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Abstract

We quantify the pass-through rate of emissions costs in the Spanish electricity market and

explore the channels that generate it (internalization of emissions costs, demand response, mar-

ket power and heterogeneity of cost shocks). Using rich micro-data, we perform both reduced

form and structural estimations without imposing strong assumptions on the shape of demand

or supply. We find that 80% of the emissions cost is passed-through to electricity prices. This

incomplete pass-through is driven by demand response and market power, and it also reflects

the substitution of dirtier technologies by cleaner ones at the margin. Our empirical results also

show that firms fully internalized emissions costs.
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1 Introduction

Cap-and-trade programs constitute a market-based solution to reducing greenhouse gas emis-

sions. The European Emissions Trading System (ETS), currently the largest carbon market in the

world, is the European Commission’s flagship instrument to fight climate change. Understand-

ing how firms respond to the introduction of cap-and-trade regulation and how this affects the

product market is of great importance to assess the benefits and concerns associated with these

programs. One of the main benefits of using cap-and-trade for emissions reductions, as opposed to

command-and-control methods, is that they allow for an overall reduction in emissions at minimum

cost. The fact that all agents face the same price on emissions, i.e., the price of permits in the

emissions markets, assures that, absent other distortions, the lowest abatement cost allocation will

be achieved.

Cap-and-trade programs have often received major opposition. Among the most contentious

elements of cap-and-trade programs is their effect on product market prices and in particular, on

rising electricity bills as electricity markets are strongly affected by the emissions regulation.1 The

potential loss of competitiveness, the associated job destruction, and the distributional impacts

across industries and regions also rank high in the list of concerns.2 The extent to which emissions

costs can be passed-through to output prices ultimately determines the magnitude of such concerns.

One of the issues that has confounded the debate on the effects of pollution permits on output

prices has been the belief that in competitive markets full internalization of permit prices neces-

sarily implies full pass-through.3 Therefore, evidence on partial pass-through has at times been

interpreted as either evidence of firms not fully internalizing the cost of permits or evidence of firms

exercising market power, both of which would jeopardize efficiency. Even though this statement

is true in some theoretical models, it does not hold as a general statement. Partial pass-through

could be explained by either partial cost internalization, market power and demand response, or

any combination between them.

In this context, the goal of this paper is twofold: first, to quantify the pass-through rate of

emissions costs to electricity prices; and second, to disentangle the determinants of the pass-through

rate using micro-level data. In particular, we investigate the response of Spanish electricity firms

to the introduction of emissions regulation, taking advantage of the cost shocks induced by changes

in emissions permits.

For this purpose, we first quantify the pass-through rate through a reduced-form analysis based

on observed equilibrium outcomes. While we follow a standard approach, here we face the challenge

of identifying the pass-through rate conditional on the emission rate of the price-setting technology,

a measure which is likely to be endogenous. Since the reduced-form estimates are sensitive to the

specification considered and do not identify all the channels that explain the pass-through, we also

1Similar concerns have been voiced in the context of the airline industry, as it has recently come into the European
Union’s emissions trading scheme.

2See Martin et al. (2012) for an analysis of the distributional impacts of the EU ETS.
3See Ellerman et al. (2010) for a discussion.
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rely on a structural approach based on the predictions of the multi-unit auction literature.

Our findings demonstrate that 80% of the increase in emissions costs was passed-through to

electricity prices. To understand whether this pass-through is driven by partial cost internalization,

we first identify firms’ perceived opportunity costs of using permits from the bids they submit into

the electricity market. It is well known that, in a frictionless world, the opportunity costs of using

permits are given by their market price. However, transaction costs in the emissions markets could

reduce the opportunity costs of permits below their market price.4,5 Different expectations over

the permit allocation method could also lead to different estimates: if firms believed that future

permit allocations would be based on current emissions, opportunity costs would be below the

permit price; in contrast, under grandfathering or auctioning of permits, opportunity costs would

be fully captured by permit prices. Last, behavioral biases could stop firms from fully understanding

that free permits have an opportunity cost, an issue that is also reminiscent of the concern that

auctioning permits will inflate output prices.6 However, our analysis robustly rejects the hypothesis

that partial pass-though could be explained by incomplete internalization of emissions costs.

To understand the role of additional channels such as demand response and market power in

explaining partial pass-through, we simulate the response of firms’ bidding behavior to marginal

increases in the carbon price. We find that demand response has a significant impact in mitigating

the pass-through, which is reduced by 20% as compared to the counterfactual with inelastic demand.

The analysis also shows substitution from dirtier (coal) to cleaner (gas) technologies, which is more

prominent due to the asymmetries in bidding behavior between the large strategic firms and the

fringe players.

Studying the pass-through in the context of the EU ETS and electricity markets presents

several advantages. From a policy point of view, the electricity sector is currently the largest

CO2 contributor in the European Union.7 Furthermore, the effects of carbon permit prices on

the marginal costs of generating electricity are significant and vary by technology. This creates

important interactions that affect the degree of abatement in this market and makes the potential

impacts of the policy important.

From an econometric perspective, analyzing the effect of emissions costs in electricity markets

has the advantage that European CO2 prices can be considered exogenous cost shifters to the

Spanish electricity companies, as pollution permits are traded across all Member States and across

many sectors. Furthermore, there is substantial variation in permit prices during the sample.

4Stavins (1995) argues that transaction costs in emissions markets may be significant, thus reducing trading
activity, and increasing abatement costs.

5In contrast, financial market imperfections could raise opportunity costs above the permits’ market price. Indeed,
as argued by a carbon analyst at Deutsche Bank, “The [ETS] was not designed as a scheme to give corporates cheap
short-term funding options in the face of a credit crunch meltdown where banks are not lending, but that appears to
be what’s happening.” (The Guardian, 27 January, 2009)

6As one energy company official complained: “If emissions allowances are auctioned, that will only lead to 100%
of the carbon price being priced into the electricity price, and thus increase it”. (Wrake et al. (2010)).

7During the first phase of the EU ETS (2005–2007), 60% of total allowances were allocated to the power sector.
However, in compliance with the EU’s Energy Roadmap 2050, it is expected that the power sector will have to almost
fully eliminate its CO2 emissions by 2050.
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Electricity markets are also particularly suited for this analysis. First, there is rich micro-level

data, including demand and supply curves, as well as engineered-based cost estimates, that allow

us to be flexible in the estimation.8 And second, the institutions and industrial processes that

affect firms’ strategic behavior in these markets are well understood,9 thus allowing to construct a

reliable structural framework.

The paper proceeds as follows. After reviewing the related literature, Section 2 describes the

context and data of analysis. In Section 3, we introduce a conceptual framework to understand and

disentangle the different sources of the pass-through rate. In Section 4, we present reduced-form

evidence on the pass-through rate, while in Section 5 we develop a structural model to estimate

and decompose the pass-through rate. Section 6 concludes.

Related literature Other papers have also examined pass-through rates in the context of the

EU ETS, though the majority of them rely on a reduced-form analysis only and do not explicitly

explore the channels explaining the pass-through rate. For example, Sijm et al. (2006) estimate

pass-through rates using equilibrium prices and fuel cost data in the German electricity market.10

They find pass-through rates that range between 0.60 and 1.17, depending on market conditions.

Bushnell et al. (2013) use a structural break that occurred in April 2006 in the EU ETS prices

to measure the pass-through rate, and Zachmann and Hirschhausen (2008) document whether it

responds asymmetrically to either positive or negative cost shocks. Whereas previous studies on

pass-through rates are based on market outcomes, this paper has the advantage of using finer

micro-level data to assess the response by firms more directly.

Our work is also closely related to the work by Reguant and Ellerman (2008), which also

presents evidence on firms internalizing the costs of the emissions in the Spanish electricity market.

McGuinness and Ellerman (2008) present evidence that electric utilities in the UK changed their

operational decisions in response to carbon prices in the EU ETS, although they do not directly

assess whether the response is consistent with full internalization.

In the context of other pollution markets, Kolstad and Wolak (2008) present evidence on how

firms used NOx prices to strategically exercise market power in the Californian electricity market. In

their study, they test for cost internalization using structural equations from the multi-unit auction

literature, as in this paper. They find evidence supporting the hypothesis that firms respond

differently to environmental cost shocks, as opposed to other marginal cost shocks. Fowlie (2010)

examines firm responses in the context of the NOx Budget Program, exploiting the differences in

allocation regimes. She finds suggestive evidence that firms internalized the costs of emissions, and

that the degree of internalization depended on the subsidization rate, as theory would predict.

The relevance of identifying the pass-through rate in the presence of cost shocks extends beyond

8This is particularly important for the estimation of pass-through rates, which can be greatly affected by functional
form assumptions (Besanko et al., 2005; Weyl and Fabinger, 2012).

9For seminal works on the study of strategic behavior in electricity markets, see von der Fehr and Harbord (1993)
and Green and Newbery (1992).

10See the Annex by Keppler in Ellerman et al. (2010) for a review of this and other studies.
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emissions markets, and has indeed been the subject of a more general literature. From a theoretical

perspective, the effects of cost changes on prices cannot be determined, as discussed in Besanko

et al. (2005) and Weyl and Fabinger (2012). Empirically, several settings have been examined

to answer this question. A big part of the literature has exploited changes in currency exchange

rates to examine the relevance of pass-through, as they can provide exogenous variation in costs

(Goldberg and Hellerstein, 2008). Some papers have focused on the incidence of taxes, also as a way

to measure the effects of observable cost changes. For instance, exploiting the variation in gasoline

taxes, Marion and Muehlegger (2011) provide evidence of full pass-through in the gasoline retail

market.11 Bonnet et al. (2013) have analyzed the incidence of vertical contracts on pass-through

rates using a structural model. As noted by Weyl and Fabinger (2012), “broader empirical work on

the range of pass-though rates and their relationship to more-easily-observable industry features

remains extremely limited.” This work contributes to this line of research.

2 Context and Data

We study the pricing decisions of electricity generators in the Spanish electricity market following

the introduction of the European Union’s Emissions Trading System (ETS). In this section we

briefly describe the context as well as the data that we use for the empirical analysis.

2.1 The European Union Emissions Trading Scheme

The EU ETS is the largest emissions control scheme in the world, affecting almost half of

European CO2 emissions, from approximately 10,000 energy-intensive installations across the EU.

It is also the first compulsory international trading system for CO2 emissions.12

The EU sets a global cap on emissions and assigns a share of free permits to each Member State.

Through the National Allocation Plans, Member States then allocate their share of permits across

sector and individual installations subject to EU approval.13 Each year, companies must surrender

enough allowances to cover their emissions, for which they might either use their own allowances

or buy them from another firm. Emissions rights can be transacted bilaterally (i.e., company-to-

company), brokered (OTC market) or traded in exchanges.14 Failure to comply implies a e40/ton

CO2 penalty, plus the obligation to purchase the deficit in the market.

The first phase of the EU ETS, also known as the trial period, ran from January 2005 to

December 2007. Phase I covered only carbon dioxide emissions from energy related industries

11Besanko et al. (2001) and Besanko et al. (2005) measure individual-firm pass-through rates for firms selling
differentiated products. In our set-up, there is a single pass-though rate since electricity is an homogeneous product,
and therefore there is a single market price.

12A non-mandatory precursor of the EU ETS is the Chicago Climate Exchange, which was a voluntary greenhouse
gas (GHG) reduction and trading system.

13For details regarding the allocation of allowances in each Member State, see Ellerman et al. (2007).
14To get some orders of magnitude, in 2005, the market transacted 262 Mt CO2 (e5.4 billion) through brokers (207

Mt) and exchanges (57 Mt), and a estimated figure of 100Mt (e1.8 billion) in the bilateral market (Point Carbon
2006). European Climate Exchange is the largest exchange in Europe (63%), followed by NordPool (24%), PowerNext
(8%) and the European Energy Exchange (4%).
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Figure 2.1: Evolution of EUA prices during the EU ETS trial period
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(combustion installations with a rated thermal input exceeding 20MW, mineral oil refineries, coke

ovens), production and processing of ferrous metals, the mineral industry (cement clinker, glass

and ceramic bricks) and the pulp, paper and board industry. These activities represent around

40% of CO2 emissions in the European Union, the electricity sector being the largest contributor

in the group.15

Figure 2.1 shows the evolution of CO2 prices during the trial period. One of the striking

features is the substantial drop in prices around May 2006. This drop in price was induced by

the release of emissions reporting data from 2005, the first year of the policy. In light of the

revealed information, which indicated a markedly lower level of emissions than had originally been

anticipated and therefore a lower marginal cost of meeting the cap, the price halved in a very short

period of time and subsequently declined to zero (Parsons et al., 2009). Even though we do not

explicitly exploit this drop in prices, it will contribute to the variation in CO2 prices that will help

identify the internalization and pass-through of emissions costs.16

15For more details on the EU ETS, see Ellerman et al. (2007) and Bahringer and Lange (2012).
16Bushnell et al. (2013) and Zachmann and Hirschhausen (2008) explicitly exploit this change to analyze the

response of firms to changing market conditions.
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2.2 The Spanish Electricity Market

The Spanish electricity market is a national market that produces between 15,000 and 45,000 MWh

hourly, has around 85,000 MW of installed capacity, and serves more than 40 million people.17 The

Spanish territory is interconnected with France, Morocco and Portugal. The electricity market has

an annual value of 6 to 8 Be.

The Spanish electricity market has been liberalized since 1998 and shares many features with

other liberalized electricity markets. More specifically, it operates in a sequence of markets: the

day-ahead market, several intra-day markets that operate close to real time, and the ancillary

services market.18 Participation in these markets is not compulsory, as market participants are

allowed to enter into physical bilateral contracts. Still, the day-ahead market is very liquid and

concentrates the vast majority of trades.

The day-ahead market trades 24 hourly electricity products that are cleared once a day. On

the supply side, electricity producers, if not tied to a bilateral contract, submit supply functions

specifying the minimum price at which they are willing to produce a given amount of electricity. On

the demand side, distributors, independent retailers and large consumers submit demand functions

specifying the maximum price at which they are willing to purchase a given amount of electricity.

The market operator constructs a merit order dispatch by ordering the supply and demand bids

in ascending and descending order, respectively. By intersecting both curves, it determines the

winning bids and the market clearing price, which is paid to all dispatched units from the supply

side, and paid by all the accepted units from the demand side.

Once the day-ahead market closes, the System Operator studies the feasibility of the dispatch

and modifies it by adding or removing the energy required to solve local congestion. The System

Operator also runs several markets in which production units compete to commit their capacity

to provide ancillary services when needed. Following these procedures, market participants may

adjust their positions in either direction in a sequence of six intra-day markets.

During our sample period, electricity was essentially produced by four vertically integrated

incumbent firms. The generation mix was made of nuclear, coal, CCGTs, oil-gas, hydro power, and

renewable resources, of which wind was the most important. Table 2.1 provides information on the

production by each technology type during the sample period.

The regulatory framework of the Spanish electricity market was rather stable during our sample

period, with one notable exception. In March 2006, the government passed the Royal Decree 3/2006,

which implied that market prices would only be paid to firms’ net-sales; more specifically, firms’

production covered by the purchases of their downstream subsidiaries would be bought and sold at

a regulated price. As this might have had an effect on firms’ strategic bidding behavior, in some

empirical specifications we will remove the dates during which this Royal Decree (RD) was in place.

17Compared to liberalized electricity markets in the United States, the Spanish electricity market has a size com-
parable to the Californian electricity market.

18The Spanish electricity market has gone through several reforms since its inception in 1998. For the sake of
clarity, we only describe here its main features during our sample period.
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Table 2.1: Production Mix in Spain, 2004-2007

2004 2005 2006 2007

Capacity (MW) 68,758 74,123 79,203 85,698
Coal 11,565 11,424 11,424 11,357
CCGT 8,233 12,224 15,500 20,958
Trad. oil/gas 6,947 6,647 6,647 4,810
Nuclear 7,876 7,876 7,716 7,716
Trad. Hydro 13,930 13,930 13,930 13,930
Renewable 10,984 12,633 14,465 17,329
Others 6,495 6,661 6,794 6,871

Gross annual production (GWh) 252,280 262,966 270,890 280,125
Coal 76,358 77,393 66,006 71,833
CCGT 28,974 48,885 63,506 68,139
Trad. oil/gas 7,697 10,013 5,905 2,397
Nuclear 63,606 57,539 60,126 55,102
Trad. Hydro 29,777 19,169 25,330 26,352
Renewable 23,387 28,142 30,782 35,729
Others 22,482 21,824 19,236 20,574

Notes: Data from Annual Report of the System Operator (2004-2007). Only generation in inland

territories is included.

2.3 The Data

To perform the empirical analysis, we construct a data set that contains supply functions submitted

on a hourly basis by the Spanish electricity producers from January 2004 to June 2007.19 This

data set also contains both MWh produced at the plant level on an hourly basis, as well as unit

available capacity net of forced outages and planned shut-downs. We also collect characteristics

at the unit level: maximum available capacity, type of fuel used, heat rates, vintage, generating

company and geographic location. We combine these data with other market outcomes, such as the

hourly day-ahead and final average electricity prices, and aggregate output by types of technology.

We also use publicly available information on CO2 allowance prices (EUA prices), as well as coal,

gas, and oil prices in international markets.

We also have reliable information on efficiency rates at the plant level (i.e., the rates at which

each plant converts the heat content of the fuel into output).20 Using similar techniques as Wolfram

(1999) and Borenstein et al. (2002), this information allows us to estimate the short-run marginal

costs of thermal plants, which also depend on the type of fuel each plant burns, the cost of the

19Data are publicly available at the system and market operator web sites, www.esios.ree.es and www.omel.es. The
Spanish and the Portuguese electricity markets merged in July 2007. As this had a significant impact on market
behavior, we have decided to truncate the data set at that date.

20This information has been provided to us by the System Operator, which used to be in charge of dispatching
production units according to their reported costs. We have updated this data set to include the new production
units (mainly CCGTs). This data are also used in Fabra and Toro (2005).
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fuel (as set in international input markets),21 and the short-run variable cost of operating and

maintaining the plant (O&M).

We have also collected annual information on CO2 emissions at the plant level from the National

Register, for the years 2001-2004. These data are merged with the emissions data during the EU

ETS trial period (2005-2007). We have estimated emissions rates at the plant level for each year,

by dividing total emissions by total output at the annual level. Emissions rates do not fluctuate

much at the unit level and are consistent with typical fuel benchmark emissions for the generation

plants involved. Therefore, they are strongly correlated across units that use the same fuel. Among

coal units, imported coal plants have the lowest emissions rate around, 0.90 tons/MWh, whereas

lignite units are the dirtiest with an emissions rate ranging 1.00 to 1.10 tons/MWh. Natural gas

generators tend to have an emissions rate around 0.35 tons/MWh.

Table 2.2 summarizes the characteristics of power plants in the Spanish electricity market.

There are around 90 thermal units that are subject to emissions control. The units can be broadly

categorized in three different categories, depending on the fuel they use. Coal units are thermal

plants that use coal as their main fuel. In Spain, these plants typically use a combination of

national coal and imported coal. Depending on their inputs, they have different emissions rates,

which average 0.95 tons/MWh. Combined cycle natural gas units (CCGTs) are of new construction

and have much lower emissions rates, averaging 0.35 tons/MWh. Since the marginal costs of CCGTs

are higher than those of coal units, they tend to be used less frequently. Because of their different

emissions rates, a high enough price of CO2 emissions permits might reverse the ranking of these

two technologies in favor of CCGTs. Finally, peaking plants are oil-fired or gas-fired plants that

are more inefficient than newer gas plants and tend to operate very infrequently. These plants are

very old, with an average vintage of 1971, and a capacity factor only around 7% over the sample

from 2002 to 2007.22

Table 2.3 summarizes the generation mix of the four major firms in the market that we will

be analyzing. These four firms own 59 of the 89 power generators affected by the cap-and-trade

mechanism, as well as most hydro and nuclear generators and part of the renewable resources. The

two largest firms have a over 6,000MW of installed thermal capacity. The composition of the mix

across firms is somewhat different: while firm 1 is more focused on coal and oil, firm 2 has a larger

presence in the CCGT segment, which makes it the most efficient firm in terms of emissions costs.

3 Conceptual Framework

For the purposes of quantifying and decomposing the pass-through rate of emissions costs, it is

useful to first resort to a simplified framework. Consider a simple model in which a firm’s costs are

21For coal units, we use the MCIS Index, for fuel units we use the F.O.1% CIF NWE prices, and for gas units we
use the Gazexport-Ruhrgas prices. All series are in ce/te. We have downloaded this information from Bloomberg.

22The capacity factor expresses how much a unit is utilized with regards to its full potential, and therefore can be
expressed as the average output of a unit (MWh) divided by its maximum capacity (MW).
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Table 2.2: Summary statistics of power generators

Coal Gas Peaking Total

Total number of units 36 38 15 89

Relative number of units (%) 41.1 41.6 17.3 100

Average vintage (year built) 1977 2005 1971 1989

Average capacity of units (MW) 314 472 346 383

Average capacity factor (MWh/MW) 0.65 0.37 0.07 0.43

Average emissions rate (tons/MWh) 0.95 0.35 0.72 0.65

Notes: Sample from 2004 to 2007, including all thermal units (except nuclear power plants) in the

Spanish electricity market that are active at some point during the period.

Table 2.3: Characteristics thermal plants of the 4 main firms

Firm 1 Firm 2 Firm 3 Firm 4
Avg. number of units 23 18 12 6
Avg. unit capacity (MW) 359.78 378.08 307.75 327.85
Avg. Vintage 1980 1980 1983 1979
Avg. emissions rate 0.79 0.70 0.82 0.88

Total capacity (MW) 8,220 6,683 3,754 1,967
Coal capacity (%) 64.4 18.2 55.6 80.1
CCGT capacity (%) 15.3 41.0 43.0 19.9
Oil/gas capacity (%) 20.3 39.8 12.4 0.0
Avg. hourly production (MWh) 3958.09 3234.51 1331.22 542.75

Notes: Sample from 2004 to 2007, including all thermal units (except nuclear power plants) in the Spanish

electricity market that are active at some point during the period.
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given by

TC(Q; γ) = C(Q;u) + γτeQ.

The firm has production costs C(Q;u), where Q is output and is u a cost shock. The firm also

produces emissions eQ, where e is the emissions rate per unit of output.23 The common assumption

is that the emissions’ permit price, τ , fully reflects the opportunity costs of using permits, so that

τeQ represents the costs of emissions. However, as already explained, this assumption need not

always hold. We thus introduce a parameter, γ, referred to as the “opportunity costs” parameter,

which adjusts for the firm’s true opportunity costs of using permits: if γ = 1, opportunity costs

are fully captured by the permit price; otherwise, opportunity costs are either below (γ < 1) or

above (γ > 1) the permit price. The first case could arise in the presence of transaction costs, or

under permit allocations based on output updating, while the second case could arise if firms face

liquidity constraints that they can relax by selling permits in the emissions market.

Whereas γ is a fundamental parameter of the model, the pass-through rate is an equilibrium

outcome. Let D(p; ε) be the demand function, where p is the market price and ε is a demand

shock; and let S(p, τ ;u, γ) be the supply function. Using the market clearing condition D(p; ε) =

S(p, τ ;u, γ), by the implicit function theorem, the pass-through rate can be expressed as

ρ ≡ dp

dτ
=

Sτ (p, τ ;u, γ)

Dp(p; ε)− Sp(p, τ ;u, γ)
· (3.1)

As it is clear from the above equation, the pass-through rate depends on the slope of the demand

and supply functions, and on the opportunity costs of permits, as captured by the parameter γ.

Suppose that one has accurately estimated the pass-through rate ρ to be below one. The relevant

question would then be how to interpret such an estimate. There is a common misconception that

an incomplete pass-through, i.e. ρ < 1, goes hands in hands with either market power or lack of

cost internalization. However, this is flawed as a general statement. Indeed, ρ = 1 is achieved in

competitive markets if firms fully internalize emissions costs, but only if demand is vertical or supply

is flat.24 Demand and supply elasticity - and not only market power or partial cost internalization

- can lead to partial pass-through, as shown graphically through three examples in Figure 3.1.

In example (a), firms are assumed to be competitive, with linearly increasing marginal costs.

Since demand is also upward-sloping, the pass-through rate is less than one. In example (b), firms

have constant marginal costs. Since they exercise market power, supply becomes upward-sloping

supply,25 and the pass-through rate is also less than one. Last, in example (c), firms are assumed

23For the sake of simplicity, in this example we assume that the emissions rate is constant in output. In reality,
this need not be the case given that different technologies have different emissions rates. This will be relaxed in our
empirical analysis.

24Under inelastic demand, a firm changes its supply curve one to one with the increase in costs (given that
p = C′(Q) + eτ , Sτ (p, τ ;u, γ) = −Sp(p, τ ;u, γ)), and demand remains the same (Dp(p) = 0), so that the increase
in the permit price is fully passed-through to output prices. Under perfectly elastic supply, ρ in equation (3.1) is
undefined as Sτ (p, τ ;u, γ) = −Sp(p, τ ;u, γ)→∞. To solve this indeterminacy, let’s parametrize costs as C(Q) = Qα.
Now, as α→ 1, so that marginal costs become constant, Sτα = −Spα and Dpα = 0, so that ρ→ 1.

25This is consistent with many oligopoly models, including Cournot or the multi-unit auction model, in which
markups are increasing in output.
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Figure 3.1: An incomplete pass-through is consistent with several hypothesis

(a) An incomplete pass-through is consistent with competitive behavior
when both demand and supply are elastic
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(c) An incomplete pass-through is consistent with partial internalization of
emissions costs
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to be competitive and their marginal costs are flat. In this case, partial pass-through is explained

by partial cost internalization.

In sum, the actual observed pass-through is potentially a combination of three different factors:

the elasticity of demand, the elasticity of supply - which in turn depends on cost features as well as

on the degree of market power-, and the value of opportunity costs.26 We now move to empirically

quantifying and decomposing the pass-through rate.

4 Reduced-form Evidence on the Pass-through

We first present reduced form evidence on the pass-through rate of emissions costs in the Spanish

electricity market. We follow the conventional approach of estimating the pass-through rate by

regressing the wholesale electricity price on the emissions permit price. In our particular application,

given that there is substantial variation in CO2 prices, one can identify the pass-through from

observed electricity price responses. The main identifying assumption behind the reduced-form

pass-through estimate is that, once we control for all relevant factors that might be correlated with

the electricity market, the remaining variation of the CO2 price can be considered exogenous.

Since different generation technologies have different emissions rates, an increase in the CO2

price has a different impact on their emissions costs. For this reason, we provide two measures

for the pass-through, depending on whether we condition on the emissions rate of the marginal

technology, or not. The cost pass-through measures the effect on electricity prices of a one euro

increase in the marginal cost of the unit setting the price. The price pass-through measures the

effect of a one euro increase in the CO2 price on the electricity price.27

These two measures are tightly related to each other, but emphasize two different aspects. The

price pass-through emphasizes the market impact of the policy, as it is a measure of electricity

price increases due to the introduction of emissions permits. It ultimately measures the impacts

faced by final consumers and industrial manufacturers, and is thus very policy-relevant. The cost

pass-through emphasizes more directly the role of demand and supply in the market, and can shed

light on issues such as demand response, cost heterogeneity and market power.

26In Section 4.2, we shall add an additional channel that is specific to electricity markets, which we refer to as
“Heterogeneity and technology switching.” The intuition is that, everything else constant, one can obtain a pass-
through rate different from one if the cost shock changes the identity of the price-setting unit, and the marginal
emissions rate changes accordingly.

27As explained in Section 2, CCGTs and coal plants in the Spanish market have an average emissions rate of
0.35 and 0.95 tons/MWh, respectively. Hence, a CO2 price of e.g. 10e/ton increases their costs by 3.5e/MWh
and 9.5e/MWh, respectively. Accordingly, if the electricity price, set by a CCGT, rises by 3.5e/MWh, the cost
pass-through is 100%, while the price pass-through is 35%. If the electricity price is instead set by a coal plant and
it rises by 9.5e/MWh, the cost pass-through remains at 100%, while the price pass-through is 95%.
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4.1 Price pass-through

To identify the effect of changes in CO2 prices on electricity prices, we run the following baseline

regression:

pth = ρτt +Xthβ0 + ZSthβ1 + ZDthβ2 + ωthδ + εth, (4.1)

where
pth = hourly electricity price,

τt = daily cost of the CO2 allowances,

Xth = common controls,

ZSth = supply-side exogenous shifters and controls,

ZDth = demand-side exogenous shifters and controls,

ωth = time fixed-effects (hour, day of week, month and year).

where ρ is our parameter of interest as it identifies the equilibrium price pass-through. Strategies

to recover the cost pass-through are discussed in Section 4.2 below.

The specification includes year and month, day of the week and hour fixed effects to control

for potential trends and seasonality within the year. We also allow for the hourly fixed effects

to be different for every month, depending on the specification. As common controls, we include

European fuel prices of coal, gas and oil, as well as their quadratic terms and quadratic terms

of their differences. On the demand side, we include economic activity indicators28 and weather,

allowing temperature and wind to have a different effect on price depending on the month (for

example, a warm day in the winter, which tends to reduce electricity consumption, is very different

to a warm day in the summer). On the supply side, we also include controls for renewable capacity

and renewable output, which are exogenously given in the short run.

Table 4.1 presents estimates of price pass-through rates in this market. The results reveal

substantial heterogeneity across specifications. We find that the estimated pass-through rate has a

wide range depending on the specifications, ranging from 0.44 to 1.17.

The raw relationship between electricity prices and carbon prices is 1.17, as the result of just

regressing electricity prices on carbon prices. Specification (1) includes year and month fixed effects,

as well as other controls: hour-month fixed effects, daily temperature and wind speed interacted

with month of the year to allow for seasonality, wind output, day of the week dummies, holiday

index, activity index, Spanish GDP, and coal, gas and oil prices.29 The price pass-through is close

to 1.1.

Specification (1) might have some omitted variables bias, as it is difficult to fully control for

all changes in demand and supply that could be potentially correlated with the evolution of the

CO2 prices. To further address this concern, we include month of sample fixed effects. The results

change substantially. In specification (2) to (6), we find that the estimated pass-through is between

28Economic activity indicators include a production index provided by the Spanish government and quarterly
growth rates in Spain.

29The holiday index and the activity index are measures created by the System Operator to estimate demand
conditions in the market based on economic activity and labor patterns.
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Table 4.1: Reduced-form price pass-through measures

pt = ρτt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

(1) (2) (3) (4) (5) (6)

τt (ρ) 1.108 0.576 0.412 0.471 0.440 0.440
(0.028) (0.057) (0.099) (0.099) (0.100) (0.085)

Obs. 30,648 30,648 18,960 18,960 18,960 18,960

Year-Month FE N Y Y Y Y Y
RD Excluded N N Y Y Y Y
MonthXTemp FE N N N Y Y Y
MonthXWind FE N N N N Y Y
Month-Hour FE N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, average daily temperature, humidity, holiday

index, activity index and Spanish GDP growth rate), supply controls (wind speed and renewable output);

and common controls (linear and quadratic commodity prices of coal, gas, fuel oil and brent). Robust

standard errors in parentheses.

41% and 57%, depending on the controls included. These more complete specifications seem to line

up best with our simulated estimates, reported in Section 5.

4.2 Cost pass-through

The cost pass-through measures the effect on electricity prices of increases in the marginal emissions

cost (i.e., the price of emissions times the emissions rate of the marginal unit). The baseline

regression to identify the cost pass-through is very similar to the price pass-through regression, but

we now use the marginal emissions cost instead of the emissions price only:

pth = ρcτtejt +Xthβ0 + ZSthβ1 + ZDthβ2 + ωthδ + εth, (4.2)

where ρc is our parameter of interest as it identifies the equilibrium cost pass-through. The covari-

ates and controls included are the same as in the price pass-through regression.

To estimate this equation, we need to construct a measure of the marginal emissions rate, ejt.

Whenever available, we use the emissions rate of the unit that exactly sets the price. However,

there are several hours in which the price-setting unit is not a thermal unit, e.g. when the price is

set by a hydro unit. At the margin, hydro units raise the price up to the cost of the thermal unit

that would otherwise have been marginal. We therefore use an average of the emissions rates of the

thermal units with price offers close to the market price.30 Finally, there are a few observations for

30In particular, we use observations that fall within 50 cents e/MWh above or below the market price. We have
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which we cannot find a thermal unit close to the market price, but for which the Market Operator

specifies the marginal technology to be either coal or gas. We thus attribute an emissions rate of

0.95 when coal is said to be at the margin and an emissions rate of 0.35 for CCGT. Overall, we can

complete the marginal emissions rate for about 90% of the hours in our sample.31

One could be tempted to run the above regression using the marginal emissions rate. However,

this measure is likely to be endogenous as the identity of the marginal unit is affected by exogenous

cost and demand shocks, which also affect the price. Because of this endogeneity problem, we find

negative cost pass-through rates, ranging from -0.17 to -0.22. The basic intuition is that gas tends

to set the price when supply is scarce or demand is higher. However, gas has a lower emissions

rate, which generates the negative slope. We thus run the above regression after instrumenting the

marginal emissions cost, τtejt, with the carbon price itself.

Table 4.2 presents estimates of the cost pass-through rate. All specifications include the most

complete set of controls used in the price pass-through regressions, plus various combinations of

additional fixed effects. Similar to the price pass-through regression, results for the cost pass-

through rate change depending on the number of controls included. In particular, we find the set

of month of sample fixed effects to matter the most. When we control for month of the sample in

specifications (2)-(6), we find that the cost pass-through rate is around 80%, whereas it is above

100% without the controls.

To explore whether the cost pass-through differs depending on the marginal technology, we

interact the emissions cost with a dummy indicating whether coal or gas sets the price at that hour,

based on the Market Operator data mentioned above. Given that the Market Operator does not

necessarily classify all hours as Coal or CCGT only, to complete all observations, we construct the

marginal technology by interpolating the marginal technologies reported by the Market Operator.

For example, if coal is marginal at 2am and 4am, and pumped storage is reported marginal at 3am,

we consider that coal is at the margin also at 3am. We allow the coefficients on input prices (coal,

gas, brent) to change depending on which technology is at the margin.32

This approach raises some concerns. First, there remains some heterogeneity in emissions rates

among coal plants or among gas plants, which can still cause selection within each group. To avoid

this problem, we instrument the emissions cost of the marginal unit with the emissions cost of the

marginal technology, as reported by the Market Operator.

Second, results from these regressions may be biased if the separation between hours in which

coal or gas sets the price are endogenous to the emissions costs or other factors evolving endoge-

nously with the policy change.33 There are several reasons to believe this could be a concern. For

example, with higher emissions prices, natural gas becomes more competitive and can start substi-

experimented with 25 cents, 1e and 2.5e, and the overall results do not change significantly.
31There are still a few remaining hours in which we do not observe a thermal unit near the market price and the

Market Operator reports other types of units at the margin (hydro, pumped storage, international exchanges, etc.)
32Instead, we could have separated the sample in two. We present the results with a split sample in the appendix,

which are similar to those reported here.
33This would not be corrected even if we split the sample in two. The only situation in which a split sample would

correct the selection is if hours in which coal or gas set the price could be exogenously predetermined.
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Table 4.2: Reduced-form cost pass-through measures

pt = ρcτtejt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

(1) (2) (3) (4) (5) (6)

τtejt (ρc) 1.587 0.944 0.783 0.832 0.832 0.819
(0.051) (0.096) (0.180) (0.180) (0.187) (0.174)

Obs. 27,530 27,530 16,902 16,902 16,902 16,902

Year-Month FE N Y Y Y Y Y
RD Excluded N N Y Y Y Y
MonthXTemp FE N N N Y Y Y
MonthXWind FE N N N N Y Y
Month-Hour FE N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity, holdiay index, activity index and

Spanish GDP growth rate), supply controls (wind speed and renewable output); and common controls

(linear and quadratic commodity prices of coal, gas, fuel oil and brent). The marginal emissions cost is

instrumented with the emissions price. Robust standard errors in parentheses.

tuting coal at base load hours. Similarly, coal plants can more frequently appear to be marginal at

peak hours, as they become less profitable due to higher emissions costs.

This bias is illustrated in Figure 4.1. The red and black lines respectively represent electricity

prices with and without CO2 prices: coal is cheaper than gas without CO2, but the ranking reverses

once CO2 prices are taken into account. For the high demand realization depicted in the figure,

the marginal unit with CO2 is coal, though it would have been gas without CO2. Given that the

emissions rate of coal is higher, one would then tend to underestimate the pass-through rate, as

one would expect a price change A, instead of the observed change B < A. The opposite holds

for the low demand realization, when the marginal unit with CO2 is gas. One would now tend to

overestimate the pass-through, as one would expect a price change C instead of the actual price

change D > C.

Table 4.3 presents estimates of the cost pass-through rates depending on whether coal or gas

are at the margin. When we control for month of the sample in specifications (2)-(6), we find

that the cost pass-through when coal is at the margin is lower than when gas is at the margin.

In particular, under specification (6), estimates are 63% and 93% respectively, which lay below

and above the estimated 82% reported in Table 4.2. Therefore, this difference, even though not

statistically significant, is consistent with technology substitution taking place, as illustrated in

Figure 4.1.

The reduced-form approach is informative, but it faces some limitations. As we have discussed,

estimates are noisy and not fully robust to the different specifications: first, it is difficult to obtain a
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Figure 4.1: Estimating cost pass-through with heterogeneous cost shocks
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Table 4.3: Reduced-form cost pass-through measures by technology groups

pt = ρcejtτt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

(1) (2) (3) (4) (5) (6)

ejtτt (ρc,Coal) 1.114 0.591 0.665 0.664 0.658 0.637
(0.119) (0.199) (0.447) (0.439) (0.446) (0.412)

ejtτt (ρc,CCGT ) 1.998 1.025 0.780 0.862 0.881 0.933
(0.067) (0.126) (0.276) (0.272) (0.277) (0.254)

Obs. 27,530 27,530 16,902 16,902 16,902 16,902

Year-Month FE N Y Y Y Y Y
RD Excluded N N Y Y Y Y
MonthXTemp FE N N N Y Y Y
MonthXWind FE N N N N Y Y
Month-Hour FE N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity, holdiay index, activity index and

Spanish GDP growth rate), supply controls (wind speed and renewable output); and common controls

(linear and quadratic commodity prices of coal, gas, fuel oil and brent). Input controls (oil, coal, gas) are

allowed to depend by technology group. The marginal emissions cost is instrumented with the emissions

price interacted with the technology group dummy. Robust standard errors in parentheses.
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clean identification with time-series variation only; and second, one would expect several variables

affecting demand or supply to be correlated with the CO2 prices (e.g. growth rates, exchange rates,

fossil-fuel prices, etc.), so that estimates might suffer from a omitted variables bias. Furthermore,

even if the pass-through is accurately estimated, this approach does not allow us to disentangle

all the channels that generate the estimated pass-through. These shortcomings call for a more

structural approach, which we develop next.

5 Structural Decomposition of the Pass-through

In this section, we rely on a structural bidding model with a two-fold objective. First, we use

the model to identify the value of firms’ perceived opportunity costs of using emissions permits.

This is a necessary first step for quantifying the pass-through rate, as if e.g. the opportunity cost

of permits was lower than the permit price, our pass-through estimate would be underestimated.

Second, we use the model to simulate the response of firms’ pricing behavior to marginal changes

in the carbon price. This allows us to identify the role of demand response, market power and

technology switching in explaining the simulated pass-through estimates.

5.1 Bidding Model

Consider a model in which market demand is given by D(p; ε). Let S−i (p;u−i) denote the aggregate

supply of all firms in the market other than firm i, where p is the market price and u−i is a

vector of supply-side cost shocks. Then, the residual demand faced by firm i can be written as

DR
i (p; ε, u−i) = D(p; ε) − S−i(p;u−i). Under market clearing, firms produce over their residual

demand, so that firm i’s output is given by QSi = DR
i (p; ε, u−i).

Under the assumption that emissions costs are linear in output, firm i’s cost can be decomposed

as the sum of production costs C(QSi ;ui) and the firm’s opportunity costs of using permits, γiτeiQ
S
i ,

where γi is firm i’s “opportunity cost” parameter, τ is the permit price, and ei is firm i’s emissions

rate.34

Last, in order to allow for the effects of vertical integration, we let QDi denote the electricity

that firm i has to procure in the wholesale market to cover its retail sales.35

We can write firm i’s profits in the day-ahead market as follows:36

πi(p; ε, u) = p
(
DR
i (p; ε, u−i)−QDi

)
− C(QSi ;ui)− γiτeiQSi .

34For simplicity, we omit here the fact that firm i might have different units with different emissions rates. Since
our estimating equation relies on the the First Order Condition, we will only be concerned about the emissions rate
of firm i’s marginal unit, which we will denote by eij .

35In principle, retailers are allowed to submit downward sloping demand functions. Nonetheless, in practice,
retailers submit vertical demand functions. The reason is that the vast majority of retail customers face fixed retail
prices that are not indexed to wholesale prices. Accordingly, we assume that the retailers’ purchases are independent
of wholesale prices.

36We have omitted revenues retail sales given that these are fixed and should thus not affect bidding incentives in
the electricity day-ahead market.
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Assuming that the profit function above is differentiable, in any equilibrium in which firm i is

setting the market price, the First Order Condition (FOC) for profit maximization must be satisfied

for firm i.37 Solving the FOC for p,

p = ci + γiτei +
∣∣∣∂DR

i

∂p

∣∣∣−1Qi, (5.1)

where ci denotes the marginal production cost at QSi , and Qi = QSi − QDi denotes the firm’s net

production.

All of the fundamentals in equation (5.1) are observed in the bidding data or they can be

appropriately simulated, except for the parameter γi. For this reason, we first infer the value of γi

from the bidding data using the optimal bidding equations. Next, we estimate the pass-through

rate by simulating how firms’ bidding functions would change in response to marginal changes in

CO2 prices around the equilibrium price.

5.2 Estimating Opportunity Costs

Under the assumption of profit-maximizing behavior, we infer the value of firms’ opportunity

costs of using permits from the bids submitted in the day-ahead market.

Based on the optimal bidding condition (5.1), we estimate the following empirical equation in

those hours in which firm i is setting the market price through its marginal unit j:

bijth = αij + βicjt + γiτteij +
∣∣∣∂D̂R

ith

∂pth

∣∣∣−1Qith + εijth,

where

bijth = marginal bid by firm i when setting the price with unit j, hour h and day t,

αij = unit j fixed-effect,

cijt = marginal costs of marginal unit j,

eij = emissions rate of the marginal unit,

τt = daily cost of the CO2 allowances,

∂D̂Rith
∂pth

= estimated slope of residual demand curve at the margin,

Qith = inframarginal quantity for firm i at the margin,

εijth = error term (cost shock, modeling error and/or firm optimization error).

The parameters to be estimated are Θ = {αij , βi, γi}. Testing that the permit price fully

reflects the opportunity costs of using permits involves testing γi = 1, which is the focus of our

discussion below. Some of the elements in the above specification are readily observed, such as the

emissions rate of the marginal unit and carbon prices. We construct the inframarginal quantity

variable taking into account all offers made by a firm, including both supply and demand units.

37As shown in de Frutos and Fabra (2012), this condition need not hold for those firms not setting the price, or for
those units that face a zero probability of being marginal.

20



Table 5.1: Test based on structural equations

bijth = αj + βcjt + γiτteij +
∣∣∣∂D̂R

ijth

∂pth

∣∣∣−1

Qijth + εijth

All Firm 1 Firm 2 Firm 3 Firm 4

(1) No FE 1.059 1.034 1.063 1.237 1.099
(0.065) (0.065) (0.051) (0.055) (0.077)

(2) Unit FE 1.000 0.961 0.874 1.078 1.044
(0.023) (0.025) (0.040) (0.034) (0.083)

(3) Unit FE + season 0.981 0.949 0.855 1.033 1.023
(0.019) (0.026) (0.034) (0.021) (0.077)

(4) Spec.3 + RD excluded 0.963 0.948 1.022 0.991 0.830
(0.031) (0.023) (0.033) (0.053) (0.094)

(5) Spec.4 + Markup (IV) 0.966 0.967 1.029 0.732 0.871
(0.042) (0.041) (0.037) (0.074) (0.092)

Obs. 16,190 5,244 3,211 5,689 2,046

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. Standard errors clustered at the unit level.

Furthermore, given that we have fine level data on hourly demand and supply functions, we can

construct the residual demands faced by each firm in each hour, which we use to compute the slope.

Finally, given that we have reliable marginal costs estimates, we use these in the regression as a

control. To the extent that other costs might not be accurately reflected into this variable, we also

introduce unit fixed effects.38

Table 5.1 presents the structural estimates of the opportunity costs parameter. The estimations

are performed at the industry level and at the firm level. All specifications include marginal cost

estimates as controls. The first three specifications differ on whether we introduce unit fixed

effects and seasonal fixed effects. The fourth specification excludes those dates when the Royal

Decree (RD) was in place. Last, in the fifth specification we instrument the markup component,∣∣∣∂D̂Rith∂pth

∣∣∣−1Qith. Given that the markup depends on market demand, we use residual demand

shifters, including weather data (temperature, wind speed, humidity), economic activity data, and

renewable production, all of which are exogenous to firms’ choices.

The estimated opportunity cost parameter is close to one for the industry as a whole and for

firm 1, which is the largest firm in the market. This also true for firm 2, the second largest firm,

except for specifications (2) and (3). It has been documented that firm 2 followed an anomalous

bidding behavior under Royal Decree 3/2006,39 thus suggesting that the estimates might be biased

when we include this period in the sample. The parameter estimated for the two other firms is also

38Results are also robust to allowing the marginal cost coefficient to be unit-specific.
39The Spanish Regulatory Authority, CNE, published a report in July 2006 describing this anomalous behavior.
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close to one, but it varies more across specifications. One possible explanation for this result is that

small firms do not behave as closely to optimal bidding as bigger players, as shown in Hortaçsu and

Puller (2008). Another possible explanation is that these firms have a smaller portfolio of plants

with less variation in marginal costs and emissions rates, making the identification more sensitive

to the controls and the included sample.40

Finally, Table A.2 in the appendix presents alternative specifications to the ones presented in

this section. In particular, it uses an expanded data set in which observations “close to being

marginal” are also used, which depends on the bandwidth parameter. Results are similar, overall

providing evidence consistent with the hypothesis that firms perceived the CO2 price as the relevant

opportunity cost of emissions.

As a robustness check, we extend the analysis of Reguant and Ellerman (2008).41 The approach

relies only on observing on/off patterns by power plants, and testing whether those decisions respond

equally (though with opposite sign) to changes in the market price as to changes in their marginal

emissions cost. As reported in Table A.3 in the appendix, the results support the hypothesis of full

internalization across a wide range of specifications.

Overall, our evidence is consistent with the hypothesis of full cost internalization of the price

of emissions permits.

5.3 Simulating Pass-through Channels

As presented in section 5.2, the equilibrium bidding equations at the wholesale electricity auction

are given by,

bijth = αij + βjcjt + τteij +
∣∣∣∂D̂R

ith

∂pth

∣∣∣−1Qith + εijth, (5.2)

where, given the previous evidence, we have assumed that the permit price reflects the true oppor-

tunity costs of emissions, i.e. γi = 1.

We use these optimal bidding equations to simulate how firms’ bidding functions would change

in response to marginal changes in CO2 prices. In particular, we compute the counterfactual in

which the cost of emissions increases by one euro, i.e. τ ′ = τ + 1, and then compute the implied

pass-through rates.42 Since the change in emissions costs is small, we can safely take participation

decisions as given.43

40The identification is potentially improved in Table A.2 in the Appendix, as it relies on an expanded data set.
The parameter estimated for the third firm is approximately equal to one, while that for the fourth firm, which is
the smallest firm in the market, remains below one.

41See Reguant and Ellerman (2008) for details on this test. The study was focused on coal units. We extend the
analysis to all thermal technologies affected by the EU ETS.

42To compute optimal prices, we need to modify not only bids that are ex-post marginal, but bids that are close to
being marginal. Our implicit assumption is that bids close to the observed market price have a positive probability
of setting the price and therefore reflect the marginal incentives faced by the firm.

43Characterizing the optimal startup decision is beyond the scope of this paper. See Reguant (2012) for a computa-
tion of optimal strategies in the presence of startup costs. Given that we are evaluating changes in bids for marginal
increases in emissions costs, participation decisions are likely to have a minor effect in the results.
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As shown in equation (5.2), an increase in carbon prices can affect optimal bids in two ways.

First, it affects marginal costs directly, through the τteij component. Second, if firms are strategic,

the carbon price increase can affect the markup component by changing the shape of the residual

demand as well as the firm’s net inframarginal production.

To the extent that the cost shock changes equilibrium bidding by some units, it might also

affect the bidding behavior of units that do not face the cost shock, particularly hydro units. To

account for the opportunity costs of hydro units,44 we assume that they would modify their bids in

the same manner as the neighboring units on the aggregate supply function, so that their relative

strategic position in the merit order would not change.45

Table 5.2 represents a matrix of the counterfactuals we consider. To separate demand and

supply channels that affect the pass-through, we first compute counterfactual I in which we hold

demand fixed and change bids in a competitive fashion.46 In these simulations, the only change

is an increase in bids corresponding to a one euro increase in permit costs, i.e., bids go up by eij .

Second, in counterfactual II, we allow for demand response by incorporating the actual demand

curve in the market.47

Counterfactuals III and IV are analogous to the first two, but we allow the markup component

to endogenously change with the cost shocks. The markup can change for two reasons: the infra-

marginal quantity might change if there are endogenous changes of merit order within the firm,

and the slope of the residual demand might change as a result of other firms changing their bids.

Given that we compute perturbations around the equilibrium price, we follow the approach of

looking only at best response deviations and examine whether the markup impacts are substantial.48

We then update prices for all firms under the new markups and examine the impact on the electricity

market price. With this approach, we intend to capture some of the changes in markups that result

from an increase in emissions costs.

Heterogeneity and technology switching Counterfactual I is very useful to provide an intu-

ition behind the pass-through distribution that we observe in the data. With inelastic demand, the

cost pass-through should equal one unless the cost shock changes the merit order in the underlying

supply curve. Therefore, any departures from one must be due to technology switching.

44Hydro plants can store the water in their reservoirs to use it in a different period. Hence, their opportunity costs
is given by the revenue the firm could make by selling its hydro production in a different period. As prices in other
periods are likely to be affected by the increase in emissions costs, the opportunity costs of hydro plants are likely to
be affected too.

45Admittedly, this is an ad-hoc way to capture the change in hydro bids. Modeling the dynamic decision of hydro
is beyond the scope of this paper. An alternative procedure would have been to fix the amount of water used in a
given month and re-arrange as a function of marginal prices, as in Borenstein et al. (2002).

46It is important that the counterfactuals is about changes in bids. The baseline bid levels do not necessarily
represent competitive bids, as discussed below.

47Note that this demand curve will tend to be more inelastic than long-run electricity demand, so the estimate
provides an upper bound on pass-through once demand response is accounted for.

48Wolak (2007) follows the same approach, among others. Ideally, one would like to compute the new equilibrium
price given the cost shock. However, computing the new equilibrium with more than one firm requires developing a
more explicit computational model that does not rely on FOC only, and it does not necessarily address the concerns
of multiple equilibria. See Reguant (2012) for a discussion.
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Table 5.2: Simulated Bids and Pass-through Counterfactuals

I Inelastic Demand II Demand Response
Only MC Change Only MC Change

III. Inelastic Demand IV. Demand Response
MC + Markup Change MC + Markup Change

Figure 5.1: Distribution of cost pass-through rates
with inelastic demand and observed bids

The histogram represents the effect of a one euro increase in the marginal costs of the marginal

technology on the electricity price. The sample is restricted to hours in which the marginal

unit has a positive emissions rate.
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Figure 5.1 shows the distribution of the cost pass-through rates, i.e., taking into account the

emissions rate of the marginal unit. Even though in most observations the pass-through is one, we

see some departures, which occur when there is substitution away from coal to gas (recall Figure

4.1).

The role of technology switching and market power Given relative prices for coal and

gas during the sample period, and the relatively low CO2 prices during part the sample, one

would expect to observe little technology switching in a competitive setting. Hence, there remains

the question of whether the observed cost pass-through reflects cost heterogeneity or whether it is

consistent with the exercise of market power. In particular, if there are big strategic firms that have

a particular generation mix (coal and gas), and fringe players that only have gas, one would expect

to see more substitution under the actual merit order than in a competitive setting. Accordingly,

differences in technology switching across counterfactuals reflect production inefficiencies that could

be attributed to market power.49

To explore this claim, we perform the same pass-through rate calculation as above, i.e., with

inelastic demand and increase in bids proportional to the emissions rate of each plant. However,

instead of using observed bids, we use the industry competitive supply function, i.e., taking engi-

neering cost estimates. The results of this counterfactual are presented in the first block of table

5.3, which summarizes our results. We find that the competitive pass-through rate is also one in

most cases, although it presents less variance than the strategic one (standard deviations are 0.226

vs. 0.335).

Indeed, under the competitive benchmark, departures in full cost pass-through rates due to

technology switching occur only in 12.35% of the hours of the sample.50 In contrast, technology

switches occur in 19.06% of the hours using observed bids.51,52 These results suggest that the

observed departures from full cost pass-through reflect technology switching generated by differences

in strategic bidding behavior across firms.53

The role of demand elasticity and supply elasticity Counterfactual II introduces demand

elasticity, as implied by the observed wholesale demand curves. Results are presented for the cost

49The potential for substantial production inefficiency in the particular case of the Spanish electricity market has
been pointed out in Kühn and Machado (2004).

50We define departures from full pass-through if the pass-through is not between 95%-105% to avoid counting small
fluctuations. Other definitions are also consistent with these differences, although the percents are larger across the
board as the definition gets narrower.

51If we exclude night hours, in which some power plants might have different incentives to stay online over night,
we still find a difference between competitive and strategic counterfactuals in the amount of switching (6.86% vs
10.69%, respectively).

52Related to these switching measures, we can also quantify whether the departures from full pass-through are due
to the marginal unit switching from coal to gas or the opposite. For the strategic case, switching occurs from coal to
gas in 6.60% of the hours, whereas it occurs 12.46% from gas to coal. At peak hours, there is also more substitution
from gas to coal at the margin (3.73% from coal to gas versus 6.95% from gas to coal), consistent with Figure 4.1.

53Even though this is suggestive evidence that coal and gas are more mixed in the observed data than in the
competitive supply curve, one needs to keep in mind the possibility that our engineering cost measure is missing some
of the actual heterogeneity across plants.
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Table 5.3: Pass-through (PT) Results

Cost Pass-through Price pass-through
Inelastic Elastic Inelastic Elastic

Competitive Mean 1.034 0.842 0.706 0.561
Median 1.000 1.000 0.716 0.580
St.Dev. (0.226) (1.021) (0.286) (0.642)

Only MC Change Mean 1.080 0.774 0.695 0.484
Median 1.000 1.000 0.739 0.416
St.Dev. (0.335) (0.747) (0.275) (0.466)

MC + Markup Change Mean 1.099 0.778 0.697 0.479
Median 1.000 1.000 0.715 0.415
St.Dev. (1.504) (1.588) (0.751) (0.807)

Notes: Sample from January 2005 to March 2006. Period with Royal-Decree 3/2006 is excluded. Standard

deviation of passthrough distribution in parenthesis. Interquantile range in brackets.Competitive counterfactual

replaces original marginal bids of thermal plants with engineering cost estimates.

and price pass-through in the second and fourth column of Table 5.3, respectively. As can be

seen, introducing demand response reduces the cost pass-through to around 84% on average for the

competitive benchmark, and to 77% using actual bid data. The fact that the cost pass-through is

lower in the strategic case is consistent with the supply curve being less elastic in the presence of

strategic firms.

Looking at the market price effects, we find that the average price pass-through is around 70%

when we consider only changes in marginal costs under inelastic demand. Introducing demand

response at the wholesale auction decreases price pass-through substantially, to around 50%. In

both cases, the average price pass-through lies between the emissions rate of gas (approx. 35%)

and coal units (approx. 95%).

The role of markup changes Finally, we repeat all counterfactuals allowing the markups to

change strategically. As seen in the last set of results of Table 5.3, this has a relatively minor

impact on the average pass-through, as well as on the relative differences across counterfactuals,

although it increases the variance.

To visually summarize all the results, Figure 5.2 presents a graphical decomposition for the

case in which we only modify bids by adding the increase in emissions costs. In sum, we find

that demand response and market power reduce the cost pass-through. The analogue for the case

in which we distort markups is relegated to the appendix. As it becomes apparent, the partial

pass-through is both a combination of demand elasticity and market power.

Combining the reduced form evidence with the structural approach, we find intermediate levels

of price pass-through (around 40−60%) and levels of cost pass-through close to 80%. The simulated

results suggest there is scope for an attenuated cost pass-though due to demand response and market
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Figure 5.2: Comparison of pass-through rates across counterfactuals

Note: The solid bars represent the average cost pass-through. The black marker represents

the median, the dark gray brackets represent the interrange quantile and the light gray line

represents the 5 and 95 percentile.

power. Also, both the reduced-form approach and the simulations reflect substitution between coal

and gas, which appears to be less frequent in the competitive counterfactual.

6 Conclusions

We have presented an empirical assessment of the effect of emissions permits in the Spanish electric-

ity market. In particular, we have quantified the pass-through of the cost of permits to electricity

prices and decomposed the channels that generate it. The analysis has benefited from the richness

of the micro-level data, which has allowed us to perform structural estimations without imposing

strong assumptions on the shape of demand or supply.

The empirical results support the hypothesis that firms internalize the full cost of emissions in

this market, specially the big firms. With inelastic demand and homogeneous technologies, this

would have translated into cost pass-through rates close to one. However, as a consequence of

demand response and market power, estimated cost-pass-through rates fall to 80% on average.

This incomplete pass-through is also reflective of the substitution from dirtier (coal) to cleaner

(gas) plants, which tends to be more pronounced than under a competitive setting given differences

in strategic bidding behavior among firms. The implied effects on price are around 50%, reflecting

the average emissions rate of the marginal technologies. The price pass-through rate would have

been 20% higher had it not been for the effect of demand elasticity in the wholesale market.
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Our results have several policy-relevant conclusions. First, starting January 2013, full auctioning

of emissions permits has become compulsory. As we have shown, the fact that firms internalize

the full costs of free permits suggests that auctioning of those permits should not have additional

inflationary effects on electricity prices, at least in the short run.54 Full cost internalization also

suggest that frictions or transaction costs in the emissions market are negligible, which as is well

known is a necessary condition for the Coase principle to apply. Last, the evidence reported here

on the degree of pass-through demonstrates that Spanish electricity generators benefited from the

introduction of emissions regulation through increased windfall profits due to free permit allocation

and increased market prices.55
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A Additional Tables

Table A.1: Reduced-form cost pass-through measures by technology groups

pt = ρcejtτt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

Coal subsample CCGT subsample
(0) (1) (2) (3) (4) (5) (6)

ejtτt (ρc,Coal) -0.095 0.617 0.637 0.762 0.625
(0.071) (0.191) (0.412) (0.099) (0.157)

ejtτt (ρc,CCGT ) 0.670 1.095 0.933 1.207 0.964
(0.036) (0.121) (0.254) (0.147) (0.288)

Obs. 27,530 27,530 16,902 14,391 10,055 13,139 6,847

Instruments N Y Y Y Y Y Y
RD Excluded N N Y N Y N Y
YearXMonth FE Y Y Y Y Y Y Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. All specifications include year, month, weekday, hour and RD fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity, holdiay index, activity index and

Spanish GDP growth rate), supply controls (wind speed and renewable output); and common controls

(linear and quadratic commodity prices of coal, gas, fuel oil and brent). Input controls (oil, coal, gas) are

allowed to depend by technology group when applicable. The marginal emissions cost is instrumented

with the emissions price (interacted with the technology group dummy when applicable). Robust standard

errors in parentheses.
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Table A.2: Test based on structural equations - Bandwidth sensitivity

bijth = αj + βcjt + γiτtej +
∣∣∣∂D̂R

ijth

∂pth

∣∣∣−1

Qijth + εijth

Firm 1 Firm 2 Firm 3 Firm 4

bw = 1 Euro 0.981 0.966 0.989 0.805
(0.022) (0.029) (0.027) (0.064)

Obs. 475,318 508,233 579,641 227,623

bw = 2 Euro 0.976 0.959 0.995 0.783
(0.020) (0.026) (0.028) (0.062)

Obs. 714,699 692,069 687,914 255,182

bw = 3 Euro 0.982 0.957 1.002 0.755
(0.017) (0.026) (0.030) (0.061)

Obs. 752,763 729,210 705,462 260,284

bw = 4 Euro 0.988 0.955 1.005 0.727
(0.016) (0.026) (0.032) (0.060)

Obs. 752,783 729,836 705,694 260,364

bw = 5 Euro 0.992 0.952 1.003 0.701
(0.016) (0.026) (0.033) (0.061)

Obs. 752,783 729,836 705,694 260,364

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. It uses

specification 4 in table 4.2.
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Table A.3: Test based on operational patterns

onjt = αj + β1pjt + β2cjt + γτtej +Xjtβ3 + ωtδ + εjt,

(1) (2) (3) (4) (5) (6) (7)

pt [β1] 8.766 10.697 5.673 5.668 6.032 5.818 7.198
(0.607) (0.937) (0.917) (0.916) (0.938) (0.927) (1.126)

eiτt [γ] -6.799 -8.423 -6.016 -5.932 -5.302 -5.674 -5.625
(1.652) (1.546) (1.105) (1.112) (1.928) (1.831) (2.845)

γ/β1 0.776 0.787 1.060 1.047 0.879 0.975 0.782

F-test (γ=β1) 0.193 0.137 0.717 0.780 0.728 0.942 0.619

Obs. 85,163 85,163 38,473 38,473 38,473 38,473 23,181
Mg. cost control Y Y Y Y Y Y Y
Price IV N Y Y Y Y Y Y
Only OFF N N Y Y Y Y Y
Infra. Quantity N N N Y Y Y Y
YearXMonth FE N N N N Y Y Y
Weekd.XUnit FE N N N N N Y Y
RD Excluded N N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. All

regressions include unit, weekday, month, year and Royal Decree fixed effects. Standard errors clustered at the unit

level. For easier comparison, prices and emissions costs are normalized in e10−3.

Comment: The regression models the on/off decision of a given power plant at a daily level, as
in Reguant and Ellerman (2008). The dependent variable is the status of a unit during a given
day (on/off). A firm is on if it starts up that day or if it is already producing during the day. Due
to the presence of startup costs and dynamic continuation value, it is best to separate those days
in which the firm needs to incur startup costs from those in which they are already running. We
focus on days in which the units are turned off and are deciding whether to startup or not, as in
Fowlie (2010). Similar results obtain if focusing on the sample of units that are already turned on.
An array of controls is meant to capture the fixed costs of startup (unit fixed effects), strategic
interactions (inframarginal quantity), other aggregate confounding factors (month of sample fixed
effects) and variations in continuation value (unit specific weekly fixed effects).
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Figure A.1: Comparison of pass-through rates across counterfactuals

Note: The solid bars represent the average cost pass-through. The black marker represents

the median, the dark gray brackets represent the interrange quantile and the light gray line

represents the 5 and 95 percentile.
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