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Abstract

Two di¤erent models are used in the academic literature on electric power markets: (i) peak-

load pricing, which determines optimal dispatch, prices, and investment, hence long-term marginal

costs, for a single market, i.e., ignoring congestion on the transmission grid, and (ii) nodal pricing,

which examines interconnected markets, i.e., explicitly models congestion on the transmission grid,

and in its application often considers only short term marginal costs.

In reality, power markets are interconnected and rely on long-term marginal costs for invest-

ments. This article therefore examines peak-load pricing for two interconnected markets. To the

best of my knowledge, it is the �rst that does so. First, it shows how the optimal generation mix is

modi�ed when one includes congestion on the transmission grid. Second, it computes the marginal

value of transmission capacity when long-term prices and investment in generation are taken into

account.
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JEL Classi�cation: L11, L94, D61

1 Introduction

Two separate strands of academic literature on electric power markets: (i) peak-load pricing, which

determines optimal dispatch, prices, and investment, hence long-term marginal costs for a single
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market, i.e., ignoring congestion on the transmission grid (following Boiteux (1949)�s seminal analysis,

see for example Borenstein and Holland (2005), Joskow and Tirole (2006), and Léautier (2012)); and

(ii) nodal pricing, which examines interconnected markets, i.e., explicitly models congestion on the

transmission grid, and in its application often considers only short term marginal costs (following

Schweppe et al. (1986)�s seminal analysis, see for example Hogan (1992)), or Léautier (2001)).

In reality, power markets are interconnected and rely on long-term marginal costs for investments.

This discrepancy between theory and reality leaves many questions open. First, how are the main

results of peak load pricing models, in particular the optimal generation mix, modi�ed when one

includes congestion on the transmission grid?

Second, one particular issue of great practical interest is the value of transmission investments:

most analyses simulate the short-term equilibrium of interconnected markets, and value transmission

capacity using the expected di¤erence in short-term marginal costs (e.g. Leuthold et al. (2012)). On

the other hand, peak-load pricing indicates that, over the long-term, which is the relevant horizon

to value long-lived investments such as transmission lines, prices should equal the long-run marginal

costs, i.e., also cover capital costs. What is the value of transmission reinforcement when long-term

prices are taken into account?

This article therefore examines peak-load pricing for two interconnected markets. To the best of

my knowledge, it is the �rst that does so.

2 The model

Demand State of the world is t � 0, distributed according to cumulative distribution F (:), and

probability distribution f (:) = F
0
(:). All customers are homogenous, individual demand is D (p; t).

Inverse demand is P (q; t), that veri�es:

Pq =
@P

@q
< 0 and Pt =

@P

@t
> 0

The �rst condition simply requires inverse demand to be downward sloping, the second orders the

states of the world without loss of generality.

Two markets, indexed by n = 1; 2. pn (t), qsn (t), and q
d
n (t) are respectively the price, production,
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and demand in market n in state t.

Total mass of customers normalized to 1, a fraction � 2 [0; 1] of customers is located in market 1.

Thus

qd1 (t) = �D (p1 (t) ; t), p1 (t) = P

�
qd1 (t)

�
; t

�
;

and

qd2 (t) = (1� �)D (p2 (t) ; t), p2 (t) = P

�
qd2 (t)

1� � ; t
�
:

The above structure implies that demands in both markets are perfectly correlated.

Supply One production technology (cn; rn) located in market n. Node 1 is the baseload market:

r1 > r2 and c1 < c2. Investing and using both technologies is assumed to be economically e¢ cient.

Precise su¢ cient conditions are provided later.

Interconnection An interconnection links both markets. ' (t) is the �ow from market 1 to market 2

in state t. � is the transmission capacity on the interconnection, assumed identical for both directions.

The transmission constraints are thus

j' (t)j � �:

� (t) is the marginal value of transmission capacity in state t. Nodal pricing analysis (for example,

Schweppe et al. (1986), Hogan (1992)) shows that

� (t) = jp2 (t)� p1 (t)j ;

thus E [� (t)], the marginal value of transmission capacity, is

E [� (t)] = E [jp2 (t)� p1 (t)j] :

Critical states of the world and marginal value functions

De�nition 1 1. For any (k; c), bt (k; c) is the �rst state of the world such that P �k;bt (k; c)� � c,

and

	(k; c) =

Z +1

bt(k;c) (P (k; t)� c) f (t) dt:
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2. For any (k; c1; c2),

� (k; c1; c2) =

Z bt(k;c2)
bt(k;c1) (P (k; t)� c1) f (t) dt+

Z +1

bt(k;c2) (c2 � c1) f (t) dt
=

Z bt(k;c2)
bt(k;c1)

@

@t
P (k; t) (1� F (t)) dt:

	 and � are continuously di¤erentiable and decreasing in their �rst argument by inspection. Thus,

for any (c; r), � (c; r) de�ned by

� (� (c; r) ; c) = r

is unique (and assumed to exist for (c1; r1) and (c2; r2)).

3 The standard analyses

3.1 Peak load pricing

If the line is never congested, the standard peak-load pricing model applies. As long as the baseload

generation is not at capacity, it is the only one producing. Baseload generation produces at capacity

for states t such that

D (c1; t) � k1 () P (k1; t) � c1 () t � bt (k1; c1) :
Thus, for t � bt (k1; c1),

Generation qs1 (t) = D (c1; t) qs2 (t) = 0

Demand qd1 (t) = �D (c1; t) qd2 (t) = (1� �)D (c1; t)

Flow ' (t) = (1� �)D (c1; t)

Prices p1 (t) = c1 p2 = c1

:

For t � bt (k1; c1), and until peaking generation starts producing, price is set by the intersection
of the (downward sloping) demand curve and the vertical supply curve, p (t) = P (k1; t). Peaking
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generation starts producing for states t such that

P (k1; t) � c2 () t � bt (k1; c2) :
Thus, for bt (k1; c1) � t � bt (k1; c2),

Generation qs1 (t) = k1 qs2 (t) = 0

Demand qd1 (t) = �k1 qd2 (t) = (1� �) k1

Flow ' (t) = (1� �) k1

Prices p1 (t) = P (k1; t) p2 (t) = P (k1; t)

For bt (k1; c2), price is p (t) = c2, until peaking generation reaches capacity. Thus, for bt (k1; c2) �
t � bt (k1 + k2; c2),

Generation qs1 (t) = k1 qs2 (t) =
D(c2;t)
2 � k1

Demand qd1 (t) = �D (c2; t) qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = k1
�D(c2;t)

2

Prices p1 (t) = c2 p2 (t) = c2

:

Finally, when peaking generation is at capacity, price is set by the intersection of downward sloping

demand and vertical supply curves. For t � bt (k1 + k2; c2),
Generation qs1 (t) = k1 qs2 (t) = k2

Demand qd1 (t) =
k1+k2
2 qd2 (t) =

k1+k2
2

Flow ' (t) = k1�k2
2

Prices p1 (t) = P (k1 + k2; t) p2 (t) = P (k1 + k2; t)

:

Optimal unconstrained total capacity
�
kU1 + k

U
2

�
is uniquely determined by:

Z +1

bt(kU1 +kU2 ;c2)
�
P
�
kU1 + k

U
2 ; t
�
� c2

�
f (t) dt = 	

�
kU1 + k

U
2 ; c2

�
= r2
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,

kU1 + k
U
2 = � (c2; r2) (1)

while optimal unconstrained baseload capacity kU1 is uniquely determined by:

Z +1

bt(kU1 ;c1) (p (t)� c1) f (t) dt = r1

,

Z bt(kU1 ;c2)
bt(kU1 ;c1)

�
P
�
kU1 ; t

�
� c1

�
f (t) dt+

Z bt(kU1 +kU2 ;c2)
bt(kU1 ;c2) (c2 � c1) f (t) dt+

Z +1

bt(kU1 +kU2 ;c2)
�
P
�
kU1 + k

U
2 ; t
�
� c1

�
f (t) dt = r1

,

Z bt(kU1 ;c2)
bt(kU1 ;c1)

�
P
�
kU1 ; t

�
� c1

�
f (t) dt+

Z +1

bt(kU1 ;c2) (c2 � c1) f (t) dt+
Z +1

bt(kU1 +kU2 ;c2)
�
P
�
kU1 + k

U
2 ; t
�
� c2

�
f (t) dt = r1

,

�
�
kU1 ; c1; c2

�
= r1 � r2: (2)

Sofar, existence of kU1 and kU2 solutions of equations (1) and (2) has been assumed. Su¢ cient

conditions for existence are:

Assumption 1 1. If

P (0; 0) > c2 and E [P (0; t)] > c2 + r2;

then kU1 + k
U
2 = � (c2; r2) > 0 exists.

2. If

c2 + r2 > c1 + r1 and �
�
kU1 + k

U
2 ; c1; c2

�
< r1 � r2;

then there exists kU1 2
�
0; kU1 + k

U
2

�
solution of equation (2).

If P (0; 0) > c2, the �rst unit produced is worth more than its short-run marginal cost in all states

of the world, hence should be consumed. It implies that bt (0; c2) = 0. Second, since bt (0; c2) = 0,
	(0; c2) =

Z +1

0
[P (0; t)� c2] f (t) dt = E [P (0; t)]� c2;
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Thus, E [P (0; t)] > c2 + r2 implies that 	(0; c2) > r2. Since limk!+1	(k; c2) = 0 < r2, and 	(:; :)

is continuous in its �rst argument, there exists k� > 0 such that 	(k�; c2) = r2.

Since

� (0; c1; c2) =

Z +1

0
[c2 � c1] f (t) dt = c2 � c1;

c2 + r2 > c1 + r1 implies that � (0; c1; c2) > r1 � r2. Then, since � (:; :) is continuous in its �rst

argument, �
�
kU1 + k

U
2 ; c1; c2

�
< r1 � r2 is su¢ cient to ensure existence of kU1 2

�
0; kU1 + k

U
2

�
solution

of equation (2).

Assumption 2

� (c2; r2) > � (c1; r1) :

(This assumption may or may not be a consequence of the other assumptions. I have

not yet found a proof one way or the other. It leads me to one family of solutions. If the

reverse holds, we have another family of solutions, with similar results.)

Figure 1 plots ' (t) (to be included). When only technology 1 is producing, ' (t) increases until

(1� �) kU1 . Then technology 1 reaches capacity, which stabilizes the �ows. Then, peaking technology

2 is turned on, and price is set at c2: demand, hence ' (t), decreases. When peaking technology 2

reaches capacity, demand, hence ' (t), remains constant.

3.2 Nodal pricing

Until the line is congested, only the base load technology produces and serves both markets. The line

becomes congested when

(1� �)D (c1; t) = �() D (c1; t) =
�

1� � () P

�
�

1� � ; t
�
= c1 () t = bt� �

1� � ; c1
�
:
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Thus, for t � bt� �
1�� ; c1

�

Generation qs1 (t) = D (c1; t) qs2 (t) = 0

Demand qd1 (t) = �D (c1; t) qd2 (t) = (1� �)D (c1; t)

Flow ' (t) = (1� �)D (c1; t)

Prices p1 (t) = c1 p2 (t) = c1

:

When the line is congested, the �ow is limited to �. As long as p2 (t) < c2, technology 2 does not

produce. qd2 = � = (1� �)D (p2 (t) ; t), thus p2 (t) = P
�

�
1�� ; t

�
. For bt� �

1�� ; c1
�
� t � bt� �

1�� ; c2
�
,

Generation qs1 (t) = �D (c1; t) + � qs2 (t) = 0

Demand qd1 (t) = �D (c1; t) qd2 (t) = �

Flow ' (t) = �

Prices p1 (t) = c1 p2 (t) = P
�

�
1�� ; t

�
:

For t � bt� �
1�� ; c2

�
, peaking technology produces:

Generation qs1 (t) = �D (c1; t) + � qs2 (t) = (1� �)D (c2; t)� �

Demand qd1 (t) = �D (c1; t) qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = �

Prices p1 (t) = c1 p2 (t) = c2

The expected value of the di¤erence in prices is

E [p2 (t)� p1 (t)] =

Z bt( �
1�� ;c2)

bt( �
1�� ;c1)

�
P

�
�

1� � ; t
�
� c1

�
f (t) dt+

Z +1

bt( �
1�� ;c2)

(c2 � c1) f (t) dt

= �

�
�

1� � ; c1; c2
�
:

Since P
�

�
1�� ; t

�
< c2 for t 2

hbt� �
1�� ; c1

�
;bt� �

1�� ; c2
�i
,
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�

�
�

1� � ; c1; c2
�
�
Z +1

bt( �
1�� ;c1)

(c2 � c1) f (t) dt = (c2 � c1)� Pr (line constrained) ;

which di¤ers slightly from the commonly held view.

�
�

�
1�� ; c1; c2

�
is in general not the marginal value of transmission capacity. The above analysis

assumes that prices at each market are equal to the short-run marginal costs. This cannot be true in

the long-run, as investment costs have to be recovered. Standard peak-load pricing suggests, that, if

markets were not connected:

E [pn (t)] = cn + rn:

The question is then, what is the marginal value of transmission capacity, once prices are set to cover

marginal costs?

One possible heuristic is to observe that generation at market 1 contributes to the reliability at

market 2, hence to add r2 the "missing money" at market 2, taken as the value of reliability. In that

case, the marginal value of capacity would be


1 (�) = �

�
�

1� � ; c1; c2
�
+ r2:

Another possible heuristic would be to add r1 and r2 to c1 and c2 on peak. The marginal value of

capacity would be


2 (�) = �

�
�

1� � ; c1; c2
�
+ (r2 � r1) Pr (peak)

These two heuristics produce di¤erent results: 
1 (�) > �
�

�
1�� ; c1; c2

�
while 
2 (�) < �

�
�
1�� ; c1; c2

�
since r1 > r2.

4 The complete analysis

Transmission capacity is �xed at �. We determine the optimal generation mix (k1; k2) (�). Economi-

cally, this recognizes that generation adjusts faster than transmission, which is empirically veri�ed.
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4.1 Optimal dispatch, pricing, and investment

The peak-load analysis presented above shows that maximum �ow is (1� �) kU1 . Thus, if � �

(1� �) kU1 , the line is never congested. If � < (1� �) kU1 , two cases must be distinguished.

4.1.1 Light, one-way, congestion

Consider the case � < (1� �) kU1 . Then, � < (1� �) k1. The proof proceeds by contraction: if

� > (1� �) k1, the line would never be congested, hence k1 (�) = kU1 , and � > (1� �) kU1 , which

contradicts the hypothesis.

Supply, demand, �ow and prices For low-demand states of the world, only baseload technology

is producing and serving the entire market. Since � < (1� �) k1, the transmission line becomes

congested before baseload generation produces at capacity:

� < (1� �) k1 ,
�

1� � < k1 , P

�
�

1� � ; t
�
> P (k1; t), bt� �

1� � ; c1
�
< bt (k1; c1) :

Thus, for t � bt� �
1�� ; c1

�
,

Generation qs1 (t) = D (c1; t) qs2 (t) = 0

Demand qd1 (t) = �D (c1; t) qd2 (t) = (1� �)D (c1; t)

Flow ' (t) = (1� �)D (c1; t)

Prices p1 (t) = c1 p2 (t) = c1

:

For t � bt� �
1�� ; c1

�
, p1 (t) = c1, while p2 (t) = P

�
�
1�� ; t

�
as long as p2 (t) � c2:

P

�
�

1� � ; t
�
� c2 () t � bt� �

1� � ; c2
�
:
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Thus, for bt� �
1�� ; c1

�
� t � bt� �

1�� ; c2
�
,

Generation qs1 (t) = �D (c1; t) + � qs2 (t) = 0

Demand qd1 (t) = �D (c1; t) qd2 (t) = �

Flow ' (t) = �

Prices p1 (t) = c1 p2 (t) = P
�

�
1�� ; t

�
:

For t � bt� �
1�� ; c2

�
, peaking technology produces. Then one technology reaches capacity. Either

�D (c1; t) + � = k1 , D (c1; t) =
k1 � �
�

, t = bt�k1 � �
�

; c1

�

or

D (c2; t)� � = k2 , D (c2; t) =
k2 +�

1� � , t = bt�k2 +�
1� � ; c2

�
:

Lemma 1 If � (c2; r2) > � (c1; r1), then the baseload technology reaches capacity �rst.

P roof. The proof is presented in the Appendix. It proceeds by contradiction: if the peaking technology

was constrained �rst, we would have � (c2; r2) < � (c1; r1).

Since baseload capacity reaches capacity �rst, for bt� �
1�� ; c2

�
� t � bt�k1��� ; c1

�
,

Generation qs1 (t) = �D (c1; t) + � qs2 (t) = (1� �)D (c2; t)� �

Demand qd1 (t) = �D (c1; t) qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = �

Prices p1 (t) = c1 p2 (t) = c2

:

When the baseload technology is constrained p1 (t) = P
�
k1��
� ; t

�
. p1 (t) increases until it reaches

c2:

P

�
k1 � �
�

; t

�
= c2 , t = bt�k1 � �

�
; c2

�
:
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Thus, for bt�k1��� ; c1

�
� t � bt�k1��� ; c2

�

Generation qs1 (t) = k1 qs2 (t) = (1� �)D (c2; t)� �

Demand qd1 (t) = k1 � � qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = �

Prices p1 (t) = P
�
k1��
� ; t

�
p2 (t) = c2

:

Then, p1 (t) = p2 (t) = c2 and the line is no longer constrained. qd1 (t) = �D (c2; t), hence ' (t) =

k1 � �D (c2; t), and

qs2 (t) = (1� �)D (c2; t)� k1 + �D (c2; t) = D (c2; t)� k1:

This occurs until the peaking technology is constrained:

D (c2; t)� k1 = k2 , t = bt (k1 + k2; c2) :
Thus, for bt�k1��� ; c2

�
� t � bt (k1 + k2; c2),
Generation qs1 (t) = k1 qs2 (t) = D (c2; t)� k1

Demand qd1 (t) = �D (c2; t) qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = k1 � �D (c2; t)

Prices p1 (t) = c2 p2 (t) = c2

:

Finally, for t � bt (k1 + k2; c2),
Generation qs1 (t) = k1 qs2 (t) = k2

Demand qd1 (t) = � (k1 + k2) qd2 (t) = (1� �) (k1 + k2)

Flow ' (t) = (1� �) k1 � �k2

Prices p1 (t) = P (k1 + k2; t) p2 (t) = P (k1 + k2; t)

:
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Total capacity (k1 + k2) is determined by

Z +1

bt(k1+k2;c2) (P (k1 + k2; t)� c2) f (t) dt = 	(k1 + k2; c2) = r2;

hence

k1 + k2 = � (c2; r2) = k
U
1 + k

U
2 : (3)

Baseload capacity k1 (�) is determined by:

r1 =

Z bt� k1��
�

;c2
�

bt� k1��
�

;c1
�
�
P

�
k1 � �
�

; t

�
� c1

�
f (t) dt+

Z bt(k1+k2;c2)
bt� k1��

�
;c2
� (c2 � c1) f (t) dt

+

Z +1

bt(k1+k2;c2) (P (k1 + k2; t)� c1) f (t) dt

,

r1 =

Z bt� k1��
�

;c2
�

bt� k1��
�

;c1
�
�
P

�
k1 � �
�

; t

�
� c1

�
f (t) dt+

Z +1

bt� k1��
�

;c2
� (c2 � c1) f (t) dt+ r2

= �

�
k1 � �
�

; c1; c2

�
+ r2

,

�

�
k1 � �
�

; c1; c2

�
= r1 � r2 = �

�
kU1 ; c1; c2

�
,

k1 = �k
U
1 +�: (4)

Total capacity is unchanged. An increase in transmission capacity leads to a one for one substi-

tution of baseload generation capacity for peaking generation capacity. Equivalently, k1 < kU1 since

� < (1� �) kU1 : congestion on the transmission line reduces the optimal baseload capacity installed

at market 1, and increases the optimal peaking capacity installed at market 2.

The transmission line is not congested for all t � bt� �
1�� ; c1

�
. For t � bt�k1��� ; c2

�
, power prices in

both markets are equal, hence power �ow from market 1 to market 2 is reduced, thus the line is no

longer congested. This suggests the marginal value of transmission is lower than previously assumed.
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4.1.2 Severe, two-way congestion

The transmission constraint from market 2 to market 1 is

(1� �) k1 � �k2 � ��

,

k1 � � (k1 + k2) = �kU1 +�� �
�
kU1 + k

U
2

�
= �� �kU2 � ��

,

� � �

2
kU2 :

This sets a lower bound on � for which the above solution is valid. Equivalently, if � < �
2k
U
2 , the

transmission line becomes constrained in the reverse direction at some point, and the analysis must

be amended.

Supply, demand, �ows and prices Nothing changes for t � bt�k1��� ; c2

�
, until both marginal

costs are equal. Then, the reverse transmission constraint becomes binding

k1 � �D (c2; t) = ��, D (c2; t) =
k1 +�

�
, t = bt�k1 +�

�
; c2

�

before the peaking technology reaches capacity

(1� �)D (c2; t) + � = k2 , D (c2; t) =
k2 � �
1� � , t = bt�k2 � �

1� � ; c2
�
:

Thus, for bt�k1��� ; c2

�
� t � bt�k1+�� ; c2

�
,

Generation qs1 (t) = k1 qs2 (t) = D (c2; t)� k1

Demand qd1 (t) = �D (c2; t) qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = k1 � �D (c2; t)

Prices p1 (t) = c2 p2 (t) = c2

:
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as previously, and for bt�k1+�� ; c2

�
� t � bt�k2��1�� ; c2

�
,

Generation qs1 (t) = k1 qs2 (t) = (1� �)D (c2; t) + �

Demand qd1 (t) = k1 +� qd2 (t) = (1� �)D (c2; t)

Flow ' (t) = ��

Prices p1 (t) = P
�
k1+�
� ; t

�
p2 (t) = c2

:

Finally, for t � bt�k2��1�� ; c2
�
,

Generation qs1 (t) = k1 qs2 (t) = k2

Demand qd1 (t) = k1 +� qd2 (t) = k2 � �

Flow ' (t) = ��

Prices p1 (t) = P
�
k1+�
� ; t

�
p2 (t) = P

�
k2��
1�� ; t

�
:

Optimal peaking capacity k2 (�) is such that

	

�
k2 (�)� �
1� � ; c2

�
= r2 = 	

��
kU1 + k

U
2

�
; c2
�

,

k2 (�) = � + (1� �)
�
kU1 + k

U
2

�
: (5)

k2 (�) is increasing one for one in �: as � increases, the reverse transmission constraint is partially

relieved, and additional peaking capacity is added. k2 (0) = (1� �)
�
kU1 + k

U
2

�
: when markets are

isolated, technology 2 is the only technology available, hence is deployed following 	(k2; c2) = r2. All

demand is served using peaking technology, the only technology available.

Optimal baseload capacity k1 (�) is such that

r1 =

Z bt� k1��
�

;c2
�

bt� k1��
�

;c1
�
�
P

�
k1 � �
�

; t

�
� c1

�
f (t) dt+

Z bt� k1+�
�

;c2
�

bt� k1��
�

;c2
� (c2 � c1) f (t) dt

+

Z bt� k2��
1�� ;c2

�
bt� k1+�

�
;c2
�
�
P

�
k1 +�

�
; t

�
� c1

�
f (t) dt+

Z +1

bt� k2��
1�� ;c2

�
�
P

�
k1 +�

�
; t

�
� c1

�
f (t) dt
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,

r1 =

Z bt� k1��
�

;c2
�

bt� k1��
�

;c1
�
�
P

�
k1 � �
�

; t

�
� c1

�
f (t) dt+

Z +1

bt� k1��
�

;c2
� (c2 � c1) f (t) dt

+

Z +1

bt� k1+�
�

;c2
�
�
P

�
k1 +�

�
; t

�
� c2

�
f (t) dt

,

�

�
k1 (�)� �

�
; c1; c2

�
+	

�
k1 (�) + �

�
; c2

�
= r1: (6)

The function

H (x;�) = �

�
x� �
�

; c1; c2

�
+	

�
x+�

�
; c2

�
� r1

is decreasing in x, since both � and 	 are decreasing in their �rst argument. Equation (6) thus

implicitly de�nes a unique k1 (�) for � < �
2k
U
2 .

While k1 (�) for � < �
2k
U
2 cannot be explicitly characterized, a few properties can be derived,

summarized in the following:

Lemma 2 1. k1 (:) is bounded above and below on
�
0; �2k

U
2

�
:

�kU1 +� � k1 (�) � �
�
kU1 + k

U
2

�
� �:

2. k1 (:) and k2 (:) are continuous on
�
0; �2k

U
2

�
, and

k1 (0) = �� (c1; r1) ; and k1

�
�

2
kU2

�
= �

�
kU1 +

kU2
2

�
:

3. Finally, k1 (:) is continuously di¤erentiable on
�
0; �2k

U
2

�
, and

����dk1d�
���� � 1:

P roof.

1.

H
�
�kU1 +�;�

�
= �

�
kU1 ; c1; c2

�
+	

�
kU1 +

2�

�
; c2

�
� r1 = 	

�
kU1 +

2�

�
; c2

�
� r2:
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kU1 +
2�
� � k

U
1 + k

U
2 , 	

�
kU1 +

2�
� ; c2

�
� �

�
kU1 + k

U
2 ; c2

�
= r2. Thus,

H
�
�kU1 +�;�

�
� 0, k1 (�) � �kU1 +�:

De�ne �k = kU1 + k
U
2 � k2 (�) = �

�
kU1 + k

U
2

�
� �.

H
�
�k;�

�
= �

�
kU1 + k

U
2 �

2�

�
; c1; c2

�
+	

�
kU1 + k

U
2 ; c2

�
�r1 = �

�
kU1 + k

U
2 �

2�

�
; c1; c2

�
+r2�r1:

Then, kU1 + k
U
2 � 2�

� � k
U
1 + k

U
2 � kU2 = kU1 , �

�
kU1 + k

U
2 � 2�

� ; c1; c2
�
� �

�
kU1 ; c1; c2

�
= r1� r2.

Thus,

H
�
�k;�

�
� 0, k1 (�) � �k , k1 (�) + k2 (�) � kU1 + kU2 :

2. k1 (:) is continuous on
�
0; �2k

U
2

�
by inspection. Since �kU1 +� � k1 (�) � �

�
kU1 + k

U
2

�
� �,

�

�
kU1 +

kU2
2

�
� lim
�! �

2
kU2 ;��

�
2
kU2

k1 (�) � �
�
kU1 +

kU2
2

�

hence k1
�
�
2k
U
2

�
= �

�
kU1 +

kU2
2

�
. For � � �

2k
U
2 ,

k1

�
�

2
kU2

�
= �kU1 +

�

2
kU2 = �

�
kU1 +

kU2
2

�
;

thus k1 (:) is continuous at � = �
2k
U
2 . Similarly, for � � �

2k
U
2 ,

k2

�
�

2
kU2

�
= kU1 + k

U
2 � �kU1 +

kU2
2
= (1� �)

�
kU1 + k

U
2

�
+
�

2
kU2

while, for � < �
2k
U
2

lim
�! �

2
kU2

k2 (�) =
�

2
kU2 + (1� �)

�
kU1 + k

U
2

�
= k2

�
�

2
kU2

�
;
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thus k2 (:) is continuous at � = �
2k
U
2 .

H (x; 0) = �
�x
�
; c1; c2

�
+	

�x
�
; c2

�
=

Z bt(x� ;c2)
bt(x� ;c1)

�
P
�x
�
; t
�
� c1

�
f (t) dt+

Z +1

bt(x� ;c2) (c2 � c1) f (t) dt+
Z +1

bt(x� ;c2)
�
P
�x
�
; t
�
� c2

�
f (t) dt

=

Z +1

bt(x� ;c1)
�
P
�x
�
; t
�
� c1

�
f (t) = 	

�x
�
; c1

�
;

thus, k1 (0) = �� (c1; r1).

3. Implicit di¤erentiation of equation (6) with respect to � yields

@�

@k

 
k
0
1 (�)� 1
�

!
+
@	

@k

 
k
0
1 (�) + 1

�

!
= 0

,

k
0
1 (�) =

@�
@k �

@	
@k

@�
@k +

@	
@k

:

k
0
1 (�) is continuous on

�
0; �2k

U
2

�
since @�

@k and
@	
@k are continuous and

@�
@k +

@	
@k < 0 on

�
0; �2k

U
2

�
.

dk1
d�

� 1 = �2
@	
@k

@�
@k +

@	
@k

< 0;

and
dk1
d�

+ 1 = 2
@�
@k

@�
@k +

@	
@k

> 0;

thus
���dk1d� ��� � 1.

Using the previous Lemma, we verify that the solution is internally consistent, i.e., that (1� �) k1 (�)�

�k2 (�) < �� for all � < �
2k
U
2 :

(1� �) k1 (�)� �k2 (�) < (1� �)
�
�
�
kU1 + k

U
2

�
� �

�
� �

�
�+ (1� �)

�
kU1 + k

U
2

��
= ��:

When both markets are isolated, technology 1 is used to serve demand. I do not believe that we

can ascertain the sign of dk1d� , since the line is congested in both directions. When the line is congested
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from market 1 to market 2, an increase in transmission capacity leads to an increase in the capacity

installed in market 1. On the other hand, it also leads to an increase in capacity installed in market

2, when the line is congested from market 1 to market 2. Either e¤ect may dominate. However, the

net e¤ect is lower than 1 in absolute value.

4.1.3 Summary

The previous analysis can be summarized in the following:

Proposition 1 1. If � � (1� �) kU1 , the transmission line is never congested.

2. If � 2
�
�
2k
U
2 ; (1� �) kU1

�
, the transmission line is congested from market 1 to market 2. The

total installed capacity is unchanged. As transmission capacity increases, baseload capacity is

substituted one for one for peaking capacity.

3. If � 2
�
0; �2k

U
2

�
, the transmission line is congested in both directions. As transmission capacity

increases, peak load capacity increases one for one. However, the impact on baseload capacity is

undetermined.

4.2 Marginal value of transmission capacity

Proposition 2 1. If � � (1� �) kU1 ,E [� (t)] = 0.

2. If � 2
�
�
2k
U
2 ; (1� �) kU1

�
, the marginal value of transmission capacity is equal to the expected

di¤erence in short term marginal costs, plus the di¤erence in investment costs:

E [� (t)] = �
�

�

1� � ; c1; c2
�
+ r2 � r1:

3. If � 2
�
0; �2k

U
2

�
, the marginal value of transmission capacity is bounded above and below:

�

�
�

1� � ; c1; c2
�
+ r2 � r1 � E [� (t)] � �

�
�

1� � ; c1; c2
�
+ r2 � r1 + 2�

where

� = 	(� (c1; r1) ; c2)�	(� (c2; r2) ; c2) > 0:
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P roof.

1. If the line is unconstrained, the marginal value of capacity is equal to zero.

2. For � 2
�
�
2k
U
2 ; (1� �) kU1

�
, E [� (t)] = I, where

I =

Z bt( �
1�� ;c2)

bt( �
1�� ;c1)

�
P

�
�

1� � ; t
�
� c1

�
f (t) dt+

Z bt� k1��
�

;c1
�

bt( �
1�� ;c2)

(c2 � c1) f (t) dt

+

Z bt� k1��
�

;c2
�

bt� k1��
�

;c1
�
�
c2 � P

�
k1 � �
�

; t

��
f (t) dt

=

Z bt( �
1�� ;c2)

bt( �
1�� ;c1)

�
P

�
�

1� � ; t
�
� c1

�
f (t) dt+

Z +1

bt( �
1�� ;c2)

(c2 � c1) f (t) dt

+

Z bt� k1��
�

;c2
�

bt� k1��
�

;c1
�
�
c1 � P

�
k1 � �
�

; t

��
f (t) dt+

Z +1

bt� k1��
�

;c2
� (c1 � c2) f (t) dt

= �

�
�

1� � ; c1; c2
�
� �

�
k1 � �
�

; c1; c2

�

Thus,

E [� (t)] = �
�

�

1� � ; c1; c2
�
+ r2 � r1

since �
�
k1��
� ; c1; c2

�
= r1 � r2 from equation (4).

3. For � 2
�
0; �2k

U
2

�
,

E [� (t)] = I + J

where

J =

Z bt� k2��
1�� ;c2

�
bt� k1+�

�
;c2
�
�
P

�
k1 +�

�
; t

�
� c2

�
f (t) dt+

Z +1

bt� k2��
1�� ;c2

�
�
P

�
k1 +�

�
; t

�
� P

�
k2 � �
1� � ; t

��
f (t) dt

=

Z +1

bt� k1+�
�

;c2
�
�
P

�
k1 +�

�
; t

�
� c2

�
f (t) dt+

Z +1

bt� k2��
1�� ;c2

�
�
c2 � P

�
k2 � �
1� � ; t

��
f (t) dt

= 	

�
k1 +�

�
; c2

�
� r2
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since
R +1bt� k2��

1�� ;c2
� �P �k2��1�� ; t

�
� c2

�
f (t) dt = r2 from equation (5). Thus,

E [� (t)] = �

�
�

1� � ; c1; c2
�
� �

�
k1 (�)� �

�
; c1; c2

�
+	

�
k1 (�) + �

�
; c2

�
� r2

= �

�
�

1� � ; c1; c2
�
+ 2	

�
k1 (�) + �

�
; c2

�
� (r1 + r2)

by replacing �
�
k1��
� ; c1; c2

�
from equation (6). k1 (�) � �kU1 +�, k1��

� � kU1 , ��
�
k1��
� ; c1; c2

�
�

r2 � r1. k1 (�) � �
�
kU1 + k

U
2

�
� �, k1+�

� � kU1 + kU2 , 	
�
k1+�
� ; c2

�
� r2. Thus,

E [� (t)] � �
�

�

1� � ; c1; c2
�
+ r2 � r1:

Since (k1 (�) + �) is increasing, 	
�
k1(�)+�

� ; c2

�
� 	

�
k1(0)
� ; c2

�
= 	(� (c1; r1) ; c2) = r2 + �,

where

� = 	(� (c1; r1) ; c2)�	(� (c2; r2) ; c2) > 0.

Thus,

E [� (t)] � �
�

�

1� � ; c1; c2
�
+ r2 � r1 + 2�:

None of the heuristics presented in Section 2 is actually correct.

A practical implication: for the slightly congested line, the marginal value of transmission capacity

can be much lower than the expected di¤erence in short-term marginal costs. Consider the following

example: technology 1 is nuclear, and technology 2 is Combined Cycle Gas Turbine. The International

Energy Agency (IEA (2010)) provides the following estimates for the costs:

1 2

cn 11 49

rn 34 8

The marginal cost di¤erence is 38 e=MWh. If the line is congested 50% of the time, this corre-

sponds � (�) = 19 e per MW per hour on average, or, multiplying by 8; 760 hours per year, 166; 440
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e per MW per year, or e 1.7 million per MW discounted in perpetuity at 10%. This value ex-

ceeds most estimates of the cost of transmission (need references here), hence expansion should be

undertaken.

However, when the marginal value is properly computed, it becomes

E [� (t)] = �7 e per MW per hour;

which suggests no expansion should be undertaken.

The marginal value of capacity on a slightly congested line is the expected di¤erence in short-term

marginal costs plus the di¤erence in investment costs. It is thus lower than the expected di¤erence in

short-term marginal costs.

5 Conclusion
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