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Abstract

We quantify the pass-through rate of emissions costs in the Spanish electricity market and

analyze the factors that generate it: internalization of emissions costs, demand elasticity, market

power and heterogeneity of cost shocks. Using rich micro-level data, we perform both reduced

form and structural estimations based on optimal bidding in this market. We find that 80%

of the emissions cost is passed-through to electricity prices. This incomplete pass-through is

partly driven by demand elasticity and market power. Finally, our results are consistent with

the hypothesis that firms internalized the full cost of the emissions.
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1 Introduction

Cap-and-trade programs constitute a market-based solution to reducing greenhouse gas emis-

sions.1 Understanding how firms respond to the introduction of cap-and-trade regulation and how

this affects the product market is of great importance to assess the benefits and concerns associated

with these programs. One of the main benefits of using cap-and-trade for emissions reductions, as

opposed to command-and-control methods, is that they allow for an overall reduction in emissions

at minimum cost. If all agents internalize the same price on emissions, i.e., the price of permits in

the emissions markets, the lowest abatement cost allocation will be achieved.

However, cap-and-trade programs have often received major opposition. Among the most con-

tentious elements of cap-and-trade programs is their effect on product market prices. Their impact

on electricity bills is particularly controversial, since electricity markets are strongly affected by the

emissions regulation. The potential loss of competitiveness, the associated job destruction, and the

distributional impacts across industries and regions also rank high in the list of concerns (Martin

et al., 2012). The extent to which emissions costs can be passed-through to output prices ultimately

determines the magnitude of such concerns.

One of the issues that has confounded the policy debate on the effects of pollution permits on

output prices in the context of electricity markets has been the belief that in competitive markets

full internalization of permit prices necessarily implies full pass-through (Ellerman et al., 2010).2

Therefore, evidence on partial pass-through has at times been interpreted as either evidence of firms

not fully internalizing the cost of permits or evidence of firms exercising market power, both of which

would jeopardize efficiency. Even though this statement is true in some theoretical models, it does

not hold in general. Partial pass-through could be explained by either partial cost internalization,

market power, demand elasticity, or any combination between them.

The goal of this paper is twofold: first, to quantify the pass-through rate of emissions costs to

electricity prices; and second, to disentangle the determinants of the pass-through rate using micro-

level data. To do so, we investigate the response of Spanish electricity firms to the introduction of

emissions regulation, taking advantage of the cost shocks induced by changes in emission permits.

We first quantify the pass-through rate through a reduced-form analysis based on observed

equilibrium outcomes. Our findings demonstrate that 80% of the increase in emissions costs is

passed-through to electricity prices. In turn, this implies that electricity prices increase by approx-

imately half the carbon price. We also find that the pass-through rate is reduced when coal units

set the price, while it is exacerbated when gas is the marginal technology. This is consistent with

the latter cleaner technology substituting the dirtier one at the margin.

To understand the different channels that explain this incomplete pass-through, we then rely

1Under cap-and-trade programs, the total amount of emissions is capped, and emissions permits summing up to
the cap are distributed among pollutants. These can then freely trade them in the emissions market or through
bilateral trades in order to cover their emissions. The European Union’s Emissions Trading Scheme (ETS), currently
the largest carbon market in the world, is the European Union’s flagship instrument to fight climate change. See
Ellerman et al. (2010) for details.

2The rationale behind this conclusion is that it would be true under the assumption of perfectly inelastic demand.
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on a structural approach based on the predictions of the multi-unit auction literature. To explore

whether the pass-through is driven by partial cost internalization, we first identify firms’ perceived

opportunity costs of using permits from the bids they submit into the electricity market. Several

hypothesis have been put forward to explain why firms might not factor in the full permit price.

Explanations include the existence of transaction costs in the emissions market (Stavins, 1995),

the expectation that future permit allocations would be based on current emissions (Fowlie, 2010),

or firms’ inability to understand that free permits have an opportunity cost (Goeree et al., 2010).

However, our analysis shows that firms internalized the cost of the permits fully, suggesting that

partial pass-through is not explained by partial internalization of emissions costs.

To decompose the additional channels that result in partial pass-through, such as demand elas-

ticity and market power, we simulate the response of firms’ bidding behavior to marginal increases

in the carbon price. More specifically, we use optimal bidding equations to predict how the whole

bid schedule would change after a one Euro increase in the carbon price. We do so under four

counterfactuals, which differ on whether demand is elastic or not, and on whether firms’ strategic

markups are affected by the carbon cost shock or not. In the counterfactual with inelastic demand,

we find departures from full pass-through that are solely due to substitution from dirtier (coal) to

cleaner (gas) technologies. In turn, the observed switching is more prominent than in the compet-

itive benchmark because of asymmetries in bidding behavior between the large strategic firms and

the fringe players. The comparison across counterfactuals also shows that demand elasticity has

a significant impact in mitigating the pass-through, which is reduced by 20% as compared to the

counterfactuals with inelastic demand.

Our results have several policy-relevant implications. First, in the context of the European

Union’s Emissions Trading Scheme (ETS) and electricity markets, starting from January 2013, full

auctioning of emission permits has become compulsory. The fact that firms internalize the full costs

of free permits suggests that auctioning of those permits should not have additional inflationary

effects on electricity prices, at least in the short run.Secondly, full cost internalization also suggests

that frictions or transaction costs in the emissions market are negligible, which is a well known

necessary condition for the Coase principle to apply. Finally, the evidence reported here on the

degree of pass-through demonstrates that the introduction of emissions regulation in electricity

markets with free permit allocation can be a source of windfall profits due to increased market

prices.

This paper also contributes to the general understanding of economic pass-through. The intro-

duction of carbon cap-and-trade in electricity markets provides a unique opportunity to identify

the different channels that affect the pass-through. First, the effects of carbon permit prices on

the marginal costs of generating electricity are significant and vary by technology. This creates

important interactions that affect the degree of abatement in this market and makes the potential

impacts of the policy important. Second, from an econometric perspective, analyzing the effect of

emissions costs in electricity markets has the advantage that European CO2 prices can be consid-

ered exogenous cost shifters to the Spanish electricity companies, since pollution permits are traded
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across all Member States and across many sectors. Furthermore, there is substantial variation in

permit prices during the sample. Studying these markets also has the advantage that there is rich

high-frequency micro-level data available, including demand curves and individual firm bid data, as

well as engineered-based cost estimates, that allow us to be flexible in the structural simulations.3

Finally, the institutions and industrial processes that affect firms’ strategic behavior in these mar-

kets are also well understood (von der Fehr and Harbord (1993) and Green and Newbery (1992),

among others), thus allowing us to construct a reliable structural framework.

The paper proceeds as follows. After reviewing the related literature, Section 3 describes the

context and data of analysis. In Section 2, we introduce a conceptual framework to understand and

disentangle the different sources of the pass-through rate. In Section 4, we present reduced-form

evidence on the pass-through rate, while in Section 5 we develop a structural model to estimate

and decompose the pass-through rate. Section 6 concludes.

Related literature Other papers have also examined pass-through rates in the context of the

EU ETS, the majority of which present reduced-form evidence and do not explicitly explore the

channels explaining the pass-through rate. Also, while previous studies on pass-through rates are

based on market outcomes, this paper uses finer micro-level data to assess the response by firms

more directly.

One of the first papers studying this issue is Sijm et al. (2006), which estimates pass-through

rates using equilibrium prices and fuel cost data in the German electricity market.4 The authors

find pass-through rates that range between 0.60 and 1.17, depending on market conditions. More

recently, Bushnell et al. (2013) use a structural break that occurred in April 2006 in the EU ETS

prices to measure the pass-through rate, and Zachmann and Hirschhausen (2008) document whether

it responds asymmetrically to either positive or negative cost shocks.

Our work is also closely related to the work by Reguant and Ellerman (2008), which also

presents evidence on firms internalizing the costs of the emissions in the Spanish electricity market.

McGuinness and Ellerman (2008) also present evidence that electric utilities in the UK changed

their operational decisions in response to carbon prices in the EU ETS, but do not directly assess

whether the response is consistent with full internalization.

In the context of other pollution markets, Kolstad and Wolak (2008) provide evidence on how

firms used NOx prices to strategically exercise market power in the Californian electricity market. In

their study, they test for cost internalization using structural equations from the multi-unit auction

literature, as in this paper. They find evidence supporting the hypothesis that firms respond

differently to environmental cost shocks, as opposed to other marginal cost shocks. Fowlie (2010)

examines firm responses in the context of the NOx Budget Program, exploiting the differences in

allocation regimes. She finds evidence that firms internalized the costs of emissions, and that the

degree of internalization depended on the subsidization rate, as theory would predict.

3This is particularly important for the estimation of pass-through rates, which can be greatly affected by functional
form assumptions (Besanko et al., 2005; Weyl and Fabinger, 2012).

4See the Annex by Keppler in Ellerman et al. (2010) for a review of this and other studies.
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The relevance of identifying the pass-through rate in the presence of cost shocks extends beyond

emissions markets, and has indeed been the subject of a more general literature. From a theoretical

perspective, the effects of cost changes on prices cannot be determined, as discussed in Besanko

et al. (2005) and Weyl and Fabinger (2012). Empirically, several settings have been examined

to answer this question. A big part of the literature has exploited changes in currency exchange

rates to examine the relevance of pass-through, as they can provide exogenous variation in costs

(Goldberg and Hellerstein, 2008). Some papers have focused on the incidence of taxes, also as a way

to measure the effects of observable cost changes. For instance, exploiting the variation in gasoline

taxes, Marion and Muehlegger (2011) provide evidence of full pass-through in the gasoline retail

market. Bonnet et al. (2013) have analyzed the incidence of vertical contracts on pass-through

rates using a structural model. As noted by Weyl and Fabinger (2012), “broader empirical work on

the range of pass-though rates and their relationship to more-easily-observable industry features

remains extremely limited.” This work aims at contributing to this line of research.

2 Conceptual Framework

For the purposes of quantifying and decomposing the pass-through rate of emissions costs, it is

useful to first resort to a simplified framework. Consider a simple model in which a firm’s costs are

given by

TC(Q; γ) = C(Q;u) + γτeQ. (2.1)

The firm has production costs C(Q;u), where Q is output and is u a cost shock. The firm also

produces emissions eQ, where e is the emissions rate per unit of output.5 The common assumption

is that the emissions’ permit price, τ , fully reflects the opportunity costs of using permits, so

that τeQ represents the costs of emissions. However, several features of these markets may distort

opportunity costs away from permit prices, e.g., transaction costs in the emissions markets (Stavins,

1995), the belief that future permit allocations would be based on current emissions, behavioral

biases that stop firms from fully understanding that free permits have an opportunity cost,6 or

financial market imperfections.7 In order to capture these possibilities, we introduce a parameter,

γ, referred to as the “opportunity costs” parameter, which adjusts for the firm’s true opportunity

costs of using permits.

Whereas γ is a fundamental parameter of the model, the pass-through rate is an equilibrium

outcome. Let D(p; �) be the demand function, where p is the market price and � is a demand

5For the sake of simplicity, in this example we assume that the emissions rate is constant in output. In reality,
this need not be the case given that different technologies have different emissions rates. This will be relaxed in our
empirical analysis.

6This issue that is reminiscent of the concern that auctioning permits will inflate output prices. As one energy
company official complained: “If emissions allowances are auctioned, that will only lead to 100% of the carbon price
being priced into the electricity price, and thus increase it”. (Wrake et al., 2010).

7Indeed, as argued by a carbon analyst at Deutsche Bank, “The [ETS] was not designed as a scheme to give
corporates cheap short-term funding options in the face of a credit crunch meltdown where banks are not lending,
but that appears to be what’s happening.” (The Guardian, 27 January, 2009)
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shock; and let S(p, τ ;u, γ) be the supply function. Using the market clearing condition D(p; �) =

S(p, τ ;u, γ), by the implicit function theorem, the pass-through rate can be expressed as

ρ ≡ dp

dτ
=

Sτ (p, τ ;u, γ)

Dp(p; �)− Sp(p, τ ;u, γ)
· (2.2)

As it is clear from the above equation, the pass-through rate depends on the slope of the demand

and supply functions, and on the opportunity costs of permits, as captured by the parameter γ.

Suppose that one has accurately estimated the pass-through rate ρ to be below one. The relevant

question would then be how to interpret such an estimate. There is a common misconception that

an incomplete pass-through, i.e. ρ < 1, goes hands in hands with either market power or lack of

cost internalization. However, this is flawed as a general statement. Indeed, ρ = 1 is achieved in

competitive markets if firms fully internalize emissions costs, but only if demand is vertical or supply

is flat. Demand and supply elasticity, and not only market power or partial cost internalization,

can lead to partial pass-through, as shown graphically through three examples in Figure 3.1.

In example (a), firms are assumed to be competitive, with linearly increasing marginal costs.

Since demand is downward-sloping, the pass-through rate is less than one. In example (b), firms

have constant marginal costs. Since they exercise market power, supply becomes upward-sloping

and the pass-through rate is also less than one.8 Last, in example (c), firms are assumed to be

competitive and their marginal costs are flat. In this case, partial pass-through is explained by

partial cost internalization.

In sum, the actual observed pass-through is potentially a combination of three different factors:

the elasticity of demand; the elasticity of supply, which in turn depends on cost features as well as

on the degree of market power; and the value of opportunity costs.9 We now move to empirically

quantifying and decomposing the pass-through rate into these three channels.

3 Context and Data

We study the pricing decisions of electricity generators in the Spanish electricity market following

the introduction of the European Union’s Emissions Trading System (ETS). In this section we

briefly describe the context as well as the data that we use for the empirical analysis.

3.1 The European Union’s Emissions Trading Scheme

The EU ETS is the largest emissions control scheme in the world, affecting almost half of

European CO2 emissions, from approximately 10,000 energy-intensive installations across the EU.

It is also the first and largest compulsory international trading system for CO2 emissions.

8This is consistent with many oligopoly models, including Cournot. As documented in the literature, one could
also construct an example in which market power increases the pass-through above one.

9In Section 4.2, we shall add an additional channel that is specific to electricity markets, which we refer to as
“heterogeneity and technology switching.” Everything else constant, one can obtain a pass-through rate different
from one if there is substitution from dirtier to cleaner technologies at the margin.
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Figure 2.1: An incomplete pass-through is consistent with several hypothesis

(a) An incomplete pass-through is consistent with competitive behavior
when both demand and supply are elastic
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(c) An incomplete pass-through is consistent with partial internalization of
emissions costs
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The EU sets a global cap on emissions and assigns a share of free permits to each Member State.

Through the National Allocation Plans, Member States then allocate their share of permits across

sector and individual installations subject to EU approval. Each year, companies must surrender

enough allowances to cover their emissions, for which they might either use their own allowances

or buy them from another firm. Emissions rights can be transacted bilaterally (i.e., company-to-

company), brokered (OTC market) or traded in exchanges.10 Failure to comply implies a e40/ton

CO2 penalty, plus the obligation to purchase the deficit in the market.

The first phase of the EU ETS, also known as the trial period, ran from January 2005 to

December 2007. Phase I covered only carbon dioxide emissions from energy related industries

(combustion installations with a rated thermal input exceeding 20MW, mineral oil refineries, coke

ovens), production and processing of ferrous metals, the mineral industry (cement clinker, glass

and ceramic bricks) and the pulp, paper and board industry. These activities represent around

40% of CO2 emissions in the European Union, the electricity sector being the largest contributor

in the group.11

Figure 3.1 shows the evolution of CO2 prices during the trial period. One of the striking

features is the substantial drop in prices around May 2006. This drop in price was induced by

the release of emissions reporting data from 2005, the first year of the policy. In light of the

revealed information, which indicated a markedly lower level of emissions than had originally been

anticipated and therefore a lower marginal cost of meeting the cap, the price halved in a very short

period of time and subsequently declined to zero (Parsons et al., 2009).12

3.2 The Spanish Electricity Market

The Spanish electricity market is a national market that produces between 15,000 and 45,000 MWh

hourly and serves more than 40 million people. The Spanish territory is interconnected with France,

Morocco and Portugal. The electricity market has an annual value of 6 to 8 Be.

The Spanish electricity market has been liberalized since 1998 and shares many features with

other liberalized electricity markets. More specifically, it operates in a sequence of markets: the day-

ahead market, several intra-day markets that operate close to real time, and the ancillary services

market. Participation in these markets is not compulsory, as market participants are allowed to

enter into physical bilateral contracts. Still, the day-ahead market is very liquid and concentrates

the vast majority of trades.

The day-ahead market trades 24 hourly electricity products that are cleared once a day. On

the supply side, electricity producers, if not tied to a bilateral contract, submit supply functions

10To get some orders of magnitude, in 2005, the market transacted 262 Mt CO2 (e5.4 billion) through brokers (207
Mt) and exchanges (57 Mt), and a estimated figure of 100Mt (e1.8 billion) in the bilateral market (Point Carbon
2006). European Climate Exchange is the largest exchange in Europe (63%), followed by NordPool (24%), PowerNext
(8%) and the European Energy Exchange (4%).

11For more details on the EU ETS, see Ellerman et al. (2007) and Bahringer and Lange (2012).
12Bushnell et al. (2013) and Zachmann and Hirschhausen (2008) explicitly exploit this change to analyze the

response of firms to changing market conditions. We have decided not to exploit the discontinuity in the price to
identify firms’ responses due to coincidental regulatory changes in the Spanish electricity market around the break.
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Figure 3.1: Evolution of carbon permit prices during the EU ETS trial period
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specifying the minimum price at which they are willing to produce a given amount of electricity. On

the demand side, distributors, independent retailers and large consumers submit demand functions

specifying the maximum price at which they are willing to purchase a given amount of electricity.

The market operator constructs a merit order dispatch by ordering the supply and demand bids

in ascending and descending order, respectively. By intersecting both curves, it determines the

winning bids and the market clearing price, which is paid to all dispatched units from the supply

side, and paid by all the accepted units from the demand side.

Once the day-ahead market closes, the System Operator studies the feasibility of the dispatch

and modifies it by adding or removing the energy required to solve local congestion. The System

Operator also runs several markets in which production units compete to commit their capacity

to provide ancillary services when needed. Following these procedures, market participants may

adjust their positions in either direction in a sequence of six intra-day markets.

During our sample period, electricity was essentially produced by four vertically integrated

incumbent firms. The generation mix was made of nuclear, coal, CCGTs, oil-gas, hydro power, and

renewable resources, of which wind was the most important. Table 3.1 provides information on the

production by each technology type during the sample period.

The regulatory framework of the Spanish electricity market was rather stable during our sample

period, with one notable exception. In March 2006, the government passed the Royal Decree 3/2006,

which implied that market prices would only be paid to firms’ net-sales; more specifically, firms’

production covered by the purchases of their downstream subsidiaries would be bought and sold at
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Table 3.1: Production Mix in Spain, 2004-2007

2004 2005 2006 2007

Capacity (MW) 68,758 74,123 79,203 85,698
Coal 11,565 11,424 11,424 11,357
CCGT 8,233 12,224 15,500 20,958
Trad. oil/gas 6,947 6,647 6,647 4,810
Nuclear 7,876 7,876 7,716 7,716
Trad. Hydro 13,930 13,930 13,930 13,930
Renewable 10,984 12,633 14,465 17,329
Others 6,495 6,661 6,794 6,871

Gross annual production (GWh) 252,280 262,966 270,890 280,125
Coal 76,358 77,393 66,006 71,833
CCGT 28,974 48,885 63,506 68,139
Trad. oil/gas 7,697 10,013 5,905 2,397
Nuclear 63,606 57,539 60,126 55,102
Trad. Hydro 29,777 19,169 25,330 26,352
Renewable 23,387 28,142 30,782 35,729
Others 22,482 21,824 19,236 20,574

Notes: Data from Annual Report of the System Operator (2004-2007). Only generation in inland

territories is included.

a regulated price. As this might have had an effect on firms’ strategic bidding behavior, in some

empirical specifications we will remove the dates during which this Royal Decree (RD) was in place.

3.3 The Data

To perform the empirical analysis, we construct a data set that contains demand curves and the

individual bidding curves submitted on a hourly basis by the Spanish electricity producers from

January 2004 to June 2007.13 This data set also contains both MWh produced at the plant level

on an hourly basis, as well as unit available capacity net of forced outages and planned shut-downs.

We also collect characteristics at the unit level: maximum available capacity, type of fuel used, heat

rates, vintage, generating company and geographic location. We combine these data with other

market outcomes, such as the hourly day-ahead and final average electricity prices, and aggregate

output by types of technology. We also use publicly available information on CO2 allowance prices

(EUA prices), as well as coal, gas, and oil prices in international markets.

We also have reliable information on efficiency rates at the plant level (i.e., the rates at which

each plant converts the heat content of the fuel into output).14 Using similar techniques as Wolfram

13Data are publicly available at the system and market operator web sites, www.esios.ree.es and www.omel.es. The
Spanish and the Portuguese electricity markets merged in July 2007. As this had a significant impact on market
behavior, we have decided to truncate the data set at that date.

14This information has been provided to us by the System Operator, which used to be in charge of dispatching
production units according to their reported costs. We have updated this data set to include the new production
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(1999) and Borenstein et al. (2002), this information allows us to estimate the short-run marginal

costs of thermal plants, which also depend on the type of fuel each plant burns, the cost of the fuel

(as set in international input markets) and the short-run variable cost of operating and maintaining

the plant (O&M).15

We have also collected annual information on CO2 emissions at the plant level from the National

Register, for the years 2001-2004. These data are merged with the emissions data during the EU

ETS trial period (2005-2007). We have estimated emissions rates at the plant level for each year,

by dividing total emissions by total output at the annual level. Emissions rates do not fluctuate

much at the unit level and are consistent with typical fuel benchmark emissions for the generation

plants involved. Therefore, they are strongly correlated across units that use the same fuel. Among

coal units, imported coal plants have the lowest emissions rate around, 0.90 tons/MWh, whereas

lignite units are the dirtiest with an emissions rate ranging 1.00 to 1.10 tons/MWh. Natural gas

generators tend to have an emissions rate around 0.35 tons/MWh.

Table 3.2 summarizes the characteristics of power plants in the Spanish electricity market.

There are around 90 thermal units that are subject to emissions control. The units can be broadly

categorized in three different categories, depending on the fuel they use. Coal units are thermal

plants that use coal as their main fuel. In Spain, these plants typically use a combination of

national coal and imported coal. Depending on their inputs, they have different emissions rates,

which average 0.95 tons/MWh. Combined cycle natural gas units (CCGTs) are of new construction

and have much lower emissions rates, averaging 0.35 tons/MWh. Since the marginal costs of CCGTs

are higher than those of coal units, they tend to be used less frequently. Because of their different

emissions rates, a high enough price of emission permits might reverse the ranking of these two

technologies in favor of CCGTs. Finally, peaking plants are oil-fired or gas-fired plants that are

more inefficient than newer gas plants and tend to operate very infrequently. These plants are very

old, with an average vintage of 1971, and a capacity factor only around 7% over the sample from

2002 to 2007.16

Table 3.3 summarizes the generation mix of the four major firms in the market that we will

be analyzing. These four firms own 59 of the 89 power generators affected by the cap-and-trade

mechanism, as well as most hydro and nuclear generators and part of the renewable resources. The

two largest firms have a over 6,000MW of installed thermal capacity. The composition of the mix

across firms is somewhat different: while firm 1 is more focused on coal and oil, firm 2 has a larger

presence in the CCGT segment, which makes it the most efficient firm in terms of emissions costs.

units (mainly CCGTs). This data are also used in Fabra and Toro (2005).
15For coal units, we use the MCIS Index, for fuel units we use the F.O.1% CIF NWE prices, and for gas units we

use the Gazexport-Ruhrgas prices. All series are in ce/te. We have downloaded this information from Bloomberg.
16The capacity factor expresses how much a unit is utilized with regards to its full potential, and therefore can be

expressed as the average output of a unit (MWh) divided by its maximum capacity (MW).
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Table 3.2: Summary statistics of power generators

Coal Gas Peaking Total

Total number of units 36 38 15 89

Relative number of units (%) 41.1 41.6 17.3 100

Average vintage (year built) 1977 2005 1971 1989

Average capacity of units (MW) 314 472 346 383

Average capacity factor (MWh/MW) 0.65 0.37 0.07 0.43

Average emissions rate (tons/MWh) 0.95 0.35 0.72 0.65

Notes: Sample from 2004 to 2007, including all thermal units (except nuclear power plants) in the

Spanish electricity market that are active at some point during the period.

Table 3.3: Characteristics thermal plants of the 4 main firms

Firm 1 Firm 2 Firm 3 Firm 4

Avg. number of units 23 18 12 6
Avg. unit capacity (MW) 359.78 378.08 307.75 327.85
Avg. Vintage 1980 1980 1983 1979
Avg. emissions rate 0.79 0.70 0.82 0.88
Total capacity (MW) 8,220 6,683 3,754 1,967
Coal capacity (%) 64.4 18.2 55.6 80.1
CCGT capacity (%) 15.3 41.0 43.0 19.9
Oil/gas capacity (%) 20.3 39.8 12.4 0.0
Avg. hourly production (MWh) 3958.09 3234.51 1331.22 542.75

Notes: Sample from 2004 to 2007, including all thermal units (except nuclear power plants) in the Spanish

electricity market that are active at some point during the period.
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4 Reduced-form Evidence on the Pass-Through

We first present reduced form evidence on the pass-through rate of emissions costs in the Spanish

electricity market. Given that there is substantial variation in CO2 prices, we can identify the

pass-through from observed electricity price responses.

Since different generation technologies have different emissions rates, an increase in the CO2

price has a different impact on their emissions costs. For this reason, we provide two measures

for the pass-through, depending on whether we condition on the emissions rate of the marginal

technology, or not. The cost pass-through measures the effect on electricity prices of a one euro

increase in the marginal cost of the unit setting the price. The price pass-through measures the

effect of a one Euro increase in the CO2 price on the electricity price.17

These two measures are tightly related to each other, but emphasize two different aspects. The

price pass-through emphasizes the market impact of the policy, as it is a measure of electricity

price increases due to the introduction of emission permits. It ultimately measures the impacts

faced by final consumers and industrial manufacturers, and is thus very policy-relevant. The cost

pass-through emphasizes more directly the role of demand and supply in the market, and can shed

light on issues such as demand response, market power and cost heterogeneity.

4.1 Price pass-through

To identify the effect of changes in CO2 prices on electricity prices, we follow the conventional

approach of estimating the pass-through rate by regressing the hourly wholesale electricity equilib-

rium price on the daily emissions price. The pass-through is an equilibrium outcome, and therefore

we use controls from both the demand and the supply side to identify the equilibrium effect of the

emissions price on the market price.18 The main identifying assumption is that, once we control for

all relevant factors that might be correlated with the electricity market, the remaining variation of

the CO2 price can be considered exogenous.

Our baseline regression is as follows:

pth = ρτt +Xthβ0 +XS
thβ1 +XD

thβ2 + ωthδ + �th, (4.1)

17As explained in Section 3, CCGTs and coal plants in the Spanish market have an average emissions rate of
0.35 and 0.95 tons/MWh, respectively. Hence, a CO2 price of e.g. 10e/ton increases their costs by 3.5e/MWh
and 9.5e/MWh, respectively. Accordingly, if the electricity price, set by a CCGT, rises by 3.5e/MWh, the cost
pass-through is 100%, while the price pass-through is 35%. If the electricity price is instead set by a coal plant and
it rises by 9.5e/MWh, the cost pass-through remains at 100%, while the price pass-through is 95%.

18Similar equilibrium regressions have been used in the pass-through literature (Besanko et al., 2005) or in the
context of measuring the effects of gasoline prices on car prices (Busse et al., 2013).
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where
pth = hourly electricity equilibrium price,

τt = daily cost of the CO2 allowances,

Xth = common controls,

XS
th = supply-side exogenous shifters and controls,

XD
th = demand-side exogenous shifters and controls,

ωth = time fixed-effects (hour, day of week, month and year).

where ρ is our parameter of interest as it identifies the equilibrium price pass-through. Strategies

to recover the cost pass-through are discussed in Section 4.2 below.

The specification includes year and month, day of the week and hour fixed effects to control for

potential trends and seasonality within the year. We also allow for the hourly fixed effects to be

different for every month, depending on the specification. As common controls, we include fossil-fuel

prices (coal, gas and oil), as well as their quadratic terms and quadratic terms of their differences.

On the demand side, we include economic activity indicatorsand weather, allowing temperature

and wind to have a different effect on price depending on the month in some specifications.19 On

the supply side, we also include controls for renewable output, which is exogenously given in the

short run.

Table 4.1 presents estimates of price pass-through rates in this market. The results reveal

substantial heterogeneity across specifications. We find that the estimated pass-through rate has a

wide range depending on the specifications, ranging from 0.44 to 1.17. The raw relationship between

electricity prices and carbon prices is 1.17, as the result of just regressing electricity prices on carbon

prices. Under specification (1), which includes the basic set of controls, the price pass-through is

close to 1.11.

It is difficult to fully control for all changes in demand and supply that evolve over time and that

could potentially be correlated with the evolution of the CO2 prices, so specification (1) might have

omitted variables bias. To mitigate this concern, we include month of sample fixed effects. The

results change substantially. In specification (2) to (6), we find that the estimated pass-through

is between 41% and 57%, depending on the controls included. These more complete specifications

seem to line up best with our simulated estimates, reported in Section 5.

4.2 Cost pass-through

An alternative model to the price pass-through regression is one in which we consider the effect of

the CO2 price on market prices through its effects on the emissions costs of the marginal unit, i.e.,

we account for the emissions rate of the price-setting unit.

The baseline regression to identify the cost pass-through is very similar to the price pass-through

19This can be important, as a relatively warm day in the winter tends to reduce electricity consumption, whereas
it will increase it in the summer.
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Table 4.1: Reduced-form price pass-through measures

pth = ρτt +Xthβ0 +XS
thβ1 +XD

thβ2 + ωth + �th,

(1) (2) (3) (4) (5) (6)

τt (ρ) 1.106 0.574 0.417 0.474 0.443 0.443
(0.028) (0.057) (0.099) (0.100) (0.101) (0.085)

Obs. 30,648 30,648 18,960 18,960 18,960 18,960

Year-Month FE N Y Y Y Y Y
RD Excluded N N Y Y Y Y
MonthXTemp FE N N N Y Y Y
MonthXWind FE N N N N Y Y
Month-Hour FE N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, average daily temperature, humidity, holiday

index, activity index and Spanish GDP growth rate), supply controls (wind speed and renewable output);

and common controls (linear and quadratic commodity prices of coal, gas, fuel oil and brent). Robust

standard errors in parentheses.

regression, but we now use the marginal emissions cost instead of the emissions price only:

pth = ρcτteth +Xthβ0 +XS
thβ1 +XD

thβ2 + ωthδ + �th, (4.2)

where ρc is our parameter of interest as it identifies the equilibrium cost pass-through and eth

represents the emissions rate of the unit that sets the price at a given hour, i.e., the hourly marginal

emissions rate. The covariates and controls included are the same as in the price pass-through

regression.

To estimate this equation, we need to construct a measure of the marginal emissions rate, eth.

Whenever available, we use the emissions rate of the unit that exactly sets the price. However,

there are several hours in which the price-setting unit is not a thermal unit, e.g. when the price is

set by a hydro unit. At the margin, hydro units raise the price up to the cost of the thermal unit

that would otherwise have been marginal. We therefore use an average of the emissions rates of the

thermal units with price offers close to the market price.20 Finally, there are a few observations for

which we cannot find a thermal unit close to the market price, but for which the Market Operator

specifies the marginal technology to be either coal or gas. We attribute the average emissions rate

of 0.92 when coal is at the margin and an emissions rate of 0.41 when CCGT is at the margin,

based on the distribution of actual emissions rates in hours in which they are observed.21

20In particular, we use observations that fall within 50 cents e/MWh above or below the market price. We have
experimented with 25 cents, 1e and 2.5e, and the overall results do not change significantly.

21Given that the Market Operator does not necessarily classify all hours as Coal or CCGT only, there still remain
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Table 4.2: Reduced-form cost pass-through measures

pth = ρcτteth +Xthβ0 +XS
thβ1 +XD

thβ2 + ωth + �th,

(1) (2) (3) (4) (5) (6)

τteth (ρc) 1.614 0.932 0.731 0.763 0.775 0.795
(0.048) (0.092) (0.162) (0.161) (0.166) (0.154)

Obs. 28,136 28,136 17,309 17,309 17,309 17,309

Year-Month FE N Y Y Y Y Y
RD Excluded N N Y Y Y Y
MonthXTemp FE N N N Y Y Y
MonthXWind FE N N N N Y Y
Month-Hour FE N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity, holiday index, activity index and

Spanish GDP growth rate), supply controls (wind speed and renewable output); and common controls

(linear and quadratic commodity prices of coal, gas, fuel oil and brent). The marginal emissions cost is

instrumented with the emissions price. Robust standard errors in parentheses.

The hourly marginal emissions rate is likely to be endogenous, as the identity of the marginal

unit is potentially affected by unobserved cost and demand shocks. In fact, when we regress the

market price on the marginal emissions cost, the cost pass-through rate is negative, ranging from

-0.17 to -0.22. The intuition is that gas tends to set the price when supply is scarce or demand is

higher. However, gas has a lower emissions rate, which generates the negative slope.

In order to get an estimate of the cost pass-through, we instrument the marginal emissions cost,

τteth with the emissions price itself. The idea behind considering the emissions price as an excluded

variable is that we are examining the effect of the emissions price on the market price through its

effect on the emissions costs.22

Table 4.2 presents estimates of the cost pass-through rate. All specifications include the most

complete set of controls used in the price pass-through regressions, plus various combinations of

additional fixed effects. Similar to the price pass-through regression, results for the cost pass-

through rate change depending on the number of controls included. When we control for month of

the sample in specifications (2)-(6), we find that the cost pass-through rate is between 73-93%.

10% of the hours in which the marginal emissions rate is not observed. To complete all observations, we have
experimented constructing the marginal technology by interpolating the marginal technologies reported by the Market
Operator. For example, if coal is marginal at 2am and 4am, and pumped storage is reported marginal at 3am, we
consider that coal is at the margin also at 3am. Results are similar if we include these observations instead.

22Note that this is not equivalent to substituting the endogenous emissions rate with the average emissions rate in
the sample. By instrumenting the emissions costs, we include all other covariates in the first stage of the regression.
For example, our instrumented emissions costs will present within-day variation through the hourly fixed effects,
capturing the fact that emissions costs tend to be higher at night when coal is at the margin.
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Figure 4.1: Estimating cost pass-through with heterogeneous cost shocks

To try to disentangle whether the cost pass-through differs depending on the marginal technol-

ogy, we interact the emissions cost with a dummy indicating whether coal or gas sets the price at

that hour, based on the Market Operator data mentioned above. We allow the coefficients on input

prices (coal, gas, oil) to change depending on which technology is at the margin.23

This approach raises some concerns. First, there remains some heterogeneity in emissions rates

among coal plants or among gas plants, which can still cause selection within each group. To

avoid this problem, we instrument the emissions cost of the marginal unit with the emissions price

interacted with a marginal technology dummy.

Second, results from these regressions may be biased if the separation between hours in which

coal or gas sets the price are endogenous to the emissions costs or other factors evolving endoge-

nously with the policy change.24 There are several reasons to believe this could be a concern. For

example, with higher emissions prices, natural gas becomes more competitive and can start substi-

tuting coal at base load hours. Similarly, coal plants can more frequently appear to be marginal at

peak hours, as they become less profitable due to higher emissions costs.

This bias is illustrated in Figure 4.1. The red and black lines respectively represent electricity

23In the appendix, we provide an additional specification that allows all coefficients to be different by technology
group, which provides similar results to those reported here.

24This would not be corrected even if we split the sample in two. One situation in which a split sample would
correct the selection is a case in which the hours in which coal or gas set the price were exogenously predetermined.
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Table 4.3: Reduced-form cost pass-through measures by technology groups

pth = ρc,fethτt +Xthβ0 +XS
thβ1 +XD

thβ2 + ωth + �th,

(1) (2) (3) (4) (5) (6)

ethτt (ρc,Coal) 1.131 0.584 0.599 0.597 0.597 0.594
(0.115) (0.196) (0.426) (0.418) (0.421) (0.386)

ethτt (ρc,CCGT ) 2.045 1.020 0.787 0.872 0.911 0.996
(0.064) (0.124) (0.261) (0.255) (0.258) (0.235)

Obs. 28,136 28,136 17,309 17,309 17,309 17,309

Year-Month FE N Y Y Y Y Y
RD Excluded N N Y Y Y Y
MonthXTemp FE N N N Y Y Y
MonthXWind FE N N N N Y Y
Month-Hour FE N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity, holiday index, activity index and

Spanish GDP growth rate), supply controls (wind speed and renewable output); and common controls

(linear and quadratic commodity prices of coal, gas, fuel oil and brent). Input controls (oil, coal, gas) are

allowed to depend by technology group. A technology dummy is included. The marginal emissions cost

is instrumented with the emissions price interacted with the technology group dummy. Robust standard

errors in parentheses.

prices with and without CO2 prices: coal is cheaper than gas without CO2, but the ranking reverses

once CO2 prices are taken into account. For the high demand realization depicted in the figure,

the marginal unit with CO2 is coal, though it would have been gas without CO2. Given that the

emissions rate of coal is higher, one would then tend to underestimate the pass-through rate, as

one would expect a price change A, instead of the observed change B < A. The opposite holds

for the low demand realization, when the marginal unit with CO2 is gas. One would now tend to

overestimate the pass-through, as one would expect a price change C instead of the actual price

change D > C.

Table 4.3 presents estimates of the cost pass-through rates depending on whether coal or gas

are at the margin. When we control for month of the sample in specifications (2)-(6), we find

that the cost pass-through when coal is at the margin is lower than when gas is at the margin.

In particular, under specification (6), estimates are 60% and 100% respectively, which lay below

and above the estimated 80% reported in Table 4.2. Therefore, this difference, even though not

statistically significant, is consistent with technology substitution taking place, as illustrated in

Figure 4.1.

The reduced-form approach is informative, but it faces important limitations. As we have
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discussed, it is difficult to obtain a clean identification with time-series variation only, as one would

expect several variables affecting demand or supply to be correlated with the CO2 prices (e.g.

growth rates, exchange rates, fossil-fuel prices, etc.). Even with month of sample fixed effects,

estimates might suffer from omitted variables bias. Furthermore, this approach does not allow us

to disentangle all the channels that generate the estimated pass-through. To explore these channels

more closely, we turn into a structural model that takes advantage of detailed panel bidding data

at the unit level.

5 Structural Decomposition of the Pass-Through

The reduced-form estimates suggest that there was an incomplete pass-through of emissions costs

in this market. In this section, we rely on a structural bidding model to decompose the different

channels that explain an incomplete passthrough. We proceed in two steps.

First, we use the model to identify how firms treat the costs of the emissions when bidding in the

market. This is a necessary first step for quantifying the pass-through rate, as if the opportunity cost

of permits were lower than the permit price, our pass-through estimate would be underestimated.

Second, we use the model to simulate the response of firms’ pricing behavior to marginal changes

in the carbon price. This allows us to identify the role of demand response, market power and

technology switching in explaining the pass-through estimates.

5.1 Bidding model

Consider a model in which market demand is given by D(p; ε). Let S−i (p;u−i) denote the aggregate

supply of all firms in the market other than firm i, where p is the market price and u−i is a

vector of supply-side cost shocks. Then, the residual demand faced by firm i can be written as

DR
i (p; ε, u−i) = D(p; ε) − S−i(p;u−i). Under market clearing, firms produce over their residual

demand, so that firm i’s output is given by QS
i = DR

i (p; ε, u−i).

Under the assumption that emissions costs are linear in output, firm i’s cost can be decomposed

as the sum of production costs C(QS
i ;ui) and the emissions costs, τeiQS

i , where τ is the permit

price and ei is firm i’s emissions rate.25 Last, in order to allow for the effects of vertical integration,

we let QD
i denote the electricity that firm i has to procure in the wholesale market to cover its

retail sales.

We can write firm i’s profits in the day-ahead market as follows:26

πi(p; ε, u) = p
�
DR

i (p; ε, u−i)−QD
i

�
− C(QS

i ;ui)− τeiQ
S
i . (5.1)

25For simplicity, we omit here the fact that firm i might have different units with different emissions rates. Since
our estimating equation relies on the the First Order Condition, we will only be concerned about the emissions rate
of firm i’s marginal unit, which we will denote by eij .

26We have omitted revenues from retail sales given that these are fixed and should thus not affect bidding incentives
in the electricity day-ahead market.
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Assuming that the profit function above is differentiable, in any equilibrium in which firm i is

setting the market price, the First Order Condition (FOC) for profit maximization must be satisfied

for firm i. Solving the FOC for p,

p = ci + τei +
���
∂DR

i

∂p

���
−1

Qi, (5.2)

where ci denotes the marginal production cost at QS
i , and Qi = QS

i − QD
i denotes the firm’s net

production.

5.2 Estimating the bidding model

Based on the optimal bidding condition (5.2), we estimate the following empirical equation in

those hours in which firm i is setting the market price through its marginal unit j:

bijth = αij + βicjt + γiτteij + θi
���
∂�DR

ijth

∂pth

���
−1

Qijth + �ijth, (5.3)

where

bijth = marginal bid by firm i when setting the price with unit j, hour h and day t,

αij = unit j fixed-effect,

cijt = marginal costs of marginal unit j,

eij = emissions rate of the marginal unit,

τt = daily cost of the CO2 allowances,
∂�DR

ijth

∂pth
= estimated slope of residual demand curve,

Qijth = inframarginal quantity for firm i when unit j is at the margin,

�ijth = error term (cost shock, modeling error and/or firm optimization error).

The main parameters to be estimated are Θ = {βi, γi, θi}. The focus of our interest is testing

γi = 1, which would imply that firms, on average, consider that the emissions price reflects the

opportunity costs of the permits. One important difference from the reduced form analysis is that

this structural regression is based on the supply-side only. Therefore, demand shifters are excluded

from this regression. The main identifying assumption behind the parameter γi is that the emissions

price is exogenous to the Spanish electricity generators after controlling for other related supply

shifters, which are captured in the model by the marginal costs of production.

Some of the elements in the above specification are readily observed, such as the emissions rate

of the marginal unit and carbon prices. We construct the inframarginal quantity variable taking

into account all offers made by a firm, including both supply and demand units. Furthermore,

given that we have fine level data on hourly demand and supply functions, we can construct the

residual demands faced by each firm in each hour, which we use to compute the slope. Finally,

given that we have reliable marginal costs estimates, we use these in the regression as a control. To
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Table 5.1: Test based on structural equations

bijth = αij + βicijt + γieijτt + θi
���∂

�DR
ijth

∂pth

���
−1

Qijth + �ijth

All Firm 1 Firm 2 Firm 3 Firm 4

(1) No FE 0.982 1.015 0.948 1.063 0.899
(0.039) (0.021) (0.046) (0.020) (0.058)

(2) Unit FE 0.940 1.042 0.762 1.011 0.872
(0.027) (0.025) (0.040) (0.027) (0.059)

(3) Unit FE + season 0.909 1.038 0.734 0.954 0.850
(0.024) (0.030) (0.043) (0.023) (0.055)

(4) Spec.3 + RD excluded 0.931 0.999 0.979 0.932 0.744
(0.027) (0.019) (0.035) (0.034) (0.060)

(5) Spec.4 + Markup (IV) 0.914 1.027 0.986 0.791 0.864
(0.032) (0.018) (0.039) (0.065) (0.061)

Obs. 3,565,030 909,953 1,215,403 1,057,281 382,393

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. Standard errors clustered at the unit level.

the extent that other costs might not be accurately reflected into this variable, we also introduce

unit fixed effects.27

Finally, we need to make a modeling choice when estimating the structural equation, as the first-

order condition is only valid for those units that set the price with positive probability (de Frutos

and Fabra, 2012). In our baseline estimation, we use a weighted regression that weights those

observations that are closer to the marginal price.28

Table 5.1 presents the structural estimates of the opportunity costs parameter. The estimation

is performed at the industry level and at the firm level. All specifications include marginal cost

estimates as controls. The first three specifications differ on whether we introduce unit fixed effects

and seasonal fixed effects. The fourth specification excludes those dates when the Royal Decree

(RD) was in place. Whereas most specifications constrain the markup parameter to be equal to one

(θi = 1), in the fifth specification we allow the markup coefficient to be different than one. Given

that the markup depends on market demand, we use residual demand shifters, including weather

data (temperature, wind speed, humidity), economic activity data, and renewable production, all

of which are exogenous to firms’ choices.

The estimated opportunity cost parameter is close to one for the industry as a whole and for

firm 1, which is the largest firm in the market. This also true for firm 2, the second largest firm,

27Results are also robust to allowing the marginal cost coefficient to be unit-specific or to imposing the marginal
cost coefficient to be equal to one, as suggested by the bidding model.

28We use a Normal kernel weight with a bandwidth of 3e/MWh as in Reguant (2012). As a robustness check, we
include several specifications using different bandwidths and selection rules in the appendix.
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except for specifications (2) and (3), and for firm 3. It has been documented that firm 2 followed an

anomalous bidding behavior under Royal Decree 3/2006, thus suggesting that the estimates might

be biased when we include this period in the sample.29 The parameter estimated for firm 4, which

is the smallest firm in the market, is also close to one, but it varies more across specifications. One

possible explanation for this result is that small firms do not behave as closely to optimal bidding as

bigger players, as shown in Hortaçsu and Puller (2008). Another possible explanation is that firm

4 has very few gas plants, leading to less variation in marginal costs and emissions rates, making

the identification more challenging.

Table A.2 in the appendix presents alternative specifications to the ones presented in this section,

considering alternative kernel weights for the regression. The results are robust to using alternative

weights as well as to using only the bids that exactly set the price, overall providing evidence

consistent with the hypothesis that firms perceived the CO2 price as the relevant opportunity cost

of emissions.

Finally, as a robustness check, we extend the analysis of Reguant and Ellerman (2008).The

approach relies only on observing on/off patterns by power plants, and testing whether those

decisions respond equally (though with opposite sign) to changes in the market price as to changes

in their marginal emissions cost. We extend the original analysis, focused on coal plants, to include

all thermal technologies affected by the EU ETS. As reported in Table A.3 in the appendix, the

results support the hypothesis of full internalization across a wide range of specifications.

Overall, our evidence is consistent with the hypothesis of full cost internalization of the price

of emission permits.

5.3 Simulating pass-through channels

As presented in section 5.2, the equilibrium bidding equations at the wholesale electricity auction

are given by,

bijth = αij + βijcijt + τteij +
���
∂�DR

ith

∂pth

���
−1

Qith + �ijth, (5.4)

where, given the previous evidence, we have assumed that the permit price reflects the true op-

portunity costs of emissions, i.e. γi = 1, and we have set the markup parameter equal to one, i.e.

θi = 1.

We use these optimal bidding equations to simulate how firms’ bidding functions would change

in response to marginal changes in CO2 prices. In particular, we compute the counterfactual in

which the cost of emissions increases by one Euro, i.e. τ � = τ + 1, and then compute the implied

pass-through rates. As shown in equation (5.4), an increase in carbon prices can affect optimal

bids in two ways. First, it affects marginal costs directly, through the τteij component. Second,

if firms are strategic, the carbon price increase can affect the markup component by changing the

shape of the residual demand as well as the firm’s net inframarginal production.

29The Spanish Regulatory Authority, CNE, published a report in July 2006 describing this anomalous behavior.
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We need to make a few assumptions to compute the new market price. First, we need to modify

not only bids that are ex-post marginal, but bids that are close to being marginal. Our implicit

assumption is that bids close to the observed market price have a positive probability of setting

the price and thus, the structural equation still reflects the marginal incentives faced by the firm.

Second, given that the change in emissions costs is small, we take participation decisions as given.30

Finally, to the extent that the cost shock changes equilibrium bidding by some units, it might also

affect the bidding behavior of units that do not face the cost shock, particularly hydro units. To

account for the opportunity costs of hydro units, we assume that they would modify their bids in

the same manner as the neighboring units on the aggregate supply function, so that their relative

strategic position in the merit order would not change.31

Table 5.2 represents a matrix of the counterfactuals we consider. To separate demand and

supply channels that affect the pass-through, we first compute counterfactual I in which we hold

demand fixed and change bids through the effect of CO2 on marginal costs.32 In these simulations,

the only change is an increase in bids corresponding to a one euro increase in permit costs, i.e.,

bids go up by eij . Second, in counterfactual II, we allow demand to be elastic by incorporating the

actual demand curve in the market.33

Counterfactuals III and IV are analogous to the first two, but we allow the markup component

to endogenously change with the cost shocks. The markup can change for two reasons: the infra-

marginal quantity might change if there are endogenous changes of merit order within the firm,

and the slope of the residual demand might change as a result of other firms changing their bids.

Computing the new equilibrium with new markups in a supply function equilibrium can be

challenging. We follow the approach of looking only at best response deviations, and examine

ex-post whether the implied markup changes would be substantial.34 We then update prices for all

firms under the new markups and examine the impact on the electricity market price. With this

approach, we intend to capture some of the initial changes in markups that could result from an

increase in emissions costs.

Heterogeneity and technology switching Counterfactual I is very useful to provide an intu-

ition behind the pass-through distribution that we observe in the data. With inelastic demand, the

30Characterizing the optimal startup decision is beyond the scope of this paper. See Reguant (2012) for a compu-
tation of optimal strategies in the presence of startup costs.

31Admittedly, this is an ad-hoc way to capture the change in opportunity costs of hydro bids, motivated by the
fact that the alternative option is to use the technology at the margin. Modeling the dynamic decision of hydro is
beyond the scope of this paper. An alternative procedure would have been to fix the amount of water used in a given
month and re-arrange as a function of marginal prices, as in Borenstein et al. (2002).

32It is important that the counterfactuals is about changes in bids. The baseline bid levels do not necessarily
represent competitive bids, as discussed below.

33Note that this demand curve will tend to be more inelastic than the long-run electricity demand, so this estimate
provides an upper bound on pass-through.

34Wolak (2007) follows a similar approach by looking at best responses, among others. Ideally, one would like to
compute the new equilibrium price given the cost shock. However, computing the new equilibrium with more than
one firm requires developing a more explicit computational model that does not rely on FOC only, and it does not
necessarily address the concerns of multiple equilibria. See Reguant (2012) for a discussion.
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Table 5.2: Simulated Bids and Pass-through Counterfactuals

I Inelastic Demand II Demand Response
Only MC Change Only MC Change

III. Inelastic Demand IV. Demand Response
MC + Markup Change MC + Markup Change

cost pass-through should equal one unless the cost shock changes the merit order in the underlying

supply curve. Therefore, any departures from one must be due to technology switching.

Figure 5.1 shows the distribution of the cost pass-through rates, i.e., taking into account the

emissions rate of the marginal unit. Even though in most observations the pass-through is one, we

see some departures, which occur when there is substitution away from coal to gas, as shown in

Figure 4.1.

The role of technology switching and market power Given relative prices for coal and

gas during the sample period, and the relatively low CO2 prices during part of the sample, one

would expect to observe little technology switching in a competitive setting. Hence, there remains

the question of whether the observed cost pass-through reflects cost heterogeneity or whether it is

consistent with the exercise of market power. In particular, if there are big strategic firms that have

a particular generation mix (coal and gas), and fringe players that only have gas, one would expect

to see more substitution under the actual merit order than in a competitive setting. Accordingly,

differences in technology switching across counterfactuals could reflect production inefficiencies due

to market power.

To explore this claim, we perform the same pass-through rate calculation as in counterfactual

I, i.e., with inelastic demand and increase in bids proportional to the emissions rate of each plant.

However, instead of using observed bids as a baseline, we use the industry competitive supply

function, i.e., taking engineering cost estimates. The results of this counterfactual are presented

in the first block of table 5.3, which summarizes our results. We find that the competitive pass-

through rate is also one in most cases, although it presents less variance than the strategic one

(standard deviations are 0.226 vs. 0.335).

Indeed, under the competitive benchmark, departures in full cost pass-through rates due to

technology switching occur only in 12.35% of the hours of the sample.35 In contrast, technology

switches occur in 19.06% of the hours using observed bids. These results suggest that there is

more technology switching in the presence of strategic bidding behavior, as coal and gas are more

mixed in the observed data than in the competitive supply curve. An alternative explanation is

that our engineering cost measure masks some of the actual cost heterogeneity across plants that

could generate changes in the merit order.

35We define departures from full pass-through if the pass-through is not between 95%-105% to avoid counting small
fluctuations. Other definitions are also consistent with these relative differences, although the percent levels change.
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Figure 5.1: Distribution of cost pass-through rates
with inelastic demand and observed bids

The histogram represents the effect of a one euro increase in the marginal costs of the marginal

technology on the electricity price. The sample is restricted to hours in which the marginal

unit has a positive emissions rate.

Table 5.3: Pass-through (PT) Results

Cost Pass-through Price pass-through
Inelastic Elastic Inelastic Elastic

Competitive Mean 1.034 0.842 0.706 0.561
Median 1.000 1.000 0.716 0.580
St.Dev. (0.226) (1.021) (0.286) (0.642)

Only MC Change Mean 1.080 0.774 0.695 0.484
Median 1.000 1.000 0.739 0.416
St.Dev. (0.335) (0.747) (0.275) (0.466)

MC + Markup Change Mean 1.099 0.778 0.697 0.479
Median 1.000 1.000 0.715 0.415
St.Dev. (1.504) (1.588) (0.751) (0.807)

Notes: Sample from January 2005 to March 2006. Period with Royal-Decree 3/2006 is excluded. Standard

deviation of passthrough distribution in parenthesis. Interquantile range in brackets.Competitive counterfactual

replaces original marginal bids of thermal plants with engineering cost estimates.
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The role of demand elasticity and supply elasticity Counterfactual II introduces demand

elasticity, as implied by the observed wholesale demand curves. Results are presented for the cost

and price pass-through in the second and fourth column of Table 5.3, respectively. As can be

seen, introducing demand response reduces the cost pass-through to around 84% on average for the

competitive benchmark, and to 77% using actual bid data. The fact that the cost pass-through is

lower in the strategic case is consistent with the supply curve being less elastic in the presence of

strategic firms.

Looking at the market price effects, we find that the average price pass-through is around 70%

when we consider only changes in marginal costs under inelastic demand. Introducing demand

response at the wholesale auction decreases price pass-through substantially, to around 50%. In

both cases, the average price pass-through lies between the emissions rate of gas (approx. 35%)

and coal units (approx. 95%).

The role of markup changes Finally, we repeat all counterfactuals allowing the markups to

change strategically (counterfactuals III and IV). As seen in the last set of results of Table 5.3, this

has a relatively minor impact on the average pass-through, as well as on the relative differences

across counterfactuals, although it increases the variance.

To visually summarize all the results, Figure 5.2 presents a graphical decomposition for the

case in which we only modify bids by adding the increase in emissions costs. In sum, we find

that demand response and market power reduce the cost pass-through. The analogue for the case

in which we distort markups is relegated to the appendix. As it becomes apparent, the partial

pass-through is both a combination of demand elasticity and market power.

Combining the reduced form evidence with the structural approach, we find intermediate levels

of price pass-through (around 40−60%) and levels of cost pass-through close to 80%. The simulated

results suggest this attenuated cost pass-though is due to both demand response and market power.

Also, both the reduced-form approach and the simulations reflect substitution between coal and

gas, which appears to be less frequent in the competitive counterfactual.

6 Conclusions

We have presented an empirical assessment of the effect of emission permits in the Spanish electricity

market. In particular, we have quantified the pass-through of the cost of permits to electricity prices

and decomposed the channels that generate it. The richness of the micro-level data has allowed us

to perform structural estimations without imposing assumptions on the shape of demand or supply.

The empirical results support the hypothesis that firms internalize the full cost of emissions in

this market. This is particularly true for the larger firms with a diversified portfolio of different

technology units. With inelastic demand and homogeneous technologies, this would have translated

into cost pass-through rates close to one. However, as a consequence of demand response and market

power, estimated cost-pass-through rates fall to 80% on average. This incomplete pass-through is
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Figure 5.2: Comparison of pass-through rates across counterfactuals

Note: The solid bars represent the average cost pass-through. The black marker represents

the median, the dark gray brackets represent the interrange quantile and the light gray line

represents the 5 and 95 percentile.

also reflective of the substitution from dirtier (coal) to cleaner (gas) plants, which tends to be more

pronounced than under a competitive setting given differences in strategic bidding behavior among

firms. The implied effects on price are around 50%, reflecting the average emissions rate of the

marginal technologies. The price pass-through rate would have been 20% higher had it not been

for the effect of demand elasticity in the wholesale market.

From a policy perspective, the finding that firms fully internalized the costs of permits suggests

that auctioning permits should have no inflationary effect on electricity prices. Several auctions

have recently taken place in the European Union, but it is still too early to empirically check

whether the degree of cost internalization indeed remains unchanged. Finally, the extent of pass-

through reported here demonstrates that electricity producers benefited from windfall profits due

to both free permit allocation and increased market prices.
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A Additional Tables

Table A.1: Reduced-form cost pass-through measures by technology groups

pth = ρcethτt +Xthβ0 +XS
thβ1 +XD

thβ2 + ωth + �th,

Coal subsample CCGT subsample
(0) (1) (2) (3) (4) (5) (6)

ethτt (ρc,Coal) -0.090 0.613 0.594 0.715 0.535
(0.071) (0.188) (0.386) (0.092) (0.138)

ethτt (ρc,CCGT ) 0.669 1.091 0.996 1.221 1.029
(0.036) (0.119) (0.235) (0.147) (0.293)

Obs. 28,136 28,136 17,309 14,677 10,324 13,459 6,985

Instruments N Y Y Y Y Y Y
RD Excluded N N Y N Y N Y
YearXMonth FE Y Y Y Y Y Y Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity, holiday index, activity index and

Spanish GDP growth rate), supply controls (wind speed and renewable output); and common controls

(linear and quadratic commodity prices of coal, gas, fuel oil and brent). Input controls (oil, coal, gas) are

allowed to depend by technology group when applicable. The marginal emissions cost is instrumented

with the emissions price (interacted with the technology group dummy when applicable). Robust standard

errors in parentheses.
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Table A.2: Test based on structural equations - Bandwidth sensitivity

bijth = αij + βicijt + γieijτt +
���∂

�DR
ijth

∂pth

���
−1

Qijth + �ijth

All Firm 1 Firm 2 Firm 3 Firm 4

Ex-post Marginal 0.979 0.934 1.018 1.053 0.851
(0.030) (0.028) (0.043) (0.043) (0.101)

Obs. 10,862 3,484 2,473 3,258 1,636

bw=1e 0.955 0.981 0.966 0.989 0.805
(0.023) (0.023) (0.029) (0.028) (0.070)

Obs. 1,930,175 475,318 508,233 579,641 227,623

bw=2e 0.950 0.976 0.959 0.995 0.783
(0.025) (0.020) (0.027) (0.029) (0.068)

Obs. 2,656,033 714,699 692,069 687,914 255,182

bw=4e 0.945 0.988 0.955 1.005 0.727
(0.031) (0.016) (0.027) (0.033) (0.066)

Obs. 3,266,105 752,783 729,836 705,694 260,364

bw=5e 0.940 0.992 0.952 1.003 0.701
(0.034) (0.016) (0.027) (0.034) (0.067)

Obs. 3,291,455 752,783 729,836 705,694 260,364

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. It uses specification 4 in table 4.2. Standard errors clustered at the unit level.
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Table A.3: Test based on operational patterns

onjt = αj + β1pjt + β2cjt + γτtej +Xjtβ3 + ωtδ + �jt,

(1) (2) (3) (4) (5) (6) (7)

pt [β1] 8.766 10.697 5.673 5.668 6.032 5.818 7.198
(0.607) (0.937) (0.917) (0.916) (0.938) (0.927) (1.126)

eiτt [γ] -6.799 -8.423 -6.016 -5.932 -5.302 -5.674 -5.625
(1.652) (1.546) (1.105) (1.112) (1.928) (1.831) (2.845)

−γ/β1 0.776 0.787 1.060 1.047 0.879 0.975 0.782

F-test (γ=β1) 0.193 0.137 0.717 0.780 0.728 0.942 0.619

Obs. 85,163 85,163 38,473 38,473 38,473 38,473 23,181
Mg. cost control Y Y Y Y Y Y Y
Price IV N Y Y Y Y Y Y
Only OFF N N Y Y Y Y Y
Infra. Quantity N N N Y Y Y Y
YearXMonth FE N N N N Y Y Y
Weekd.XUnit FE N N N N N Y Y
RD Excluded N N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. All

regressions include unit, weekday, month, year and Royal Decree fixed effects. Standard errors clustered at the unit

level. For easier comparison, prices and emissions costs are normalized in e10−3.

Comment: The regression models the on/off decision of a given power plant at a daily level, as
in Reguant and Ellerman (2008). The dependent variable is the status of a unit during a given
day (on/off). A firm is on if it starts up that day or if it is already producing during the day. Due
to the presence of startup costs and dynamic continuation value, it is best to separate those days
in which the firm needs to incur startup costs from those in which they are already running. We
focus on days in which the units are turned off and are deciding whether to startup or not, as in
Fowlie (2010). Similar results obtain if focusing on the sample of units that are already turned on.
An array of controls is meant to capture the fixed costs of startup (unit fixed effects), strategic
interactions (inframarginal quantity), other aggregate confounding factors (month of sample fixed
effects) and variations in continuation value (unit specific weekly fixed effects). The value of the
ratio −γ/β1 is also included in the table with an F-test of the equality β1 = −γ, which is the
proposed internalization test.
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Figure A.1: Comparison of pass-through rates across counterfactuals

Note: The solid bars represent the average cost pass-through. The black marker represents

the median, the dark gray brackets represent the interrange quantile and the light gray line

represents the 5 and 95 percentile.
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