Optimal Transmission Switching: When Economic Efficiency and FTR Markets Collide

> Kory Hedman¹, and Richard O'N FUnversity of California, Berkeley

Shmuel Oren

² Federal Energy Regulatory Commissio

Toulouse, France – January 28-29, 201

Economics of Energy Markets Conference

Overview

- Motivation for transmission switching
 - Economic efficiency through topology improvements with no reliability degradation
 - Smart grid application by exploiting short term network reconfiguration flexibility
 - Analyze market implications of optimal transmission switching
 - May undermine prevailing market mechanisms cause revenue inadequacy in the FTR market
 - Unpredictable distributional impacts on LMPs, generation rent, congestion rent, etc.

Overview of Optimal Transmission Switching Concept

- Control of transmission not fully utilized today
 - Transmission assets are seen as static in the short term
 - Currently operators change transmission assets' states on ad-hoc basis (per private communication with Andy Ott, VP, PJM)
- Network redundancies
 - Required for reliability, not required for every market realization
 - Redundancies may cause dispatch inefficiency
- Optimal transmission switching: co-optimize network topology with generation dispatch

Transmission Switching Example

- Original optimal cost: \$20,000 (A=180MW,B=30MW,C=40MW) at {2}
 Original feasible set: {0,1,2,3}
- Open Line A-B, optimal cost: \$15,000 (A=200MW, B=50MW) at {8}
 - Feasible set with Line A-B open {0, 4, 5, 6}
- Feasible set with optimal transmission switching: {0, 1, 7, 5, 6} (non-convex)

Literature Review

Corrective switching

- [Mazi, Wollenberg, Hesse 1986]: Corrective control of power systems flows
- **[Schnyder, Glavitsch 1990]:** Security enhancement using an optimal switching power flow
- [Glavitsch 1993]: Power system security enhanced by post-contingency switching and rescheduling
- [Shao, Vittal 2006]: Corrective switching algorithm for relieving overloads and voltage violations

Switching to reduce losses

- **[Bacher, Glavitsch 1988]:** Loss reduction by network switching
- **[Fliscounakis, Zaoui, et al. 2007]:** Topology influence on loss reduction as a mixed integer linear program

Switching to relieve congestion

[Granelli, Montagna, et al. 2006]: Optimal network reconfiguration for congestion management by deterministic and genetic algorithms

Traditional DCOPF

- Minimize: Total generation cost
 - Subject to:
 - Generator min & max operating constraints
 - Node balance constraints
 - Line flow constraints

 $B_k(\theta_n - \theta_m) - P_k = 0$

Line capacity constraint

Variables:

- P_k : real power flow from bus *m* to bus *n* for line *k*
- P_g : Gen g supply at bus n
- θ_n : Bus n voltage angle
- z_k : Transmission line status (1 closed/in service, 0 open/out of service)

Parameters:

 B_k : Susceptance of line k d_n : Real power load at bus n

Incorporating Transmission Switching into DCOPF

- z_k : State of transmission line (Binary: 0 open/offline, 1 closed/operational)
- Update line thermal (capacity) constraints:
 - Original: $P_k^{\min} \le P_k \le P_k^{\max}$
 - New: $P_k^{\min} z_k \le P_k \le P_k^{\max} z_k$

Update line flow constraints:

- Original: $B_k(\theta_n \theta_m) P_k = 0$
- New: $B_k(\theta_n \theta_m) P_k + (1 z_k)M_k \ge 0$ $B_k(\theta_n \theta_m) P_k (1 z_k)M_k \le 0$

7

Optimal Transmission Switching DCOPF

Minimize: $\sum_{g} (c_g P_g)$

s.t.

Node Balance Constraints:

 $\sum_{\forall k(n,.)} P_k - \sum_{\forall k(.,n)} P_k + \sum_{\forall g(n)} P_g = d_n, \forall n$ Generator Constraints: $0 \le P_g \le P_g^{\max}, \forall g$ Transmission Constraints: $P_k^{\min} z_k \le P_k \le P_k^{\max} z_k, \forall k$ $B_k(\theta_n - \theta_m) - P_k + (1 - z_k)M_k \ge 0, \forall k$ $B_k(\theta_n - \theta_m) - P_k - (1 - z_k)M_k \le 0, \forall k$

 $z_k \in \{0,1\}.$

8

Economic Savings for DCOPF and N-1 DCOPF Models

- DCOPF Transmission Switching Model (one hour):
 - IEEE 118 Bus Model: saves 25% saving (10 lines off)
 - ISONE 5000 Bus Model: 5%-13% savings (\$70,000 savings)
 - With advanced smart grid technology, switch lines back into service for a contingency to meet N-1 (just-in-time transmission)
- N-1 DCOPF Transmission Switching Model (one hour):
 - IEEE 73-Bus Model: up to 8% savings
 - IEEE 118-Bus Model: up to 16% savings
 - Ensures N-1 within transmission switching model
 - Improves efficiency of grid while ensuring N-1 Reliability[®]

Results – DCOPF – IEEE 118

Transmission switching solution saves 25% of total generation cost

10

Results – DCOPF – IEEE 118

- IEEE 118
 opened
 lines for
 J=10
- Note: this diagram has additional gens than our model

Economic Savings for UC with Transmission Switching

- Generation Unit Commitment N-1 DCOPF Transmission Switching Model:
 - IEEE 73-Bus Model: 3.7% savings (\$120,000 savings for 24-hour model)
 - Unit commitment solution changes when topology changes
 - Peaker units committed with original topology not committed under co-optimization of network topology and unit commitment
 - Optimal topology varies hour to hour

Impact on Market Participants

- Results are % of static network's DCOPF solution
- Unpredictable distributional effects for market participants

Impact on LMPs

Max and min percent change in LMP
 IEEE 118 bus test case – DCOPF optimal transmission switching problem

Overview of

Financial Transmission Rights

- FTRs are used to hedge price risk
- FTR settlements are financed by congestion rents
- Revenue inadequacy occurs when ISO does not collect enough congestion rent to fulfill its obligation to FTR holders
 - ISO may then allocate shortfall to participants or carry it forward and try to recover it from surplus at other times
- Revenue adequacy of FTRs is guaranteed for the static DC topology (since the simultaneous FTR feasible solution corresponds to a suboptimal feasible power flow)
- Revenue adequacy is not guaranteed if the network topology changes
 - Optimal transmission switching undermines the assumption of a static topology

3-Bus FTR Revenue Adequacy Example

Revenue Inadequacy due to Transmission Switching

3-bus example C optimal dispatch results (no switching)							
Bus:	Gen Pg:	LMP:	Gen Cost:		Transaction:	MW:	Cong. Rent:
А	90MW	\$50/MWh	\$4,500		A – B	60MW	\$3,000
В	40MW	\$100/MWh	\$4,000		A – C	30MW	\$750
C 0MW \$75/MWh		\$0		Total Conges	tion Rent:	\$3,750	
Total Generation Cost:			\$8,500				

3-bus example C optimal dispatch results (lines A-B1 and A-B2 open)

Bus:	Gen Pg:	LMP:	Gen Cost:	Transaction:	MW:	Cong. Rent:
А	100MW	\$50/MWh	\$5,000	A – B	70MW	\$3,500
В	30MW	\$100/MWh	\$3,000	A – C	30MW	\$1,500
С	0MW	\$100/MWh	\$0	Total Conges	tion Rent:	\$5,000
Total Generation Cost:			\$8,000			

3-bus example C results - FTR settlements

Source to FTR		FTR Settlements	FTR Settlements		
Sink:	Quantity:	(No Switching):	(Lines A-B1 and A-B2 Open):		
A to B	45MW	\$2,250 (LMP gap: \$50/MWh)	\$2,250 (LMP gap: \$50/MWh)		
A to C	60MW	\$1,500 (LMP gap: \$25/MWh)	\$3,000 (LMP gap: \$50/MWh)		
Total FTR Settlements:		\$3,750	\$5,250		

Revenue Inadequacy due to Transmission Switching

FTR allocation is revenue adequate for initial topology but revenue inadequate for optimal network topology with both A-B lines open A-B **Optimal Dispatch** with Both A-B Lines Open Original FTR Allocation Optimal Dispatch 50 $2AB + AC \leq 150$ 1 2 $AB \ge 0$ $AC \ge 0$ 50 $AB + AC \leq 100$

Transmission Switching Can Help Regain Revenue Adequacy

3-bus example C results (line A-B1 failed)							
Bus:	Gen Pg:	LMP:	Gen Cost:		Transaction:	MW:	Cong. Rent:
Α	65MW	\$50/MWh	\$3,250		A – B	35MW	\$1,750
В	65MW	\$100/MWh	\$6,500		A – C	30MW	\$750
C 0MW \$75/MWh		\$0		Total Conges	tion Rent:	\$2,500	
Total Generation Cost:			\$9,750				

3-bus example C optimal dispatch results (lines A-B1 failed A-B2 open)

Bus:	Gen Pg:	LMP:	Gen Cost:	Transaction:	MW:	Cong. Rent:
Α	100MW	\$50/MWh	\$5,000	A – B	70MW	\$3,500
В	30MW	\$100/MWh	\$3,000	A – C	30MW	\$1,500
С	0MW	\$100/MWh	\$0	Total Conges	tion Rent:	\$5,000
Total Generation Cost:			\$8,000			

3-bus example C results - FTR settlements (line A-B1 failed)

Source to FTR		FTR Settlement	FTR Settlement		
Sink:	Quantity:	(No Switching):	(Line A-B2 Opened):		
A to B	60MW	\$3,000 (LMP gap: \$50/MWh)	\$3,000 (LMP gap: \$50/MWh)		
A to C	30MW	\$750 (LMP gap: \$25/MWh)	\$750 (LMP gap: \$25/MWh)		
Total FTR Settlements:		\$3,750	\$3,750		

Transmission Switching Can Help Regain Revenue Adequacy

- Line outage causes revenue inadequacy (loss of A-B 1)
- Further grid modifications may regain revenue adequacy and improve market surplus (open line A-B 2)

Policy Implications

- Optimal transmission switching improves social welfare
 - Yet market participants may object since it can cause revenue inadequacy, affects LMPs, generation rents, congestion rents, etc.
- How to deal with revenue inadequacy?
 - Implement side payments and who pays?
 - De-rate FTR payments?
 - Emerging "smart grid" technologies may make certain market mechanisms obsolete
 - Rethink market design principles?
 - How would optimal transmission switching affect FTR auctions?

Summary

- FTRs are important as they are used to hedge price risk
- Revenue adequacy of FTRs is vulnerable to grid topology changes
- Co-optimizing generation and network topology improves market surplus even while maintaining reliability criteria
 - Unfortunately, it undermines prevailing market mechanisms
 - Can cause revenue inadequacy in FTR markets
 - It has unpredictable distributional effects on market participants

QUESTIONS? Thank you!

Publications

Journal Papers:

- K. W. Hedman, R. P. O'Neill, E. B. Fisher, and S. S. Oren, "Optimal transmission switching – sensitivity analysis and extensions," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1469-1479, Aug. 2008.
- [2] K. W. Hedman, R. P. O'Neill, E. B. Fisher, and S. S. Oren, "Optimal transmission switching with contingency analysis," *IEEE Trans. Power Syst.*, vol. 24, no. 3, Aug. 2009.
- [3] K. W. Hedman, M. C. Ferris, R. P. O'Neill, E. B. Fisher, and S. S. Oren, "Co-optimization of generation unit commitment and transmission switching with N-1 reliability," *IEEE Trans. Power Syst.*, accepted for publication.
- [4] R. P. O'Neill, K. W. Hedman, E. A. Krall, A. Papavasiliou, M. C. Ferris, E. B. Fisher, and S. S. Oren, "Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts," *Energy Systems*, accepted for publication.

Publications cont'd

Under Review:

[5] K. W. Hedman, R. P. O'Neill, E. B. Fisher, and S. S. Oren, "Smart flexible just-in-time transmission and flowgate bidding," *IEEE Trans. Power Syst.*, Submitted June 1, 2009; Revised November 15, 2009.

Peer-Reviewed Conference Publications:

- [6] K. W. Hedman, R. P. O'Neill, and S. S. Oren, "Analyzing valid inequalities of the generation unit commitment problem," in *Proc. Power Syst. Conf. and Expo.*, March 2009.
- [7] E. B. Fisher, K. W. Hedman, R. P. O'Neill, M. C. Ferris, and S. S. Oren, "Optimal transmission switching in electric networks for improved economic operations," in *INFRADAY Conference* 2008.