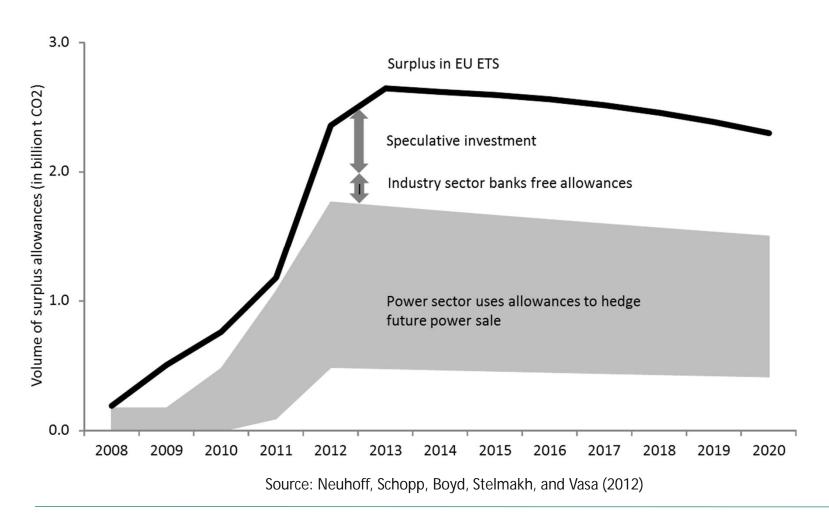

Outline

- Background on EU Emissions Trading Scheme
- 2. Research question and approach
- 3. Literature
- 4. Model I: Flexibility of CO2 hedging volume
- 5. Model II: Market equilibrium with CO2 hedgers, speculators and emitters
- 6. Conclusions

Background on EU Emissions Trading Scheme (1/2)

Cumulative surplus estimated at 2.7 billion t CO2 by 2013



Source: Neuhoff, Schopp, Boyd, Stelmakh, and Vasa (2012)

Background on EU Emissions Trading Scheme (2/2)

Gap between surplus and CO2 hedging demand widens in 2012/2013

Research question and approach

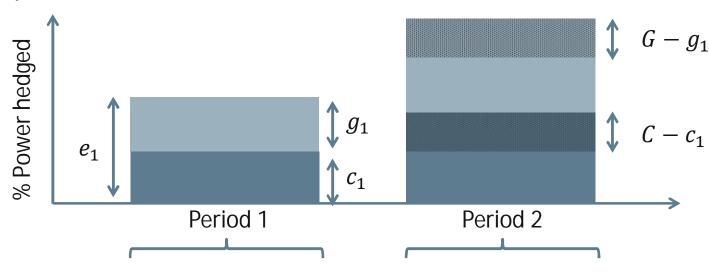
Question

Can hedging stabilise carbon markets?

- 1. How do EU power generators use their flexibility to adjust CO2 hedging volume?
- 2. How does CO2 hedging by power sector interact with CO2 banking by speculators and CO2 price dependent emissions levels?

Approach

Analytic model of CO2 hedgers + model of market equilibrium with CO2 hedgers, speculators and emitters


Interviews with 13 power generators on CO2 hedging strategies

Literature

- Banking: Theory and empirical evidence show intertemporal efficiency of banking in emissions trading schemes (Rubins 1996, Ellerman and Montero 2007)
- Models of emissions trading between speculators and emitting firms:
 Colla, Germain, and Van Steenberghe (2012) find that speculators tend
 to stabilise prices as speculators increase the risk-bearing capacity of the
 market
- Optimization of power generation portfolios: Kleindorder and Li 2011 identify optimal portfolios of physical and financial power generation assets by maximising expected profits minus penalty term for value at risk

Model I: Flexibility of CO2 hedging volume (1/5)

2 period model

 e_1 : Power contracting

Coal contracting

 g_1 : Gas contracting

 c_1 :

 i_{CO2}^{x} : Carbon intensity

 p_1^x : Forward contract price

 $x \in \{e, c, g, CO2\}$

 $E(p_2^x)$:Expected price

 $E - e_1$: Remaining power

 $C - c_1$: Remaining coal

 $G - g_1$: Remaining gas

 p_2^x : Forward contract price x

Model I: Flexibility of CO2 hedging volume (2/5)

Firm's objective function:

Firm sells power on forward contracts in the years prior to production (period 1):

$$p_1^e * e_1$$

In parallel, firm buys forward contracts for coal, gas and CO2:

$$-p_1^c * c_1 - p_1^g * g_1 - p_1^{CO2} * (c_1 * i_{CO2}^c + g_1 * i_{CO2}^g)$$

Within the last year (period 2) firm contracts remaining power + fuels to match projected generation:

$$E(p_2^e) * (E - e_1) - E(p_2^c) * (C - c_1) - E(p_2^g) * (G - g_1)$$
$$-E(p_2^{CO2}) * (C - c_1) * i_{CO2}^c - E(p_2^{CO2}) * (G - g_1) * i_{CO2}^g$$

Volume and period for which power, fuels and CO₂ is contracted in advance is a corporate risk management strategy decision

$$-\alpha \left((\gamma * C - c_1)^2 + (\gamma * G - g_1)^2 \right)$$

 γ : Hedging schedule α : Internal transaction cost

Hedging schedule

Model I: Flexibility of CO2 hedging volume (3/5)

The power firm chooses the contract volumes of coal and gas to maximise:

$$\begin{split} \max_{c_1,g_1} &-\alpha \left((\gamma * C - c_1)^2 + (\gamma * G - g_1)^2 \right) - (c_1 + g_1) (E(p_2^e) - p_1^e) + (C + G) E(p_2^e) \\ &+ c_1 \left(E(p_2^c) - p_1^c + i_{CO2}^c \left(E(p_2^{CO2}) - p_1^{CO2} \right) \right) - C \left(E(p_2^c) + i_{CO2}^c * E(p_2^{CO2}) \right) \\ &+ g_1 \left(E(p_2^g) - p_1^g + i_{CO2}^g \left(E(p_2^{CO2}) - p_1^{CO2} \right) \right) - G \left(E(p_2^g) + i_{CO2}^g * E(p_2^{CO2}) \right) \end{split}$$

Subject to constraints:

- 1. Firm does not hedge more than it can generate
- 2. No open positions in power sales
- 3. Positive hedging volumes

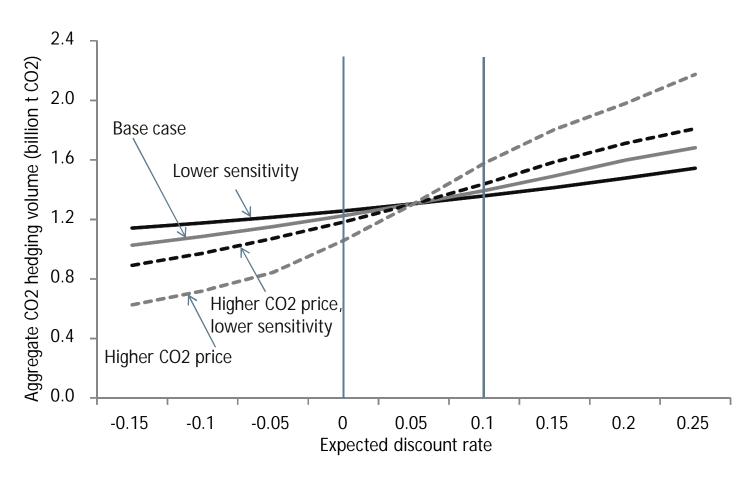
$$C - c_1 \ge 0$$
, $G - g_1 \ge 0$
 $e_1 - (c_1 + g_1) = 0$
 $c_1, g_1 \ge 0$

CO2 hedging volume

$$H = \gamma * \left(C * i_{CO2}^c + G * i_{CO2}^g\right) + \frac{\left[i_{CO2}^c\right]^2 + \left[i_{CO2}^g\right]^2}{2\alpha} \left(E\left(p_2^{CO2}\right) - p_1^{CO2}\right)$$

Model I: Parameterisation (4/5)

Aggregate hedging schedule **γ** (yearly average in %):


			\bigcap	
Years	2010	2011	2012	2013
2013	20	46	84	0
2014	0	20	46	84
2015	0	0	20	46
2016	0	0	0	20
Aggregate	20	66	\150/	150

Internal transaction cost α calibrated such that:

- Base case: price of 7.5 €/tCO2 in period 1 + expected price exceeds forward contract price by Δ1 €/tCO2
 - →10% CO2 hedging increase

Model I: Quantification (5/5)

Flexibility in aggregate CO₂ hedging volume

Lower sensitivity: ∆2 €/tCO2 → ∆ 10% CO2 hedging

Higher CO2 price: p1=20 €/tCO2

Model II: Market equilibrium with CO2 hedgers, speculators and emitters (1/4)

3 actors in carbon market:

Hedgers
$$Q_1^h = \gamma * \left(C * i_{CO2}^c + G * i_{CO2}^g\right) + \frac{\left[i_{CO2}^c\right]^2 + \left[i_{CO2}^g\right]^2}{2\alpha} \left(E\left(p_2^{CO2}\right) - p_1^{CO2}\right)$$

Hedging schedule

Deviations of CO2 forward prices from expectations

Emitters
$$Q_1^{net\ demand} = \theta_1 + \beta * p_1^{CO2}$$

Surplus

Emission responsiveness

Speculators
$$Q_1^s = \max \left(\varphi \left(\frac{E(p_2^{CO2}) - p_1^{CO2}}{p_1^{CO2}} - \delta_{CO2}^s \right), 0 \right) = 0$$

Speculative responsiveness

Required rate of return

Equilibrium in period 1:

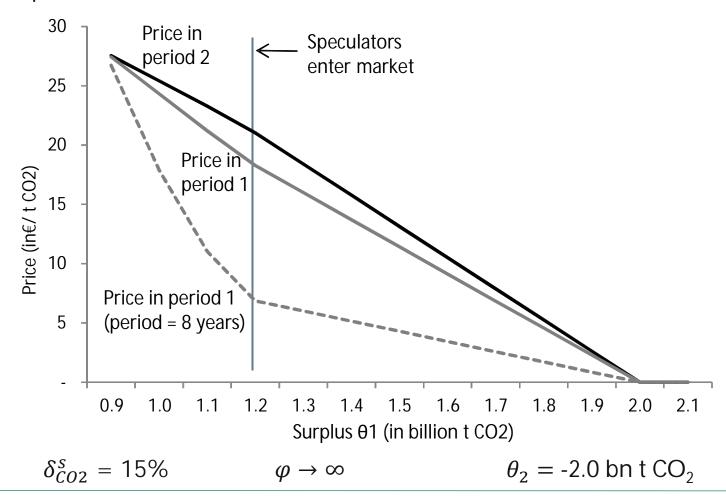
Equilibrium in period 2:

$$Q_1^{net\ demand} - Q_1^h - Q_1^s = 0$$
 $Q_2^{net\ demand} + Q_1^h + Q_1^s = 0$

Model II: Market equilibrium with CO2 hedgers, speculators and emitters (2/4)

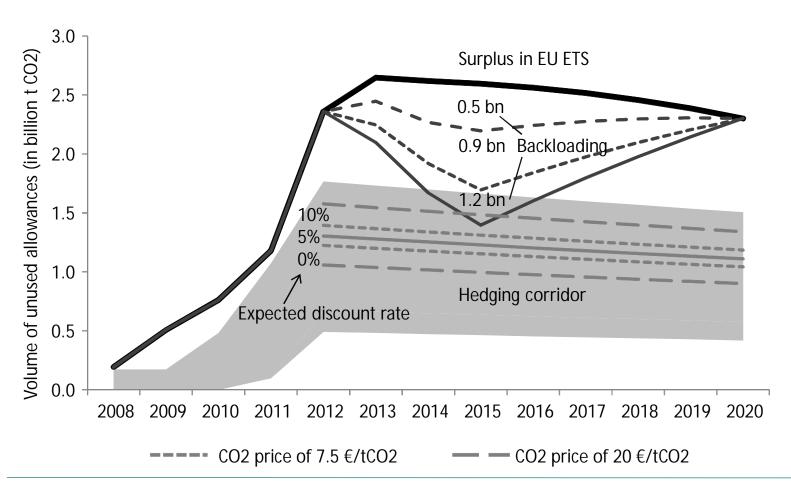
Equilibrium in the case of no speculative demand

$$E(p_2^{CO2}) = \frac{-\theta_2 * \beta \left(\theta_1\right) \theta_2) \frac{\left[i_{CO2}^c\right]^2 + \left[i_{CO2}^g\right]^2}{2\alpha} - \gamma * \beta \left(C * i_{CO2}^c + G * i_{CO2}^g\right)}{\left(\beta + \frac{\left[i_{CO2}^c\right]^2 + \left[i_{CO2}^g\right]^2}{2\alpha}\right)^2 - \left(\frac{\left[i_{CO2}^c\right]^2 + \left[i_{CO2}^g\right]^2}{2\alpha}\right)^2}{2\alpha}$$


$$p_{1}^{CO2} = \underbrace{ -\theta_{1} + \gamma \left(C * i_{CO2}^{c} + G * i_{CO2}^{g} \right)}_{\beta + \underbrace{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2}}_{2\alpha} + \underbrace{ \left(-\theta_{2} * \beta \left(-(\theta_{1}) + \theta_{2} \right) \frac{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2} }{2\alpha} - \gamma * \beta \left(C * i_{CO2}^{c} + G * i_{CO2}^{g} \right) \right) \left(\frac{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2} }{2\alpha} \right) }{ \left(\left(\beta + \frac{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2} }{2\alpha} \right)^{2} - \left(\frac{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2} }{2\alpha} \right)^{2} \right) \left(\beta + \frac{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2} }{2\alpha} \right) }{ \left(\beta + \frac{ \left[i_{CO2}^{c} \right]^{2} + \left[i_{CO2}^{g} \right]^{2} }{2\alpha} \right) }$$

Equilibrium in the case of speculative demand (For $\varphi \to \infty$, then $\frac{E(p_2^{CO2}) - p_1^{CO2}}{p_1^{CO2}} = \delta_{CO2}^s$)

$$E(p_2^{CO2})^* = \frac{-(\theta_1 + \theta_2)(1 + \delta_{CO2}^s)}{(2 + \delta_{CO2}^s)}$$
$$p_1^{CO2^*} = \frac{-(\theta_1 + \theta_2)}{(2 + \delta_{CO2}^s)}$$


Model II: Quantification (3/4)

With increasing surplus the discrepancy between today's price and price expectations widens

Model II: Quantification (4/4)

Reducing the surplus in EU ETS by 1.2 billion t CO2 shifts surplus into hedging corridor

Conclusions

- Surplus in EU ETS accumulated since 2008 and is estimated to grow to 2.7 bn t CO2 by 2013
- CO2 hedging model: captures hedging schedule and flexibility by power sector to adjust CO2 contracting to price expectations. E.g. CO₂ hedging demand in the corridor of 1.1 to 1.6 billion t for discount rates of 0 to 10%.
- Market equilibrium model: helps to explain recent price development
- Surplus of allowances in the EU ETS would need to be reduced to a level that matches the hedging demand of market participants, so as to eliminate the need for large scale banking by speculative investors.

Thank you for your attention.

Anne Schopp Climate Policy Department German Institute for Economic Research (DIW Berlin) Mohrenstr. 58 | 10117 Berlin | Germany Tel: +49 (0)30 89789 499 aschopp@diw.de www.diw.de