (2006b), for modeling intra-daily volatility. Our proposal differs
however in many points. In particular, the main difference lies in the evolution of the daily
and intra-daily components. Exploiting the scheme proposed, all parameters of the model
can be estimated jointly, instead to recurring to a multi-step procedure.

The structure of the CMEM shares some features with the P-GARCH model (Bollerslev
and Ghysels (1996)) as well. By grouping intra-daily components s; and ji; ; and referring
to equation (4) for the latter, the combined component can be written as

(1)
J

Siptj = w§“) + 590/%];1 + oy

: 2 e (19)

where

In practice, those defined in (20) are periodic coefficients: their pattern is ruled by s;
but each of them is rescaled by a (possibly) different value. The main difference relative
to the P-GARCH formulation lies in the considerable simplification obtained by impos-
ing the same periodic pattern to all coefficients. In this respect, we are inspired by the
results in Martens et al. (2002) that a relatively parsimonious formulation, based on an
intra-daily periodic component scaling the dynamical (GARCH-like) component of the
variance, provides forecasts of the intra-daily volatility that are only marginally worse of
a more computationally expensive P-GARCH. Martens e? al. (2002) provide also empiri-
cal evidence in favor of the exponential formulation of the periodic intra-daily component
and support its representation in a Fourier form (even if they consider only to the first
4 harmonics in their application). This notwithstanding, we depart from their approach
in at least two substantial points: we include an explicit dynamic structure for the daily
component, interpreting the intra-daily component as a corresponding scale factor; all
parameters of the CMEM are estimated jointly.

3.3 Inference

Let us now illustrate how to obtain inferences on the model specified in Section 3.1. We
group the main parameters of interest into the p-dimensional vector @ = (8(); 8(); (),
where the three subvectors refer to the corresponding components of the model. Relative
to these, the variance of the error term, o2, represents a nuisance parameter.
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Since the model is specified in a semiparametric way (see (2)), we focus our attention
on the Generalized Method of Moments (GMM — Newey and McFadden (1994) and
Wooldridge (1994)) as an estimation strategy not needing the specification of a density
function for the innovation term. Links with other estimation methods leading to compa-
rable inferences are illustrated in Section 3.3.3.

3.3.1 Efficient GMM inference

Let
Ty

s
where we simplified the notation by suppressing the reference to the dependency of w.

on the parameters @, on the information ,_; and on the current value of the dependent
variable z ..

U, —1, 1)

From (2) one obtain immediately that u., is a conditionally homoskedastic martingale
difference, that is

E(u.|Fr_1) =0 (22)
V(us| Fro1) = 02 (23)

Following Wooldridge (1994, sect. 7) a conditional moment restriction like (22) can be
used as a key ingredient for estimation. Any (M, 1) vector G, depending deterministi-
cally on the information F,_; gives

E(Gu.|F,—1) =0, (24)
and then, by the law of iterated expectations,
E(G,u,) =0, (25)

so that G, is uncorrelated with u,,> and can be taken as an instrument (it is dependent
on F,._; and uncorrelated with u,). G, may depend on nuisance parameters, maybe
including @ also. We collect them into the vector v» and, in order for us to concentrate
on estimating @, we assume for the moment that 1) is a known constant, postponing any
further discussion about its role and how to inference it to the end of this section and to
Section 3.3.2.

In order to discuss some general aspects about GMM inference, we denote

gr = G’TUT (26)

2 As remarked by Wooldridge (1994, p. 2693), equation (25) requires that the absolute values of u.. and
G u, have finite expectations.
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so that (24) and (25) can be rewritten as
E<g7) = E<g‘r’~’f7'—l) =0. (27)

Equation (27) provides M moment conditions. If M = p, we have as many equations as
the dimension of 8, thus leading to the MM criterion

g=0, (28)
where
| N
T = — . 29
g=+ ; g (29)
Otherwise, if M > p or (28) does not have a solution, then a GMM criterion
i SFANE (30)
mem 2g NE

can be employed, where A ~ is an (M, M) weighting matrix assumed non-negative defi-
nite and converging in probability to a non-stochastic limiting matrix A.

Under correct specification of the equations arising (27) (the 7, s;, and 1, ; equations in
our case) and some regularity conditions (among which that A N converges in probabil-
ity as specified above), the GMM estimator 0 ~, obtained solving (28) or (30) for 8, is
consistent (Wooldridge (1994, th. 7.1)). Furlhermore, under some additional regularity
conditions we have asymptotic normality of 6, with asymptotic variance matrix

~ 1
Avar(ON) = N(S,A()S)_IS,A[)VA()S(S,A()S)_I (31)
where
|
S = lim — ; E(Vog,) (32)

N
o1
V= lim NV <Zl g7.> (33)
(Wooldridge (1994, th. 7.2)).

The asymptotic variance (31) can be simplified: either by choosing A ~ to be a consistent
estimator of V! (in such a case, in fact, Ao = V1) or when M = p (in such a circum-
stance S is non-singular, because rank(S) = p is one of the cited additional assumptions,
and we can take A ~ as the identity matrix). In both these cases

~ 1
Avar(Qy) = N(S’V*ls)*l. (34)
Given the structure of the model under analysis we can adopt some considerable sim-
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plifications, stemming in particular from the fact that u, is a martingale difference (see
Wooldridge (1994)). In fact, such a characteristic implies that g, = G, also is a mar-
tingale difference (equation (27)): this leads to simplifications in the assumptions needed
for the asymptotic normality, by virtue of the martingale CLT, and is a sufficient condition
for the g terms in (33) to be serially uncorrelated. We thus have

= ngnool ZE LA ] . (35)

The martingale difference structure of ., gives also a simple formulation for the efficient
choice of the instrument G, where efficient is meant producing the *smallest’ asymptotic
variance among the GMM estimators arisen by g functions structured as in (29), with
g. = G, u, aand G, being an instrument. Such efficient choice is

G! = —E(Veu | Fr_ )V (u, | Fry) ™t (36)

Computing E (g.g’) into (35) and E (Ve g,) into (32) we obtain
E(g.g,) = —E(Vog,) = *E(G;GY),
so that

V =-S =02 lim —ZE G:GY)

N—ooo N
and (34) specializes as

iV—l. (37)

~ 1 1
Avar(ON) = N(S,V_ls)_l = —NS_l = N

Considering the analytical structure of ., in the model (equation (21)), we have
Vou, = —a,(u, + 1),
where
a, =0, 'V + pi; Ve, + 57 ' Ves; (38)

so that (36) becomes
Gi=a, 0 ”

Replacing it into (26) and this, in turn, into (29), we obtain that the GMM estimator of 8
in the CMEM solves the MM equation

|
— E a,u, = 0. 39)
N p—

An important characteristic of (39) lies in the fact that it does not depend on the nuisance
parameter o (that can be removed from the equation). This implies that its estimation
does not have any bearing on the estimation and inference relative to the main parameter

0.
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The asymptotic variance matrix of 0 is

Avar(Oy) = UN [ li %Z E(aTa’T)] (40)

that can be consistently estimated by

N -1
Avar(9y) = 7% [Z afa;] (41)

=1

where 3]2\, is a consistent estimator of o2 (Section 3.3.2) and a, is here evaluated at 0 N.

3.3.2 Inference on o2

Equation (23) suggests that a natural estimator for the nuisance parameter o> can be
|
52
= — 42
h=y (42)

where u, denotes here the working residual (21) computed by using current values of 8.
An interesting characteristic of such estimator, is that it is not compromised by zeros in
the data.

3.3.3 Relationships with other inferential methods

We can check that the estimator éN, obtained solving the moment equation (39), can

be justified also as a Maximum Likelihood (ML) estimator of & when the conditional

distribution of the error term ¢, ; is assumed Gamma (o2, 0~2). In fact, denoting

&r = 557/(7% S ,U.,.) (43)

we have f,(x,|F,_1) = f-(e;|Fr_1)er /2, so that the portion of the score function rela-
tive to 0 is given by

N N
1 1
Ve [N Tgl In fx(l'7|./f—r 1 ] = N g ln fe ET|‘FT 1) + lngT In :BT]VBET' (44)

Replacing the formulations of In f.(e,|F,_1) and Ve, into (44), we obtain that the ML
estimator of 8 solves (39).

The ML estimator of ¢2, still under the Gamma assumption, is however different from
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(42). In fact, the portion of the score relative to o2 is

N N
1 1 —4 2 —2
V2 N ;lnfx(x7|fT_1)] =% ;O‘ Ino®+¢(c7?) +Ine, —e, +1],
leading to the score equation
1 N
2 -2\ __
Ino? + (o )_1+NZ[1nsT—5T], (45)

T=1

where ¢, is computed here using (43) evaluated at 6. We note that this equation has to
be solved numerically and that, more importantly, cannot be employed with zeros in the
data since, in this case, the corresponding values of ¢, are zero.

3.4 Empirical Application: In Sample Volume Analysis

The empirical application focuses on the analysis of the tickers DIA, QQQQ and SPY in
2002-2006. We consider four variants of the CMEM introduced in Section 3.1 (Equations
(3) and (4)):

base CMEM with lag-1 dependence and no asymmetric effects;

asym base CMEM with lag-1 asymmetric effects on both the daily and the intra-daily
dynamic components;

intra2 base CMEM with intra-daily autoregressive components of order 2;

asym-intra2 intra2 CMEM with lag-1 asymmetric effects (daily and intra-daily).

The parameter estimates of the daily and intra-daily components are reported in Table 2,
together with residual diagnostics. The periodic component, omitted from the table, is
expressed in Fourier form (Equation (13)). Also, w lacks a t-statistic because estimated
via expectation targeting by imposing E(u,) = 1.

Some comments are in order. The parameter estimates of each model are similar across
assets, suggesting common behavior in the volume dynamics. We have a high (close
to 1) level of daily persistence (measured as o + 3 in the symmetric, respectively,
o™ 4™ /2 4+ 30) agsymmetric specifications). Contrary to customary values in a typical
GARCH(1,1) estimates on daily returns, in the present context o is much larger. Intra-
daily asymmetric effects are always strongly significant, while daily asymmetric effects
are significant for the DIA and SPY tickers only. Their signs are always positive, coher-
ently with the notion that negative past returns have a greater impact on the level of market
activity in comparison to the positive ones. The second order intra-daily lag is negative
and with a relatively large magnitude, but it is such that the Nelson and Cao (1992) non-
negativity condition for the corresponding component is satisfied in all cases, and has the

18



effect of increasing the level of the intra-daily persistence, as can be observed from the
column labeled pers(u) in table 2. Correspondingly, the less—than—satisfactory perfor-
mance of serial correlation residual diagnostics (reported in the last columns of table 2) —
even with asymmetric effects — is improved when the second order term is included in the
dynamic intra-daily component.

4 Intra-daily Volume Forecasting for VWAP Trading

A VWAP replicating strategy is defined as a procedure for splitting a certain number of
shares into smaller size orders during the day in the attempt to obtain an average execution
price that is close to the daily VWAP. Let the VWAP for day ¢ be defined as

P, — S ) i)
Zit:1 Ut(i)

where p; (i) and v,(i) denote respectively the price and volume of the i-th transaction of
day ¢ and I; is the total number of trades of day ¢. For a given partition of the trading day
into J bins, it is possible to express the numerator of the VWAP as

e J

> w(peli) = DY wli) | pry

i=1 j=1 \i€Z;
J
= § Tty ﬁtj7
Jj=1

where p;; is the VWAP of the j-th bin and Z; denotes the set of indices of the trades
belonging to the j-th bin. Hence,

ZJ: Tyj Prj I _ —
j=1Ttj j=1

where 7;; is the daily proportion of volumes of day ¢ traded in bin j, that is z,; =
25/ L, wi Lety = (y1,...,ys), an order slicing strategy over day t with the same
bin intervals. We can define the Average Execution Price as the quantity

J
AEP, = "y;pi; = ¥'Pe
j=1

where the assumption is made that the traders execute at or close to the average price
(more on this later). The choice variable being the vector y, we can solve the problem of
minimizing the distance between the two outcomes in a mean square error sense, namely

myin 5 = (X,Pe — y'Do)?,
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where, solving the minimization problem leads to the first order conditions
—— =0= —2p;(X —y)P: =0

which has a meaningful solution for y = X, that is when the order slicing sequence
for each sub period in the day reproduces exactly the overall relative volume for that
sub period. It follows that the VWAP replication problem can be cast as an intra-daily
volume proportion forecasting problem: the better we can predict the intra-daily volumes
proportions, the better we can track VWAP.

4.1 VWAP Replication Strategies

Following Biatkowski et al. (2008), we consider two types of VWARP replication strate-
gies: Static and Dynamic. The Static VWAP replication strategy assumes that the order
slicing is set before the market opening and it is not revised during the trading day. In the
Dynamic VWAP replication strategy scenario on the other hand, order slicing is revised
at each new sub period as new intra-daily volumes are observed. Hence, Static VWAP
trading is based on volume forecasts conditionally on the previous day while Dynamic
VWAP trading is based on volume forecasts conditionally on the previous intra-daily bin.

Let 2 jj;—1 be shorthand notation for the prediction of z;; conditionally on the previous
day full information set F,_; ;. The static VWAP replication strategy is implemented
using slices with weights given by

% Tt jlt—1
tjlt—1 — 7T
D im1 Ttije—1

that is the proportion of volumes for bin j is given by predicted volume in bin j divided
by the sum of the volume predictions.

j:]""’J7

Let ; j;;—1 be shorthand notation to denote the prediction of x;; conditionally on F;;_;.
The Dynamic VWAP replication strategy is implemented using slices with weights given
by

= (1= S Frii) =1 d 1

Di=j Btili—1
<1 - 2;72—11 fti\i—l) J= J

that is, for each intra-daily bin from 1 to ./ — 1 the predicted proportion is given by the
proportion of 1-step ahead volumes with respect to the sum of the remaining predicted
volumes multiplied by the slice proportion left to be traded. On the last period of the
day J, the predicted proportion is equal to the remaining part of the slice that needs to be
traded.

Ltjlj—1 =

The evaluation of the performance of the VWAP replication strategies is based upon the
intra-daily volume/weights errors and the daily VWAP tracking errors. We consider vol-
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ume and slicing errors defined as

€y = Tej = Tujl 5 €y = Tej = Tugl
where 7. and §t ;|- denote the volume and slice prediction, respectively, from some
VWAP replication and volume forecasting strategy. In order to assess directly the effi-
ciency in replicating the VWAP, we also consider VWAP tracking errors defined as

VWAP, — VWAP
VWAP __ t t
= ( VWAP, ) 100,

where VWAP; is the VWAP of day ¢ and \mt is the realized average execution price
obtained using some VWAP replication strategy and volume forecasting method. Both
VWAP, and \mt are computed using the last recorded price of the j—th bin as a proxy
of the average price of the same interval. The VWARP tracking error for day ¢ can be seen
as an average of slicing errors within each bin weighted by the relative deviation of the
price associated to that bin with respect to the VWAP:

J _ J _
e/ = (Z(f” ~ T5) VV]\);,&Pt) 0= (Z i vv]i/tA]\Pt> H0-
1

j=1 i=

Note that the deviations of the prices from the daily VWAP add an extra source of noise
which can spoil slicing forecasts. In light of this, we recommend evaluating the precision
of the forecasts by means of the slicing errors.

4.2 Empirical Application: Out-of-Sample VWAP Prediction

Our empirical application consists of VWAP tracking exercise of the tickers DIA, QQQQ
and SPY between January 2005 and December 2006 (502 days, 6526 observations). We
track VWAP using turnover predictions from our CMEM specification using both Static
and Dynamic VWAP replication strategies based on parameter estimates over the 2002—
2004 data. In order to assess the usefulness of the proposed approach with respect of a
simple benchmark we also track VWAP using (periodic) Rolling Means (RM), that is the
predicted volume for the j—th bin is obtained as the mean over the last 40 days at the
same bin. The Rolling Means are used to track VWAP using the Static VWAP replication
approach.

Table 3 reports the RMSE of the volume and slicing errors together with asterisks denoting
the significance of a Diebold-Mariano test of equal predictive ability with respect to RM
using the corresponding loss function. The CMEM Dynamic VWAP Tracking performs
best and significantly outperforms the benchmark, followed by the CMEM Static VWAP
which generally outperforms the benchmark as well.

Table 3 reports also the results on the RMSE of the VWAP tracking exercise. In this
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context, the evidence is more mixed: while it is true that the CMEM Dynamic VWAP
replication strategy achieves the best out—of—sample performance, statistical significance
is less clear cut. It is strong for DIA (and extends to the Static model), but it is less so for
QQQ and SPY.

5 Conclusions

In this paper we have suggested a dynamic model with different components which cap-
tures the behavior of traded volumes (relative to outstanding shares) viewed from daily
and (periodic and non—periodic) intra—daily time perspectives. The ensuing Component
Multiplicative Error Model is well suited to be simultaneously estimated by Generalized
Method of Moments. The application to three major ETFs shows that both the static and
the dynamic VWAP replication strategies generally outperform a naive method of rolling
means for intra-daily volumes.

We would need to extend the analysis to a wider group of tickers to check whether the
stylized facts are shared by other classes of assets (e.g. single stocks) and to investi-
gate whether overall market capitalization or the percentage of holdings by institutional
investors have a bearing on the characteristics of the estimated dynamics.

The CMEM can be used in other contexts in which intra—daily bins are informative of
some periodic features (e.g. volatility, number of trades, average durations) together with
an overall dynamic which has components at different frequencies. The periodic com-
ponent can be more parsimoniously specified by recurring to some shrinkage estimation
as in Brownlees and Gallo (2008). Multivariate extensions are also possible (follow-
ing Cipollini et al. (2008) by retrieving the price-volume dynamics mentioned earlier in
order to establish a relationship that can be related to the flow of information at different
frequencies, separating it from (possibly common) periodic components.
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DIA QQQQ SPY
vol slice vwap | vol slice vwap | vol slice vwap
RM 56.68 3.609 1.373 | 64.83 2.688 1.796 \ 5228 27761 1.129
Static
base 53.00 3.632 1.354 | 63.73 2.672 1.822 | 50.45 2.745 1.110
asym 53.04 3.632 1.352 | 63.71 2.672 1.823 | 50.45 2.745 1.110
intra2 53.00 3.632 1.335 | 63.73 2.672 1.803 | 50.45 2.745 1.124
asym-intra2 | 53.04 3.632 1.319 | 63.71 2.672 1.771 | 50.45 2.747 1.120
Dynamic
base 49.17 3.595 1.240 | 58.41 2.649 1.753 | 45.39 2.703 1.079
asym 49.11 3.594 1.238 | 58.37 2.649 1.755 | 45.31 2.704 1.082
intra2 49.07 3.568 1.241 | 57.89 2.617 1.744 | 45.16 2.682 1.095
asym-intra2 | 48.91 3.566 1.233 | 58.03 2.613 1.687 | 44.98 2.679 1.093

Table 3: Out—of-Sample Volume, Slicing and VWAP tracking Forecasting Results.
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