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Abstract

Carbon offsets from forest expansion or energy efficiency improvements in developing coun-
tries are frequently discussed as a means of reducing the costs of an emissions reduction policy.
However, offsets have a basic problem stemming from asymmetric information. Sellers of off-
sets have private information about their opportunity costs, leading to concerns about whether
offsets are additional. Non-additional offsets can undermine a cap-and-trade program or, if the
government purchases them directly, result in enormous government expenditures. We analyze
contracts for carbon sequestration in forests that mitigate the asymmetric information problem.
Landowners are offered a menu of two-part contracts that induces them to reveal their type (i.e.,
opportunity costs). Under this scheme, the government is able to identify ex post how much
additional forest is contributed by each landowner and minimize ex ante its expenditures on
carbon sequestration. To explore the performance of the contracting scheme, we conduct a
national-scale simulation using an econometric model of land-use change. The results indicate
that for increases in forest area between 11 and 22 million acres, government expenditures
are between $1 and $6 billion lower under the contracting approach compared to a uniform
subsidy offered to all landowners. This compares to an increase in private opportunity costs
between $66 and $705 million dollars under the contracts.
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1 Introduction

As we enter the second decade of the 21st century there is an emerging consensus that carbon

emissions must be limited. But there is also a strong sense that cutting emissions can be very

costly, particularly if conventional sources of energy are heavily taxed or abandoned. One way to

reduce the costs of a carbon reduction policy that has received a great deal of attention is offsets.

The idea is to control emissions through, for example, a cap-and-trade program, but allow sources

to substitute lower-cost offsets for emissions reductions. Carbon sequestration in forests is one

promising type of offset. Numerous studies have found that forest sequestration can be used to

offset a substantial share of carbon emissions at costs that are similar to or lower than those as-

sociated with energy-based mitigation approaches (Richards and Stokes, 2004; van Kooten et al.,

2004; Stavins and Richards, 2005; Lubowski, 2002). Other offset categories include carbon stor-

age in agricultural soils and energy efficiency improvements in developing countries. In principle,

one could include all carbon sources and sinks under a cap-and-trade policy. There are practical

obstacles to doing this in the case of forests and agricultural lands due to the large and diverse

population of landowners and apparent political obstacles – as suggested by the Kyoto Protocol –

in the case of developing countries.

Despite their potential to reduce costs, offsets have a basic problem stemming from asym-

metric information. Sellers of offsets have private information about their opportunity costs of

reducing or abating emissions. This implies that only the seller knows whether she would have

undertaken the activity in the absence of a payment for the offset. This leads to the oft-expressed

concern about “additionality”: offsets are not true incremental adjustments if they would have hap-

pened anyway. Under a cap-and-trade policy, a private entity purchasing offsets cares about their
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price, not about whether they are additional. But, the government has an interest in ensuring the

additionality of offsets since non-additional offsets effectively reduce the aggregate emissions cap.

An alternative is for the government to purchase offsets directly.1 Asymmetric information is im-

portant here as well if the government is concerned about the budgetary impacts of the policy.2 In

this case, it will want to avoid paying for non-additional offsets as well as limiting its expenditures

on the offsets that are additional. However, sellers have an incentive to exploit the asymmetric

information by claiming to have high opportunity costs.

In this paper, we propose and empirically investigate a contracting scheme to mitigate

the asymmetric information problem. We focus our analysis on a government agency seeking to

purchase offsets from private landowners, but our approach applies equally well to the situation

in which the government seeks to ensure the legitimacy of privately purchased offsets. In our

model, the government’s objective is to maximize expected net benefits from forestation3, where

marginal benefits equal an exogenously determined carbon price and costs are defined in terms of

government expenditures. The government is assumed to know the distribution over landowners’

opportunity costs, but not the realization for any particular individual. The optimality conditions

associated with this maximization problem induce a set of optimal contracts, one for each type of

agent. Each contract entails two ingredients: a per-unit payment, and a lump-sum transfer (from

the agent to the government). The essential feature of the contract scheme is that it induces agents

to truthfully reveal their type (i.e., their opportunity costs). This enables the government to identify

ex post how much additional forest is contributed by each landowner. Further, the government is

1The Conservation Reserve Program is an example of such a policy. In this case, the U.S. federal government
contracted with landowners to take agricultural land out of production and put it into conservation uses.

2A private entity who purchases offsets would, likewise, wish to limit its expenditures. It faces the same problem
as the government does with asymmetric information.

3 Conversion of non-forest lands to forest is referred to as afforestation, while maintenance of land in forest is
avoided deforestation. We use the term forestation to refer collectively to these activities.
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able to minimize ex ante its expenditures on forestation. To our knowledge, our study is the first

formal analysis of a carbon sequestration policy that explicitly confronts the additionality problem

faced by a regulatory agency. Our proposed policy is simple, voluntary, and allows for landowner

choice, features required for political feasibility and practicality.

Before giving an overview of the paper, we provide some additional motivation for our

focus on carbon sequestration in forests and further justification for our concern with government

expenditures. There are many ways to reduce or offset carbon emissions. Some of these activities

would only be undertaken for the purpose of climate change mitigation. For example, one can

assume that power utilities who switch to higher cost fuels with lower carbon content or who

capture and store carbon underground do so with the goal of reducing their net carbon emissions.

With carbon sequestration in forests, on the other hand, some landowners will convert agricultural

lands to forest, and some will keep their lands in forest, even in the absence of additional incentives

to do so. Thus, a government subsidy for forestation applied uniformly to all landowners would

pay for actions landowners might have taken anyway. The costs associated with this policy could

be enormous. In the U.S. an average of 1.3 million acres was deforested annually between 1982

and 1997.4 While this represents significant carbon emissions that might be avoided at reasonable

social cost, one must consider that the area of (non-federal) forest in the U.S. is approximately 400

million acres. In the extreme case, the government would subsidize all landowners when fewer

than 1% of the acres would have been deforested.

Of course, the government can avoid these large expenditures if it levies taxes instead of

paying subsidies. We dismiss this option as politically unviable, especially in the U.S. context.

4 This estimate is based on National Resources Inventory (NRI) statistics for non-federal lands in the contiguous
U.S. (see Lubowski (2002)).
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Further, as noted above, the monitoring requirements of a cap-and-trade program make it impracti-

cal to apply to terrestrial sinks and sources on a large scale. One might also wonder if our concern

about expenses is economically irrelevant, on the grounds that payments to landowners can be

considered welfare-neutral: if the government costs are simply transfer payments from one set of

agents in the economy to another, then they have no effect on net social benefits. We have two re-

sponses to this objection. First, the government is concerned with the budgetary effects of policies,

as witnessed, for example, by debates over the size of the recent federal stimulus package in the

U.S. Second, there are standard economic arguments that public funds have opportunity costs and,

thus, do have implications for net social benefits.

A description of the theoretical model is contained in section 2. In section 3, we conduct an

empirical simulation to examine the performance of the menu of optimal contracts. The empirical

analysis draws on the national-scale econometric model of land use developed by Lubowski et al.

(2006). We use the model to estimate the marginal cost distributions for forestation by state and

land quality class. With this information, we compute the optimal contract menus using the theoret-

ical results from section 2. Armed with this information, we can compare costs (both government

costs and private opportunity costs) under the contracting approach to the costs of a uniform sub-

sidy offered to all landowners. In general, we find the optimal contract scheme is considerably less

expensive than the uniform subsidy. However, because the optimal contract scheme sets different

subsidies for different agents, it violates the equi-marginal principle. This social cost inefficiency

turns out to be small in relation to the reduction in government outlays associated with the optimal

contract scheme. The implication is that the contract scheme will be preferable at the social level

as well, so long as there is a modest cost of social funds. Our results have considerable practical

importance, as they suggest sequestration contracts need not require huge governmental outlays.
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These contracts also identify ex post how much of the forestation undertaken by each agent is

additional relative to what they would have done without a contract. This is the information a

regulatory agency needs to ensure proper accounting of offsets credits.

2 Theoretical statement of the problem

We suppose there is a governmental agency, which we term the “Principal,” that is interested in

having land placed in forest. Each unit of land placed in forest yields a benefit Pc to the Principal,

which could either be viewed as revenue earned from selling sequestration credits or costs saved

by avoiding the purchase of credits. One can think of this price as being induced by a carbon

price.5 The land that may be placed in forest is managed by a private entity, whom we call the

“agent.” In practice, the Principal will interact with a number of agents; in out model we focus

on the interaction with a canonical agent. Agents are characterized by their type, which is private

information. We denote the agent’s type by θ ∈ [θ,θ]; this value is private information. An agent’s

type determines his opportunity cost of placing a fraction α of his land in forest, c(α,θ). We

assume costs (both total and marginal) are increasing in type, ∂c(α,θ)/∂θ > 0,∂2c(α,θ)/∂α∂θ > 0.

Let the probability distribution over θ be f (θ) and the cumulative distribution function be F(θ);

we assume these distribution functions are continuous in θ.

In the absence of any incentives from the Principal, agent n leaves the fraction αn ∈ [α,α] of

his acres in forest because this yields the greatest rent stream. It will be convenient to interpret the

agent’s type as θn≡α−αn; by construction, this value lies within the compact interval [0,θ], where

θ = α −α. The agent’s opportunity cost of placing a fraction α of his land in forest depends on en,

5 Later in the paper, we will refer to Pc as the carbon price, even though it is defined in per-acre terms.
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the increase in the fraction of land placed in forest, above and beyond the fraction that would have

been placed in forest in the absence of any payment. This value equals en = α−αn = α−α+θn.

Since by assumption c(α,θ) = c(en), we have ∂c/∂α = ∂c/∂θ = c′, and ∂2c/∂θ∂α = c′′. We

assume the Principal is unable to observe αn ex ante but does know the distribution over θ.

The Principal’s goal is to maximize her expected net returns

Ω≡
∫

θ

0

{
[Pc− p(θ)]x(θ)+T (θ)

}
f (θ)dθ,

where x(θ) is the fraction of land placed in forest based on the agent’s actions. To maximize Ω, the

Principal offers the agent a menu of contracts of the form
{

p(θ),T (θ)
}

, where p(θ) is interpreted

as a per-unit subsidy and T (θ) is interpreted as a transfer from the agent to the Principal.6

Denote the profit earned by a type θ agent who acts as a type θ̂ agent by

Π(θ̂,θ) = p(θ̂)x(θ̂,θ)− c(x(θ̂,θ),θ)−T (θ̂).

The incentive constraint requires that Π is maximized at θ̂ = θ:

0 = ∂Π(θ,θ)/∂θ̂ = p′(θ)x(θ,θ)+ [p(θ)−∂c(x(θ,θ),θ)/∂x](∂x/∂θ̂)−T ′(θ).

As the agent’s choice of x is optimal it must satisfy ∂c(x(θ̂,θ),θ)/∂x = p(θ̂); it follows that the

incentive constraint can be written as

T ′(θ) = p′(θ)x(θ,θ). (1)

6 One way to think of this transfer is T (θ) = p(θ)z(θ), i.e. the per-unit subsidy only applies to units of land after
some fraction z.
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Associated with this problem, an agent of type θ may earn information rents

ν(θ) = p(θ)x− c(x,θ)−T (θ). (2)

Information rents change with θ as follows:

ν
′(θ) = [p−∂c/∂x]∂x/∂θ−∂c/∂θ+[p′(θ)x−T ′(θ)]

= −∂c/∂θ, (3)

where the first parenthetical term vanishes by the optimality of x and the second parenthetical term

vanishes because of the incentive compatibility constraint.

Substituting the expression in (2) into the Principal’s objective functional, we have

Ω≡
∫

θ

0

{
Pcx(θ)− [ν(θ)+ c(x,θ)]

}
f (θ)dθ.

Applying integration by parts to the component of the integrand involving −ν(θ) f (θ), and

noting that ν(θ)F(θ) = 0 at both θ = θ (because ν(θ) = 0) and θ = 0 (because F(0) = 0), we get

Ω =
∫

θ

0

{
[Pcx(θ)− c(x,θ)] f (θ)+ν

′(θ)F(θ)
}

dθ. (4)

Maximizing Ω at any given value of θ yields the first-order condition for an interior solution:

(
Pc−∂c/∂x

)
f (θ)+ [∂ν

′(θ)/∂x]F(θ) = 0. (5)
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Recalling eq. (3), this first-order condition can be reduced to

(
Pc−∂c/∂x

)
f (θ)− [∂2c/∂θ∂x]F(θ) = 0. (6)

In addition, no agent can earn negative profits at his choice. It is straightforward to show that the

efficient set of contracts will push the type θ agent’s profit—and hence its information rents—to

zero (Salanié, 2005). The solution to eq. (6), combined with the condition that ν(θ) = 0, yields the

second-best fraction of land placed in forest, x∗, as a function of θ.

To simplify the optimality condition, we note that the agent will choose x so that p = c′,

and recall from above that ∂2c/∂θ∂x = c′′. Using these observations, eq. (6) reduces to

(
Pc− p) f (θ) = c′′F(θ). (7)

Applying the envelope theorem to p = c′, we have c′′ = 1/x′(p); inserting into eq. (7) then yields

(
Pc− p

)
x′(p)−F(θ)/ f (θ) = 0. (8)

For the interior solution to obtain, the second-order condition:

−x′(p)+(Pc− p)x′′(p) < 0

must also be satisfied. While the first of these terms will be negative at any economically meaning-

ful outcome, the sign of the second term depends on the curvature of marginal costs. If marginal

costs are convex, as we normally think of them, then x will be concave; the second term will then
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be negative, and so the second-order condition will be satisfied. But if marginal costs are concave,

then x will be convex, and the second-order condition can be violated.

Even if the second-order condition is met, there is no positive price that satisfies eq. (8)

for any θ with Pcx′(0) < F(θ)/ f (θ), which can happen for sufficiently small values of Pc or large

values of θ. On the other hand, noting that F(θ)/ f (θ) = 0, we must have either p(θ) = Pc or

x′(p(θ)) = 0; we would typically expect the former branch to apply. In general, when no interior

solution exists, the optimal price will be dictated by a corner solution: either p = 0 or p = Pc.

Moreover, because information rents decrease with θ, we expect p′(θ) < 0.

To make further progress, we suppose that θ is uniformly distributed over the interval [0,θ].

Accordingly, f (θ) = 1/θ and F(θ) = θ/θ = θ f (θ). Substituting these expressions into eq. (8),

we have (
Pc− p

)
x′(p)−θ = 0 (9)

for an interior solution.

The optimal contract scheme for a simple two-type problem is illustrated in Figure 1. In

this diagram, there are two types of agents, one with low α (α0; we term this agent ’low type’),

and one with high α (α1; we term this agent ’high type’). The types of agent are equally likely,

and aside from differences in their α’s the agent’s costs are the same (hence, their marginal cost

curves are parallel). At the optimal contract scheme, the Principal offers the agent the choice of

prices pH and pL; the transfer payments are set so that low types choose the lower price, pL. At

this price, the low type chooses the fraction of land xL∗. Since the optimal contract scheme sets a

transfer payment so as to extract all the low type’s surplus, it must equal the low type’s operating

profit — the sum of the areas labeled a1 and a2. The high type is induced to accept the high
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price; at this price he would select the level xH∗. The incentive compatibility constraint implies

the transfer payment associated with the high price renders this type of agent indifferent between

’telling the truth’ (choosing the high price) and ’lying’ (choosing the low price). Accordingly, the

high type winds up with profits equivalent to the level he would obtain were he to misrepresent

himself as a low type; if he were to misrepresent himself, he would choose the fraction xHL, and

earn operating profit equal to the sum of the areas labeled a1,a2,b1,b2 and d. From this operating

profit he would have to forfeit the transfer payment described above, which would then leave him

with a net profit equal to sum of areas b1,b2 and d. Total expected government expenditures under

the optimal contract scheme are thus equal to this area plus the costs born by a high type at xH∗

(areas c,e1,e2,e3, f1, f2 and f3), multiplied by the probability of observing a high type (i.e., 1
2 ), plus

the costs born by a low type at at xL∗ (area b1), multiplied by the probability of observing a low

type (also 1
2 ). By contrast, the same expected level of acreage could be induced if all agents were

offered the price pa (which corresponds to the expected price, pL+pH
2 ). At that price, low types

would select x∗∗L and high types would select x∗∗H . Since the Government knows that all agents

would offer at least α0 without payment, it seems reasonable that the price pa only be offered for

levels above α0. Accordingly, expected Government expenditures would be

pa(x∗∗L −α0)
2

+
pa(x∗∗H −α0)

2
;

this corresponds to the average of the sum of areas a2,g2,b3,b1,b2 and c (for low types) and the

sum of areas a2,g2,b3,b1,b2,c,d,e1,e2,e3 and g3 (for high types). Comparing these two expenses,

we see that the Principal would save an amount equal to the area a2,g2,b3,b2 and c on low types;

on high types, the difference in expenses corresponds to the difference between areas a2,g2,b3,g3
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and areas f1, f2, f3. It is straightforward, though tedious, to verify that the government’s expected

costs are smaller under the optimal contract scheme, by a non-trivial amount. This cost savings

comes at the expense of somewhat higher private costs, in that these costs would be lower at the

common price of Pa (because of the equi-marginal principle). Even so, so long as the social cost

of funds is sufficiently large, the imputed benefits accruing from limiting government expenditures

will outweigh the welfare cost attributable to asymmetric costs at the margin.

In the empirical application below, we interpret a landholder as having one unit of land,

and so the amount of an agent’s land in forest also equals the fraction of the agent’s land in forest.

With this interpretation, the amount of forest at a larger geographical level, such as a state, is found

by aggregating over all agents within the cohort. As we treat all agents within a particular state and

land class as ex ante identical, multiplying the predicted share of an agent’s land in forest by the

total amount of land in the land class for that state will yield the expected amount of land allocated

to forest.

3 Empirical Analysis of Carbon Sequestration Contracts

We conduct a national-level simulation of the carbon sequestration contracts. Two key ingredients

for the simulation are the α distributions and the forest response functions x(p). These are derived

using the econometric model of land use developed by Lubowski et al. (2006) to derive the sup-

ply function for carbon sequestration in forests. These authors estimate a discrete-choice model

of private land-use decisions using parcel-level data. The random utility framework is naturally

suited to our principal-agent problem. Landowners are assumed to allocate their land to the use

that maximizes utility. Utility has a deterministic component, observed by all, and a random com-
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ponent. The landowner observes the realization of the random variable, but the researcher only

knows its distribution. Thus, the random utility model assumes asymmetric information between

the researcher and the landowner. We adopt the same information structure for our principal-agent

problem, where the agent has perfect information and the principal knows only the distribution of

the random component of landowner utility.

In the Lubowski et al. model, utility is represented by net returns, a measure of the variable

profits per acre from each land use. Land parcels begin in one of six uses (cropland, pasture,

forest, urban, Conservation Reserve Program,7 range) and are assumed to be allocated to the use

generating the highest level of net returns. Because of the random component of net returns, land-

use decisions are a probabilistic phenomenon from the perspective of the principal. Estimation of

the model yields land-use transition probabilities of the following form:

Pi jkt = f (Xc(i)t ,Yi;β jk), (10)

where i indexes parcels, j indexes the starting use, k indexes the ending use, and t indexes time.

Thus, eq. (10) signifies the probability that parcel i changes from use j to k during the time period

beginning in t.8 Probabilities are a logistic function f of observable variables Xc(i)t and Yi, where

c(i) is a function that maps from parcel i to the county in which it is located. Thus, Xc(i)t is a

vector of county-level variables (specifically, average county-level net returns to each use) and Yi

is a vector of parcel-level variables (specifically, measures of plot-level land quality that are used

to scale county average returns and to proxy for conversion costs). β jk is a vector of estimated

7 The Conservation Reserve Program (CRP) is a federal cropland retirement program.
8 Lubowski et al. (2006) estimate the land-use model with data from the National Resources Inventory (NRI), a

panel survey of land use in the U.S. conducted at 5-year intervals over the 1982 to 1997. Due to the structure of the
data, the probabilities correspond to land-use changes over a 5-year period.
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parameters specific to the j-to-k transition.

According to the sampling scheme underlying the land-use data, each parcel i represents a

certain number of acres Ai. If parcel i is initially in use j, this corresponds to Ai j acres in this use. If

k indexes an alternative use, the expected amount of Ai j allocated to use k by the end of the 5-year

time period beginning in t is Ai j×Pi jkt . More generally, if Ait is a vector of acres by use in period t

and Pit is a 6×6 matrix of transition probabilities, then Ait+N = Ait ×PN
it gives the expected acres

in each use N periods in the future. Because forests require several decades or more to grow to

maturity, our application is necessarily concerned with land-use change over long periods of time.

We adopt a planning horizon of 100 years (i.e., N = 20 periods). Obviously, land-use allocations

this far into the future are subject to great uncertainty. We represent this uncertainty by varying

the net returns to alternative uses Xc(i)t over historical ranges and using the associated transition

probability matrices to compute the area of forest land 100 years in the future.9

We adopt states (or groups of states) as our unit of analysis. States with little private forest

(North Dakota, South Dakota, Nebraska, Kansas, Nevada, and Arizona, and the western portions

of Oklahoma and Texas) are dropped and small states are combined (the southern New England

states, the northern New England states, and the mid-Atlantic states of New Jersey, Delaware, and

Maryland). As well, based on climatic similarities, we reconfigure Oregon and Washington as the

western and eastern portions of these states, and combine the eastern portions of Oklahoma and

Texas. Henceforth, the term ”state” will be used to refer to one of the thirty-five states, groups of

states, or portions of states considered in the analysis.

Lubowski (2002) assembled data from a variety of sources to estimate county average net

9 There are other approaches to representing this uncertainty, such as deriving forecast errors using the covariance
matrix for the estimated parameters in the econometric model.
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returns per acre to crops, pasture, forest, urban, and range over the period 1978 to 1997.10 For each

state, we identify the minimum and maximum real return to each use over this period, and use this

to represent the range of possible net returns in the future. This yields 25 = 32 combinations of

minimum or maximum net returns to the five uses, each forming a vector denoted Xm where m =

1,...,32. Returning to the transitions probabilities, if we substitute a particular vector Xm into eq.

(10), we obtain

Pi jkt = f (Xm,Yi;β jk), (11)

for all j and k. Or, we can combine this set of 32 transition probabilities into the matrix Pim.

This matrix is defined for each vector Xm and each value of Yi. Yi is a vector of dummy variables

indicating whether parcel i is in one of four land quality categories.11 This means that for each

state we define transition probability matrices Pqm for four quality classes q = 1,...,4 and 32 net

return combinations m=1,...,32.

For a given state, denote by Aq0 the total acres of quality q land in each use in the initial

period 0. Then, using the relationship from above, we determine the acres of quality q land 20

periods in the future as

Aqm20 = Aq0×P20
qm, (12)

where m indicates that the net return vector Xm was used to compute Pqm. The element of Aqm20

of central importance to us is the one corresponding to the area of forest 100 years in the fu-

ture. This variable, when expressed as a percentage of the maximum possible forest area, defines

10 Net returns to land in the CRP are not estimated. Land-use changes involving CRP land are not modeled in terms
of net returns, but handled using a different procedure discussed in Lubowski et al. (2006).

11 Land quality is defined in terms of the Land Capability Class (LCC) system used by the U.S. Department of
Agriculture. Under this system, land is assigned a rating from I to VIII, where I is the best land for agriculture.
Lubowski et al. (2006) defined four land quality classes that combine LCCs I and II, III and IV, V and VI, and VII and
VIII.
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αqm, the share of a state’s land allocated to forest in the future in the absence of any carbon se-

questration incentives. The maximum possible forest area is defined as the total area of private

land in crops, pasture, forest, and range.12 This measure excludes urban land, which we assume

cannot be converted back to undeveloped uses, and federal lands, which are managed by U.S. gov-

ernment agencies. In our analysis, we assume α is uniformly distributed within each state and

land quality category. The upper and lower bounds of these distribution are αq = minm(αqm) and

αq = maxm(αqm).

Table 1 lists these values. Across states, the average value of αq increases from 0.126 for

the highest quality land (q = 1) to 0.461 for the lowest quality land (q = 4). Agriculture tends to be

more profitable than forestry on higher quality lands and, thus, when agricultural returns are high

small shares of high quality land are forested. The average value of αq falls from 0.854 for q = 1

to 0.697 for q = 4. If returns to forestry are high enough, the highest quality land will be put into

forest. However, some of the lowest quality land is infeasible for forestry, even with very favorable

returns.

The next step in the analysis is to derive the response function x(p). We assume this

function is a quadratic:

x(p) = α+δ0 p+δ1 p2. (13)

Note that an increasing concave response function (δ0 > 0 > δ1) implies an increasing convex

marginal cost function associated with increases in forest area. We need estimates of the co-

efficients δ0 and δ1 for each land quality category in each state. The intercept of this function

represents the amount of forest land that would be allocated at a price of zero, the distribution for
12 The NRI does not identify lands owned by states and counties and, thus, they are included in our measure of

maximum forest area. These public lands do not represent a large share of the land base in any state and, in most
cases, are forested.
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which we derived above. To estimate the δ coefficients, we modify the transition probabilities in

Pqm by means of a per-acre subsidy or tax p:

Pq jk = f (Xm +p;βjk). (14)

The vector p is defined so that forest net returns are increased by a per-acre subsidy in the case

of transitions from non-forest to forest uses. Further, net returns to non-forest uses are diminished

by a per-acre tax in the case of transitions from forest to non-forest uses. Thus, afforestation is

encourage while deforestation is discouraged.

With Pqm thus modified, we project land use 100 years into the future for each q and m and

subsidy/tax values p = 25,50,...,250. For each land quality category, this gives us 32 observations

of x, the share of the maximum forest area that is forested after 100 years, for each of the 11 values

of p. These 32× 11 = 352 observations of x and p are used to estimate the price coefficients of

x(p) for each land quality category in each state.

The estimation results are presented in Table 2. A first set of estimates produced using

all 352 observations in each regression yielded counterintuitive results in some cases (specifically,

a negative coefficient on price). To investigate further, we estimated the coefficients δ0 and δ1

separately for each value of m using the 11 observations on x and p. This refined approach yielded

negative estimates of δ0 in about 20 percent of the cases. Most likely, these cases involve large

differences in the net returns to alternative uses, which can result when we combine minimum

and maximum values of net returns. Such combinations can produce complicated cross-effects on

the transition probabilities (note that the probability of the j-to-k transition is a function of the net

returns to all land uses). Accordingly, we dropped the subsets of observations yielding a negative
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δ0 value, and re-estimated the price coefficients. With this approach, the coefficient δ0 is positive

in all cases and the coefficient δ1 is negative in most cases.

The assumed quadratic relation x(p) = α+δ0 p+δ1 p2 implies x′(p) = δ0 +2δ1 p. Inserting

this expression into eq. (9) yields the quadratic relation

(
Pc− p

)
(δ0 +2δ1 p) = θ. (15)

The optimal set of prices p(θ) solves eq. (15). Assuming δ0 + 2δ1 p > 0, as is the case in the

numerical results discussed below, the solution requires p < Pc.13 But the participation constraint

precludes negative prices (which would yield smaller amounts of forest, at non-negative cost, than

could be obtained without spending anything).14 Thus, the optimal price must satisfy the bounds

0≤ p(θ)≤ Pc.

In general, there will be two solutions to the quadratic equation in (15):

p(θ) =− 1
4δ1

(δ0−2δ1Pc)± 1
4δ1

√
(δ0−2δ1Pc)2 +8δ1(δ0Pc−θ) (16)

The optimal price will be the smallest positive solution, which is induced by the positive branch

from eq. (16).15 Taking the positive branch and simplifying, we find the rule for determining the

13 Note that δ0 + 2δ1 p = x′(p), which we would expect to be non-negative. This restriction needs to hold for all
prices under consideration. If δ1 > 0 then the condition δ0 + 2δ1 p > 0 for all non-negative prices; if δ1 < 0 then the
condition may be reduced to δ0 +2δ1Pc > 0.

14 A negative price means the agent is charged for every unit of land put into forest. Besides being counter-intuitive,
such an arrangement would require a positive transfer payment to the agent, to the extent that the net payment to the
agent was non-negative.

15 The radical term on the right-hand side of eq. (16) is positive, so if δ1 < 0 the expression following the ± sign is
negative, and hence must be added to the first term. But if δ1 > 0 the first term in eq. (16) is negative, so the solution
must entail adding the second expression. In either case, the solution requires using the positive branch.
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optimal price (when an interior solution applies):

p(θ) =
1
2
[Pc− δ0

2δ1
]+

√
(δ0 +2δ1Pc)2−8δ1θ

4δ1
. (17)

If δ1 < 0 this rule will apply for all values of θ. But if δ1 > 0, for sufficiently large values of θ

no rational solution will exist. In such a case, there is no positive price that satisfies the optimality

condition, and so the appropriate choice is p(θ) = 0.

The solution is completed by deriving the optimal transfer function T (θ), which is induced

by eq. (1). Differentiating the right-side of eq. (17) with respect to θ, and making use of eq. (17),

we obtain

p′(θ) =− 1
δ0 +2δ1[2p(θ)−Pc]

. (18)

Then, combining eqs. (13) and (18), we obtain the differential equation that describes the optimal

transfer function:

T ′(θ) =−α+δ0 p(θ)+δ1 p(θ)2

δ0 +δ1[2p(θ)−Pc]
. (19)

The final step is to apply the boundary condition, ν(θ) = 0. To use this condition, one needs

to know the costs associated with placing an increment e in forest. By definition, x = α + e, so

e = δ0 +δ1 p. Inverting this relation yields p(e):

p(e) =− δ0

2δ1
+

√
δ2

0 +4δ1e

2δ1
, (20)

where we take the positive root so as to obtain the smallest positive price.16 Since the agent will

16 If δ1 > 0 the intercept is negative while the second fraction is positive, so we must add the second fraction. If
δ1 < 0 the intercept is positive but the second fraction is negative, so again we want to add the second fraction.
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choose e so as to maximize profit, we know c′(e) = p. Thus, integrating the right-hand side of eq.

(20) will yield costs

c(e) =−δ0 e
2δ1

+
(δ2

0 +4δ1e)3/2

12δ2
1

−
δ3

0

12δ2
1
. (21)

Once one has determined p(θ) the associated net revenues can be calculated using eqs. (20) – (21);

setting the transfer T (θ) equal to these net revenues then solves the boundary condition ν(θ) = 0.

With T (θ) determined, it is then straightforward to numerically solve the differential equation (19).

Following this algorithm, we are able to derive optimal contracts for each land class in each

state. These contracts can then be used to calculate expected amount of land in forest, by state and

land class, and the associated cost to the Principal. We can also use information regarding the

distribution over α and the x(p) function to determine the constant subsidy that would deliver that

amount of land in forest.17 This allows us to compare the expected costs under the optimal contract

with the constant subsidy scheme.

4 Simulation Results

The results of the empirical analysis of carbon contracts are presented in Tables 3 and 4. Table 3

gives the forest shares for each land quality category and state when carbon prices are $0 and $100

per acre. The $0 case corresponds to the baseline with no carbon sequestration contracts. Thus,

the first entry, 0.522, indicates that 52.2% of the highest quality land (category 1) in Alabama is

expected to be allocated to forest in 100 years without any carbon sequestration incentives. As

above, the share is the percentage of the maximum possible area that can be allocated to forest.

17 There is a subtlety here: because no agent has a value of α < α there is no reason for the Principal to pay the
constant subsidy on all units of land placed in forest. Rather, the constant subsidy would most sensibly be paid on all
units of land above α; this is scheme we use in the results discussed below.
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Across states, the average baseline forest shares are similar for lands of qualities 1 and 2 (49% and

45%, respectively) and higher for quality 3 and 4 lands (each 58%). The northern New England

group of states (Maine, New Hampshire, Vermont) have the highest baseline forest shares for all

land quality categories, while Wyoming has the lowest baseline shares. The northern New England

states are currently heavily forested and remain so in the baseline. In many parts of Wyoming, trees

do not grow well due to limited moisture. Other states in the Rocky Mountain region also have

relatively low baseline forest shares.

Under the carbon sequestration contracts, forest shares increase for the majority of states

and land quality categories. The largest response is on the lowest quality lands (category 4), where

forest shares increase by about 6% on average. The next largest increase is on quality 1 lands (4%

on average), followed by quality 2 and 3 lands with about 1% average increases. In some cases, the

solution to the government’s maximization problem is to not offer any contracts. This generally

obtains when the conversion function x(p) is concave and a fair bit of land would be kept in forest

even without payments (i.e., α is relatively large), which happens most commonly for quality 2 and

3 lands. Considering individual states, the largest forest increases on high quality lands (categories

1 and 2) occur in Missouri and Georgia, respectively. On low quality lands (categories 3 and 4), the

largest increases occur in Kentucky and Wyoming, respectively. Other Rocky Mountain states see

large increases in forest shares on low quality lands, which are in abundant supply in this region.

Table 4 presents government expenditures under the contracts compared to a subsidy that

pays landowners the same amount per acre. At a given carbon price, the increase in forest area

tends to be larger with the subsidy than with the contracts. Thus, to make the expenditures com-

parable, we set forest area equal to the area under the contracts and calculate the corresponding

subsidy that would yield this area. This is done using the results in Table 2. For each state and land
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quality, we determine the per-acre subsidy that yields the increase in forest area achieved under

the contract. The increases in forest area are listed in Table 4 for each state (results are aggregated

across land qualities) and carbon prices of $50, $100, and $150 per acre. The costs of the contracts

are calculated by summing the payments to landowners across types and subtracting the transfer

payments they make back to the government. To compute the costs under the subsidy policy, we

multiply the per-acre subsidy by the forest area provided by each landowner type net of the area

that the highest cost type (the lowest alpha in Table 1) would provide for free. Because it knows

the lower bound on the alpha distribution, the government knows the smallest forest share than any

landowner will provide with no incentive. The subsidy only needs to be offered on forested acres

above this point. As with the contract expenditures, we aggregate the subsidies paid to each of the

landowner types to arrive at the results in Table 4.

Our key finding is that government expenditures are dramatically lower under the contracts

than under a subsidy policy. At a carbon price of $50, the optimal contracts increase forest area

by 11.4 million acres nationwide, at a cost to the government of $203 million. To achieve the

same increase in forest area with a subsidy policy, the government would have to spend about $1.1

billion, over five times as much. For carbon prices of $100 and $150, the relative advantage of the

contracting approach diminishes somewhat (expenditures are 3.8 and 3.4 times higher under subsi-

dies, respectively), but is still substantial. On a state-by-state basis, there is considerable variation

in relative expenditures. Although subsidies are always more expensive for the government than

contracts, they differ only by a factor of 2 in Wyoming, while in western Oregon and Washington

the factor is between 17 and 59 depending on the carbon price. These differences can be traced

back to the slope of the marginal cost curves in Tables 1 and 2.

While government expenditures under the contracts are much lower than under a uniform
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subsidy, one naturally wonders about the difference in private opportunity costs under the two

approaches. Because the uniform subsidy satisfies the equi-marginal principle, we know that it

will minimize the private opportunity costs associated with the increases in forest area. In contrast,

under the contracts prices vary by type. A comparison of these costs for each state is given in Table

5. For a carbon price of $100 per acre, private opportunity costs are $1.05 billion on a national scale

under the contracts, compared to $734 million under the subsidy policy. The cost differences are

$66 million and $705 million under carbon prices of $50 and $150 per acre, respectively. As with

government expenditures, there is considerable variation among states in the differences between

private opportunity costs. At the $100 carbon price, there is a ten-fold difference in western Oregon

and Washington of $100 and less than a 1% difference in Wyoming.

5 Conclusion

In this paper, we have proposed a method for designing contracts that encourage carbon offsets

from forestation at minimal cost to the government, subject to the landholders having private infor-

mation about their opportunity costs of placing land in forest. These contracts typically leave some

rents in landowners’ hands, and so are second-best in nature. But, assuming that the government

is concerned with the budgetary impacts of the policy, the contracts generally do a much better job

of inducing the expansion or maintenance of forests than does a simple, constant per-unit subsidy.

On a national scale, we find that for given increases in forest area government expenditures with

contracting are between 20% and 30% of those with subsidies. In absolute terms, contracts lower

expenditures between $906 million and $6.3 billion. Since the contracting scheme does not satisfy

the equi-marginal, private opportunity costs are necessarily higher than under the uniform subsidy.
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However, these differences are small (between $66 million and $705 million) relative to the re-

ductions in expenditures. Thus, the contracting scheme is preferable from society’s perspective

provided there is a modest cost of social funds.

A major concern with offsets is additionality. Whether it purchases offsets directly or

monitors their use in offsetting reductions by regulated emissions sources, the government has

an interest in ensuring that offsets are truly incremental adjustments. Because it induces truth-

telling, our contracting approach allows the government to determine ex post whether an offset is

additional. Thus, our approach provides a regulatory agency with the information it needs to ensure

that offsets are credited in a way that will not undermine an emissions reduction policy or result

in enormous government expenditures. Our approach requires that the government knows the

distribution of opportunity costs, but not the costs of any individual. Further, our proposed policy

is simple, voluntary, and allows for landowner choice, features required for political feasibility and

practicality.
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Table 1.  Lower and upper bounds of the a distribution, by state and land quality category

     Land quality 1      Land quality 2      Land quality 3      Land quality 4

State lower upper lower upper lower upper lower upper

AL 0.274 0.769 0.365 0.678 0.620 0.813 0.652 0.804

AR 0.186 0.738 0.213 0.621 0.525 0.786 0.600 0.791

CA 0.000 0.917 0.000 0.744 0.008 0.801 0.031 0.568

CO 0.013 0.882 0.027 0.703 0.070 0.440 0.200 0.298

CT, MA, RI 0.214 0.939 0.348 0.814 0.585 0.855 0.653 0.881

DE, MD, NJ 0.103 0.900 0.184 0.753 0.435 0.824 0.514 0.861

FL 0.233 0.890 0.187 0.740 0.478 0.766 0.439 0.657

GA 0.171 0.907 0.108 0.773 0.520 0.847 0.538 0.825

ID 0.025 0.923 0.090 0.764 0.192 0.789 0.355 0.458

IL 0.052 0.881 0.123 0.710 0.444 0.745 0.544 0.743

IN 0.088 0.842 0.201 0.673 0.506 0.741 0.649 0.775

IA 0.044 0.816 0.092 0.630 0.339 0.652 0.497 0.715

KY 0.060 0.922 0.117 0.777 0.239 0.809 0.586 0.799

LA 0.190 0.869 0.079 0.726 0.518 0.829 0.499 0.735

ME, NH, VT 0.399 0.883 0.476 0.756 0.693 0.839 0.709 0.879

MI 0.184 0.904 0.318 0.758 0.627 0.833 0.650 0.798

MN 0.129 0.761 0.271 0.628 0.597 0.768 0.655 0.767

MS 0.284 0.852 0.323 0.700 0.596 0.801 0.666 0.828

MO 0.045 0.932 0.019 0.836 0.287 0.849 0.422 0.853

MT 0.024 0.783 0.046 0.602 0.158 0.324 0.187 0.246

NM 0.015 0.837 0.044 0.915 0.082 0.874 0.103 0.209

NY 0.106 0.856 0.121 0.728 0.412 0.829 0.478 0.845

NC 0.195 0.939 0.262 0.811 0.503 0.846 0.588 0.852

OH 0.092 0.725 0.224 0.614 0.531 0.787 0.625 0.800

Eastern OK & TX 0.088 0.867 0.101 0.695 0.259 0.556 0.387 0.573

PA 0.181 0.930 0.247 0.792 0.563 0.848 0.611 0.813

SC 0.256 0.923 0.362 0.781 0.616 0.842 0.631 0.844

TN 0.139 0.682 0.235 0.598 0.466 0.748 0.622 0.793

UT 0.023 0.896 0.050 0.718 0.142 0.527 0.156 0.198

VA 0.165 0.885 0.037 0.740 0.380 0.817 0.446 0.844

WV 0.196 0.668 0.356 0.635 0.569 0.782 0.694 0.877

WI 0.166 0.831 0.282 0.684 0.567 0.801 0.641 0.805

WY 0.021 0.773 0.049 0.599 0.071 0.197 0.106 0.135

Eastern OR & WA 0.040 0.874 0.024 0.748 0.126 0.882 0.109 0.638

Western OR & WA 0.002 0.876 0.041 0.801 0.150 0.897 0.249 0.881
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Table 2.  Price coefficients for the forest response function, by state and land quality category 

  
       

  

           Land quality 1          Land quality 2          Land quality 3          Land quality 4 

State price 
price 

squared price 
price 

squared price 
price 

squared price 
price 

squared 

AL 0.00191 -0.00000354 0.00057 0.00000034 0.00036 -0.00000020 0.00078 -0.00000180 

AR 0.00272 -0.00000494 0.00099 0.00000049 0.00061 0.00000004 0.00084 -0.00000163 

CA 0.00317 -0.00000452 0.00086 -0.00000036 0.00078 -0.00000058 0.00220 -0.00000345 

CO 0.00200 -0.00000273 0.00157 0.00000069 0.00091 0.00000583 0.00245 -0.00000100 

CT, MA, RI 0.00146 -0.00000080 0.00035 0.00000017 0.00058 -0.00000096 0.00060 -0.00000151 

DE, MD, NJ 0.00209 -0.00000278 0.00045 0.00000062 0.00049 -0.00000055 0.00054 -0.00000121 

FL 0.00169 -0.00000242 0.00106 -0.00000015 0.00076 -0.00000014 0.00170 -0.00000288 

GA 0.00282 -0.00000622 0.00301 -0.00000782 0.00107 -0.00000227 0.00129 -0.00000313 

ID 0.00302 -0.00000467 0.00114 0.00000095 0.00131 0.00000341 0.00243 -0.00000276 

IL 0.00278 -0.00000441 0.00047 0.00000282 0.00018 0.00000135 0.00054 -0.00000095 

IN 0.00303 -0.00000485 0.00035 0.00000270 0.00022 0.00000099 0.00058 -0.00000128 

IA 0.00306 -0.00000500 0.00066 0.00000277 0.00040 0.00000143 0.00047 -0.00000027 

KY 0.00143 -0.00000321 0.00044 0.00000218 0.00180 -0.00000048 0.00070 -0.00000146 

LA 0.00270 -0.00000453 0.00181 -0.00000275 0.00110 -0.00000224 0.00175 -0.00000353 

ME, NH, VT 0.00143 -0.00000148 0.00033 0.00000011 0.00042 -0.00000096 0.00047 -0.00000130 

MI 0.00263 -0.00000438 0.00027 0.00000150 0.00025 -0.00000025 0.00059 -0.00000138 

MN 0.00264 -0.00000462 0.00030 0.00000212 0.00018 0.00000039 0.00064 -0.00000140 

MS 0.00200 -0.00000382 0.00050 0.00000114 0.00039 -0.00000027 0.00063 -0.00000138 

MO 0.00404 -0.00001000 0.00116 -0.00000368 0.00062 -0.00000123 0.00135 -0.00000251 

MT 0.00293 -0.00000492 0.00201 0.00000018 0.00078 0.00000572 0.00345 -0.00000299 

NM 0.00246 -0.00000238 0.00169 -0.00000285 0.00117 -0.00000036 0.00156 -0.00000047 

NY 0.00191 -0.00000332 0.00099 -0.00000119 0.00067 -0.00000127 0.00091 -0.00000216 

NC 0.00185 -0.00000144 0.00085 -0.00000083 0.00101 -0.00000135 0.00087 -0.00000185 

OH 0.00313 -0.00000613 0.00057 0.00000167 0.00023 0.00000072 0.00064 -0.00000137 

Eastern OK & TX 0.00300 -0.00000564 0.00143 -0.00000048 0.00105 0.00000260 0.00231 -0.00000301 

PA 0.00187 -0.00000337 0.00039 0.00000135 0.00029 -0.00000031 0.00061 -0.00000148 

SC 0.00229 -0.00000422 0.00082 -0.00000140 0.00063 -0.00000122 0.00087 -0.00000194 

TN 0.00277 -0.00000434 0.00077 0.00000114 0.00053 0.00000099 0.00073 -0.00000148 

UT 0.00246 -0.00000352 0.00106 0.00000197 0.00090 0.00000580 0.00298 -0.00000059 

VA 0.00235 -0.00000385 0.00208 -0.00000418 0.00132 -0.00000214 0.00138 -0.00000301 

WV 0.00233 -0.00000455 0.00031 0.00000072 0.00032 -0.00000040 0.00062 -0.00000144 

WI 0.00294 -0.00000502 0.00047 0.00000148 0.00027 0.00000030 0.00057 -0.00000122 

WY 0.00291 -0.00000427 0.00238 0.00000024 0.00069 0.00000803 0.00366 -0.00000190 

Eastern OR & WA 0.00292 -0.00000607 0.00112 -0.00000296 0.00137 -0.00000294 0.00323 -0.00000815 

Western OR & WA 0.00174 -0.00000380 0.00022 -0.00000039 0.00026 -0.00000064 0.00056 -0.00000150 
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Table 3.  Forest shares under the contract policy, by carbon price, state, and land quality category 

                  

       Land quality 1      Land quality 2      Land quality 3      Land quality 4 

State $0/ac $100/ac $0/ac $100/ac $0/ac $100/ac $0/ac $100/ac 

AL 0.522 0.553 0.522 0.522 0.717 0.720 0.728 0.743 

AR 0.462 0.517 0.417 0.417 0.656 0.656 0.696 0.711 

CA 0.459 0.508 0.372 0.379 0.405 0.410 0.300 0.339 

CO 0.448 0.470 0.365 0.365 0.255 0.255 0.249 0.435 

CT, MA, RI 0.577 0.593 0.581 0.581 0.720 0.726 0.767 0.773 

DE, MD, NJ 0.502 0.528 0.469 0.469 0.630 0.633 0.688 0.692 

FL 0.562 0.582 0.464 0.476 0.622 0.633 0.548 0.601 

GA 0.539 0.582 0.441 0.491 0.684 0.698 0.682 0.704 

ID 0.474 0.520 0.427 0.427 0.491 0.491 0.407 0.573 

IL 0.467 0.508 0.417 0.417 0.595 0.595 0.644 0.650 

IN 0.465 0.518 0.437 0.437 0.624 0.624 0.712 0.722 

IA 0.430 0.483 0.361 0.361 0.496 0.496 0.606 0.612 

KY 0.491 0.502 0.447 0.447 0.524 0.554 0.693 0.702 

LA 0.530 0.576 0.403 0.426 0.674 0.690 0.617 0.667 

ME, NH, VT 0.641 0.662 0.616 0.616 0.766 0.771 0.794 0.799 

MI 0.544 0.586 0.538 0.538 0.730 0.732 0.724 0.733 

MN 0.445 0.492 0.450 0.450 0.683 0.683 0.711 0.725 

MS 0.568 0.598 0.512 0.512 0.699 0.703 0.747 0.757 

MO 0.489 0.558 0.428 0.435 0.568 0.572 0.638 0.656 

MT 0.404 0.452 0.324 0.324 0.241 0.241 0.217 0.502 

NM 0.426 0.462 0.480 0.495 0.478 0.489 0.156 0.255 

NY 0.481 0.503 0.425 0.433 0.621 0.626 0.662 0.671 

NC 0.567 0.591 0.537 0.544 0.675 0.688 0.720 0.732 

OH 0.409 0.471 0.419 0.419 0.659 0.659 0.713 0.722 

Eastern OK & TX 0.478 0.526 0.398 0.417 0.408 0.408 0.480 0.596 

PA 0.556 0.577 0.520 0.520 0.706 0.707 0.712 0.719 

SC 0.590 0.623 0.572 0.579 0.729 0.737 0.738 0.751 

TN 0.411 0.470 0.417 0.417 0.607 0.607 0.708 0.720 

UT 0.460 0.492 0.384 0.384 0.335 0.335 0.177 0.449 

VA 0.525 0.559 0.389 0.415 0.599 0.616 0.645 0.664 

WV 0.432 0.478 0.496 0.496 0.676 0.678 0.786 0.794 

WI 0.499 0.553 0.483 0.483 0.684 0.684 0.723 0.731 

WY 0.397 0.447 0.324 0.324 0.134 0.134 0.121 0.453 

Eastern OR & WA 0.457 0.499 0.386 0.394 0.504 0.516 0.374 0.446 

Western OR & WA 0.439 0.455 0.421 0.422 0.524 0.524 0.565 0.568 
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Table 4.  Government expenditures for increases in forest area, by carbon price and state

$50/ac $100/ac $150/ac

Increase            Costs Increase            Costs Increase            Costs

in forest Contract Subsidy in forest Contract Subsidy in forest Contract Subsidy

State (1000 ac)         ($ million) (1000 ac)         ($ million) (1000 ac)         ($ million)

AL 101 1.5 13.5 215 8.9 47.0 280 23.2 101.5

AR 126 1.9 14.0 279 11.6 51.9 370 30.8 118.6

CA 302 4.4 57.1 650 27.8 187.8 897 77.2 399.8

CO 606 10.3 33.1 984 62.6 164.4 958 158.6 387.3

CT, MA, RI 13 0.2 2.8 24 1.0 8.6 32 2.7 17.1

DE, MD, NJ 26 0.4 5.6 54 2.3 17.8 73 6.4 36.2

FL 133 2.0 22.7 306 13.3 81.6 439 39.1 187.6

GA 369 5.3 47.5 746 30.1 160.0 921 73.2 332.9

ID 346 5.6 20.1 556 33.0 94.5 511 79.3 212.9

IL 259 3.8 40.3 554 23.4 136.9 744 63.6 291.0

IN 207 3.1 27.0 459 19.3 97.1 626 52.8 215.5

IA 297 4.4 39.6 659 27.7 141.7 894 75.3 312.5

KY 77 1.1 15.6 160 6.9 49.5 225 19.7 102.7

LA 206 3.0 30.1 443 18.6 104.0 591 49.9 225.2

ME, NH, VT 49 0.7 8.9 96 4.0 28.0 122 10.1 55.5

MI 113 1.7 17.3 244 10.2 59.2 328 27.4 126.1

MN 314 4.7 39.1 688 28.6 140.2 920 76.4 311.0

MS 97 1.4 14.7 201 8.4 49.3 262 21.8 103.3

MO 334 4.7 56.0 641 25.9 169.9 780 62.0 333.5

MT 1857 38.0 93.0 2063 171.5 390.2 1887 382.5 860.6

NM 749 12.1 67.1 1788 87.7 321.5 1925 249.8 777.4

NY 98 1.4 24.5 187 7.9 73.8 244 20.9 144.1

NC 106 1.5 23.6 217 9.5 74.5 312 27.3 156.2

OH 213 3.2 23.4 466 19.2 86.3 608 50.1 195.4

Eastern OK & TX 563 8.5 69.3 1277 55.5 268.4 1568 153.7 607.2

PA 51 0.7 10.8 99 4.1 33.0 127 10.6 65.0

SC 85 1.2 14.8 176 7.3 48.6 229 19.2 99.6

TN 123 1.9 13.5 278 11.7 51.0 376 31.8 118.9

UT 1174 25.3 59.7 1351 116.0 254.3 1328 270.7 580.0

VA 162 2.3 26.7 335 13.9 88.1 436 36.5 181.3

WV 37 0.5 5.5 77 3.2 18.5 97 7.9 38.3

WI 169 2.5 20.6 371 15.6 74.3 498 41.9 166.6

WY 1669 38.0 83.6 1729 159.3 339.3 1630 354.6 753.0

Eastern OR & WA 347 5.0 52.1 690 27.8 166.9 846 67.1 344.0

Western OR & WA 21 0.3 15.4 30 1.3 31.5 33 2.9 48.3

$50 325.697 5.789 31.676 25.887

$100 545.531 30.718 117.417 86.699

$150 631.929 76.492 257.309 180.817
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Table 5.  Private opportunity costs of increases in forest area, by carbon price and state

$50/ac $100/ac $150/ac

Increase             Costs Increase             Costs Increase             Costs

in forest Contract Subsidy in forest Contract Subsidy in forest Contract Subsidy

State (1000 ac)          ($ million) (1000 ac)          ($ million) (1000 ac)          ($ million)

AL 101 1.4 0.2 215 8.5 2.4 280 22.6 9.4

AR 126 1.8 0.3 279 11.2 3.8 370 30.2 15.0

CA 302 3.9 0.5 650 26.2 6.5 897 74.3 26.7

CO 606 10.2 8.7 984 62.5 60.0 958 158.3 154.1

CT, MA, RI 13 0.2 0.0 24 1.0 0.2 32 2.6 0.6

DE, MD, NJ 26 0.3 0.0 54 2.1 0.4 73 6.1 1.6

FL 133 1.8 0.3 306 12.6 4.2 439 37.8 17.5

GA 369 4.9 0.7 746 28.9 8.1 921 71.4 29.4

ID 346 5.6 4.4 556 32.8 30.0 511 79.1 73.6

IL 259 3.4 0.4 554 22.2 5.1 744 61.6 20.9

IN 207 2.8 0.4 459 18.6 5.2 626 51.5 21.2

IA 297 4.1 0.6 659 26.6 7.3 894 73.4 29.6

KY 77 1.0 0.1 160 6.5 1.3 225 19.0 5.9

LA 206 2.8 0.4 443 17.7 4.9 591 48.5 19.5

ME, NH, VT 49 0.6 0.1 96 3.7 0.7 122 9.8 2.8

MI 113 1.5 0.2 244 9.7 2.4 328 26.6 9.7

MN 314 4.3 0.7 688 27.5 8.1 920 74.7 32.2

MS 97 1.3 0.2 201 8.0 1.9 262 21.1 7.4

MO 334 4.2 0.6 641 24.6 6.6 780 60.1 24.1

MT 1857 38.0 37.3 2063 171.4 170.2 1887 382.4 380.5

NM 749 11.7 5.8 1788 86.6 72.4 1925 247.7 219.5

NY 98 1.1 0.1 187 7.2 1.1 244 19.7 4.2

NC 106 1.3 0.1 217 8.8 1.6 312 26.0 6.6

OH 213 3.0 0.5 466 18.6 6.3 608 49.2 24.5

Eastern OK & TX 563 7.9 2.1 1277 53.7 26.5 1568 150.5 87.4

PA 51 0.6 0.1 99 3.8 0.7 127 10.1 2.6

SC 85 1.1 0.1 176 6.9 1.5 229 18.5 5.9

TN 123 1.7 0.3 278 11.3 3.9 376 31.2 15.9

UT 1174 25.2 24.9 1351 116.0 115.1 1328 270.6 268.8

VA 162 2.1 0.2 335 13.2 2.9 436 35.2 11.2

WV 37 0.5 0.1 77 3.0 0.8 97 7.7 3.0

WI 169 2.3 0.4 371 15.0 4.5 498 40.9 18.3

WY 1669 38.0 37.8 1729 159.3 158.8 1630 354.6 353.8

Eastern OR & WA 347 4.5 0.8 690 26.6 8.9 846 65.2 32.8

Western OR & WA 21 0.2 0.0 30 1.0 0.1 33 2.5 0.4
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