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1 Introduction

Since Bernard de Mandeville (1924[1705]) andAdam Smith (1937[1776]), students
of social life have stressed that cooperation occurs when it is in the personal interest
of self-interested individuals to contribute to the collective good. We call this mu-
tualistic cooperation. Mutualistic cooperation results from social rules that make
prosocial behavior incentive-compatible for self-interested agents. When enforce-
able contracts regulate all relevant aspects of a process of exchange, for example,
traders take account of the effects of their actions on others because these effects are
written into the contract. Governments may simply enforce cooperation by sanction-
ing uncooperative acts. Even without the aid of contracts and governments, repeated
interactions may sustain cooperation among actors with self-interested preferences,
the anticipation of retaliation for an infraction deterring non-cooperative behavior.

The so-called general equilibrium model, first proposed by Léon Walras in the
Nineteenth century and perfected by Kenneth Arrow, Gérard Debreu and others in
the mid-Twentieth century, offers a comprehensive framework for explaining how
a multitude of self-interested actors can succeed in instituting large-scale mutual
cooperation based a finely gradated division of labor mediated by contractual ex-
change (Walras 1954 [1874], Arrow and Debreu 1954, Mas-Colell, Whinston and
Green 1995). While immensely useful, the general equilibrium model does not in
fact realize the dream of Mandeville and Smith. This is because the model assumes
that contracts agreed upon by private agents can be enforced by third parties (e.g.,
the judiciary) costlessly to the contracting parties themselves. This is inaccurate for
basic factors of production (labor and capital), and many consumer goods (Gintis
1976, Stiglitz 1987, Bowles and Gintis 2000, Gintis 2002).

∗I would like to thank V. Bhaskar, Ken Binmore, Samuel Bowles, Drew Fudenberg, Ichiro Obara,
Karl Schlag, and E. Somanathan for discussions that helped clarify the issues addressed in this paper.
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Of course, one could argue that real world economies are just imperfect re-
alizations of a fully methodologically individualist, internally coherent, model of
cooperation based on self-interested behavior, in which contract enforcement is it-
self modeled in terms of incentive compatible interactions. However, no such model
exists. Indeed, any such model would arguably suffer either from an infinite regress
(second-level enforcers enforce contracts in the contract enforcement sector, third-
level enforcers enforce contracts in the second-level enforcement sector, and so on)
or have irremedial dynamic weakness (as is the case with dynamic programming
models, some of which are discussed below).

To avoid these weaknesses, we posit a level of cooperation in which the en-
forcement of the norms of social interaction are carried out completely through the
decentralized, voluntary, initiatives of individuals immersed in a social groups mod-
eled as noncooperative games.1 An acceptable model of sustained cooperation in
such a framework, based on purely self-interested actors, would then complete the
general equilibrium model’s quest for a complete explanation of human cooperation
based on self-interested agents. As we shall see, however, no such model currently
exists, and for reasons detailed below, none is likely ever to be produced. A more
plausible assumption is that cooperation in groups lacking enforceable contracts
is ensured by the existence of a fraction of strong reciprocators, who cooperate,
and punish defectors, without regard for the material losses they sustain by so do-
ing. A modicum of strong reciprocity, we shall see, easily solves the puzzle of
decentralized cooperation.2

2 Minimum Requirements for a Model of Cooperation

A public goods game is an n-agent game in which, by “cooperating,” each agent A
adds more to the payoff of the other members than A’s cost of cooperating, but A’s
share of the total gains he creates is less that his cost of cooperating. By “defecting,”
the agent incurs no personal cost and produces no benefit for the group. For the
remainder of this paper, we consider an extremely simplified example of a public
goods game.

Consider a group of size n, where each member can work or shirk in each time
period t = 1, 2, . . .. The cost of working is c > 0 and the benefit is b > c, shared

1In effect, while the neoclassical general equilibrium model is often faulted by its critics for being
methodologically individualistic (Granovetter 1985, Hodgson 1998), I stress here exactly the opposite
weakness—its fails to model contract enforcement at the level of the individual.

2A number of papers have shown that strong reciprocity is a common human behavioral form
(Fehr and Gächter 2000, Henrich, Boyd, Bowles, Camerer, Fehr and Gintis 2004, Gintis, Bowles,
Boyd and Fehr 2004), and can persist in equilibrium despite the costs the behavior imposes on its
bearers (Gintis 2000b, Bowles, Choi and Hopfensitz 2003, Bowles and Gintis 2004).
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equally among the other group members. A self-interested member will shirk in a
one-shot encounter because it costs c to cooperate and the benefits accrue only to
others. However, suppose the encounter is repeated in each period, and all agents
have discount factor δ, with 0 < δ < 1. In the interest of realism, we also assume
that with probability ε > 0, any agent who attempts to cooperate will fail to produce
the benefit b, and will appear to the other members of the group to be shirking. If
k other members work, a member receives k × b(1 − ε)/(n − 1) = bν(1 − ε)

from their effort, where ν = k/(n − 1). The present value of working is then
vc = bν(1 − ε) − c + δvc, which gives

vc = bν(1 − ε) − c

1 − δ
. (1)

An agent who does not work, by contrast earns bν(1 − ε)/(1 − δ) > vc, so unless
an additional assumption is made, each agent will defect, and total payoff will be
zero. Repeated game models, discussed below, deal with this problem by noting
that under appropriate conditions, the promise of future cooperation may induce
self-interested agents to cooperate in the current period.

In this paper, I evaluate such models on the basis of the following criteria,
which standard scientific practice would suggest are requirements for any successful
explanatory theory.

a. Methodological Individualism. Cooperation must be sustained without third-
party contract enforcement or other unexplained social institutions. This re-
quirement reflects not only the universal condition of humanity prior to some
10,000 years ago, but also the condition of most work groups in a modern econ-
omy that must solve its incentive and coordination problems without recourse
to courts or police, except perhaps under extreme circumstances. In particular,
this requirement implies that any payoff redistributions dictated by the rules for
cooperation, as well as any punishments meted out, must be effected by agents
who maximize utility subject only to the constraints and incentives imposed by
the behavior of other group members. In particular, if agents are to be pun-
ished (by fine, social exclusion, or physical harm), the punishers must have an
incentive to carry out the punishment.

b. Dynamic Stability. Random fluctuations in costs and payoffs, as well as errors
of commission (e.g., attempting, but failing to cooperate), signal transmission
(e.g., appearing to defect, while in fact having cooperated, and vice-versa), and
mutation (the periodic introduction of novel strategies) do not disrupt coopera-
tion or entail excessive efficiency losses. The model must also be evolutionarily
stable with respect to standard monotonic dynamics (i.e., more successful strate-
gies tend to grow at the expense of less successful strategies), under a variety of
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plausible conditions, in the sense of being impervious to invasions by mutant
agents or by groups that deploy competing forms of social organization. Fi-
nally, the proposed game structure must be capable of emerging and expanding
its presence in a hostile or indifferent economic environment.

c. Empirically Relevance. The organizational forms and incentive mechanisms
deployed must reflect the types of strategic interaction and incentives widely
observed in human groups. In particular, the model should work well with
group sizes on the order of ten to twenty, and the incentive to punish defectors
should reflect those deployed in real-world public goods game settings.

d. Plausible Informational Requirements. Signals concerning the behavior of
group members should be imperfect in the sense that the signal indicating the
cooperation of particular agent may be incorrectly received with moderate prob-
ability (say, 5% or 10% for any agent in any period), and private in the sense
that the signals indicating the cooperation of particular agent are uncorrelated
across other agents in the group, conditional on the actual performance of the
signaler. This requirement follows from the fact that in observed public goods
game setting, group members observe only a subset of other group members in
any one period. In this paper I discuss public information models, in which all
group members receive the same imperfect signals, but only because there may
be some (as yet unknown) means whereby groups aggregate private signals into
relatively accurate public signals, and agents cannot gain by conditioning their
behavior on their private signals.

e. Plausible Discount Factors. It is reasonable to suppose that within a group
faced by a public goods game, there will be a distribution of discount factors
among members, some of whom will have quite long time horizons, while
others are concerned predominantly with more immediate payoffs. For various
reasons, the probability of future interactions will differ across group members,
and there is individual variation in discount rates across individuals, and within
the same individual, across time. An acceptable model must therefore function
effectively in the face of plausible statistical distribution of discount factors.

As I shall show, all models of cooperation based on self-interested agents violate
one or more of these conditions, and hence fail to solve the problem of cooperation
among unrelated agents.
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3 Modeling Cooperation among Self-interested Agents:
Trigger Strategies

If agents are self-interested, according to the celebrated folk theorem of repeated
game theory, cooperation can be sustained if all agents use the following trigger
strategy: cooperate as long as all other team members cooperate. Whenever a
member defects (or appears to defect), defect for a sufficient number of periods, say
k, so as to render the defector worse of than if he had cooperated. Cooperation is a
best response for all players provided they are sufficiently patient, and if a defection
is observed, defecting for the required number of rounds is also a best response.

Suppose cooperate/defect decision of each member is an imperfect public signal,
with probability ε > 0 that an intended cooperation will appear to be a defection.
The value of cooperating when all other members cooperate is now given by the
recursion

vc = b(1 − ε) − c + δ(1 − ε)nvc + (1 − (1 − ε)n)δkvc,

which gives

vc = b(1 − ε) − c

1 − δk − δ(1 − δk−1)(1 − ε)n
. (2)

The present value of defecting is vd = b(1 − ε) + vcδ
k. By the one-shot deviation

principle,3 cooperation is Nash subgame perfect if and only if vc ≥ vd , which
simplifies to

c

b
≤ δ(1 − ε)n+1

(
1 − δk−1

1 − δk

)
. (3)

It is easy to check that the right and side is increasing in k, but if

c > b(1 − ε)n+1, (4)

the cooperative equilibrium cannot be sustained, no matter how patient the group
members (i.e., no matter how close δ is to unity). Indeed, (3) shows that an error
rate of ε in a group of size n reduces the effective discount factor by a factor of
(1 − ε)n. Thus, no matter how small the probability ε, if the group is sufficiently
large, cooperation cannot be sustained.

It is also easy to check that, assuming k is chosen so that (3) is an equality, the
total discounted payoff to members is

vc = b(1 − ε)

1 − δk
, (5)

3For a justification of this one-shot deviation principle as sufficient to prove subgame perfection
in a repeated game, see Fudenberg and Tirole (1991) or Gintis (2000a).
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which is close to the one-shot payoff to cooperation for even moderate values of k

and δ. By contrast, if cooperation could be sustained costlessly, the total discounted
payoff would be larger by a factor of about 1/(1 − δ).

For example, suppose n = 15, b = 1.5, c = 1.0, and δ = 0.95. Then the highest
error rate that can be sustained is ε ≈ 2.2%. At ε = 2.0%, we must set k = 20
for a cooperative equilibrium, the punishment stage occurs with 20% probability
after each production state, and the present value of the game is 2.30, whereas if
cooperation could be costlessly enforced, the present value of the game would be
9.40.

The inefficiency in this model stems from the fact that, given the self-interested
nature of the actors, the only way to punish a defector is to cease cooperation
completely for a sufficiently long period of time. When the group is large, this is
clearly an inefficient form of punishment—guilty and innocent suffer equally and
with a plausible error rate, most of the groups’ time is spent idling.

4 Modeling Cooperation among Self-interested Agents:
Directed Punishment

Suppose we reinstitute the direct punishment of defectors, but players agree that any
agent who is detected not punishing a defector is himself subject to punishment by
the other players. Without such an incentive, self-interested agents would of course
refrain from punishing. Suppose with probability ε a agent either who intends
to punish fails to do so, or is perceived publicly by the other members to have
failed. We choose ε to be the same as the error rate of cooperation. If all agents
cooperate and punish, the rate of defection observed will be εn, so the mean number
of punishment events per period per agent will be εn, and hence the mean number
of punishment events per period will be εn2. The probability that no agent will be
punished for nonpunishing is thus (1 − ε)εn2

. The recursion equation for complete
cooperation is thus

vc = b(1 − ε) − c − ε(p + cp) + δ(1 − ε)n2εvc +
(

1 − (1 − ε)n2ε
)

δkvc,

where k is the number of periods of universal defection needed to ensure that
nonpunishing is unprofitable. Solving, we get

vc = b(1 − ε) − c − (cp + p)ε

1 − δk − δ(1 − δk−1)(1 − ε)n2ε
. (6)

It is easy to show that vc is decreasing in ε and n, and increasing in δ. The gain
from not punishing for one period and then returning to cooperation is b(1 − ε) −
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c − εp + δkvc. The gain from punishing over nonpunishing is thus positive when

b(1 − ε) − c > pε + 1 − δk

1 − δk−1

εcp

δ(1 − ε)n2ε
. (7)

A necessary condition for a cooperative equilibrium is then

b − c > (b + p)ε + εcp

δ(1 − ε)n2ε
. (8)

This will clearly be violated for sufficiently large ε, for any given δ < 1.
For example, suppose the parameters of the model are as in the previous numer-

ical example except ε = 8% and, in addition, cp = c/3 and p = 3c (i.e., it is not
very costly to punish nonpunishers, but it is costly to be punished for nonpunish-
ing). Then it is easy to calculate k = 9. The probability of completing a cooperative
period without the need for punishing nonpunishers is (1 − ε)nε ≈ 22%. The inef-
ficiency of the “cooperative” equilibrium is underlined by the fact that vc ≈ 0.3797
is less than the one-shot with costless enforcement, b(1 − ε) − c = 0.38.

5 Trigger Strategies: Empirical Evidence

Given the prominent position of trigger strategies in repeated game theory, it might
be thought that serious attempts would have been made to ascertain the prevalence
of such behaviors in real human groups. However, I do not know of a single study
of this type, except in the area of tacit collusion among firms in the same industry
(Porter 1985). I cannot even think of an anecdotal example of a large team of
cooperators that deters shirking by ceasing all cooperation for a limited period of
time when a defection is detected. Of course, problems with defection frequently
lead to the dissolution of groups involved in a public goods situation. Dissolution,
however, marks the failure of the group to cooperate, and is not a strategic tool in
providing incentives for cooperation. While there is no doubt but that the threat of
dissolution is an element in the array of incentives that induce agents to cooperate,
in general groups deploy less drastic incentives as well, such as the shunning,
ostracism, and directed punishment of offenders.

6 Second Order Punishing: Empirical Evidence

It may be thought that punishing non-punishers (so-called second order punishing)
is a viable alternative to strong reciprocity. There are several problems with this
alternative. First, it is difficult to find examples of second order punishing in real
human groups. Second, No one has proposed a model of second order punishing
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with private information, and when errors are admitted into the model, second order
punishing with imperfect public information is highly inefficient. Finally, even with
public information, models of second order punishment generally have implausible
informational requirements and/or are not dynamically robust. I will take these
issues in turn.

Second order punishment takes the form of group members punishing those
who shirk in the duty to punish shirkers. It is difficult to find examples of second
order punishing in the literature on group dynamics. The closest we have come
is the widespread behavior of groups in disciplining members who befriend or
otherwise associate with “outsiders.” However, such “outsiders’ are not group
members who are subject to group discipline, and the punishing involved is more
accurately described as the first-order punishing of violators of the group norm
prohibiting associations with “outsiders.” There is, to our knowledge, no case of
punishing group members who fail to punish violators of this norm.

Wiessner (2003) used data from 308 conversations among the Ju/’hoansi (!Kung)
Bushmen of North West Botswana collected in 1974 and 1996-8 to examine norm
enforcement through reward and punishment. Wiessner investigated the dynamics
of punishment among the Ju/’hoansi, asking the following questions:

a. What are the roles of reward and punishment respectively in norm enforcement?

b. Which behaviors elicit punishment by individuals and by groups?

c. Who punishes whom? d. What are the different forms of punishment applied
and what are their outcomes?

Her second objective was to determine if the Ju/’hoansi data provide evidence for
strong reciprocity or whether other hypotheses that center on individual self-interest
provide sufficient explanation. She finds that the hypothesis of second-order pun-
ishment was refuted; “not a single case of second order punishment occurred during
conversations noted.” Wiessner continues by saying, “I have also not observed any
second order punishment in all of my years working with the Ju/’hoansi. This is not
surprising for autonomy of action is a privilege of an egalitarian society: no single
person can tell another what to do. It is unlikely that second order punishment
would be found in egalitarian societies...” Wiessner goes on to say

Does punishing give high social regard and make a person a desir-
able group member? While ability to mediate is highly valued among
the Ju/’hoansi, as it is in most societies, willingness to punish is not. As
mentioned earlier, those who punish frequently or harshly are consid-
ered to be “tchi n!ai, angry, sharp or biting things.” They are frequently
told to be quiet and stop causing trouble, and they are not considered
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desirable group members. This point is further underscored by the fact
that the most influential member of a group, the recognized “owner of
the land” refrained from punishment in 44 out of 87 cases (46%) of
group punishment in which he or she was present.

It is frequently suggested that the case of “insiders” punishing their members
for fraternizing with “outsiders” is a case of second-order punishment. But, in an
insider/outsider situation, the outsiders are not being punished—they are simply
members of other groups. If the norm of a group is to refrain from fraternizing
with members of other groups, defectors from this norm may be punished. But
this is clearly a case of case of first-, not second-order punishment. Second-order
punishment in this case would be to punish those who refuse to punish those who
fraternize with outsiders.

7 Cooperation of Self-interested Agents with Public
Information: The Classical Game-Theoretic Model

Shubik (1959) appears to be the first author to suggest that noncooperative game
theory be applied to the problem of using game repetition and the threat of retaliation
against defectors to ensure a high level of cooperation. The first formal statement of
this principle was Friedman (1971). A complete theory for the case of perfect public
information was given in the seminal paper Fudenberg and Maskin (1986). A quite
different approach was needed to extend this to imperfect public information. The
key step here was provided by the dynamic programming method of Abreu, Pearce
and Stacchetti (1990), culminating in the definitive paper by Fudenberg, Levine
and Maskin (1994) (hereafter FLM), who show that close to full cooperation can be
attained for sufficiently patient agents, provided only that the information structure
is sufficiently rich to detect accurately which agents appear to have defected (I say
“appear” because the signal may be inaccurate).

In this section I will outline the FLM analysis as applied to the model of coop-
eration laid out above and show why it does not solve the problem of cooperation.
It is convenient to represent the decision of an agent to cooperate by 1 and defect by
0. Let A be the set of strings of n zeros and ones, representing the possible strategy
profiles of the n players, the kth entry representing the choice of the kth player. Let
τ(a) be the number of ones in a ∈ A, and write ai for the ith entry in a ∈ A . For
any a ∈ A, the random variable y ∈ A represents the imperfect public information
concerning a ∈ A. We assume defections are signaled correctly, but intended co-
operation fails and appears as defection with probability ε > 0. Let π(y|a) be the
probability that signal y ∈ A is received by players when the actual strategy profile
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is a ∈ A. Clearly, if yi > ai for some i, then π(y|a) = 0. Otherwise

π(y|a) = ετ(a)−τ(y)(1 − ε)τ(y).

The payoff to player i who chooses ai and receives signal y is given by ri(ai, y|a) =
bτ(y)(1 − ε) − aic. The expected payoff to player i is just

gi(a) =
∑
y∈A

π(y|a)ri(ai, y) = bτ(a)(1 − ε) − aic.

We will show that payoffs close to the full cooperation payoff b∗ = b(1−ε)−c

can be supported by a sequential Nash equilibrium. We write the full cooperation
vector as v∗ = (b∗, . . . , b∗) ∈ Rn. The n vectors vi representing the payoffs when
all agents cooperate except one, who defects, are given by

v0 = (0, . . . , 0)

v1 =
(

b,
(n − 2)b

n − 1
, . . . ,

(n − 2)b

n − 1

)

v2 =
(

(n − 2)b

n − 1
, b,

(n − 2)b

n − 1
, . . .

)
. . .

vn =
(

(n − 2)b

n − 1
, . . . ,

(n − 2)b

n − 1
, b

)
.

We shall show that the convex hull V ∗ of {v∗, v0, v1, . . . , vn} include an open set of
which v∗ is a boundary point. Let vγ = (γ1, . . . , γn) be a vector of perturbations,
and define γ0 = ∑n

i=1 γi . Let

α0 = 1 − γ0

b − c

and

αi = b(γ0 − (n − 1)γi) + 2cγi

(b − c)(b + (n − 1)c)

for i = 1, . . . , n. It is easy to check that
∑n

i=0 αi = 1 and the set of vectors vγ

for which α0, α1, . . . , an > 0 is an open set in Rn. Moreover, a straightforward
calculation shows that

a0v∗ +
n∑

i=1

αivi = v∗ − vγ ,

which proves the assertion.
For any choice of strategies a− for the other players, let a+ = (1, a−) and

a− = (0, a−). Let wi(a
+) = vi and wi(a

−) = wd , to be determined. We interpret
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wi(a
+) (resp. wi(a

−)) as the expected per-period payoff (EPPP) to i over all future
periods if he cooperates (resp. defects), given the choice a−i by the other players.
Let V ∗

i be the interior of the projection of V ∗ on the ith axis, which is thus the
interval (0, b∗) ⊂ R+. For any vi ∈ V ∗

i

vi = (1 − δ)b∗ + δ(1 − ε)vi + δεwd (9)

is the EPPP to cooperating, and we must have

vi ≥ (1 − δ)(b∗ + c) + δwd (10)

to ensure that cooperating is a best response. It is easy to check that (9) implies

wd = b∗ − γ (1 − δ(1 − ε))/δε.

For δ sufficiently close to unity, we have wd ∈ V . Also, (10) is equivalent to

γ >
ε(1 − δ)c

δ − ε(1 − δ)
,

which holds for δ sufficiently close to unity.
If player i signals defection, then we can repeat the above construction, replacing

vi by wd , constructing a new w′
d . We continue this process recursively, deriving a set

of continuation payoffs for each history of signals y1, y2, . . . in periods t = 1, 2, . . ..
FLM prove that this process indeed represents a sequential equilibrium.

This model is highly attractive in that is shows that for any number n of suf-
ficiently patient agents (δ sufficiently close to unity), and any error rate ε > 0,
the repeated game can support close to a Pareto optimum, using trigger strategies
alone (i.e., by reacting to perceived defections by some pattern of defection of other
members, plus cooperation of the guilty parties, of sufficient duration to render pur-
poseful defection unprofitable). This is in sharp contrast to the highly error-sensitive
existence condition (4) and payoff schedule (5).

Section 2 presented several attractive properties of a successful model of co-
operative behavior. I propose to evaluate the classical game-theoretic model with
public information according to these criteria:

a. Methodological Individualism. The FLM model fully satisfies the conditions
for methodological individualism.

b. Dynamic Stability. The fact that a pattern of activity is a sequential Nash
equilibrium says nothing whatever about its dynamic properties. Sequential
Nash equilibria are impervious to single agents playing alternative strategies,
whether on or off the game path. Dynamic stability, by contrast, requires that
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the model be capable of recovering from small, simultaneous, perturbations in
the strategies of all agents. This is certainly not the case for the FLM model,
simply because there is an open set of sequential equilibria (corresponding to
the various specifications of vγ ), implying that in every neighborhood of such
equilibrium, there are uncountable other such equilibria.

c. Empirically Relevance. The FLM model uses trigger strategies, which, as we
have seen, have not been validated empirically. It would be easy to reformulate
the model to use directed punishment, in which case second order punishment of
non-punishers is used to secure compliance. However, second order punishment
has no more empirical validation than does the use of trigger strategies.

d. Weak Informational Requirements. The FLM model has extremely strong,
indeed quite implausible, informational requirements. Consider, for instance,
the well-known sufficient conditions for Nash equilibrium ofAumann and Bran-
denburger (1995), which can be stated as follows:4 Let G be a game with n

players and let σ be an n-dimensional strategy profile. Suppose the players
have a common prior, which assigns positive probability to it being mutually
known that G is the game being played, mutually known that all players are ra-
tional, and commonly known that σ is the strategy profile being played. Then σ

is a Nash equilibrium.5 The implausibility in the case of the FLM model is that
the equilibrium deviation vγ from the v∗ point, as well as all the continuation
payoffs wd , one for each current strategy profile and each pattern of observed
defection from this profile, must be common knowledge. Since the n players
have conflicting interests concerning vγ , and there is an open set of sequen-
tial equilibria, not even mutual knowledge, much less common knowledge, it
plausible.

e. Plausible Discount Factors. While it is of great interest to know that a certain
Nash equilibrium exists for sufficiently patient agents, we cannot expect a real
social group to have extremely patient members. Indeed, there is likely to
be a statistical distribution of discount rates among members, reflecting such
considerations as age, health, reproductive status, as well as idiosyncratic factors
(Hansson and Stuart 1990, Rogers 1994, Becker and Mulligan 1997). The lower

4While these conditions are not necessary, they have been shown to be strict (i.e., with a violation
of any one, a non-Nash equilibrium counterexample can be found). There can be no substantive
necessary conditions for Nash equilibrium, since a random strategy profile can, by accident, represent
a Nash equilibrium.

5We say σ = {σ1, . . . , σn} is mutually known if each agent knows σ , and σ is commonly known
if each agent knows σ , each knows that the others know σ , and so on. A player is rational if he
maximizes his payoff subject to beliefs.
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tail of such a distribution determines the degree of patience of the group, and
so long as the distribution of discount factors has positive variance, the practice
of taking the limit as the discount factor goes to unity will not be acceptable.

8 Cooperation in Repeated Games with Private Information

In the models discussed to this point, each member of the groups receives the
same, perhaps imperfect, signal of the behavior of each other member. In most
empirically relevant cases, however, different group members will receive different,
and perhaps conflicting, signals concerning other members. For instance, A might
see B sleeping under a tree when he should be hunting, but no other group member
may be in the vicinity to witness the scene. To illustrate the problems that arise with
private signals, let us see what happens to a very robust public information self-
interested agent model when the information becomes private even to a relatively
small degree. The reader will note that our model of cooperation with strongly
reciprocal preferences (Section 2) uses a private information model and exhibit a
high level of cooperation.

One of the most important developments in economic theory in the past decade
is a rigorous analysis of cooperation with private signaling. It may be thought that
simply pooling information would transform private into public information. This
is the case, however, only if we assume that agents report their private information
truthfully. However, without the proper incentives for truth-telling, we cannot
plausibly make this assumption. The situation is especially serious because the
private information is also imperfect. For, in this case, observing a defection, one
does not know whether others observed it, and hence if C observes the “failure”
of B to punish the defection of C could occur when A did not defect, or when A
did defect but B did not witness the defection, or when A defected, B witness the
defection, but C mistakenly failed to witness B’s punishment of A.

The obvious next step is consider more general ways to use private information
efficiently. This is in fact the tack taken in recent years by several economists (see
Kandori, 2002 for an overview). Important contributions to this research agenda
include Sekiguchi (1997), who was the first to propose a Nash equilibrium that
approximately sustains the cooperative payoff in the two-person prisoner’s dilemma,
assuming that private monitoring is nearly perfect. Following this, contributions
by Piccione (2002), Ely and Välimäki (2002), and Bhaskar and Obara (2002), and
Matsushima (2000) considerably deepened the approach.

The technical problems involved in developing an equilibrium with a high level
of cooperation assuming private information and self-interested agents are extreme
when the private signals are noisy. If punishing an observed breech of cooperative
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norms is costly, and if team members generally do not know which members ob-
served which breeches, costly first-order punishment will not occur because those
who see the defection know that they will not be punished for failing to punish.
Therefore, first-order punishment must fail to be costly. There are various ways of
achieving this result involving the use of mixed strategy sequential equilibria, so
these models are vulnerable to the critique that the mechanisms involved are not
seen empirically and they have very poor stability properties.

I shall sketch two quite distinct models in this tradition. These are the most pow-
erful of their respective types, yet each has irremedial weakness as an explanation
of cooperation in public goods games. The first, analyzed by Bhaskar and Obara
(2002), is a private signal version of Section 3. We revise this model by assuming
that when an agent moves in each period, he sends signals to each of the other n−1
agents. These signals are independently distributed, given the move, but each is in
error with probability ε > 0. We will consider only symmetric equilibria, in which
all agents employ the same strategy, and we assume that after a defection, a player
defects forever (this is called the grim trigger strategy).

The first complication of the private signal assumption is that no sequential
equilibrium can support full cooperation in any period. To see this, consider the
first period. If each player uses the full cooperation strategy, then if a player receives
a defection signal from another player, with probability one this represents a bad
signal rather than an intentional defection. Thus, with very high probability, no other
member received a defection signal. Therefore no player will react to a defect signal
by defecting, and hence the always defect strategy will have a higher payoff that
the always cooperate strategy. To deal with this problem, we must have all players
defect with positive probability in the first period. A similar analysis applies to all
future periods.

Now, in any Nash equilibrium, the payoff to any two pure strategies that are
used with positive probability by a player must have equal payoffs against the
equilibrium strategies of the other players. Therefore, the probability of defecting
must be chosen so each player is indifferent between cooperating and defecting on
each round. The analysis of the implications of this fact by Bhaskar and Obara is
subtle and ingenious. They prove that under plausible conditions, for any n there is
an error rate ε∗ sufficiently small that, when errors are of frequency ε∗ or less, there
is a sequential equilibrium in which the discounted payoff to agents is approximately
that of the fully cooperative solution.

There are two problems with this solution. First, empirical relevance suggests
that the error rate will be given by social and technical conditions, and will be a
function of group size: ε = f (n). Thus, it is not reasonable to choose n first,
then freely choose ε. Indeed, we might expect ε to increase with group size. This
will occur, for instance, if each member has a fixed frequency of interacting with
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other members, so as group size increases, the probability of detecting a defection
of any particular member decreases. As we have seen in Section 3, when we hold
ε constant, there is a finite limit to the group size that can be supported, and using
plausible parameter values, this limit is likely to be quite small. Moreover, as we
have seen, even when a Nash equilibrium exists, it is likely to be quite inefficient.

The second problem is that, as we have stressed, there is no reason to believe that
a sequential Nash equilibrium will have any particularly valuable dynamic stability
properties. For empirical relevance, one must explicitly show that a solution of
the form suggested by Bhaskar and Obara has acceptable dynamic properties. To
illustrate this problem, I have constructed an agent-based simulation of the Bhaskar-
Obara model in the Pascal programming language, as implemented by Borland
Delphi 6.0. The stage game is as above, with b = 3 and c = 1. Agents are randomly
assigned to groups of size n in each of 100,000 periods. In each period, each group
plays the stage game repeatedly, the game terminating with probability 0.05 at the
end of each round, thus implementing a discount factor of 0.95. The simulation
begins by creating 210 agents, each endowed at time of creation with two parameters.
The first, DefectRound, indicates at which round the agent will voluntarily defect.
If this is very large, the agent never defects. Since we wish to assess the stability of
equilibrium rather than whether it is globally stable, the program initially assigns
80% of agents with DefectRound = 100, which effectively means they never defect.
The other 20% of agents are randomly assigned DefectRound values between 1 and
10. The second parameter is Tolerance, which indicates how many defections an
agent who voluntarily cooperates must see before beginning to defect. All agents
are assigned Tolerance = 0, so they defect at the first defection signal they receive
(this is the equilibrium value for the Bhaskar-Obara model).

In each round, for each group, each member sends a signal indicating whether
he cooperated or defected, with error rate ε, to every other group members. On
the basis of this signal, all agents then update their willingness to cooperate in the
next round. As soon as the round hits or exceeds an agent’s DefectRound, or he
accumulates more than Tolerance defect signals, the agent defects from that point
on with this particular group.

At the end of every 100 periods, the simulation implements a reproduction phase,
using the relative fitness of the agents, as measured by their accumulated score over
the 100 periods, and replacing 5% of poorly performing agents by copies of better
performing agents. We implement this by a simple imitation process that has the
same dynamic properties as the replicator dynamic (Taylor and Jonker 1978). For
each replacement, we randomly choose two agents, and the agent with the higher
score is copied into the agent with the lower score.

At the completion of each reproduction phase, the simulation implements a
mutation phase, in which each agent’s parameters are increased or decreased by
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one unit (except if so doing would lead to negative values) with probability 0.001.
As might be expected, when we set n = 2, the dynamic process exhibits a

high level of efficiency (about 90% of full cooperation), as well as a high level of
tolerance (agents defect after about seven defect signals, on average) even with the
quite high error rate of ε = 10%, after 100,000 rounds.
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Figure 1: Simulation of Bhaskar-Obara model with group size n = 10,with model
parameters are as described in the text.
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When we raise group size to n = 10, however the picture is quite different. The
first graph in Figure 1 illustrates the case with error rate ε = 5%. Note that even
with this relatively small group size, the level of cooperation falls to very low levels.
Lowering the error rate to ε = 0.5%, as in the second graph in Figure 1, we see that
the level of cooperation becomes high, but the efficiency of cooperation is only about
17%. This is because cooperation is signaled as defection between some pair of
agents with probability close to 40%. Only when we set the error level to ε = 0.1%,
as in Figure 1, do we achieve a high level of efficiency, the probability of an agent
receiving a defection signal when in fact all are cooperating now falling below 10%.
Since this low error level also allows a high level of tolerance, defections become
quite rare. However, a 0.1% error rate is implausibly low.

Ely and Välimäki (2002) have developed a quite different approach to the prob-
lem, following the lead of Piccione (2002), who showed how to achieve coordination
in a repeated game with private information without the need for complex belief
updating of the sort required by Bhaskar and Obara (2002). They achieve this by
constructing a sequential equilibrium in which at every stage, each player is indif-
ferent between cooperating and defecting no matter what his fellow members do.
Such an agent is thus willing to follow an arbitrary mixed strategy in each period,
and the authors show that there exists such a strategy for each player that ensures
close to perfect cooperation, provided agents are sufficiently patient and the errors
are small.

The weakness of this approach in explaining real-world cooperation, which can
be stated and supported without explicitly presenting the Ely-Välimäki model, is
one shared by the mixed strategy Nash equilibria of many games. In a general one-
shot game, if a player’s mixed strategy is part of a Nash equilibrium, then the payoffs
to all the pure strategies used with positive probability must be equal. Hence no
player has an incentive to calculate and use the mixed strategy at all, since he does
equally well by simply choosing among the pure strategies occurring in the support
of the mixed strategy in question. If there are costs to computing and randomizing,
however small, choosing the most convenient pure strategy will be strictly preferred
to computing and playing the mixed strategy.

One means of avoiding this difficulty is the epistemological approach of Harsanyi
(1973) and Aumann (1987), which treats the best response mixed strategy a con-
jecture of the other players, representing the limitations of knowledge they face in
playing the game. While useful for some purposes, this approach does nothing to
explain why one might observe players actually using the mixed strategy, in the
sense that many observations of randomly paired agents would conclude that the
historical average for each pure strategy observed is close to the computed Nash
equilibrium distribution of pure strategies.

Harsanyi (1973) provided more pertinent solution in a altogether remarkable
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demonstration of the following purification principle: Suppose σ = {σ1, . . . , σn} is
a completely mixed Nash equilibrium of finite game G. Then, if a certain regularity
conditions is satisfied (the condition is generic in the game payoffs), and if the
payoffs to each player are subject to small stochastic shocks, then with probability
one each player will play a strict Nash equilibrium involving only one pure strategy,
and as the size of the shocks goes to zero, the distribution of pure strategies used
converges to the mixed strategy equilibrium.
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Figure 2: The Battle of the Sexes. The left-had pane is the unperturbed game, while
the right-hand pane is the game with payoffs perturbed as described in the text.

For example, consider the two player game known as the Battle of the Sexes, with
payoffs shown in Figure 2. The left-hand pane shows the payoffs in the unperturbed
game. In the right-hand pane we see the game where player 1 receives additional
payoff εθ1 for playing U, and player 2 receives additional payoff εθ2 for playing L.
Suppose player 1 plays U with probability α and player 2 plays L with probability β.
We assume θ1 and θ2 are uniformly distributed on [0,1], although any other choices
with finite support would do as well. The payoffs to the four pure strategies are
then given by

{πU, πD, πL, πR} = {2α + εθ1, 1 − α, β + εθ2, 2 − 2β}.
We then have

β = P[U > D] = P[πU > πD] = P

[
θ1 >

1 − 3α

ε

]
= 1 − 1 − 3α

ε
,

α = P[L > R] = P[πL > πR] = P

[
θ2 >

2 − 3β

ε

]
= 1 − 2 − 3β

ε
,

Solving these equations simultaneously, we get

α = 3 − ε − ε2

9 − ε2
, β = 6 − 2ε − ε2

9 − ε2
.

Clearly, this approaches {1/3, 2/3}, which is the unique mixed strategy Nash equi-
librium of this game.
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The problem is that the Harsanyi Purification Theorem does not apply to infinite
games, of which the repeated Prisoner’s Dilemma is an example. Indeed, Bhaskar,
Mailath and Morris (2003) have shown that their construction cannot be purified
in the two-player case with perfect information, provided the players have finite
memory. It is not likely, then, that purification would hold with imperfect signals
and many players.

The intuition behind this result is straightforward. The Ely-Välimäki construc-
tion has the explicit goal of making agents indifferent to the actual moves of other
members, thus admitting a particular constellation of mixed strategies that are spec-
ified precisely to implement an efficient, cooperative equilibrium. But, if payoffs
are perturbed, players are no longer indifferent and do not have the proper incentives
to implement the near-efficient solution.

9 Strong Reciprocity: An Alternative Model of Cooperation

Consider a group involved in a public goods game. Suppose a fraction f > 0 of
the group consists of strong reciprocators (Gintis 2000b, Bowles and Gintis 2004)
who impose a total punishment p upon a self-interested type who chooses to defect.
Strong reciprocators are altruists, in the sense that they contribute to the well-being
of group members at a cost to themselves that is not shared by self-interested group
members.

Let vc be the present value of cooperating for a self-interested member of the
group. Since such a member defects by accident with probability ε, he receives
expected punishment εp. The value of this new game for such an agent is thus

vc = b(1 − ε) − c − εp

1 − δ
. (11)

The return to defecting for one period and then returning to cooperation is b(1 −
ε) − p + δvc. It is easy to check that this quantity is negative precisely when

c ≤ p(1 − ε). (12)

Note that this is independent of both group size and the discount factor. In the
interests of minimizing the cost of compliance, we may assume p is chosen so that
(12) is an equality.

To assess the cost of punishing for strong reciprocators, suppose that the signal
indicating that an agent has defected is private and imperfect. Specifically, suppose
a defectors is detected by each group member with probability q. The number of
strong reciprocators who detect an intentional defector is thus f q(n − 1), so each
must supply a level c/(1 − ε)f q(n − 1) of punishment per detected infraction. If
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the per unit cost of punishment is r , each strong reciprocator will incur a cost of
rc/(1−ε)f q(n−1) per detected infraction. Since the expected number of detected
infractions by other group members is ε(n − 1)q, the strong reciprocator incurs a
cost rcε/(1 − ε)f of punishing. Since this cost is not shared by self-interested
types, we are obliged to exhibit a mechanism whereby strong reciprocators can be
sustained in equilibrium despite their altruistic behavior. This is carried out in Gintis
(2000b), Boyd, Gintis, Bowles and Richerson (2003), Gintis (2003), and Bowles
and Gintis (2004), and will not be addressed here.

A model of cooperation with a sufficient fraction of strong reciprocators satisfies
all the requirements listed in Section 2. It is clearly methodologically individualistic,
its dynamic stability is shown in the various papers cited in the previous paragraph,
its empirical relevance is supported by many experimental studies that demonstrate
the existence of strong reciprocators (Fehr, Gächter and Kirchsteiger 1997, Fehr
and Gächter 2000, Gintis et al. 2004). In addition, the informational requirements
are such that private signals are completely adequate to ensure proper incentives,
and the incentive to punish does not depend on the distribution of discount factors.

10 Conclusion

A major thrust of economic theory since the second half of the Twentieth century
has been to show the plausibility of wide-scale cooperation among self-interested
agents. The first thrust in this endeavor involved the rigorous specification ofWalras’
general equilibrium model. Despite the stunning success of this endeavor (Arrow
and Debreu 1954, Debreu 1959, Arrow and Hahn 1971), the assumption that con-
tracts could be costlessly written an costlessly enforced by third parties has never
been shown feasible in a methodologically individualist model. Not surprisingly,
we find that economic institutions (e.g., firms and state agencies) depend strongly on
incentive mechanisms involving strategic interaction rather than explicit contracts
(Gintis 1976).

The second major thrust involved the development of sophisticated repeated
game-theoretic models of strategic interaction, which began with Shubik (1959),
culminating in the major contributions of Fudenberg and Maskin (1986), Abreu
et al. (1990), Fudenberg et al. (1994), Piccione (2002), Ely and Välimäki (2002),
Bhaskar and Obara (2002) and others. While there is no question but these models
have strongly advanced our understanding of the theory of social cooperation, the
very fact these contributions prove “folk theorems” that sustain full-dimensional
open sets of sequential equilibria virtually assure that these models will have poor
dynamic qualities. Even if it can be successfully argued that the equilibria will be
confined to the Pareto frontier of feasible payoffs (which is difficult to do, since this
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frontier is on the boundary rather than the interior of the set of feasible payoffs),
there remains an n−1 dimensional manifold of sequential equilibria. The relevance
of these models is further compromised by a tendency to look only at the limiting
characteristics of solutions as discount rates approximate unity and error rates ap-
proach zero. Finally, not attempt has ever been made to show that such models
apply to the major forms of non-market-mediated economic cooperation. There
is considerable doubt that they could so apply, since neither trigger strategies nor
second order punishment is commonly observed in socially efficient cooperative
groups.

By contrast, strong reciprocity models have excellent dynamic properties, do
not depend on discount factors near unity, and support relatively high error rates in
private signals. Dynamic robustness is important because social institutions must
both emerge and remain stable against adverse shocks. High error rates must be
supported because we observe quite imperfect signals of cooperation in the real
world, and it is often difficult to separate the failure of an agent to cooperate with
the failure of the agent to succeed through forces beyond his control. Discount fac-
tors well below unity must be supported because there is evidence that humans have
very high short-term discount rates (Ainslie and Haslam 1992, Laibson 1997), the
variance of discount rates across human individuals at any point in time is consider-
able, if only because of age- and health-related differential life expectancy (Kaplan,
Gurven, Hill and Hurtado 2003, Robson and Kaplan 2003). Indeed, individual dis-
count factors are likely to have been high throughout most of human history, both
because of the riskiness of life and the fragility of group ties. For instance, hunter-
gather groups typically experience periodic threats to their existence, in the form of
pestilence, famine, and war, at which time the discount factor is quite low, since the
probability of group dissolution is high. Self-interested cooperation models predict
the dissolution of such groups, whereas our models predict that such conditions
may favor the emergence of agents who cooperate and punish without regard to
the discount factor. Behavioral experiments show that such agents do exist in large
numbers, lending credence to the gene-culture coevolution models of which strong
reciprocity models are a prime example (Gintis et al. 2004).
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