Imperial College London BUSINESS SCHOOL

How large should a portfolio of wind farms be?

Richard Green
Iain Staffell
The economics of energy markets,
Toulouse, January 2013

© Imperial College Business School

The issue

- The output from wind farms is risky
 - Hour-to-hour and year-to-year variation
- Correlations generally fall with distance
- A portfolio should be better than a single wind farm
- System operators worry about hour-to-hour variation
 - Doherty et al (IEEE Trans. Power Systems, 2006)
 - Roques et al (Energy Policy, 2010)
 - Rombauts et al (Renewable Energy, 2011)
- Investors may have longer time horizons

Our approach

- Calculate annual profitability and risk for wind stations
- Model hourly prices and outputs using 18 years of wind and demand data
 - Merit order stack for price-setting
 - Capacity based on near-term forecasts
 - Plant costs from five recent studies (UKx3, EIA, IEA)
 - Constant fuel prices from UK government predictions
 - Demand level normalised (before weather) across years
 - Wind output estimated from BADC wind speed data, given
 11 GW of onshore and 19 GW of offshore plant

Imperial College London BUSINESS SCHOOL

Generators

	Capacity (GW)	Marginal Cost (£/MWh)
Wind (onshore)	11.0	0.00
Wind (offshore)	19.0	0.00
Nuclear	6.0	5.00
Coal (new)	0.0	42.02
Coal (old)	11.5	53.25
CCGT (new)	15.8	60.03
CCGT (2000s)	8.0	66.82
CCGT (1990s)	7.0	72.28
Oil	0.0	120.49
OCGT	1.0	167.73

Wind farms around the UK

Wind turbine power curve

Output relative to capacity

Wind Output - Probability distribution

Source: Green and Vasilakos (2009)

Wind Output - Probability distribution

Source: Green and Vasilakos (2009)

Correcting wind speeds – annual average

Correcting wind speeds – Spring

Correcting wind speeds – Summer

Correcting wind speeds – Autumn

Correcting wind speeds – Winter

Validation: monthly load factors

Actual load factors from Elexon and Ofgem ROC Register

Mean and Standard Deviation of Annual Outputs

Calculating profits

- Revenues come from prices equal to the marginal cost of thermal plant plus Renewables Obligation Certificates worth £50/MWh
- Annual cost assumed to be £208 per kW
 - Mostly capital costs; also fixed O&M costs
- Mean (super-normal) profit is £38/kW-year
- Standard deviation (across the years for one station) has a mean of £22/kW-year

Wind output and market prices

Risk and return from portfolios of wind farms

Mean Profit (£/kW-year) Standard deviation (£/kW-year)

★ 291 43

Mean Profit (£/kW-year)	Standard deviation (£/kW-year)
291	43
★ 215	26

Mean Profit (£/kW-year)	Standard deviation (£/kW-year)
291	43
215	26
* 139	19

Mean Profit (£/kW-year)	Standard deviation (£/kW-year)
291	43
215	26
139	19
★ 93	15

Mean Profit (£/kW-year)	Standard deviation (£/kW-year)
291	43
215	26
139	19
93	15
* 62	13

Mean Profit (£/kW-year)	Standard deviation (£/kW-year)
291	43
215	26
139	19
93	15
62	13
★ 40	13

Measuring the efficiency of a portfolio

Is output efficiency informative?

Conclusions

- Year-on-year changes in weather lead to economically important variations in wind farm profits
- A relatively small portfolio can dampen these
- Studying the mean-variance properties of a portfolio's output will not tell you much about its profits

Extensions

- Study portfolios of on- and off-shore wind farms
- Weed out unprofitable farms from the model
- Consider a more sophisticated price-setting process

Comparison of pricing models

Imperial College London BUSINESS SCHOOL