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Abstract

We develop a model of trading in securities markets with two specialized sides:
traders posting quotes (�market makers�) and traders hitting quotes (�market
takers�). Liquidity cycles emerge naturally, as the market moves from phases
with high liquidity to phases with low liquidity. Traders monitor the market to
seize pro�t opportunities. Complementarities in monitoring decisions generate
multiplicity of equilibria: one with high liquidity and another with no liquidity.
The trading rate depends on the allocation of the trading fee between each side
and the maximal trading rate is achieved with asymmetric fees. The di¤erence
in the fee charged on market-makers and the fee charged on market-takers ("the
make-take spread") increases in (i) the tick-size, (ii) the ratio of the size of the
market-making side to the size of the market-taking side, and (iii) the ratio of
monitoring cost for market-takers to monitoring cost for market-makers. The
model yields several empirical implications regarding the trading rate, the dura-
tion between quotes and trades, the bid-ask spread, and the e¤ect of algorithmic
trading on these variables.
Keywords: Make/Take Spread, Duration Clustering, Algorithmic trading,

Two-Sided Markets.
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1 Introduction

Trading in securities, especially in equities markets, increasingly takes place in elec-

tronic limit order markets. The trading process in these markets feature high fre-

quency cycles made of two phases: (i) a �make liquidity�phase during which traders

post prices (limit orders) at which they are willing to trade, and (ii) a �take liquidity�

phase during which limit orders are hit by market orders, generating a transaction.

The submission of market orders depletes the limit order book of liquidity and ignites

a new make/take cycle as it creates transient opportunities for traders submitting

limit orders.1

A trader reacts to a transient increase or decline in the liquidity of the limit

order book only when she becomes aware of this trading opportunity. Accordingly,

several empirical studies emphasize the importance of monitoring to understand the

dynamics of trades and quotes in limit order markets (e.g., Biais et al. (1995),

Sandås (2001) or Holli�eld et al.(2004)). For instance, Biais, Hillion, and Spatt (1995)

observe that (p.1688): �Our results are consistent with the presence of limit order

traders monitoring the order book, competing to provide liquidity when it is rewarded,

and quickly seizing favorable trading opportunities.�Hence, traders�attention to the

trading process is an important determinant of the speed at which make/take liquidity

cycles are completed.

In practice, monitoring is costly because intermediaries (brokers, market-makers,

as well as potentially patient traders who need to execute a large order) have limited

monitoring capacity.2 Hence, the trading rate depends on a trade-o¤ between the

bene�t and cost of monitoring. Our goal in this paper is to study this trade-o¤ and

its impact on the make/take liquidity cycle. In the process, it addresses two sets of

related issues.

Firstly, in recent years, algorithmic trading has considerably decreased the cost

1These cycles are studied empirically in Biais, et al. (1995), Coopejans et al.(2003), and Degryse
et al.(2005).

2For instance, Corwin and Coughenour (2008) show that limited attention by market-makers
(�specialists�) on the �oor of the NYSE a¤ects their liquidity provision.
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of monitoring and revolutionized the way liquidity is provided and consumed. We

use our model to study the e¤ects of this evolution on the trading rate, the bid-ask

spread, and the distribution of trading gains among market participants.

Secondly, the model sheds light on pricing schedules set by trading platforms.

Increasingly, these platforms charge di¤erent fees on limit orders (orders �making

liquidity�) and market orders (orders �taking liquidity�). The di¤erence between

these fees is called the make/take spread and is usually negative. That is, traders

providing liquidity pay a lower fee than investors taking liquidity.

Tape A Tape B Tape C
Make Fee Take Fee Make Fee Take Fee Make Fee Take Fee

AMEX -30 30 -30 30 -30 30
BATS -24 25 -30 25 -24 25

LavaFlow -24 26 -24 26 -24 26
Nasdaq -20 30 -20 30 -20 30

NYSEArca -25 30 -20 30 -20 26
Table 1: Fees per share (in cents for 100 shares) for limit orders ("Make Fee") and market

orders ("Take Fee") on di¤erent trading platforms in the U.S. for di¤erent groups of stocks

(Tapes A, B, C); A minus sign indicates that the fee is a rebate. Source: Traders Magazine,

July 2008

For instance, Table 1 gives the make/take fees charged on liquidity makers and

liquidity takers for a few U.S. equity trading platforms, as of July 2008. All these

platforms subsidize liquidity makers by paying a rebate on limit orders, and charge

a fee on liquidity takers (so called �access fees�).

This fee structure results in signi�cant monetary transfers between traders taking

liquidity, traders making liquidity, and the trading platforms.3 For this reason, the

make/take spread is closely followed by market participants, in particular market-

3For instance, in each transaction, BATS (a trading platform for U.S stocks) charges a fee of 0.25
cents per share on market orders and rebates 0.24 cents on executed limit orders (see Table 1). On
October 10, 2008, 838,488,549 shares of stocks listed on the NYSE were traded on BATS (about 9%
of the trading volume in these stocks on this day); see BATS website: http://www.batstrading.com/.
Thus, collectively, limit order traders involved in these transactions earned about $2 million on this
day only.
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making �rms using highly automated strategies.4 Access fees are the subject of

heated debates and, in its regulation NMS, the SEC decided to cap them at $0.003

per share (30% of the tick size) in equity markets.5

The attention of market participants to these fees suggests that they alter the

market microstructure of securities markets. Yet, to the best of our knowledge, the

rationale for the make/take spread and its impact on the trading process have not

been analyzed. In this paper, we show that they play an important role for liquidity

formation.

We distinguish two sides: (i) traders who post quotes (the �market-makers�) and

(ii) traders who hit these quotes (the �market-takers�). Both sides must monitor the

market to grab �eeting trading opportunities. In choosing their monitoring intensity,

traders on each side trade-o¤ the bene�t from a higher likelihood of detecting a

pro�t opportunity with the cost of paying more attention to the trading process. In

equilibrium, traders�monitoring choices determine the trading rate.

Monitoring decisions of both sides reinforce each other. Indeed, suppose that

an exogenous shock induces market-takers to monitor the market more intensively.

Then, market-makers expect more frequent pro�t opportunities since good prices are

hit more quickly. Hence, they have an incentive to monitor more and as a consequence

the market features good prices more frequently, which in turn induces market-takers

to monitor more. Thus, the initial shock on market-takers�monitoring is ampli�ed,

and triggers a snowballing e¤ect on trading activity.

This complementarity in monitoring decisions creates a coordination problem,

which results in two equilibria: (i) an equilibrium with no monitoring and no trading;

and (ii) an equilibrium with monitoring and trading.6 In the latter equilibrium,

4Some specialized magazines report the fees charged by the various electronic trading platforms
in U.S. equity markets. See for instance the �Price of Liquidity� section published by �Traders
magazine�; http://www.tradersmagazine.com.

5As an example of the controversies raised by these fees, see the petition for rule-
making regarding access fees in option markets, addressed by Citadel at the SEC at
http://www.sec.gov/rules/petitions/2008/petn4-562.pdf

6 It is well-known that the lack of coordination in traders�decision to participate in a market can
lead to multiple equilibria with di¤ering levels of liquidity (see Admati and P�eiderer (1988), Pagano
(1989), and Dow (2005) for example). In our setting, the multiplicity of equilibria also stems from
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monitoring decisions depend on the factors that determine the cost and bene�t of

monitoring, namely (i) the monitoring cost of each side; (ii) the number of participants

on each side; (iii) the tick size (the minimum price increment between two quotes);

and (iv) trading fees

For �xed trading fees, a decrease in the monitoring cost on one side increases

traders�monitoring on both sides because of the complementarity in monitoring deci-

sions. Now, consider an increase in the number of market-makers. On the one hand,

the probability that market-takers �nd good prices when they check the market be-

comes higher. Thus, they monitor more intensively which, through the snowballing

e¤ect we described previously, induces market-makers to monitor more, other things

equal. But competition among market-makers reduces each one�s market share. This

second e¤ect reduces market-makers�incentives to monitor. In our model, the �rst

e¤ect dominates in equilibrium so that the total monitoring intensity of both sides

increases in the number of market-makers. As a result the trading rate increases

when (i) the monitoring cost decreases or (ii) the number of participants on either

side become larger.

A larger tick size translates into larger gains from trade for market-makers.7 Thus,

other things being equal, an increase in the tick size is conducive to more monitor-

ing by market-makers. Hence, market-takers (i) obtain less surplus per transaction

but (ii) expect more frequent trading opportunities when the tick size is larger. In

equilibrium, the �rst e¤ect dominates. Thus, an increase in the tick size enlarges

market-makers�monitoring intensity, but it decreases market-takers�monitoring in-

tensities. For this reason, the e¤ect of a change in the tick size on the trading rate is

not monotonic, and the trading rate is maximal for a strictly positive tick size.

Next, we analyze the optimal breakdown of its total fee per trade between market-

a coordination problem, but between traders posting quotes on the one hand and traders hitting
quotes on the other hand. This type of e¤ect could explain why limit order markets exhibit sudden
and short-lived booms and busts in trading rates during the trading day (see Hasbrouck (1999) or
Coopejans, Domowitz and Madhavan (2001) for empirical evidence).

7This is a feature of several models of trading in �nancial markets (e.g., Glosten (1994) or Large
(2008)).
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makers and market-takers for the trading platform. We show that this breakdown

is not neutral because it alters monitoring decisions of both sides and thereby the

trading rate.

For instance, suppose that the tick size is very small. If the total trading fee

is equally split between both sides (a zero make/take spread), then market-makers

monitor the market less than market takers since they obtain a very small fraction of

the gains from trade. Thus, trade opportunities are lost because the market frequently

lacks good prices when it is checked by market-takers. In this sense, there is an excess

of attention by market takers. In this situation, it is optimal for the trading platform

to increase its fee on market-takers and reduce the fee charged on market-makers.

This shift in the make/take spread helps to balance the monitoring intensities of both

sides, and thereby the demand and supply of liquidity. Ultimately, it increases the

trading rate.

Using this logic, we �nd that the optimal fee charged on market-makers (resp.

market-takers) increases (resp. decreases) with (i) the tick size; (ii) the ratio of

the number of market-makers to the number of market-takers; and (iii) the ratio

of market-takers�monitoring cost to market-makers�monitoring cost. Importantly,

these �ndings do not depend on the trading platform�s market power since they hold

for all levels of the total fee earned by the trading platform. Hence, the make/take

spread should not per se be construed as a sign of imperfect competition between

trading platforms.

Interestingly, in line with the model, the practice of subsidizing market-makers

developed after the tick size was reduced to a penny in 2001 in U.S. equity markets.

The recent decision of some options markets in the U.S. to adopt a make/take pricing

structure also coincides with a reduction in the tick size of these markets.8 According

to our model, the subsidy of the market-making side could also re�ect (i) a relatively

small number of �rms engaged in electronic market-making relative to the number

of investors demanding liquidity; or/and (ii) a faster automation of their search for

8See "Options maker-taker markets gain steam", Traders Magazine, October 2007.
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liquidity by these investors.

Our analyses is related to several strands of research. Foucault, Roëll and Sandås

(2003) and Liu (2008) provide theoretical and empirical analyzes of market-making

with costly monitoring. However, the e¤ects in these models are driven by market-

makers� exposure to adverse selection and they do not study the role of trading

platforms�fees.

Hendershott et al.(2008) �nd empirically that the development of algorithmic

trading is associated with a reduction in bid-ask spreads and an increase in the trading

rate. In line with their �ndings, our model implies that a decrease in monitoring cost

can lead to a signi�cant increase in trading rates (through the snowballing e¤ect

described previously). Thus, it implies a sharp increase in trading volume after

upgrades in trading platforms facilitating algorithmic trading.9

Interestingly, the model also implies that asymmetries in the speed of automa-

tion of the market-making sector relative to the market-taking sector should a¤ect

the make-take spread and thereby the distribution of trading pro�ts between these

sectors. Indeed, a reduction in the cost of monitoring for market-takers shifts the di-

vision of the trading surplus in favor of market-makers (and vice versa). Indeed, the

trading platform optimally reacts to a decrease in monitoring cost for market-takers

by charging a larger fee on market-takers, and a smaller fee on market-makers. Thus,

paradoxically, automation of the monitoring process by one side bene�ts to the other

side after adjustment of trading fees.

Our analysis also contributes to the burgeoning literature on two-sided markets

(see Rochet and Tirole (2006) for a survey). Rochet and Tirole (2006) de�ne a

two-sided market as a market in which the volume of transactions depends on the

allocation of the fee earned by the matchmaker (the trading platform in our model)

between the end-users (the market-makers and the market-takers in our model).10

9 In 2007, the trading volume on the London Stock Exchange (LSE) has increased by a stunning
69%. Market observers attribute this increase to upgrades in the LSE trading platform enabling
algorithmic traders to get faster access to this platform.
10Rochet and Tirole (2006) provide several examples of two-sided markets. For instance videogames

platforms, payment card systems etc...
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The fee di¤erential between liquidity providers and liquidity suppliers suggest that

securities markets are two-sided markets and our model develops the implications of

this feature.

Section 2 describes the model. In Section 3, we study the determinants of traders�

equilibrium monitoring intensities for �xed fees of the trading platform. We endoge-

nize these fees and derive the optimal fee structure for the trading platform in Section

4. We discuss the empirical implications of the model in Section 5and Section 6 con-

cludes. The proofs are in the Appendix.

2 Model

2.1 Market Participants

We consider a market for a security with two distinct sides: �market-makers� and

�market-takers.� Market-makers are those who post prices (limit orders) whereas

market-takers are those who hit the quotes (submit market orders) to complete a

transaction.11 The number of market-makers and market-takers is, respectively, M

and N .

In reality, traders can choose whether to post a quote or to hit a quote. Here we

simplify the analysis by assuming that traders�roles are �xed. The market-making

side can be viewed as electronic market-makers, such as Automated Trading Desk

(ATD), Global Electronic Trading company (GETCO), Tradebots Systems, Citadel

Derivatives, which specialize in high frequency market-making.12 The market-taking

side are institutional investors who break their large orders and feed them piecemeal

when liquidity is plentiful to minimize their trading costs.13 Electronic market-makers

11Trading platforms use various terminologies for designing each side. For instance, in limit or-
der markets such as the Paris Bourse or the London Stock Exchange, traders submitting limit
orders constitute the market-making side whereas traders submitting market orders constitute the
market-taking side. Sometimes, the market-making and market-taking sides are designated respec-
tively as the passive and active (or aggressive) side. See for instance Chi-X at http://www.chi-
x.com/Cheaper.html
12According to analysts electronic market-makers now account for a very high fraction of the total

liquidity provision on electronic markets. For instance, Schack and Gawronski (2008) write on page
74 that: "based on our knowledge of how they do business [...], we believe that they may be generating
two-thirds or more of total daily volume today, dwar�ng the activity of institutional investors."
13Bertsimas and Lo (1998) solve the dynamic optimization of such traders, assuming that they
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primarily use limit orders whereas the second type of traders primarily use market

orders. Both types increasingly use highly automated algorithms to detect and exploit

trading opportunities.

The expected payo¤ of the security is v0. Market-takers value the security at

v0 + L; where L > 0 while market-makers value the security at v0. Thus, market-

makers and market-takers di¤er in their private values for the security. Heterogeneity

in traders�valuation creates gains from trade as in other models of trading in securities

markets (e.g., Du¢ e et al. (2005) or Holli�eld et al.(2006)).14

As market-takers have a higher valuation than market-makers, they buy the se-

curity from market-makers. In a more complex model, we could assume that market-

takers have either high or low valuations relative to market-makers so that they can

be buyers or sellers. This possibility adds mathematical complexity to the model,

but provides no additional economic insight.

Market-makers and market-takers meet on a trading platform with a positive tick-

size denoted by � > 0 and the �rst price on the grid above v0 is half a tick above v0.

Let a � v0+ �
2 be this price. All trades take place at this price because market-takers

refuse to trade at a larger price on the grid (as �2 < L � �) and market-makers would

lose money if they trade at a smaller price than a on the grid. Thus, we focus on a

�one tick market� similar, for example, to Parlour (1998) or Large (2008). For the

problem to be interesting, we assume that a �xed number of shares (normalized to

one) can be pro�tably o¤ered at price a. In a more complex model, this limit could

follow for instance from exposure to informed trading as in Glosten (1994).15

The trading platform charges trading fees each time a trade occurs. The fee (per

share) paid by a market-maker is denoted cm; whereas the fee paid by a market-taker

exclusively use market orders as we do here.
14Holli�eld et al.(2004) and Holli�eld et al.(2006) show empirically that heterogeneity in traders�

private values is needed to explain the �ow of orders in limit order markets. In reality, as noted in
Du¢ e et al.(2005), di¤erences in traders�private values may stem from di¤erences in hedging needs
(endowments), liquidity needs or tax treatments.
15Empirically, several papers document a reduction in quoted depth after a reduction in tick size

(e.g., Goldstein and Kavajecz (2000)). This observation is consistent with an upward liquidity supply
curve, as in Glosten (1994)�s model.

9



is denoted ct. Thus, per transaction, the platform earns a revenue of

c � cm + ct:

We assume that the cost of processing trades for the trading platform is zero. Intro-

ducing an order processing cost per trade is straightforward and does not change the

results.

Thus, the gains for trade in each transaction (L) are split between the parties to

the transaction and the trading platform as follows: the market-taker obtains

�t = L�
�

2
� ct; (1)

the market-maker obtains

�m =
�

2
� cm; (2)

and the platform obtains �c. Thus, the gains from trade accruing to both traders are

L � �c. We focus on the case �c < L since otherwise traders on at least one side lose

money on each trade, and would choose not to trade at all.

This setup is clearly very stylized. Yet, it captures in the simplest possible way the

essence of the liquidity cycles described in the introduction. Speci�cally, when there is

no quote at a; the market lacks liquidity and there is a pro�t opportunity for market-

makers. Indeed, the �rst market-maker who submits an o¤er at a will serve the next

buy market order and earns �m. Conversely, when there is an o¤er at a, liquidity

is plentiful and there is a pro�t opportunity (worth �t) for a market-taker. After a

trade, the market switches back to a state in which liquidity is scarce. Consequently,

the market oscillates between a state in which there is a pro�t opportunity for market-

makers and a state in which there is a pro�t opportunity for market-takers. Thus,

market-makers and market-takers have an incentive to monitor the market. Market-

makers are looking for periods when liquidity is scarce and market-takers are looking

for periods when liquidity is plentiful.
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2.2 Cycles, Monitoring, and Timing

We now de�ne the notion of �cycles,� discuss the monitoring activities of market

participants, and explain the timing of the game.

Cycles. This is an in�nite horizon model with a continuous time line. At each point

in time the market can be in one of two states:

1. State E �Liquidity is scarce: no o¤er is not posted at a.

2. State F �Liquidity is plentiful: an o¤er for one share is posted at a.

We shall sometimes say that in State F the book is "full" whereas in State E the

book is empty at a, or for brevity "empty." The market moves from state E to state

F when a market-maker notices the pro�t opportunity and posts a quote at a. The

market moves from state F back to state E when a market-taker notices the pro�t

opportunity and hits the quote. Then, the process starts over again. We call the

�ow of events from the moment the market gets into state E until it returns into this

state - a �make/take cycle�or for brevity just a �cycle.�

Monitoring. Market-makers and market-takers have an incentive to monitor the

market to be the �rst to detect a pro�t opportunity for their side. We formalize

monitoring as follows. Each market-maker i = 1; :::;M inspects the market according

to a Poisson process with parameter �i, that characterizes her monitoring intensity.

As a result, the time between one inspection of the market to the next by market-

maker i is distributed exponentially with an average inter-inspection time of 1
�i
:

Similarly, each market-taker j = 1; :::; N chooses a monitoring intensity �j ; which

means that he inspects the market according to a Poisson process with parameter

11



�j :
16 The total inspection frequency of all market-makers is

�� � �1 + :::+ �M ;

and the total inspection frequency of market-takers is

�� � �1 + :::+ �N :

When a market-maker inspects the market she learns whether the book is empty

(state E) or full (state F ): If the book is empty the market-maker posts an o¤er

at a; whereas if the book is full she stays put until her next inspection. Similarly,

a market-taker submits a market order when he learns that the book is full, and

stays put until the next inspection otherwise. Thus, market-makers compete against

each other for seizing occasional pro�t opportunities re�ected in empty books, and

market-takers compete against each other for seizing pro�t opportunities re�ected

in full books. Market-makers and market-takers provide liquidity to one another as

pro�table trades can only be realized after an o¤er is hit by a market order.

In practice, monitoring can be manual, by looking at a computer screen, or au-

tomated by using automated algorithms. For humans, the need to monitor several

stocks contemporaneously limits the monitoring capacity and constrains the amount

of attention dedicated to a speci�c stock. Computers have also a �xed computing

capacity that must be allocated over potentially hundreds of stocks and millions of

pieces of information that require processing. Prioritization of this process is con-

ceptually similar to the allocation of attention across di¤erent stocks by a human

market-marker. Hence, in all cases, monitoring one market is costly, because it re-

duces the monitoring capacity available for other markets.

To account for this cost, we assume that, over a time interval of length T , a

16Note that we restrict attention to stochastic monitoring policies. This rules out deterministic
monitoring such as inspecting the market exactly once every certain number of minutes. The time
interval between two inspections is random as many unforeseen events can capture the attention of
a market-maker or a market-taker, be it human or a machine. For humans, the need to monitor
several securities as well as perform other tasks precludes evenly spaced inspections. Computers
face a similar constraints as periods of high transaction volume, and unexpectedly high tra¢ c on
communication lines prevent monitoring at exact points in time.
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market-maker choosing a monitoring intensity �i bears a monitoring cost:

Cm(�i) �
1

2
��2iT for i = 1; :::;M: (3)

Similarly, the cost of inspecting the market for market-taker j over an interval of

time of length T is:

Ct(�j) �
1

2
�2jT for j = 1; :::; N: (4)

Thus, the cost of monitoring is assumed to be proportional to the time interval and

convex in the monitoring intensity.

Parameters �;  > 0 control the level of monitoring costs for a given monitoring

intensity. We say that market-makers�(resp. market-takers�) monitoring cost become

lower when � (resp. ) decreases. This can be a result, for example, of automation

of the monitoring process or the decision to follow a more specialized strategy (i.e.,

to specialize in a few markets).

Timing. In reality, traders can change their monitoring intensities as market con-

ditions change, whereas trading fees are usually �xed over a longer period of time.

Thus, it is natural to assume that traders choose their monitoring intensities after

observing the fees set by the trading platform. Thus, we assume that the trading

game unfolds as follows:

1. The trading platform chooses the fees cm and ct.

2. Market-makers and market-takers simultaneously choose their monitoring in-

tensities �i and �j .

3. From this point onward, the game is played on a continuous time line indef-

initely, with the monitoring intensities and fees determined in Stages 1 and

2.

2.3 Objective Functions and Equilibrium

We now describe market participants�objective functions and de�ne the notion of

equilibrium that is used to solve for players�optimal actions in each stage.

13



Objective functions. Recall that a make/take cycle is a �ow of events from the

time the book is in state E until it goes back to this state. Each time a make/take

cycle is completed a transaction occurs. The probability that market-maker i wins

this transaction is the probability that she inspects an empty book before the other

market-makers. Given our assumptions, this probability is pi � �i
�1+:::+�M

= �i
��
:

Thus, the expected pro�t (gross of monitoring costs) from a completed transaction

for market-maker i is

pi�m =
�i
��

�
�

2
� cm

�
: (5)

Similarly, the probability that market-taker j wins the transaction in a speci�c cycle

is qj �
�j
�� ; and the expected pro�t per cycle is

qj�t =
�j
��

�
L� �

2
� ct

�
: (6)

Finally, the pro�t from a completed transaction for the trading platform is �c for sure.

The average time it takes the book to move from state E to state F is 1
�1+:::+�M

=

1
��
: Similarly, the average time from state F to state E is 1

�1+:::+�N
= 1

�� : It follows

that the average duration of a cycle is

D � 1
��
+
1

��
=
��+ ��
�� � ��

: (7)

Let ~nT denote the random variable describing the number of completed transac-

tions (cycles) until time T: The expected payo¤ to market-maker i until time T (net

of monitoring costs) is

�i(T ) = E~nT (

~nTX
k=1

pi�m)�
1

2
��2iT;

where the expectation is taken over the number of completed cycles up to time T:

As is common in in�nite horizon Markovian models, we assume that the objective

function of each player is to maximize his/her long-term (steady-state) payo¤per unit

of time. That is, market-maker i seeks to maximize

�im � lim
T!1

�i(T )

T
= lim
T!1

E~nT (

~nTX
k=1

pi�m)

T
� 1
2
��2i : (8)
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A standard theorem from the theory of stochastic processes (see Ross (1996),

p. 133) implies that �im is equal to the expected payo¤ for market maker i per

make/take cycle divided by the expected duration of a cycle. Thus, using equations

(5) and (7), we can rewrite the objective function of market-maker i (equation (8))

as

�im =
pi�m
D

� 1
2
��2i =

�i
��

�
�
2 � cm

�
��+��
�����

� 1
2
��2i =

�i��
�
�
2 � cm

�
��+ ��

� 1
2
��2i : (9)

Similarly, the objective function of market-taker j is to maximize his expected payo¤

per cycle divided by the expected duration of a cycle,

�jt =
qj�t
D

� 1
2
�2j =

�j
��
�
L� �

2 � ct
�

��+ ��
� 1
2
�2j : (10)

From (9) and (10), other things being equal, the expected pro�t (gross of mon-

itoring costs) of a trader on one side (e.g., the market-making side) declines in the

monitoring intensities chosen by the traders on the same side. For instance, @�im@�j
< 0

(for j 6= i). Intuitively, this e¤ect re�ects the fact that traders on the same side com-

pete for the same trading opportunities. They are engaged in a race to be �rst to

detect a trading opportunity when it appears.17

Traders�expected pro�t functions have another interesting property. It is readily

checked that the marginal e¤ect of an increase in the monitoring level of a trader on

one side increases in the aggregate monitoring level of the traders on the other side.

That is, @
2�im
@�j@�i

> 0 and @2�it
@�j@�i

> 0. For this reason, market-makers (resp, market-

takers) will inspect the state of the market more frequently when they expect market-

takers (resp. market-makers) to inspect the state of the market more frequently.

Thus, market-makers and market-takers�monitoring decisions reinforce each other.

In other words, liquidity supply begets liquidity demand and vice versa. As we

shall see, this complementarity in traders� decisions on both sides has important

implications.

Using the same type of argument as above, we write the expected pro�t of the

17 In reality, this aspect is a key reason for automating order submission. See �Tackling latency-the
algorithmic arms race,�IBM Global Business Services report.
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trading platform as

�E �
cm + ct
D

= �c � V ol
�
��; ��

�
; (11)

where

V ol
�
��; ��

�
�
�� � ��
��+ ��

: (12)

The variable V ol
�
��; ��

�
measures the trading rate on the trading platform (one over

the duration of a cycle), which is also the average trading volume per unit of time on

the trading platform. Thus, the long run payo¤ of the platform per unit of time is

simply the average number of shares traded per unit of time multiplied by the total

trading fee earned by the platform on each transaction.

Observe that �� and �� can be viewed as measure of "latent liquidity." Indeed,

T t =
1
�� is the average time it takes for the market-taking side to seize to a competitive

o¤er whereas Tm = 1
��
is the average time it takes for the market-making side to post

an o¤er. We refer to the �rst duration as the time from an order to a trade and the

second duration as the time from a trade to an order. These durations are of interest

as they can be measured empirically with high frequency data. We denote the ratio

of these two durations by C
def
= T t

Tm
=

��
�� . We refer to this ratio as the "time structure

of a cycle".

Equilibrium. The strategies for the market-makers and market-takers are their

monitoring intensities �i and �j respectively. A strategy for the trading platform

corresponds to a menu of fees (cm; ct) for a �xed total fee level �c = cm + ct. We

solve the model backwards. First, for a given set of fees (cm; ct), we look for Nash

equilibria in monitoring intensities in Stage 2. Using (9) and (10), an equilibrium in

this stage is a vector of monitoring intensities (��1; : : : ; �
�
M ; �

�
1; : : : ; �

�
N ) such that for

all i = 1; : : : ;M and j = 1; : : : ; N :

��i = argmax
�i

"
�i (�

�
1 + : : :+ �

�
N )
�
�
2 � cm

�
��1 + : : :+ �

�
i + : : :+ �

�
M + ��1 + : : : �

�
N

� 1
2
��2i

#
(13)

��j = argmax
�j

"
�j (�

�
1 + : : :+ �

�
M )
�
L� �

2 � ct
�

��1 + : : :+ �
�
M + ��1 + : : : �j + : : : �

�
N

� 1
2
�2j

#
: (14)
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For tractability, we further restrict attention to symmetric equilibria, i.e. equilibria

in which ��1 = �
�
2 = ::: = �

�
M and ��1 = �

�
2 = ::: = �

�
N :

Then, given a symmetric Nash equilibrium in the monitoring intensities, we solve

the trading platform�s problem by �nding the fee structure (c�m; c
�
t ) that maximizes

the trading platform�s expected pro�t (equation (11)). In most of the paper we

assume that �c is not a choice parameter for the platform to better focus the analysis

on the fee structure. It is straightforward to endogenize �c, as shown in Section 4.1.

3 Equilibrium Monitoring Intensities in the Short Run

In this section we �rst study the equilibrium monitoring intensities for a given set

of fees (cm; ct). For all parameters values, the model has two equilibria: (i) an

equilibrium with no trading; and (ii) an equilibrium with trading. This multiplicity

of equilibria is due to the complementarity in monitoring decisions discussed in the

previous section, which leads to a coordination problem between both sides.

To see this point, consider how the no-trade equilibrium arises. If a market-maker

expects that market-takers do not monitor the quotes on the trading platform, then

she expects no trade on the platform. Given that monitoring is costly, it is not

worth inspecting the state of the platform, and so she sets �i = 0: Similarly, if a

market-taker expects market-makers not to post quotes, then he has no incentive to

monitor, setting �j = 0. Thus, traders�beliefs that the other side will not be active

are self-ful�lling and result in a no-monitoring, no-trade equilibrium.

Proposition 1 :For any given set of fees, there is an equilibrium in which traders

do not monitor. That is, ��i = �
�
j = 0 for all i 2 f1; : : : ;Mg and j 20 1; : : : ; Ng is an

equilibrium. The trading volume in this equilibrium is zero.

The second equilibrium does involve monitoring and trade. To describe this equi-

librium, let

z � �m
�t



�
:
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When z > 1 (resp. z < 1); the ratio of pro�ts to costs per cycle is larger for market-

makers (resp. market-takers).

Proposition 2 :There exists a unique symmetric equilibrium with trading. In this

equilibrium, traders�monitoring intensities are given by

��i =

�
M + (M � 1)
�

(1 + 
�)2

��
�m
M�

�
i = 1; : : : ;M (15)

��j =

�

� ((1 + 
�)N � 1)

(1 + 
�)2

��
�t
N

�
j = 1; : : : ; N (16)

where 
� is the unique positive solution to the cubic equation


3N + (N � 1)
2 � (M � 1) z
�Mz = 0: (17)

Moreover, in equilibrium,
��
�

��� = 

�.

The next corollary describes the e¤ect of a change in the number of market par-

ticipants on monitoring intensities and trading volume more systematically.

Corollary 1 In the unique equilibrium with trading, for �xed fees of the platform,

1. Market-makers�individual monitoring levels increase with the number of market-

takers and vice versa, that is @��i
@N > 0 and

@��j
@M > 0 for all i and j:

2. The aggregate monitoring level of each side increases in the number of partici-

pants on either side (@
��
�

@N > 0 , @
��
�

@M > 0, @��
�

@N > 0 , @��
�

@M > 0).

3. Thus, the trading rate increases in the number of participants on either side

(
@V ol(���;���)

@M > 0 and
@V ol(���;���)

@N > 0).

Thus, an increase in the number of market participants on one side increases

market monitoring on both sides. This is a consequence of the strategic comple-

mentarity between both sides that we noticed in the previous section. Consider for

instance an increase in the number of market-makers. The immediate e¤ect of this

increase is to enlarge the aggregate monitoring of market-makers since they are more
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numerous. But in turn, this e¤ect is conducive to more monitoring by market-takers

as they expect trading opportunities to be more frequent. As a consequence, market-

takers monitor more in equilibrium (@��
�

@M > 0). This increase feeds back positively

on market-makers�incentive to monitor, and thereby ampli�es the initial increase in

market-makers�monitoring intensity. Eventually, the trading rate enlarges.

We cannot sign the e¤ect of an increase in participation on one side on the mon-

itoring levels chosen by participants on this side. Consider again an increase in the

number of market-makers. This increase intensi�es competition for trading opportu-

nities between market-makers since their total monitoring enlarges. Thus, it lowers

each market-maker�s incentive to monitor. But on the other hand, this increase is

conducive to more monitoring by market-takers, which fosters each market-makers�

incentive to monitor. We cannot, in general, determine whether the �rst e¤ect (com-

petition) or the second e¤ect (complementarity) dominates. Yet, an increase in the

number of market participants on one side enlarges the total attention of all market

participants and thereby the trading rate, as shown by Corollary 1.

The next corollary analyzes the e¤ect of a change in the monitoring cost or the

monitoring bene�t (pro�t-per-cycle) of one side on traders�monitoring intensity and

the trading rate, for a �xed tick size.18

Corollary 2 In the unique equilibrium with trading, for a �xed tick size,

1. Market-makers and market-takers�monitoring intensities decrease in market-

makers�monitoring cost (@�
�
i

@� < 0 and
@��j
@� < 0) and increase in market-makers�

pro�t per-cycle ( @�
�
i

@�m
> 0 and

@��j
@�m

> 0).

2. Market-makers and market-takers�monitoring intensities decrease in market-

takers�monitoring cost (@�
�
i

@ < 0 and
@��j
@ < 0) and increase in market-takers�

pro�t per cycle (@�
�
i

@�t
> 0 and

@��j
@�t

> 0).

18We �x the tick size because a change in the tick size has opposite e¤ects on the bene�t per trade
of market-makers and market-takers. Thus, we cannot unambiguously sign its e¤ect on the trading
rate.
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3. The trading rate decreases in the monitoring costs (
@V ol(���;���)

@� < 0 and
@V ol(���;���)

@ <

0) and increases in pro�ts per cycle (
@V ol(���;���)

@�m
> 0 and

@V ol(���;���)
@�t

> 0).

The strategic complementarity in monitoring decisions of both sides is again key

for this �nding. For instance, consider a decrease in the monitoring cost for marke-

makers. This decrease raises their monitoring levels, other things equal. But, in turn,

it induces market-takers to monitor more intensively, even though their cost of moni-

toring has not changed and this e¤ect reinforces the initial increase in market-makers�

monitoring level. This multiplier e¤ect shows that a small decrease in monitoring cost

on one side can eventually trigger a large increase in trading volume as it raises the

attention of both sides.

The corollary also implies that the trading platform must account for this comple-

mentarity in setting its fees. For instance, an increase in the fee on market-makers,

cm, decreases their bene�t per trade, �m. Thus, it directly decreases market-makers�

monitoring intensity and it indirectly decreases market-takers�monitoring intensities,

since monitoring of both sides are complements.19 As a consequence, the initial e¤ect

of the decrease in fees on trading volume is ampli�ed.

In equilibrium, there can be an imbalance in the aggregate attention of each side

to the trading process, as shown by the next corollary.

Corollary 3 : In equilibrium, for �xed fees, the market-making side monitors the

market more intensively (less) than the market-taking side (��� > ���) if and only if
z(2M�1)
(2N�1) > 1. If z(2M�1)

(2N�1) = 1, the market-making and the market-taking side have

identical monitoring intensities.

Thus, in equilibrium, there is an excess of attention by the market-making side

(resp. market-taking side) when z(2M�1)
(2N�1) > 1 (

z(2M�1)
(2N�1) < 1). For instance, if M = N

and �m
� > �t

 , the market-making side inspects the market more frequently than the

market-taking side because market-makers�cost of missing a trading opportunity is

relatively higher. If instead �m
� = �t

 and M > N , the market-making side inspects

19This indirect e¤ect does not arise in Rochet and Tirole�s (2003) model of two-sided markets.

20



the market more frequently simply because this side has more participants. Figure 1

provides a graphical illustration of Corollary 3.

Insert Figure 1 about here.

The possibility of an excess of attention of one side relative to the other has

interesting implications for (i) the make-take spread and (ii) the empirical relationship

between the make-take spread and the time structure of a cycle ( T t
Tm

=
��
��). We discuss

these implications Sections 4 and 5 below.

In general we do not have a closed-form solution for traders�monitoring levels

because we cannot solve for 
� in equation (17). However, there are two polar cases

in which we can do so.

The �rst case is the "bilateral monopoly case" in which the market features one

market-maker and one market-taker (M = 1 and N = 1). In this case, the solution

to equation (17) is 
� = z
1
3 . Thus, using equations (15) and (16), we obtain the

monitoring intensities of the market-making side and the market-taking side:

��1 =
�
1 + z

1
3

��2
�
�
�m
�

�
; (18)

��1 =
�
1 + z�

1
3

��2
�
�
�t


�
: (19)

The second case is the polar case in which the number of participants on both sides is

very large but the ratio q of the number of market-makers to the number of market-

takers is �xed.

Lemma 1 :Consider the case in which M = qN . When the number of market

participants goes to in�nity, traders� individual monitoring levels in equilibrium are

given by:

�1i � lim
M!1

��i =
1

1 + 
1

�
�m
�

�
i = 1; 2; 3; :::

�1j � lim
M!1

��j =

1

1 + 
1

�
�t


�
j = 1; 2; 3; :::

with 
1 = (zq)
1
2 :
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Thus, traders�individual monitoring levels remain �nite even though the number

of participants goes to in�nity. Consequently, traders�aggregate monitoring levels

and the trading rate explode in this case. Thus, we shall focus on the case in which

the number of participants is very large but �nite. We call this case "the large market

case." In this case, we can obtain approximations of the aggregate monitoring level

on each side and the resulting trading rate, as shown by the next lemma.

Lemma 2 :Consider the case in which M = qN and let de�ne

��
1
(M) � �m

�

M

1 + 
1
� �m
�


1 (q + 2 + 
1)

2 (1 + 
1)3
; (20)

�1 (M) � (
1)�1 � ��1 (M) ; (21)

V ol1(M) �
��
1
(M)

1 + 
1
: (22)

Then, (i) limM!1
�
��
�
(M)� ��1 (M)

�
= 0; (ii) limM!1 (�

� (M)� �1 (M)) = 0;

and (iii) limM!1
�
V ol

�
��
�
; ���
�
� V ol1 (M)

�
= 0.

Thus, when the number of market participants becomes large, we can approximate

the trading rate and traders�aggregate monitoring levels by V ol1(M), ��1 (M), and

�1 (M). Numerical simulations indicate that these approximations become good

very quickly (that is, they hold even for small values of M and N).

4 The Determinants of the Make/Take Spread

Now, we study the determination of its fees by the trading platform. In most of the

analysis, we �x exogenously the total fee charged by the trading platform, �c, as we

are mainly interested in the determinants of the platform�s fee structure, (cm; ct).

We refer to cm � ct as being the make/take spread. The make/take spread is zero

when the fee structure is �at (i.e., cm = ct) and positive (negative) if the market-

making side pays a higher (lower) fee than the market-taking side. As explained in

the introduction, in reality, the make-take spread is in general negative (cm < ct).

Our goal is to understand how the exogenous parameters of the model (the tick size,

the monitoring costs, and the number of participants) a¤ect the make-take spread.
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It is worth stressing at the outset that price discreteness explains why the fee

structure matters. Indeed, it prevents market-makers from neutralizing a change

in fees by an adjustment in their o¤ers. For instance, market-makers cannot pass-

through a decrease in their trading fee by quoting a more attractive price because

their quotes must be on the grid. Thus, the breakdown of the total trading fee alters

the balance of attention between the market-making side and the market-taking side

and thereby it a¤ects the trading rate.

As explained in Section 2.3, the expected pro�t of the trading platform per unit of

time is �E = (cm + ct)V ol(��
�
; ���). Trading fees a¤ect traders�monitoring decisions

and thereby the trading rate. For instance, consider an increase in the fee charged on

market-makers, cm. This increase reduces their expected pro�t per trade (�m) and

thereby their monitoring intensity in equilibrium (Corollary 2). As a consequence,

market-takers�monitoring intensities decrease as well and the trading rate becomes

smaller (Corollary 2).

For a given total fee �c, the objective function of the trading platform is

max
cm;ct

(cm + ct)V ol(��
�
; ���); (23)

s:t : cm + ct = �c (24)

Thus, the problem of the trading platform is to �nd the fee structure (c�m; c
�
t ) that

maximizes it trading rate, V ol(���; ���) =
��
�����

��
�
+���

. The �rst order conditions for this

optimization problem impose that:

@V ol(��
�
; ���)

@cm
=
@V ol(��

�
; ���)

@ct
: (25)

That is, the trading platform chooses its fee structure so as to equalize the marginal

(negative) impact of an increase in each fee on trading volume. Let

�mm � @ log(��
�
)

@cm
and �mt �

@ log(���)

@cm
; (26)

�tm � @ log(��
�
)

@ct
and �tt �

@ log(���)

@ct
.

Variables �mm and �tm measure the elasticities of the total monitoring level of the

market-making side to the fee charged on the market-makers on the one hand and the
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fee charged on market-takers on the other hand. Variables �tm and �tt measure the

elasticities of the total monitoring level of the market-taking side to the fees. Using

equation (25), we obtain the following result.

Lemma 3 :For each level �c of the total fee charged by the platform, the optimal fee

structure must satisfy:

c�m =

�
h

h+ 1

�
�c; (27)

c�t = �c� c�m =
�

1

h+ 1

�
�c;

where h � (��
�
)�1�mm+(��

�)�1�mt
(��
�
)�1�tm+(��

�)�1�tt
.

The elasticities of monitoring levels to a change in fees depend on the fees through


�, �m; and �t. Thus, the optimal fee structure is implicitly de�ned by equation (27).

Yet, the previous result shows that in general, the �at fee structure is not optimal,

except if h = 1.

To develop insights on the determinants of the make-take spread, we now consider

two special cases (i) the large market and (ii) the bilateral monopoly. We show that

the e¤ects of the monitoring costs ( and �) and (ii) the tick size are identical in

both cases. Moreover, in the large market case, we can study the e¤ects of varying

the ratio of the number of market-makers to the number of market-takers (q) on the

make-take spread. We will then show through numerical simulations that the insights

obtained in the two polar cases are robust in the general case.

4.1 The Large Market

We �rst consider the case in which the number of participants is large and such that

M
N = q. Using Lemma 2, we can solve for the optimal fee structure of the platform.

We obtain the following result.

Proposition 3 :In the large market case, the trading platform optimally allocates its

fee �c between the market-making side and the market-taking side as follows:

c�m =
1

2

 
�� 2(L� �c)

(1 + (qr)
1
3 )

!
and c�t = �c

� � c�m: (28)
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For these fees,

��m =
L� �c

(1 + (qr)
1
3 )

and ��t =
L� �c

(1 + (qr)�
1
3 )
; (29)

and the equilibrium monitoring intensities are:

�1i =
L� �c

�
�
1 + (qr)

1
3

�2 and �1i =
L� �c


�
1 + (qr)�

1
3

�2 : (30)

We now discuss how the tick size, the monitoring costs and the ratio of market

participants on both sides determine the optimal fee structure of the platform. Let

�(q; r)
def
= 2(L � �c)(1 + (qr) 13 )�1 + �c. Using equation (28), it is immediate that the

make/take spread is zero if and only if � = �. If � > �, the make-take spread is

positive and if � < �, the make-take spread is negative, as shown on Figure 2.20

Insert Figure 2 about here

Furthermore, the model has implications for the sources of variations in the make-

take spread, as shown by the next corollary.

Corollary 4 : In the large market, the make-take spread increases with (i) the tick

size, �, (ii) the relative size of the market-making side, q, and (iii) the relative

monitoring cost for the market-taking side, r.

These �ndings follow from the same general principle. That is, when a parameter

changes so that the level of attention of one side rises relative to the level of attention

of the other side then the trading platform raises its fee on the side whose attention

increases. In other words, the trading platform uses its fee to equilibrate the level of

attention of the market-making and the market-taking side.

For instance, consider an increase in the tick size. This increase reinforces market-

makers�incentive to monitor the market since, other things equal, they get a larger

20The model also implies that in some cases it might be optimal to subsidize one side. Indeed,
equation (28) implies that the fee charged on market-makers (resp. market-takers) can be negative
(a subsidy) if the tick size is small (resp. large) enough. In this case, one may wonder whether it is
not optimal for a market-maker to undercut his competitors by posting an o¤er at a �� when an
o¤er is already standing at a. Given the optimal fees charged by the platform, this is never optimal
however since this yields a pro�t of a��� v0 � c�m = L�c

1+r1=3
�� � 0 since L � �.
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fraction of the gains from trade when they participate to a trade. In contrast, market-

takers�incentive to inspect the state of the market is lower. Thus, to better balance

the level of attention of both sides, it is optimal for the platform to charge a larger

fee on the market-makers and a smaller fee on the market-takers.

The e¤ect of an increase in the relative size of the market-making side (q) or the

ratio of market-takers to market-makers�monitoring cost (r = 
� ) on the make-take

spread can be understood in the same way. Intuitively, an increase in the relative

size of the market-making side or a decrease in its relative monitoring cost enlarge

the amount of attention of this side relative to the market-taking side, other things

equal. Thus, to balance the level of attention on both sides, it is optimal for the the

trading platform to raise its fee on the market-making side when q or r increase.

Let ��(r; q) � ��m
��m+�

�
t
be the fraction of the net gains from trade (L� �c) obtained

by the market-maker in a given transaction. Using equation (29), we obtain that in

equilibrium:

��(r; q) � ��m
��m + �

�
t

=
1

1 + (qr)
1
3

: (31)

We deduce the following result.

Corollary 5 :

1. Market-makers get a smaller fraction of the net gains from trade when (i) their

monitoring cost becomes relatively smaller(@�
�

@r < 0) or when (ii) the size of the

market-making sector relative to the market-taking sector enlarges (@�
�

@q < 0).

2. When the relative size of the market-making sector goes to in�nity (q ! 1)

or market-makers�monitoring cost goes to zero (� ! 0), market-makers�gains

from trade go to zero (�� ! 0).

3. When the relative size of the market-making sector goes to zero (q ! 0) or

market-takers�monitoring cost goes to zero (� ! 0), market-takers�gains from

trade go to zero (�� ! 1).
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As pointed out in the introduction, algorithmic trading reduces the cost of mon-

itoring but not necessarily at the same speed for both sides. In this case, Corollary

5 shows that the development of algorithmic trading results in a counter-intuitive

redistribution of trading pro�ts per trade. In the short-run (that is, for �xed fees of

the platform), a decline in the monitoring cost leaves the division of the gains per

trade unchanged. But, in the long run, fees adjust and the division of the gains from

trade is shifted in favor of the side whose monitoring cost declines the least.

The previous �ndings about the optimal fee structure hold for any level �c. As �c

enlarges, market-makers and market-takers watch the market less closely. As a result,

the trading rate decreases. Thus, in choosing its total fee, the trading platform faces

the standard price-quantity trade-o¤ for a monopolist.

Corollary 6 For r and q being �xed, when the trading platform optimally chooses

its fee structure, the trading rate is (i) inversely related to traders�monitoring cost,

(ii) positively related to the size of gains from trade (L � �c) and (iii) independent

from the tick size. Moreover, it is maximal for �c = L=2.

Thus, in contrast to the fee structure, the optimal fee for the platform is in-

dependent of the tick size, traders� monitoring costs and the relative size of the

market-making side.

4.2 The Bilateral Monopoly (M = N = 1)

Using the expressions for monitoring levels on each side (equations (18) and (19)),

we can solve for the optimal fee structure of the platform. We obtain the following

result.

Proposition 4 When M = N = 1, the trading platform optimally allocates its fee �c

between the market-making side and the market-taking side as follows:

c�m =
1

2

 
�� 2(L� �c)

(1 + r
1
4 )

!
and c�t = �c

� � c�m: (32)
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For these fees,

��m =
L� �c
(1 + r

1
4 )

and ��t =
L� �c

(1 + r�
1
4 )
; (33)

and the equilibrium monitoring intensities are:

��1 =
L� �c

�
�
1 + r

1
4

�3 and ��1 =
L� �c


�
1 + r�

1
4

�3 : (34)

Clearly, this result is qualitatively similar to Proposition 3. In particular, it is

readily checked that our �ndings regarding the e¤ects of the tick size, the relative

size of the market-making side and the relative monitoring cost of market-takers

(Corollary 4) still hold in this case.

5 Implications

We now discuss some empirical implications of the model.

Duration Clustering. We pointed out that market-makers�and market-takers�

monitoring decisions are complements. Thus, an exogenous shock that positively

a¤ects the aggregate monitoring level of one side also raises the aggregate monitoring

level of the other side, as shown by Corollaries 1 and 2. This naturally leads to a

positive correlation between (i) the average duration from a trade to a quote (Tm = 1
�
)

and (ii) the average duration from a quote to a trade (T t = 1
�).

For instance, consider an increase in the number of market-takers. In equilibrium,

it leads to both a decrease in the reaction time of the market-taking side (as they

monitor more) and the reaction time of the market-making side (as more monitoring

by market-takers encourages more monitoring by market-makers). Thus, both Tm

and T t fall. As a consequence, the duration between trades (Tm + T t) falls as well

(these claims directly follow from Corollary 1).

This positive correlation between the average durations of each phase in a cycle

echoes the clustering in the time intervals between consecutive transactions (trade

durations) found in several empirical papers (e.g., Engle and Russell (1998)). Our

model suggests that clustering in time between trades could re�ect the positive cor-

relation between Tm and T t. More generally, it suggests to explain clustering by
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the complementarity of liquidity suppliers�and liquidity demanders�monitoring de-

cisions. Thus, a factor shortening the reaction time of one side shortens the reaction

time of the other side as well. Thus, time-variations in this factor (e.g., the number

of market-takers during the trading day) lead to a positive correlation between the

various components (Tm and T t) of the total duration of a cycle.

Time Structure of a Cycle. The model has also interesting application for

what we call the "time structure of a cycle", that is the ratio:

C
def
=

T t

Tm
=
�

�
:

In equilibrium, this ratio is equal to 
� (Proposition 2). For the discussion, we

focus again on the large market case but our predictions hold in other cases as well.

We obtain the following result.

Corollary 7 : In equilibrium, for �xed fees of the trading platform, the time struc-

ture of a cycle in the large market is:

C(r; q; cm; ct) =
T t

Tm
= (

�mrq

�t
)1=2: (35)

Thus, the time from a quote to a trade relative to the time from a trade to a quote

becomes relatively larger when (i) the relative size of the market-making side enlarges,

(ii) the relative monitoring cost of the market-taking side enlarges, (iii) the fee charged

on market-makers decreases and (iv) the fee charged on market-takers increases.

The two �rst implications (those regarding the e¤ect of q and r on C) also hold

when fees are set at the optimal level. Indeed, using Proposition 3 and equation (35),

we obtain that:

C(r; q; c�m; c
�
t )) = (

��mrq

��t
)1=2 = (rq)2=3. (36)

The optimal make-take spread is also positively related to r and q (see Corollary

4). Thus, if fees are set optimally, the model also implies a positive correlation

between the make-take spread and the ratio of the durations of the two phases in

a cycle, T t
Tm
. This prediction is interesting as the make-take spread varies (i) across
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securities for a given trading platform (see Table 1 in the introduction) and (ii)

across trading platforms, for a given security (in which case q may di¤er across

platforms). These variations provide a way to test whether the make-take spread

co-varies positively with the ratio of durations.

Tick size and Make-Take Spread. The model also implies a positive associa-

tion between the make-take spread and the tick size. Interestingly, the proliferation of

negative make-take spreads on U.S. equity trading platforms (and even rebates paid

to liquidity suppliers) coincide with a reduction in the tick size on these platforms.

Moreover, this practice was introduced by ECNs such as Archipelago or Island in the

90s which, at this time, were operating on much �ner grids than their competitors

(Nasdaq and NYSE).21 Last, since January 2007, the tick size has been reduced for

some options in U.S. option markets (so called "penny pilot program"). Interestingly

this reduction is associated with the adoption of make/take fees by a some trad-

ing platforms (e.g., NYSE Arca Options and the Boston Options Exchange) for the

options that trade on pennies.

The model suggests two other reasons for the low make-take spreads that are

observed in reality (see Figure 2). This con�guration could also arise because the

size of the market-making sector is relatively small and/or because monitoring costs

for this sector are relatively higher. This situation is not implausible. First, in recent

years, the burden of liquidity provision seems to rest on a relatively small number

of market participants (GETCO, ATD, Citadel Derivatives etc...) who specialize in

high-frequency market-making by actively monitoring the market. Thus, q could

be small in reality. Moreover, brokers who must take a position in a list of stocks

on behalf of their clients need to focus only on trading opportunities in this list of

names. In contrast, electronic market-makers monitor the entire universe of stocks,

unless they decide to specialize. Thus, their opportunity cost of monitoring one stock

is likely to be higher than for market-takers.

21Biais, Bisière and Spatt (2002) stress the importance of the �ness of the grid on Island for the
competitive interactions between this platform and Nasdaq, Island�main competitor at the time of
their study.
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Volume and Algorithmic Trading. The model also implies that an improve-

ment in monitoring technology, such as algorithmic trading, can lead to a burst in

trading volume. Indeed, as shown by Corollary 2, a decrease in the monitoring costs

of both the market-making side and the market-taking side translates into an increase

in trading volume. The result also holds when the fee structure is endogenous (as

shown by Corollary 6).

This result is interesting as analysts relate recent surges in trading volume to the

development of algorithmic trading. For instance, from 2005 to 2007, the number

of shares traded on the NYSE rose by 111%, despite the loss in market share of the

NYSE over the same period. The model suggests that this surge happens because

algorithmic trading accelerates the speed at which liquidity demanders and liquidity

suppliers respond to each other.

Bid-Ask Spread and Algorithmic Trading. Quoted bid-ask spreads are

often used as a measure of liquidity. To compute the bid-ask spread in our model,

assume that there is a large number of shares are o¤ered for sale at price a +� by

a fringe of competitive traders, as in Seppi (1997) or Parlour (1998). The cost of

liquidity provision for these traders is higher than for the electronic market-makers

and therefore they cannot intervene pro�tably at price a.

This assumption does not change traders�optimal behavior since market-takers

only trade at a. Thus, the (half) bid-ask spread (the best o¤er less v0) is either a

(in state F) or a + � (in state E). During a cycle, the market is in state F for an

average duration T t and in state E for an average duration Tm. Thus, the average

half bid-ask spread (denoted ES) is:

ES = �a+ (1� �)(a+�) = a+ (1� �)�: (37)

with

�
def
=

T t

T t + Tm
= (1 +

�

�
)�1 (38)

Thus, the average bid-ask spread decreases when � increases, that is when the ratio

�
� enlarges. In equilibrium,

�
� increases in the relative monitoring cost ratio, r =


� .
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For instance, in the large market, �� = (�mrq�t
)1=2. This relationship shows that the

e¤ect of algorithmic trading on the bid-ask spread depends on whether the associated

reduction in monitoring cost is faster for the market-taking side or the market-making

side.

In the former case, r decreases and therefore �
� decreases as well. Accordingly,

the bid-ask spread enlarges. Intuitively, the reduction in the cost of monitoring for

market-takers accelerates the speed at which liquidity is consumed without being

matched by a commensurate increase in the provision of liquidity. As a consequence

the bid-ask spread widens. If instead, algorithmic trading leads to a faster reduction

in monitoring costs for market-makers then it should result in smaller bid-ask spreads.

The same result holds if fees are set optimally since in this case �
� = (rq)

2=3

Hendershott et al. (2008) �nd empirically that, on average, algorithmic trading

has triggered a reduction in the average e¤ective bid-ask spreads for stocks listed on

the NYSE. This suggests that, in reality, monitoring costs for market-makers have

fallen more quickly than for market-takers.

6 Conclusion

This paper considers a model in which traders must monitor the market to seize

trading opportunities. One group of traders (�market-makers�) specializes in posting

quotes while another group of traders (�market-takers�) specializes in hitting quotes.

Market-makers monitor the market to be the �rst to submit a new competitive quote

after a transaction. Market-takers monitor the market to be the �rst to hit a com-

petitive quote. In this way, we model the high frequency make/take liquidity cycles

observed in electronic security markets.

Our main �ndings are as follows:

1. Monitoring decisions by market-makers and market-takers are complements.

Thus, there is a coordination problem in the decisions of both sides that can

result in high or low levels of trading activity.
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2. An increase in the number of participants on one side or a decrease in the

monitoring cost of one side result in more attention by both sides and a higher

trading rate.

3. For a �xed trading fee earned by the platform, there is an allocation of this

fee between market-makers and market-takers that maximizes the trading rate.

This allocation is such that there is a make/take spread: the fee charged on

market-makers is di¤erent from the fee charged on market-takers.

4. The make/take spread enlarges with (i) the tick size, (ii) the ratio of the number

of market-makers to the number of market-takers and (iii) the ratio of market-

takers monitoring cost to market-makers�monitoring cost.

5. When fees are set optimally, market-makers (resp. market-takers) get a smaller

fraction of the gains from trade when (i) their number enlarges or (ii) their

monitoring costs decreases.

7 Appendix

Proof of Proposition 1: Direct from the argument in the text.

Proof of Proposition 2: From (13), the �rst order condition for market-maker i

is:
��
�
��+ ��� �i

��
��+ ��

�2 �m
�
= �i:

Summing over all i = 1; : : :M , we obtain

��
��
��+ ��

�
M � ��

��
��+ ��

�2 �m
�
= ��: (39)

Similarly, for market-takers we obtain,

��
��
��+ ��

�
N � ��

��
��+ ��

�2 �t

= ��: (40)
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Let 
 � ��
�� : Dividing (39) and (40) by ��

2 we have,

M + (M � 1)

(1 + 
)2

�m
�

= ��: (41)


 ((1 + 
)N � 1)
(1 + 
)2

�t


= �� (42)

Dividing these two equations gives,

(M + (M � 1)
)

2 ((1 + 
)N � 1)z = 1; (43)

or equivalently,


3N + (N � 1)
2 � (M � 1) z
�Mz = 0:

We argue that this cubic equation has a unique positive solution. Indeed, this equa-

tion is equivalent to


 = g(
;M;N; z): (44)

with

g(
;M;N; z) =
(M � 1)z

N

+
Mz

N
2
� N � 1

N
: (45)

Function g(�;M;N; z) decreases in 
. It tends to plus in�nity as 
 goes to zero, and

to �N�1
N as 
 goes to in�nity. Thus, (44) has a unique positive solution that we

denote by 
�.

To obtain a full characterization of the aggregate monitoring levels in equilibrium,

insert this root into Equations (41) and (42). Traders�individual monitoring levels

then follow since, in a symmetric equilibrium, �i = ��=M and �j = ��=N for all i; j.

Proof of Corollary 1: Recall that 
� is such that:


� = g(
�;M;N; z); (46)

where g(:) is de�ned in equation (45). It is immediate that g(:) increases in M ,

decreases in N , and increases in z. As g(:) decreases in 
, we have

@
�

@M
> 0; (47)

@
�

@N
< 0: (48)
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Now, using Equations (47) and (15), we conclude that:

@��i
@M

=
�@
�

@N � ((M + 1) + (M � 1)
�)
(1 + 
�)3

�
�m
M�

�
< 0.

Similarly, using equations (48) and (16), we deduce that

@��j
@M

> 0: (49)

This proves the �rst part of Corollary 1. We also have


� =
��
�

���
.

Thus, using equations (47) and (48), we conclude that
��
�

��� increases inM and decreases

in N . Equation (49) implies that ��� increases in M . Thus it must be the case that

��
� increases in M as well. A similar argument shows that ��� increases in N , which

proves the second part of Corollary 1. The last part of the corollary follows from

the second part and the fact that the trading rate increase in traders�monitoring

intensities.

Proof of Corollary 2: We �rst consider the e¤ect of a change in � on market-takers�

monitoring intensities. We have (see Proposition 2),

��j = �(

�)

�
�t
N

�
;

where

�(
�) =

�

� ((1 + 
�)N � 1)

(1 + 
�)2

�
:

Thus
@��j
@�

=

�
@�(
�)

@
�
@
�

@z

@z

@�

��
�t
N

�
We have @�(
�)

@
� > 0. Moreover @

�

@z > 0 and
@z
@� < 0. Thus

@��j
@�

< 0,

which implies that @�
�

@� < 0. Now, since
��
�
= 
����, we have:

@��
�

@�
= 
�

@��

@�
+
@
�

@z

@z

@�
��� < 0;
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which implies
@��j
@� < 0. Other claims in the corollary are proved in the same way.

Proof of Corollary 3: Using equation (17), it is readily checked that 
� = 1 if and

only if z = 2N�1
2M�1 . Thus,

��
�
= ��� if and only if z = 2N�1

2M�1 . Moreover, as shown in the

proof of Corollary 1, 
� increases in z. Hence, ��� > ��� i¤ z > 2N�1
2M�1 .

Proof of Lemma 1: Recall that 
� is the unique positive solution to the cubic

equation


3N + (N � 1)
2 � (M � 1) z
�Mz = 0: (50)

and

z � �m
�t



�
:

Thus, using Equation (50),

z =

�3N + (N � 1)
�2
(M � 1)
� +M =


�3Mq + (
M
q � 1)


�2

(M � 1)
� +M

=

�3 1q +

(M
q
�1)
M 
�2

(M�1)
M 
� + 1

�!
M!1


�2

q
:

That is, when M and N becomes very large, 
� converges to a �nite number, which

we will denote by 
1 given by


1 = (zq)
1
2 : (51)

Thus, using the expression for the monitoring intensity of a market-maker (equation

(15)), we deduce that:

�1i � lim
M!1

��i =

�
M + (M � 1)
�

M (1 + 
�)2

��
�m
�

�
(52)

=
1

1 + 
1

�
�m
�

�
; (53)

=
1

1 + (zq)
1
2

�m
�

for i = 1; ::;M .

Similarly, for a market-taker:

�1j � lim
M!1

��j = lim
M!1

0@
�
�
(1 + 
�) Mq � 1

�
M
q (1 + 


�)2

1A��t


�
(54)

=
1

1 + (zq)�
1
2

�
�t


�
: for j = 1; ::; N .
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Proof of Lemma 2: After some algebra, we obtain:

��
�
(M)� �m

�

M

1 + 
1
=
�m
�

�
M (
1 � 
�)

(1 + 
�) (1 + 
1)
� 
�

(1 + 
�)2

�
: (55)

Moreover it can be shown that:

lim
M!1

M (
1 � 
�) = 
1 (
1 � q)
2 (
1 + 1)

; (56)

We skip the proof of this claim for brevity. Thus, using equation (56), we obtain:

lim
M!1

�
��
�
(M)� �m

�

M

1 + 
1

�
=

�m
�

lim
M!1

�
M (
1 � 
�)

(1 + 
�) (1 + 
1)
� 
�

(1 + 
�)2

�
=

�m
�

�

1 (
1 � q)
2 (1 + 
1)3

� 
1

(1 + 
1)2

�
=

�m
�


1

(1 + 
1)2

�

1 � q � 2� 2
1

2 (1 + 
1)

�
= ��m

�


1 (q + 2 + 
1)

2 (1 + 
1)3
:

Thus, we have shown that

lim
M!1

�
��
�
(M)� ��1 (M)

�
= 0;

as required. The other claims of the proposition are then immediate since: ��(M) =

(
�)�1��
�
(M).

Proof of Lemma 3: We have

@V ol(��
�
; ���)

@cm
= �V ol(���; ���)2( @�

@cm

1

�
2 +

@�

@cm

1

�2
)

= �V ol(
��
�
; ���)2

cm
(
�mm
�

+
�mt
�
): (57)

and
@V ol(��

�
; ���)

@ct
= �V ol(

��
�
; ���)2

ct
(
�tm
�
+
�tt
�
): (58)

The optimal fee structure is such that:

@V ol(��
�
; ���)

@ct
=
@V ol(��

�
; ���)

@cm

Thus, using equations (57) and (58), we deduce that:

����mm + ��
�
�mt

����tm + ��
�
�tt

=
cm
ct
:
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Using this equation, the proposition is then straightforward.

Proof of Proposition 3

For a �xed tick size, there is a one-to-one mapping between the fees charged by

the trading platform and the per trade trading pro�ts obtained by the market-making

side and the market-taking side, �m and �t. Thus, instead of using cm and ct as the

decision variables of the platform, we can use �m and �t. It turns out that this is

easier. Thus, for a �xed �c, we rewrite the platform problem as:

Max�m;�tV ol(
��
�
; ���)�c

s:t �t + �m = L� �c:

Now, for M large, we can approximate V ol(���; ���) by (see Lemma 2):

V ol1(M) �
��
1
(M)

1 + 
1
=
�m
�

M

(1 + 
1)2
� �m
�


1 (q + 2 + 
1)

2 (1 + 
1)4

Thus, in the large market, we rewrite the trading platform�s problem as:

Max�m;�t�c

�
�m
�

M

(1 + 
1)2
� �m
�


1 (q + 2 + 
1)

2 (1 + 
1)4

�
s:t �t + �m = L� �c:

Let K = ��m
�

1(q+2+
1)

2(1+
1)4
. The �rst order condition with respect to �t is

� 1

(1 + 
1)2 �
� L� �c� �t

�

2

(1 + 
1)3
d
1

d�t
+ (

@K

@�t
)
1

M
= 0; (59)

Thus, as @K@�t does not depend onM , whenM goes to in�nity, the �rst order condition

imposes:

1 +
2 (L� �c� �t)
1 + 
1

d
1

d�t
= 0: (60)

Now, recall that 
1 = (zq)
1
2 . Hence:

d
1

d�t
=

d
1

dz

dz

d�t
=
1

2
q (zq)�0:5

d

d�t

�
L� �c� �t

�t



�

�
(61)

= � q

2
1
L� �c
�2t



�
:
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Thus, we can rewrite (60) as

1� L� �c� �t
1 + 
1

q


1
L� �c
�2t



�
= 0:

Or,

1� zq

(1 + 
1) 
1
L� �c
�t

= 0; (62)

which simpli�es to
�t
L� �c =


1

1 + 
1
: (63)

Denote

w � �t
L� �c :

Then equation (63) imposes:

w =

1

1 + 
1
=

1

1 + (zq)�0:5
: (64)

Now observe that:

z = r
1� w
w

:

Thus, we can rewrite equation (64) as

w =
1

1 +
�
1�w
w

��0:5
(rq)�0:5

:

The solution(s) to this equation provides the optimal value of w and thus the opti-

mal fees for the trading platform (since these fees �x the sharing of the gains from

trade between market-makers and market-takers). It is immediate that the previous

equation as a unique solution:

w� =
(rq)

1
3

1 + (rq)
1
3 :

It is easily checked that for w > w�, the R.H.S of equation (62) is strictly positive.

Thus, trading volume �rst increases as w increases from 0 to w� and then decreases.

This means that w� is the unique global maximum of the trading platform�s opti-

mization problem.
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Now, using the fact that w = �t
L��c , we can easily derive the expressions for the

optimal fees and ��t and �
�
m. It is easily checked that for the optimal fees, we have


1 = (rq)1=3:

Thus, using Lemma 1, traders�monitoring frequencies given the fees set by the plat-

form are

�1i =
1

1 + 
1

�
�m
�

�
=

L� �c

�
�
1 + (rq)

1
3

�2 ;
�1j =


1

1 + 
1

�
�t


�
=

L� �c


�
1 + (rq)�

1
3

�2 :
Proof of Corollary 5 Immediate from equation (31).

Proof of Corollary 6 To be written.

.

Proof of Proposition 4: As in the proof of Proposition 3, we can use �mm and

�mt. Thus, for a �xed �c, when M = N = 1, the platform problem is:

Max�m;�t
��1�

�
1

��1 + �
�
1

�c

s:t �t + �m = L� �c:

From equations (41) and (42),

��1
��1
= z

1
3 = (

�m
�t



�
)
1
3

and

��1 =
�m
�

1�
1 + z

1
3

�2
Thus, we can rewrite the previous optimization problem as:

Max�m;z
��1

1 + z
1
3

�c (65)

s:t �m

�
1 +



�z

�
= L� �c: (66)

and ��1 =
L� �c

�
�
1 + z

1
3

�2 �
1 + 

�z

� (67)
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This problem is equivalent to �nding z that minimizes�
1 + z

1
3

�3 �
� +



z

�
:

The FOC to this problem imposes

� 1
z2

�
 � z

4
3�
��
z
1
3 + 1

�2
= 0:

Hence, the solution is

z =

�


�

� 3
4

= r
3
4 : (68)

Using the constraint (66), we have,

��m =
L� �c
1 + r

1
4

: (69)

It follows that,

��t = L� �c� �m =
L� �c
1 + r�

1
4

: (70)

Then, plugging (68), (69), and (70) into equations (18) and (19), we obtain the

required expressions for ��1 and �
�
1:

Proof of Corollary 7: In the large market, in equilibrium, we have 
� = 
1 =

(zq)1=2 (see the proof of Lemma 1). The proposition follows.
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