
Let the sun shine: optimal deployment of
photovoltaics in Germany

Anna Creti� Jérôme Joaugy

September 3, 2012

Abstract

The widespread use of subsidies in the form of feed-in tari¤s to
foster the di¤usion of photovoltaics is recently being rediscussed in
several countries. However, the di¢ culty to target tari¤s may create
a misalignment between pro�tability and installed capacity of pan-
els. Our analysis tackles this issue. First, we set a discrete choice
investment model with feed-in tari¤s. Second, on the basis of that mi-
croeconomic model, we calculate optimal trajectories of feed-in tari¤s
and installed capacity that minimize subsidy costs for the government.
The model is calibrated to study the di¤usion process of photovoltaics
in Germany and to simulate its future developments, showing distor-
tions with respect to the optimal deplyoment path in terms of feed-in
tari¤s, installed capacity and cost trajectories.
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1 Introduction

During 2011, 14.2 GW of PV panels were installed resulting in 35 GW
total photovoltaic (henceforth, PV) capacity worldwide, with OECD coun-
tries more than doubling their 2010 installations (OECD, 2012). Germany,
Italy, USA, Japan and France, representing more than 87% of the world
market, lead the di¤usion process. The success of these countries can be
explained by an early implementation of support policies (in Germany and
Japan) or a more recent but intensive subsidization program (notably in
Italy, France and USA). However, some bubbles have signi�cantly disrupted
market growth, as for instance in Spain. Germany experienced a simi-
lar problem but to a lesser extent, following the recent rede�nition of the
national Renewable Energy Act (Erneuerbare-Energien-Gesetz, henceforth
EEG).1

Despite this fast di¤usion process as well as several technological break-
throughs, PV price remains high. The levelized cost2 of a unit of PV elec-
tricity ranges from 0.16 - 0.35 e/kWh, depending on its location as well as
on the size and type of PV system used (EPIA Report, 2011). Investment
costs are largely driven by the cost of modules, which in turn depends on
re�ned silicon. The cost of modules, however, is steadily declining due to
strong competition between manufacturers (Grau et al., 2011). In 2010 the
average price of modules was about 1,6 e/Watt, almost 20% lower than
the corresponding �gure in 2009 which was itself 35% lower than in 2008
(IEA-PVPS, 2011b).

Economic analysis of PV deployment process has gained importance dur-
ing the last decade. Two bunches of models have been used: adoption and
learning approach on one side, and technological di¤usion dynamics on the
other.

The adoption approach describes the evolution of PV system price, ac-
cording to the learning curve. This latter informs about the speed at which
the price falls as installed capacity doubles (Wright, 1936) and remains the
main tool for forecasting PV market growth (Nemet, 2005), despite some
limitations such as sensitivity to data, or interaction with complex produc-

1The EEG Act was designed to encourage cost reductions based on improved energy
e¢ ciency from economies of scale over time. It came into force in the year 2000 and was
the initial spark of a strong development of renewable energies.

2The �levelized cost of electricity� is equivalent to the total output of the PV system
over its entire lifetime, divided by the total cost of installation and maintenance. This
de�nition of the PV price does not take into account the intermittence or the gain in terms
of avoided energy dissipated through the grid, as in Borenstein (2008).
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tion technologies (McDonald and Schrattenholzer, 2001).
Models on di¤usion of innovations explain the drivers of PV deployed.

They are often described by "S-curves", making reference to general trends
in technology di¤usion, as in Geroski (2000) or Kishore and Rao (2010).
Guidolin and Mortarino (2010) apply the Bass model to the PV sector in
several countries �nding that Germany, Japan, UK are at a mature stage;
Australia, Canada, France are a steadily growing market. Extreme cases
are represented, on the one hand, by Italy and Spain that started investing
in this sector recently, and on the other, by Austria and The Netherlands
that have overtaken the peak of installed power.

However, previous theoretical literature neglects the existence of subsi-
dies and feed-in tari¤s (henceforth FITs).that are actually crucial for PV de-
velopment.3 In fact, subsidizing PV increases the share of renewable energy
and fosters grid parity.4 A large body of empirical evidence suggests that
adoption models should take into account the impact of subsidies to better
explain the path of installed capacity. Indeed, support policies for renew-
ables deeply change projects net present value and thus strongly encourage
deployment, as shown by Dusonchet and Telaretti (2010) who calculate the
value of investments in di¤erent European countries.5 Hoz et al (2003) as
well as Klein and Faber (2008) point out the lack of levers for the Spanish
government in the task of achieving a PV target capacity without going over.
The report by Charpin and Trink (2011) analyzes the case of France in a

3FITs are a premium rate paid for electricity fed back into the electricity grid from
a designated renewable electricity generation source. FITs can be applied in two forms:
gross FITs - whereby all electricity generated from a renewable source is purchased from
the generator at a generous price, with the generator buying-back any electricity they
need to use from the grid; or net FITs - whereby only unused or surplus electricity is
purchased from the generator. Either of these FITs can be applied as a static subsidy, or
can gradually decrease over time.

4Grid parity occurs when solar cells are able to produce electricity at a cost lower than
the price of retail electricity purchased from the network, excluding grants and special
rates. After reaching this threshold, the industry will survive without any subsidy, which
is the main criterion for economic maturity.

5According to Dusonchet and Telaretti (2010), when FITs do not cover full investment
costs, the impact of subsidies is very limited (as in the Netherlands, Luxembourg, Finland,
Ireland and Sweden). FITs e¤ectiveness can be weak because either the target for PV
installation is too low (as in Austria) or FITs values are guaranteed for a limited time
span (which happends in Cyprus, Luxembourg and the Netherlands), or even the admin-
istrative procedures are too complicated (as in Greece and France). In the same line,
Zhang and Hamori (2011) also provide empirical evidence by examining subsidies o¤ered
in Japan. They show that installation costs have a negative e¤ect on PV system adop-
tion, whereas public subsidies as well as housing investment and environmental awareness
among residents have positive e¤ects.
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similar vein. The two latter studies point out a drawback also discussed by
Hansen and Percebois (2010): the risk that production responds in excess
or in default when the energy policy objective is not clearly announced or
readjusted too often.

Our paper adds to existing models along two main directions. First,
we adapt a standard discrete choice model to take into account government
subsidies together with technology di¤usion and learning as PV investment
drivers. Second, we calculate the optimal level and dynamic path of FITs
for a given target of installed capacity, minimizing public subsidy costs,
under the constraint that the evolution of PV demand is determined by
the discrete choice model we set up. Our non-linear optimal control model,
linking installed capacity targets to FITs, is calibrated it on German data,
from 1998 to 2009, and then numerically solved.

Model simulations and forecast allow us to characterize three phases of
PV development in Germany: initial growth (2000-2006), stability (2007-
2012) and maturity (2013-2020). We show that a 2020 target of 70GWp
of installed PV capacity would have required an initial value of FITs equal
to 1.4e/kWh, well above the highest tari¤ observed so far in European
countries. Total costs of the FITs program are then calculated. To our
knowledge, this kind of evaluation has never been performed.6 We �nd
that reaching 70 GW in 2020 costs 67 � 109e in the optimal scenario. If
we constrain the FITs to the actual cap, that is 0:6e/kWh, subsidy costs
increase of nearly 55% compared to the total FITs bill obtained in the op-
timal scenario. We then move to a scenario based on reality, and we show
the distortions created by the German policy. According to our model cal-
ibrations, FITs costs reached 121 � 109e up to 2009, that is approximately
the double of the optimal (unconstrained) costs as calculated from 2001 to
2020. With respect to other analyses on the German case, in particular
the Berger�s (2010) report, we forecast a smoother PV price decrease and
a faster reduction in FITs, which, according to our simulations, would be
phased out in 2017.

The paper is organized as follows. We set up an adoption model that
encompasses the impact of FITs (Section 2) which is then used to calculate
optimal subsidies (Section 3) calibrated on German data (Section 4). A
widespread evaluation of the German policy as well as a forecast of PV
market growth are then performed. We brie�y conclude (Section 5) by

6Wüstenhagen and Bilharz (2006) explain the impact of German policy on the deploy-
ment of renewable energy. Green power marketing driven by customer demand, on the
other hand, has had limited measurable impact. Jacobsson and Lauber (2006) �nds that,
up to 2003, total amounts of subsidies to PV in Germany amounted to 2.7 billion euros.
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suggesting some extensions of the model which are left for further research.

2 Discrete choice with feed-in tari¤s, di¤usion and
learning

We consider a discrete yearly time scale t. A representative consumers
is assumed to invest by equity or by debt. At time t, the representative
consumer has a utility function Ut and has to make a binary choice (Ben-
Akiva and Lerman 1985; Train, 2009).

If he chooses to invest, his utility function will be the sum of the observed
(V1t) and unobserved utility modeled by a random variable (X1):

U1t = V1t +X1: (1)

If he chooses to not to invest, the utility function is:

U2t = X2; (2)

which is normalized to zero.
The terms X1 and X2 are independent and identically extreme valued

distributed according to the logit demand model. The function that de-
scribes the probability that a given consumer buys PV panels between t
and t + 1 is denoted by Pt. The logit demand model gives the probability
function:

Pt =
exp(V1t)

1 + exp(V1t)
: (3)

We embed into the standard logit demand model the following speci�-
cation of the representative consumer�s observed utility:

V1t = NPVtut + lt; (4)

where NPVt is the net unit present value of an installation and lt is the
di¤usion process.

The function NPV ut is de�ned as the sum of annual actualized cash
�ows over the life time less the initial investment cost, divided by the power
of the installation:

NPV ut = FITt:E:

NX
k=1

1

(1 + �)k
� pt:(1� rt): (5)

5



where:
FITt is the FITs level;
� the rate of capital depreciation;
N is the life length of a facility;
E is the sunshine duration;
rt is the investment tax credit (or ITC ) level;
pt is the unit price of the installation.
In the above equation (5), system prices pt depend on the learning curve:

pt = p0:

�
xt
x0

��b
; (6)

where p0 and x0 are respectively the system price and installed capacity
at date zero, and xt the installed capacity at date t.

Finally, as for the di¤usion process, we need to specify the demand func-
tion and the potential market. This latter, de�ned as the sum in terms of
potential installed capacity of all individuals who are likely to invest in a
project, will be denoted by Mt. Since the larger the amount of PV capacity,
the larger the number of potential buyers (Lobel and Perakis, 2011), the lt
function is modelled as follows:

lt = log

�
xt
Mt

�
: (7)

Finally, V1t depends on three factors: the net present value at time t
(NPV ut) of the project, which in turn takes into account the system price
evolution pt according to the learning curve, as well as the technology
di¤usion process.

PV demand qt depends on the dynamics of the installed capacity between
t and t+ 1:

qt = xt+1 � xt; (8)

or, by using equation (3):

qt =Mt:Pt (9)

The probability Pt is thus:

Pt =
qt
Mt
: (10)

Combining equations (3) and (10) gives:

qt
Mt

=
exp(V1t)

1 + exp(V1t)
; (11)
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or:
qt
Mt

1� qt
Mt

= exp(V1t): (12)

Assuming that the potential market size is very large7 compared to de-
mand over the period analyzed (i.e. qt=Mt < 1) and that Mt changes little
over the considered period (as in Guidolin and Mortarino, 2010),8 we have:

qt
M

1� qt
M

� qt
M
= exp(V1t): (13)

Finally, recalling the demand equation (8) , we obtain:

xt+1 � xt = exp(V1t)M (14)

For ease of reading, we rename the right hand side of function (14) as
follows:

xt+1 � xt = f(FITt; rt; xt): (15)

The function f(FITt; rt; xt) in equation (15) highlights the most im-
portant ingredients of the NPV and will enter the Government objective
function to obtain optimal FITs; as we show in the following Section.

3 Optimal feed in tari¤s

We now consider the cost minimization of a government whose objective
is to reach a given target of installed capacity, by using FITs as control.9

For the PV capacity installed according to the discrete choice approach
summarized by equation (15), the state has to pay the discounted cost of
FITs, in proportion to the electricity produced over the lifetime of that

7This assumption is quite realistic if we compare 2020 and 2050 objectives. Indeed,
worldwide photovoltaic will count for only 0.8% of renewable energy by 2020 against 22%
in 2050 according to IEA forecasts.

8For a dynamic version of the Bass model, see Mahajan and Peterson (1978).
9The government could a¤ect prices through the interest rate rt which represents the

investment tax credit. To solve the optimal control problem, for ease of calculation, we
assume that the government uses only FITs and installed capacity targets as instruments,
leaving aside the investment tax credit rate, which is used as a parameter.
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installation. Thus, at a given time t, the cost for the state for installed PV,
denoted by c(FITt; rt; xt); will be:

c(FITt; rt; xt) = f(FITt; rt; xt):(ptqtrt +

NX
k=1

1

(1 + �k)
:E:FITt): (16)

Summing the cost function in equation (16) over time up to T , the date at
which total PV modules attain the deployment target gives the total PV
cost:

C(T; FIT; r; x) =

TX
t=1

c(FITt; rt; xt); (17)

where x = (x1; : : : ; xT ), r = (r1; : : : ; rT ) and FIT = (FIT1; : : : ; F ITT ).
Let us consider 0 as the starting year, with the installed capacity x0 = X0

and xT = XT . The objective of the government is to solve the following
problem:

min
FIT;x

C(T; FIT; r; x) (18)

under the constraints:

8t 2 [j0;T � 1j] xt+1 � xt = f(FITt; rt; xt); (19)

x0 = X0; (20)

xT = XT (21)

The optimal feed in tari¤s balance two kind of drivers: direct subsidies
that allow market growth, and the growth itself which reduces in the next
period the cost of investments needed to maintain the adoption trajectory.
This is actually a non-linear optimization problem that we solve numerically
with MATLAB.

4 Empirical analysis: the German case

Since 2004, Germany is among the countries with the highest annual PV
installations. In 2010 more than 50% of the worldwide PV installations were
carried out in Germany with a capacity of around 17.2 GW connected to
the grid and allowing a production of 12 TWh, roughly 2 % of the domestic
consumption. All renewable energies together have a share of 16.8% of the
domestic energy supply which, according to the German National Renewable
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Energy Action Plan, will include a target of a 38.6 % for 2020. For PV, the
scenario assumes around 7 % of the overall renewable production.10

The main driving force for the PV market in Germany is the Renewable
Energy Sources Act (EEG) which determines the procedure of grid access
for renewable energies and guarantees favorable FITs for them paid via
the utilities.11 For the PV sector, FITs depend on the system size and
whether the system is ground mounted or attached to a building. Since
2009, there is also a tari¤ for self consumed power. The rates are guaranteed
for an operation period of 20 years. Initially, a steady yearly reduction
of the PV tari¤s was foreseen. On the background of a constantly rising
number of installations, a mechanism was introduced to adapt the EEG
tari¤ to the market growth. Under this scheme, the reductions are increased
or decreased if the marked deviates from a prede�ned corridor. For 2009
this corridor was framed between 1 and 1.5 MW, which was signi�cantly
exceeded as the market reached 3.8 MW. For 2010 to 2012, a new corridor
between 2.5 and 3.5 MW was de�ned. Furthermore, for 2010 two additional
reduction steps were agreed to adapt the tari¤ to the system price level.
This resulted in an overall FITs reduction of roughly one third from 2009 to
early 2011. However, with around 7 MW installed in 2010 the new corridor
was surpassed again considerably. In July 2012, Germany�s parliament has
voted in favor of new photovoltaic cuts.12

Notwithstanding these changes, the overall FITs program helped make
Germany the world�s largest market for photovoltaic power generation. Our
analysis is intended to shed lights on this fast growing market and the in-
teraction between the development of PV capacity and energy subsidies.

4.1 Deployment Path

The model is calibrated on German data from IEA (2011), IEA-PVPS (2011)
and IMF (2011), over the period 1998 to 2009. The long term interest rate
which represents the capital depreciation rate is � = 0:03, according to
10For more details on the PV industry in Germany, see IEA-PVS (2011b), as well as

Grau et al (2011).
11 In addition to the EEG, PV receives support from other sources: local �scal authorities

provide tax credits for PV investments; the state owned bank KfW-Bankengruppe provides
loans for individuals as well as for local authorities.
12The new building-integrated rates will receive the following support:small arrays up

to 10 kilow atts: 19.5 cents per kilowatt-hour; 10 to 40 kilowatts: 18.5 cents; 40 kilowatts
to one megawatt: 16.5 cents; 1 to 10 megawatts: 13.5 cents. All ground-mounted systems
up to 10 megawatts now will be subject of a 13.5 cents incentive. As from 2013, the
government will retain the 2.5 MW to 3.5 MW annual growth corridor.
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OECD (2012). We calculate the coe¢ cient of learning as the slope of the
curve in equation (6): b = 0:064. Thus the learning rate is: LR = 1� 2�b =
0:044, meaning that for each doubling of cumulative installed capacity, the
average price of PV has fallen by approximately 4%.13

We estimate the following di¤usion model, which is the empirical coun-
terpart of equation (14):

log(qt) = a1:NPV ut + a2: log(xt) + a3 + "t; (22)

The following table shows results of the linear regression (R2 = 0:990
with all the coe¢ cients signi�cative at 1% level).

a1 1:31:10�4(0:315:10�4
���

)

a2 0:848(0:051)
���

a3 �0:750(0:22)
���

R2 0:990

Table 1. Coe¢ cients for the objective function
(standard error: in parenthesis)

We then simulate the optimal path between 2000 and 2020. In the base
year, cumulative capacity was x0 = 76MW , whereas the target for 2020
is xT = 70GW . 14 We also consider the case for constrained FITs to an
upper limit of 6ce/kWh, as observed subsidies so far never exceeded this
value. As for the other parameters, E = 995 kWh=m2=year.15 We neglect
maintenance costs (in general they account for 0.5% to 1.0% of total costs).

The optimal trajectory shows clearly three phases which we describe in
turn.
13Notice that we prefer to estimate the learning rate speci�c to Germany as previous

studies display very di¤erent �gures. Studies such as Poponi (2003) or Bandhari and
Stadler (2009) consider global learning rates of about 15-20%. Lobel and Perakis (2011)
found a 8% learning rate in Germany for the period 1991-2007.
14At the time of writing this paper, this was the objective in force

(http://heloim.sinclair.over-blog.com, BSW-German Solar Industry Association).
Although the target capacity we choose is above the objective de�ned by the EEG in
July 2012 (subsidies will be halted when a cumulative capacity of 52 GW is reached), our
analysis remains valid as it has mainly a methodological intent.

15See http://www.sealite.com.au/technical/solar_chart.php.
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4.1.1 Phase 1: priming and high growth

This �rst phase lasts until 2006 for the free case and until 2010 for the case
in which the FITs are constrained. This phase is characterized by very high
market growth which slows down during the transition to phase 2. It should
be recalled here that we consider the annual installed capacity and not the
cumulative installed capacity.

This �rst phase can be explained by the e¤ect of the di¤usion term
log(xt). Indeed, its marginal contribution is much more important when
the cumulative installed capacity is still small, i.e. during the beginning of
its development (Figure 1). This is a direct consequence of the shape of
the logarithm which enters equation (22). Thus, we �nd that the optimal
path corresponds to very high tari¤s at the early development stage: FITs
reach 1.4e/kWh in 2001. If we constrain the subsidies to the highest value
observed so far, that is 0.6e/kWh, the trajectory slightly changes (Figure
2). Notice that optimal unconstrained FITs fall to zero in 2011, whereas
they disappear in 2015 if the FITs policy is capped.
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Figure 1: Optimal Trajectory: installed capacity.
.

11



­0,2
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

2000 2005 2010 2015 2020

free FIT  (c€/kWh) constrained FIT  (c€/kWh)

Figure 2: Optimal Trajectory: FITs free and constrained.

4.1.2 Phase 2: shift in business model and stable market

This second phase covers the 2007-2012 period for the free path and 2010-
2016 for the constrained path. The market remains stable from year to year,
contrary to phase 1. Explanation of the shape of the dynamic process can
be found by observing the trajectory of NPV . Indeed, during the same
period, the NPV decreases and becomes even negative (Figure 3). The
market is no longer supported by feed-in tari¤s but by the di¤usion term
only. Photovoltaic panels become a "standard" commodity.
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Figure 3: Net present value of PV investment.

This transition would mean that consumers invest only for green prefer-
ences or grid parity, two factors that are not explicitly taken into account
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here.

4.1.3 Phase 3: return to growth and economic maturity?

This third and �nal phase is the 2012-2020 period for the unconstrained
model and 2017-2020 for the constraint model. It is characterized by a return
to growth and the end of FITs. The return of growth is explained by the
di¤usion term, whose e¤ect is dominant. Indeed, FITs no longer exist, but
prices are still decreasing, providing a new driving force for growth. This
phase could be interpreted as economic maturity given that the market
develops without government intervention. System prices continue to fall
providing sustainable driving forces to this new business model.

4.2 Forecasting with optimal path

We now compare simulations with real data. For the period between 2000
and 2009, prices and subsidies are observed data and as from 2009, and then
simulated between 2010 and 2020. Similarly, installed capacity is simulated
from 2001 to 2019. Investment tax credit rates are equal to zero from 2006.
We forecast the electricity price through a simple linear interpolation based
on data from 2000 to 2009. This part of the curve has an exponential
shape both in the real and in the simulated case. As Figure 4 shows, the
model adequately matches real data until 2009, stressing the reliability of
our forecasts.
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Figure 4: Path of installed capacity 2000-2009.
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4.2.1 Installed capacity

After 2010 the curve displays a much more regular development. The second
part looks like a simple linear trajectory but this observation is not entirely
accurate as we can see on the annual installed capacity curve. This curve
shows three di¤erent phases. The �rst corresponds to the 2000-2009 period.
Annual installed capacity is small, but it increases quickly. This growth
could be described as exponential. It then follows a more stable phase
where the market is important but stable. This is indeed a linear growth
for cumulative installed capacity and corresponds to the 2010-2017 period.
The third period after 2017 is characterized by strong growth (Figure 5).
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Figure 5: Annual installed capacity.

4.2.2 FITs trajectory

Tari¤s level falls rapidly with the di¤usion model (Figure 6). FITs reach the
level of household electricity tari¤s in 2012 and the level of industrial tari¤s
the year after. As a consequence, tari¤s continue due to the commitment in
the years prior to the grid parity, but are no longer needed from 2017.
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Figure 6: FITs forecast (euros/KWh).

4.3 Cost of the German policy

To complete our simulations, we calculate the cost of the German policy
under three scenarios (optimal policy, constrained optimal policy and actual
policy). Recall that each year, the Government commits to a FITs that will
hold 20 years. Therefore, each year we take into account the forward looking
cost in 20 years ahead.16

The �rst scenario corresponds to the optimal trajectory. Attaining
70GW of cumulative PV capacity costs 67 � 109e, of which 25 � 109e at
the very beginning of the simulated period (2000-2003) and the remaining
42 � 109e until 2012 when FITs fall to zero.

In the second scenario we take into account the cap on the FITs of
0:6e/kWh. Total costs amount to 104 � 109e, an increase of nearly 55%
compared to total costs obtained in the �rst scenario. During the period in
which the cap applies, that is until 2006, constraining the FITs essentially
smooths the cost to 26 � 109e. As a consequence, the grid parity shifts to
2015, with a cumulative cost from 2007 of 78 � 109e.

Finally, in the third scenario, we calculate the real costs up to 2009 and
then we switch to the optimal trajectory as simulated according to our model
calibration. Total costs amount to approximately the double of the costs we
get in the �rst scenario, attaining 121 � 109e. The cost of the German FITs
policy implemented until 2009 is 50 � 109e. Adopting the optimal policy
from 2009 up to the grid parity, reached in 2017, would cost 71 � 109e.

4.4 Comparison with the German roadmap

In this Section, we will compare the optimal path obtained by our simula-
tions to the objectives of the German roadmap and in particular to Berger
(2010). The main objectives described in the report are: to lower system
prices by 50%; to install between 52 and 70GWp; and �nally, to limit the
additional cost of photovoltaics on the electricity tari¤s to 2ce/kWh.

Assuming that the upper limit of installed capacity has to be reached, we
focus on the evolution of system prices and FITs. In fact, the objective to
reduce prices by 50% between 2010 and 2020 is very ambitious. According
to the roadmap, two driving forces will help attaining this objective: low
prices and 60% of self consumption. Figure 7 below compares the PV price

16 In the Appendix, we report the detailed annual simulated data, FIT and installed
capacity for each scenario.
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forecasts of the report and those of our simulation. Regarding the latter,
the price is estimated with learning curves, using the di¤usion model for
predicting installed capacities. We simulate our model by accounting for
two learning rates, that is 4% , consistently with our estimates, and 19
% which corresponds to the global rate as in Sha¤er et al (2004). Our
model predicts a less pronounced price decrease than the two forecasts by
Berger (2010), respectively in pink (less favorable scenario) and yellow (most
favorable scenario). Both cases are in fact driven by a very high learning
rate which does not speci�cally correspond to the German case.
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Figure 7: PV price forecasts (euro/Kwp).

Regarding the evolution of FITs, Berger�s forecasts are made from the
2011 EEG law, assuming that PV capacity stays between the lower forecast
(EEG1), corresponding to a situation where the objectives in terms of in-
stalled capacity are not reached, and the upper forecast (EEG2) that would
apply if the installed capacity remains below the target. The shape of the
FITs forecasted by our model decreases faster than the one provided by the
report (Figure 8). Berger�s results do not seem to take into account the
evolution of electricity prices that would make PV competitive before 2020.
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Figure 8: FITs forecast. Berger report and model simulations (euro/Kwh).

Di¤erent elements illustrate that simulations based on our di¤usion model
with a 4% learning rate describes the German PV deployment more ade-
quately than the Berger�s report, showing in particular grid parity for house-
hold in 2013 (2012 in simulations), with tari¤s ending in in 2017, as in the
model simulation.17

5 Conclusion

This paper develops a discrete choice approach which di¤ers from the stan-
dard ones as we endogenise all the NPV drivers for PV investment: tech-
nology di¤usion, learning rate and government subsidies. Based on that
model, we numerically solve a non-linear optimal control model, consisting
of the minimization of the total subsidies costs, for a given target of in-
stalled capacity. The model adequately describes the evolution of German
PV market during the 2000-2009 period and allows to simulate its develop-
ment until 2020. We identify three periods: a priming phase with strong
growth, a transition with a stable market and a mature phase with a re-
turn to growth. Moreover, to minimize costs to the taxpayer and the State,
we forecast that Germany FITs will reach the level of electricity prices for
households at the and of 2012 and should disappear as from 2017.

The model would gain accuracy with a �ner time step and the use of
an explicit Euler scheme. Our approach could also be re�ned by adding
�nancial terms in the discrete choice model to encompass gains from the
price di¤erential between conventional electricity and PV power. These
extensions are left for further research.
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6 Annex

6.1 Detailed costs, FITs and cumulated capacity: �rst sce-
nario, optimal policy.

Year Cumulative Capacity FITs Forward Looking
MW Euros/KWh Annual Cost

2001 61.10565394 1.33719 932,519,538.2
2002 1151.240813 0.804659 10,572,106,871
2003 2090.164893 0.557115 13,289,506,040
2004 2551.342982 0.40321 11,740,421,318
2005 2786.325298 0.293489 9,332,706,742
2006 2921.618557 0.208938 6,966,656,832
2007 3007.649705 0.180455 6,194,113,712
2008 2947.026329 0.124364 4,182,765,341
2009 2985.416758 0.075968 2,588,336,815
2010 3014.569524 0.033455 1,150,997,982
2011 3037.406223 3.30E-15 0.000114317
2012 3094.608816 3.85E-16 1.36053E-05
2013 3432.773382 1.48E-16 5.79562E-06
2014 3805.42991 9.34E-17 4.05557E-06
2015 4215.833155 1.19E-16 5.7401E-06
2016 4667.518911 1.76E-17 9.39474E-07
2017 5164.325913 2.45E-17 1.44433E-06
2018 5710.419236 1.46E-16 9.5089E-06
2019 6310.315312 0 0
2020 6968.609 0 0

Table A. Optimal Policy
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6.2 Detailed costs, FITs and cumulated capacity: second
scenario, constrained optimal policy.

Year Cumulative Capacity FITs Forward Looking
MW Euros/KWh Annual Cost

2001 61.10565 0.6 418,423,590.9
2002 139.9703 0.6 958,452,389.9
2003 272.7255 0.6 1,867,499,567
2004 521.4512 0.6 3,570,659,286
2005 978.5771 0.6 6,700,848,497
2006 1803.023 0.6 12,346,278,802
2007 3262.818 0.511372 19,042,014,965
2008 3832.256 0.388658 16,998,317,647
2009 4058.062 0.296152 13,715,682,493
2010 4197.52 0.222319 10,650,064,265
2011 4290.919 0.161076 7,887,962,289
2012 4357.34 0.108857 5,413,314,990
2013 4406.771 0.063404 3,188,750,079
2014 4444.879 0.0232 1,176,877,218
2015 4475.094 4.19E-18 0
2016 4667.519 1.07E-18 0
2017 5164.326 5.91E-19 0
2018 5710.419 3.96E-19 0
2019 6310.315 2.90E-19 0
2020 6968.909 9.30E-20 0

Table B. Constrained Optimal Policy
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6.3 Detailed costs, FITs and cumulated capacity: third sce-
nario, actual policy until 2009, optimal policy from 2010
to 2020.

Year Cumulative Capacity FITs Forward Looking
MW Euros/KWh Annual Cost

2001 61.10565394 0.5062 353,010,036.2
2002 1151.240813 0.481 579,708,157.7
2003 2090.164893 0.457 950,168,494.3
2004 2551.342982 0.582 1,998,560,175
2005 2786.325298 0.544 4,190,547,616
2006 2921.618557 0.518 6,200,879,702
2007 3007.649705 0.492 9,263,220,867
2008 2947.026329 0.4675 10,666,712,335
2009 2985.416758 0.4301 16,187,234,248
2010 3014.569524 0.38201 19,668,804,279
2011 3037.406223 0.291856 16,631,287,02
2012 3094.608816 0.21957 12,921,622,677
2013 3432.773382 0.159418 9,582,218,945
2014 3805.42991 0.108008 6,589,204,471
2015 4215.833155 0.063177 3,896,671,430
2016 4667.518911 0.023467 1,459,620,772
2017 5164.325913 8.26E-13 0.051729234
2018 5710.419236 1.58E-13 0.01026724
2019 6310.315312 9.47E-15 0.000681809
2020 6968.609 0 0

Table C. German Policy
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