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Abstract
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�rst choose a portfolio of call options with a spectrum of strike prices; then

they compete with supply functions under demand uncertainty. In equi-

librium �rms sell call options with low strike prices and buy call options

with high strike prices to commit to downward sloping supply functions in
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1 Introduction

The trade in commodity derivatives is widespread and trading volumes often sur-
pass that of the underlying commodities. Ideally derivatives markets can im-
prove market e�ciency as they allow �rms to manage risk and as they aggregate
distributed information across market agents. However, the e�ect of derivatives
speculation on the liquidity and variability of spot markets is a point of debate.1

Another issue is whether it is bene�cial for competition that strategic producers
use �nancial contracts as a commitment device (Allaz and Vila, 1993; Mahenc
and Salanié, 2004). We contribute to this discussion by showing that the type of
derivatives that producers use matters, especially if producers are not restricted
to compete with Cournot or Bertrand strategies in the spot market.

We show that in equilibrium, producers will use �nancial derivatives to commit
to a downward sloping supply function, i.e. to produce more when prices are low
and less when prices are high. The reason for doing so is that by committing to a
downward sloping supply function a �rm reduces the elasticity of its competitors'
residual demand curves (Figure 1). This induces its competitors to increase their
mark-ups in the spot market and to reduce total output. Such a soft response by
competitors is pro�table for the �rm. In equilibrium all �rms use a similar strategy.
A downward sloping aggregate supply will increase the volatility of the spot price
and can result in prices higher than the monopoly price; but anti-competitive
behaviour is mitigated by increased demand uncertainty.

In the paper, �rms use call option contracts as a commitment device. A call
option gives the buyer the right, but not the obligation, to procure one unit of
the good in the spot market from the seller at a predetermined price, the option's
strike price. Producers can commit to a supply function with a negative slope
by selling call options at low strike prices and buying call options at high strike
prices. Selling call options at a low strike price makes it costly for the �rm to
withhold capacity during low demand periods, while buying call options with a
high strike price, gives the producers an incentive to withhold capacity in high
demand periods, so as to receive additional income from the option contracts.
This trading strategy is called a bear call spread when traders use it to speculate
on a lower commodity price.

We generalize Allaz and Vila's (1993) analysis of strategic contracting of risk-
neutral producers by considering a general strategy space both at the contracting
stage and in the spot market. In the �rst stage, we allow producers to choose a
portfolio of call option contracts with a spectrum of strike prices, which is dis-
closed. In the second stage, �rms compete with supply functions in the spot
market under demand uncertainty as in Klemperer and Meyer (1989) and Green
and Newbery (1992). Thus we extend the model by Chao and Wilson (2005), who
consider the in�uence of exogenous option contracts on supply function competi-
tion in the spot market. As is common in the rest of the literature on strategic

1Cox and Ross (1976), Turnovsky (1983), and Korniotis (2009) argue that �nancial markets
stabilize commodity prices and that commodity prices are not drive by speculation but re�ect
underlying economic factors. Figlewski (1981), Hart and Kreps (1986), and Stein (1987) argue
that this is not the case.
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Figure 1: The e�ect of bidding upward and downward sloping supply functions
on a competitor's residual demand function and the equilibrium prices.

contracting, this paper focuses on short-run e�ects and disregard the relation be-
tween contracts, entry and investment decisions.2 We also assume that contract
positions are observable.3

The main results of our paper have some parallels in the literature on delega-
tion games. Singh and Vives (1984) and Cheng (1985) analyze a game where �rms
in the �rst-stage delegate decisions to a manager in order to commit to either a
Bertrand or Cournot strategy, and then compete with this strategy in the second
stage. In this game, �rms unilaterally prefer to play Cournot when demand is
certain. By committing to a Cournot strategy, the residual demand function of
competitors becomes less elastic which makes its competitors softer. They will set
a higher mark-up, which is bene�cial for the �rm. Reisinger and Ressner (2009)
show however that Bertrand is preferable for su�ciently high demand uncertain-
ties. Thus as in our model, �rms' preferred slope of their supply increases when
the demand uncertainty increases.

The structure of the paper is as follows. Section 2 summarizes the previous
literature. The model of strategic option contracting is introduced in Section 3
and we analyze it in Section 4. Section 5 concludes the paper.

2Newbery (1998) shows that producers may use contract sales to keep output high and spot
prices low to deter entry. Murphy and Smeers (2010) show that the impact of forward con-
tracts on competition is ambiguous once one endogenizes investment decisions. Argenton and
Willems (2010), show how �rms use standard forward contracts to exclude potential more e�-
cient entrants, and Petropoulos et al. (2010) show that �nancial contracts might also lead to
overinvestments by incumbent �rms, reducing the overall e�ciency of the market.

3For risk-neutral �rms, strategic contracting only materializes when contract positions are
observable (Hughes and Kao, 1997). Financial trading is anonymous in most markets, and a
�rm's contract positions are normally not revealed to competitors. Still competitors can get a
rough estimate of changes in the �rm's forward position by analyzing changes in the turnover
in the forward market and the forward price (Ferreira, 2006). Ferreira's theoretical argument is
also relevant in practice. As an example, even if individual contract positions are not disclosed
in the Dutch gas market, an empirical study by van Eijkel and Moraga-González's (2010) �nd
that �rms are able to infer competitors' positions and that contracts in the Dutch gas market
are used for strategic reasons rather than for hedging reasons.
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2 Literature review

Most models of strategic commitment in oligopolistic models can be analyzed in
the framework developed by Fudenberg and Tirole (1984) and Bulow et al., (1985).
A �rm will commit to a certain strategy if it softens the response of its competitors.
Firms are willing to commit to aggressive (tough) spot market bidding if it results
in a soft response from competitors, i.e. strategies are substitutes. On the other
hand, �rms are willing to commit to passive (soft) spot market bidding if this
results in a soft response from competitors.

The seminal paper on strategic forward contracting by Allaz and Vila (1993)
is an example of a game where strategies are substitutes. They analyze a two-
stage Cournot model of a homogeneous duopoly product market. The set-up
introduces a prisoners' dilemma for producers: Each strategic producer will use
forward contracts as a commitment device to commit the producer to a large
output4. This gives it a Stackelberg �rst-mover advantage, so that competitors
reduce their output. But when they all increase their forward sales, all producers
end up worse o�. As a result, competition is tougher on the spot market and
welfare is improved as compared to a situation without forward trading. Thus
endogenous contracting is pro-competitive when �rms compete with quantities.
The Allaz and Vila e�ect has also been con�rmed in experiments by Brandts et
al. (2008). However, introducing a forward market worsens competition when
strategies are complements, i.e. when an aggressive commitment results in an
aggressive spot market response from competitors. Mahenc and Salanié (2004)
analyze a market with di�erentiated goods and price competition, and show that
a commitment to low mark-ups, due to forward sales, is met with a tough response,
that is competitors also lower their mark-ups. To avoid the tough response, �rms
buy in the forward market (negative contracting) in order to soften competition
in the spot market. This increases mark-ups in the spot-market. Thus, forward
trading reduces social welfare when strategies are complements.

In a more generalized form of spot market competition, producers compete
with supply functions under demand uncertainty, as in the supply function equi-
librium (SFE) model (Klemperer and Meyer, 1989).The setting of the SFE model
is obviously well-suited for markets where producers sell their output in a uniform-
price auction, as in wholesale electricity markets (Anderson and Philpott, 2002b;
Baldick and Hogan, 2002; Green and Newbery, 1992; Holmberg and Newbery,
2010). Vives (2009) notes that competition in supply functions has also been used
to model bidding for government procurement contracts, management consult-
ing, airline pricing reservation systems, and provides a reduced form in strategic
agency and trade policy models. In addition, Klemperer and Meyer (1989) argue
that although most markets are not explicitly cleared by uniform-price auctions,
�rms typically face a uniform market price and they need predetermined decision
rules for its lower-level managers on how to deal with changing market conditions.

4The fact that selling forward contracts makes a strategic producer more interested in output
and less in mark-ups in the spot market, i.e. tough, has been established both empirically (Wolak,
2000; Bushnell et al., 2008) and theoretically (von der Fehr and Harbord, 1992; Newbery, 1998;
Green, 1999).
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Thus �rms actually commit to supply functions also in the general case.
Bertrand and Cournot competition can be seen as two extreme forms of sup-

ply function competition. Thus, it is not surprising that the competitive e�ects
of strategic forward contracting are ambiguous in supply function markets. New-
bery (1998) considers cases where the demand variation is bounded, so that the
market has multiple equilibria. He shows that the outcome depends on how �rms
coordinate their strategies in the spot market. Green (1999) shows that forward
contracting strategies are neutral (neither pro- nor anti-competitive) in markets
with linear marginal costs and linear demand if producers coordinate to linear
supply function equilibria. Holmberg (2011) considers a su�ciently wide support
of the demand shock density, so that the spot market has a unique equilibrium. He
shows that contracting strategies in markets with supply function competition are
substitutes (pro-competitive) when marginal costs are convex and residual demand
is concave and that the reverse is true when marginal costs are concave and resid-
ual demand is convex. Herrera-Dappe (2008) calculates asymmetric contracting
equilibria and in his setting forward trading will decrease welfare.5

The di�erence in our setting compared to previous studies of strategic con-
tracting, is that option contracting may have an impact on whether actions are
strategic complements or substitutes. Willems (2005) generalizes Allaz and Vila's
(1993) result by considering �rms that sell a bundle of option contracts. As in
Allaz and Vila (1993) a �rm can commit to be tough by selling more contracts.
However strategies are stronger strategic substitutes if option contracts are used,
the incentive to sell contracts is therefore increased, and the equilibrium is more
competitive. By being tough a �rm lowers the spot price, which reduces the
number of option contracts that are exercised by competitors.6 This softens the
competitors' actions more than with forward contracts. In addition, by selling
physical call options a �rm can commit to a positively sloped supply function in-
stead of playing Cournot. As this makes the competitors' residual demand more
elastic, it toughens their response. Actions become weaker strategic substitutes
or even complements. Hence, �rms will commit less or nothing at all. Therefore
the market becomes less competitive with physical options compared to �nancial
options. In our current paper we show that in a supply function model, the phys-
ical and the �nancial option contracts are equivalent, as both contracts a�ect the
slope of the o�er functions in the second stage. We also show that �rms prefer
contracting curves with a negative slope, so that the slope of competitors' residual
demand becomes less elastic.

Willems et al. (2009) give our theoretical result some empirical support. They
test what type of forward contracting is congruent with the observed data for the
German electricity market. They compare standard forward contracts and load

5Anderson and Xu (2005), Anderson and Hu (2008), Aromi (2007), Chao and Wilson (2005)
and Niu et al. (2005) have also analyzed how exogenously given forward or option contracts
in�uence supply function competition. But they do not analyze to what extent contracting is
strategically driven.

6A similar mechanism occurs for forward contracts, if there is imperfect arbitrage between
the forward and the spot market. In that case the �rms' contract sales in�uence the forward
price and therefore also its competitors' contract sales as in Green (1999) and Holmberg (2011).
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following contracts. With the load following contracts, the �rm has sold a set of
option contracts such that for each price level in the spot market, the same fraction
of output is hedged. The German data indicates that the pure forward contract
(the option contract with zero strike price) �ts the observed market outcomes
better than the load following contracts which imply a number of call options
with positive strike price being sold. This is in line with the predictions of our
paper. Firms do not have an incentive to sell option contracts with high strike
prices, but to buy those contracts.

3 Model

Producers' trading strategies in the electricity market are modeled as a subgame
perfect Nash equilibrium (SPNE) of a two-stage game. In the �rst stage, risk-
neutral producers commit by strategically choosing a portfolio of call option con-
tracts with a spectrum of strike prices. In the second stage �rms compete in the
spot market. Firms' contracting decisions are made simultaneously. Similar to
Allaz and Vila (1993) producers announce their contracting decisions; and risk-
neutral, non-strategic consumers ensure that the price of each option contract
rules out any arbitrage opportunities.7 We model the second stage spot market as
a uniform-price auction in which sellers simultaneously submit supply functions.
After these o�ers have been submitted, an additive demand shock is realized. The
distribution of the shock is common knowledge.

A physical call option gives the buyer the right, but not the obligation, to pro-
cure one unit of the good in the spot market from the seller at a predetermined
strike price r.8 In stage 1, �rm i ∈ {1, 2, ..., N} decides how many physical option
contracts to sell at each strike price. The decision is represented by the di�er-
entiable option distribution function Xi (r) : [0,∞) → R, the amount of option
contracts sold with a strike price equal to or below r. Firm i can decide to go
short (Xi(r) > 0) or long (Xi(r) < 0). We de�ne the option density function by
xi (r) = X ′i (r). We also introduce X−i (r) =

∑
j 6=iXj (r). Let σ (r) be the price

of an option with strike price r in the contracting market. Hence, a producer's
revenue from sales of call options in the contracting market is given by:

ˆ p

0

σ (r) · dXi (r) + σ (0) ·Xi (0) ,

where we have assumed that 0 and p are the lowest and highest prices in the
market, respectively. Xi(0) is the amount of sold forward contracts and σ (0) is
the forward price.

Each producer's supply decision in stage 2, the spot market, is represented by
a monotonic and di�erentiable net-supply function (output net of physical option
contracts) denoted by Si(p). Let S−i (p) =

∑
j 6=i Sj (p) be the aggregate net-supply

7This assumption is used in most studies of strategic contracting, e.g. Allaz and Vila (1993)
and Newbery (1998).

8As in Chao and Wilson (2005), option contracts are physical in our model speci�cation, but
we also show that the results under �nancial contracts are identical.
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function of all �rms, except �rm i. The total output function of �rm i after stage
2 is equal to Qi(p) := Si(p) +Xi (p). We let Q−i (p) :=

∑
j 6=iQj (p).

As in Klemperer and Meyer (1989), the electricity demand D(p, ε) is realized
after o�ers to the spot market have been submitted. The demand function is
di�erentiable and depends on the spot price p and is subject to an exogenous
additive shock, ε. Hence,

D(p, ε) = D(p) + ε. (1)

Conditional on the symmetric information available to consumers and producers
in stage 1, the shock density and the probability distribution are denoted by f(ε)
and F (ε), respectively. The shock density has support on [0, ε] and on this interval
we assume that f(ε) > 0. As long as the net-supply of each �rm is optimal ex-post
(after the shock has been realized), the probability distribution of the shock has
itself no in�uence on optimal bidding in the spot market. However, the distribution
function will have an impact on the contract prices, and contracting positions that
the �rms take.

Due to uncertainties in the demand curve, �rms face an unknown residual
demand curve in the spot market. The additive demand shock will shift the
residual demand curve of �rm i horizontally, so residual demand curves do not cross
each other. As in Anderson and Philpott (2002a), we use the market distribution
function ψi(p, s) to characterize the residual demand curves.9 For given o�ers of
the competitors this function returns the probability that an o�er (p, s) from �rm
i is rejected. In our setting this implies that

ψi(p, s) = F (Q−i (p) +Xi(p) + s−D (p)︸ ︷︷ ︸
ε

). (2)

Note that ε and ψi are constant along each realized residual demand curve.
The market clearing price in the spot market is for any given demand shock,

ε, de�ned implicitly by the market clearing condition: aggregate supply should be
equal to total demand. The price function P (ε) maps the demand shock ε, to the
market equilibrium price p.

P (ε) : ε 7→ p :
N∑
i=1

Qi (p) = D(p) + ε.

To guarantee existence of an equilibrium price, we assume as in Klemperer and
Meyer (1989) that all agent's pro�ts will be zero if the market does not clear.

A producer's revenue from selling in the spot market is given by:

P (ε) · Si (P (ε)) .

All call options that are in the money will be exercised (i.e. those with a strike
price r below the spot market price P (ε)). Thus for a shock outcome ε, producer
i receives an additional revenue �ow due to the exercise of options

9Anderson and Philpott's method is more general (it is not necessarily restricted to additive
demand shocks) than the approach used by Klemperer and Meyer (1989). In our case Anderson
and Philpott's method simpli�es the proof of ex-post optimality of the net-supply curves.
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ˆ P (ε)

0

r · dXi (r) .

Firm i ∈ {1, 2, ..., N} has a cost function, Ci(·), which is common knowledge,
increasing, convex and twice continuously di�erentiable. There are no capacity
constraints. Thus the total production cost for �rm i when shock ε is realized is
given by10

Ci(Qi(P (ε))).

In stage 1, �rm i's expected pro�t from trading in the contract and the spot
markets is equal to the sum of contract revenue, expected spot market revenue, and
expected revenue from exercised option contracts, minus the expected production
cost:

Eε [πi (ε)] =

ˆ p

0

σ (r) · dXi (r) + σ (0)Xi (0) + Eε [P (ε) · Si (P (ε))]

+Eε

[ˆ p(ε)

0

r · dXi(r)

]
− Eε [Ci(Qi (P (ε)))] . (3)

Risk-neutral, non-strategic consumers trade in the contract market and ensure
that the following non-arbitrage condition is satis�ed for each strike price r.

∀r : σ (r) = Eε [min (P (ε)− r, 0)] . (4)

Hence, the price of the option σ should equal the expected savings for consumers,
which are able to obtain the good at the strike price r instead of paying the spot
price P (ε).

4 Analysis

The subgame perfect Nash equilibrium of the game with strategic contracting is
solved by backward induction. Sequentially rational spot market bids in stage 2
are analyzed in Section 4.1. In Section 4.2, we rely on non-arbitrage conditions to
derive the expected pro�t in stage 1 given the contracting position of �rms. We
can then derive conditions for optimal contracting in stage 1 in Section 4.3.

4.1 The spot market

In the last stage of the game, producers observe/infer competitors' portfolio of
option contracts and then submit net-supply function o�ers to the uniform-price
auction of the spot market. In the subgame equilibrium of the spot market, each
�rm i chooses its net-supply function Si(p) to maximize the �rm's expected pro�t

10Note that we solve the �rst stage of the game for general cost functions, but restrict ourselves
to zero costs once we solve the �rst stage equilibrium.
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given the competitors' spot market bids S−i(p). We rewrite the pay-o� in (3) to
emphasize that the revenue from sold contracts is now sunk.11

πi (p, s) =

ˆ p

0

σ (r) dXi(r) + σ (0)Xi (0)︸ ︷︷ ︸
Sunk in second stage

+

ˆ p

0

rdXi(r) (5)

+ p s︸︷︷︸
Spot Revenue

− Ci [Xi (p) + s]︸ ︷︷ ︸
Production Cost

.

A �rm chooses its bidfunction Si(p) to maximize its expected pro�t which can be
written as the following line integral (Anderson and Philpott, 2002a):

max
Si(p)

ˆ
Si(p)

πi(p, s)dψi(p, s). (6)

Proposition 1 12 If the �rst order derivatives of πi and the second order deriva-
tives of ψi exist, and Si(p) is di�erentiable solution of the program in Equation
6, then for all points on the function Si(p), the residual demand function and the
iso-pro�t functions are tangent, i.e. ∀(s, p) such that s = Si(p),

∂πi
∂s
· ∂ψi
∂p
− ∂πi

∂p
· ∂ψi
∂s

= 0. (7)

Proof. We can rewrite equation 6 as

max
S(p)

ˆ p

0

πi(p, S(p)) ·
[
∂ψi
∂s

(p, S(p)) · S ′(p) +
∂ψi
∂p

(p, S(p))

]
︸ ︷︷ ︸

L(p,S(p),S′(p))

dp.

Next we use the Euler equation ∂L
∂S
− d

dp
( ∂L
∂S′

) = 0, and

∂L

∂S
= S ′

[
∂πi
∂s

∂ψi
∂s

+ πi
∂2ψi
∂s2

]
+

[
∂πi
∂s

∂ψi
∂p

+ πi
∂2ψi
∂s∂p

]
.

d

dp

(
∂L

∂S ′

)
= S ′

[
∂πi
∂s

∂ψi
∂s

+ πi
∂2ψi
∂s2

]
+

[
∂πi
∂p

∂ψi
∂s

+ πi
∂2ψi
∂s∂p

]
11Note that the pay-o� is identical for �nancial contracts. With such contracts all physical

sales take place in the spot market, but on the other hand the producer has to pay the insurance
(p− r)Xi (p) to the counter-parties of the contracts that are in the money. Thus

πi (p, s) =

ˆ p

0

σ (r) dXi(r) + σ (0)Xi (0)︸ ︷︷ ︸
Sunk in second stage

−
ˆ p

0

max{p− r, 0}dXi(r)− pXi (0)︸ ︷︷ ︸
Insurance Payment

+ p (Xi(p) + s)︸ ︷︷ ︸
Spot Revenue

− Ci [Xi (p) + s]︸ ︷︷ ︸
Production Cost

,

which gives an identical pay-o�.
12This is the same �rst-order condition as derived for uncontracted �rms by Anderson and

Philpott (2002a)
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to derive the necessary �rst order condition. This is possible as the �rst order
derivatives of πi and the second order derivatives of ψi exist. Simplifying the Euler
equation gives immediately equation 7.

In our setting, the residual demand of �rm i, D (p) + ε − Q−i (p) − Xi(p),
is a function of the price and the demand shock is additive. Thus the possible
realizations of the residual demand curve never cross each-other. Hence, ψi (p, s)
is constant along any realized residual demand curve, and each contour of ψi (p, s)
corresponds to a realization of the residual demand curve. Thus the net-supply
curve Si (p) is ex-post optimal and it crosses each residual demand curve at a point
where the latter is tangent to the �rm's iso-pro�t line as in Fig. 2.

From (2) and (5) we have

∂ψi
∂s

= f(Q−i (p) +Xi(p) + s−D (p)) (8)

∂ψi
∂p

=
[
Q′−i(p) +X ′i(p)−D′(p)

]
· f(Q−i (p) +Xi(p) + s−D (p)) (9)

∂πi
∂s

= p− C ′i(Xi(p) + s) (10)

∂πi
∂p

= s+X ′i(p) · [p− C ′i(Xi(p) + s)] (11)

We can use equations (8-11) and (7) to derive a generalized version of the �rst-
order condition in Klemperer and Meyer (1989) that considers contracts:

∀i : Si (p) + [p− C ′i (Qi(p))]
[
D′ (p)−Q′−i (p)

]
= 0. (12)

The equation in (12) can be rewritten as follows

p− C ′i (Qi)

p
=
−Si/p

∂D
∂p
− ∂Q−i

∂p

= − 1

εResidual Demand
.

An intuitive interpretation of the Klemperer-Meyer condition is that each producer
acts as a monopolist with respect to its residual demand curve (net of option
contracts) for each shock outcome and the optimal price of a producer is given by
the inverse elasticity rule (Tirole, 1988) for each shock outcome.

The following de�nition provides the notation for solutions to the system of
ordinary di�erential equations (ODE).

De�nition 2 The tuple
{
Ši(p)

}N
i=1

= (Š1(p), ..., Ši(p), ..., ŠN(p)) is an ODE so-

lution of the second stage game, if each bid function Ši(p) is a continuously dif-
ferentiable function on the price interval [0, p), and the bid functions solve jointly
the system of the ordinary di�erential equations (12).

By de�nition an ODE solution satis�es the necessary �rst-order condition of a
local pro�t maximum. To ensure that the solution is also a global pro�t maximum

10
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ex-post optimal net-supply curves.

we need to verify a global second-order condition. The proposition below states
that the ODE solution is a subgame equilibrium if the spot supply functions Ši(p)
are monotonic and in the shaded area in Figure 2.13

Proposition 3 The ODE solution
{
Ši(p)

}N
i=1

constitutes an SFE in the second-
stage, if for each �rm i ∈ {1, . . . , N} the spot market sales are non-negative
Ši(p) ≥ 0, strictly monotonic Š ′i(p) > 0, and the spot price is not below the
marginal cost of production p ≥ C ′i

(
Xi(p) + Ši(p)

)
.

Proof. Consider an arbitrary �rm i. It takes its own contract position as
given and assumes that its competitors bid Š−i(p) as net-supply. We prove that
bidding Ši(p) is pro�t maximizing for �rm i.

It is never pro�table to sell in the spot market at prices below marginal cost.
Hence spot prices need to be above marginal costs, and from (2) it follows that
∂ψi
∂s

> 0. Hence Ši(p) is the best response to Š−i(p) when each iso-pro�t curve π∗

is (weakly) to the right of the residual demand curve ψ∗ to which it is tangent.
This can be seen in Figure 3. We prove this by looking at the horizontal distance
between the iso-pro�t and the residual demand function.

At each point
(
p∗, Ši(p

∗)
)
there is an iso-pro�t line and a residual demand

function which are tangent. The property ∂πi
∂s

> 0 implies that the iso-pro�t line
passing through this point can be written as a function of the price, sπi (p; π∗i ). Sim-
ilarly, the residual demand curves can be written as a function of price sψi (p;ψ∗).
De�ne γ(p) as the di�erence between those curves γ (p) := sπi (p, π∗i )− s

ψ
i (p, ψ∗).

See Figure 3. We now prove γ(p) ≥ 0 for all p 6= p∗, which ensures that the
iso-pro�t curve is (weakly) to the right of the residual demand curve. We do this
be showing that γ (p) is pseudo-convex, i.e. γ′ (p) ≤ 0 if p ≤ p∗ and γ′ (p) ≥ 0 if
p ≥ p∗. We will use the fact that Š−i(p

∗) is an ODE-solution to prove this. From

13The proof generalizes Holmberg et al. (2008) for spot markets without contracting.
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Figure 3: Second-stage pro�t optimization.

(8), (10), and (12) we have that

γ′ (p) = − sπi +X′i(p)·[p−C′i(Xi(p)+sπi )]
p−C′i(Xi(p)+sπi )

+ Q̌′−i(p) +X ′i(p)−D′(p)

= Ši(p)

p−C′i(Xi(p)+Ši(p))
− sπi (p,π∗i )

p−C′i(Xi(p)+sπi (p,π∗i ))
.

Thus γ (p) has the desired property when Ši (p) ≥ sπi (p, π∗i ) for p ≥ p∗ and Ši (p) ≤
sπi (p, π∗i ) for p ≤ p∗. In Figure 3 this implies that the iso-pro�t line should be left
of Ši (p) for prices above p∗, and to the right for prices below. The curves have
this property near p∗ as Š ′i (p) > 0 and as sπi (p, π∗i ) is perpendicular to Ši (p) at
p∗. Finally, we realize that sπi (p, π∗i ) cannot cross Ši (p) at prices other than p∗,
because sπi (p, π∗i ) would need to be perpendicular to the strictly monotonic curve
Ši (p) at such crossings as well, but sπi (p, π∗i ) cannot have this shape as it is a
function of the price. Thus we have proven that Ši (p

∗) is the best response for
the shock outcome ε∗. We can use the same argument for all shocks and all �rms
and we can conclude that the ODE solution is a Nash equilibrium.

The following proposition shows if �rms are identical and hold identical con-
tract positions then, under certain conditions, bidding in the second stage will be
symmetric. We will use this proposition later to uniquely de�ne market outcomes.

Proposition 4 Consider a market where N producers have symmetric costs C (q)
and hold symmetric di�erentiable contract positions X (p). If there exists a price
p∗ such that p∗ = C ′ (X (p∗)) and ε + D (p∗) ≤ NX (p∗) < ε + D (p∗), then there
is no asymmetric ODE solution that could constitute an SFE.

Proof. Note that (12) can be written as:

Si (p) + [p− c′ (Si(p))]
[
d′ (p)− S ′−i (p)

]
= 0. (13)

if we introduce the variables d′ (p) := D′ (p) − (N − 1)X ′ (p) and c′ (Si(p)) :=
C ′ (X (p) + Si(p)).
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We now can use a similar argument as in Proposition 3 by Klemperer and
Meyer (1989), but have to generalize their claim to an N �rms setting. To achieve
this we rewrite the di�erential equation above on the standard form:14

S ′i(p) =
d′(p)

N − 1
− Si(p)

p− c′(Si(p))
+

1

N − 1

N∑
k=1

Sk(p)

p− c′(Sk(p))
. (14)

Step 1 First we analyze the case where no �rm produces at price p∗, hence
output is symmetric and zero at this price level Si (p

∗) = 0 for i = 1, . . . , N . As
in Klemperer and Meyer (1989), we prove that solutions that are symmetric at
p∗ are also symmetric for larger price levels. Make the contradictory assumption
that solutions become asymmetric. Without loss of generality we assume that
�rm 1 has the highest net-supply and �rm 2 has the lowest net-supply at some
price p̃ > p∗, i.e. S2 (p̃) ≤ Si (p̃) ≤ S1 (p̃) and S2 (p̃) < S1 (p̃). Subtracting KM
equations in (14) for di�erentiable net-supply o�ers from �rm 1 and �rm 2 yields:

S ′1(p)− S ′2(p) =
S2(p)

p− c′(S2(p))
− S1(p)

p− c′(S1(p))
.

But this would imply that S ′1(p) < S ′2(p) whenever S1(p) > S2(p), which is
inconsistent with S1 (p∗) = S2 (p∗) = 0 and the asymmetry supposition that
S2 (p̃) < S1 (p̃) for some p̃ > p∗.

Step 2 Thus the only remaining asymmetric alternative is when Si (p
∗) 6= 0

for some �rm(s). We now show that this is impossible. In case Si (p
∗) > 0 and

c′(Si (p
∗)) > p∗, this would imply that �rm i is sometimes selling below marginal

cost, so there is a pro�table deviation for �rm i. Similarly, we can rule out cases for
which Si (p

∗) < 0 and c′(Si (p
∗)) < p∗. If Si (p

∗) 6= 0, and c′(Si (p
∗)) = p∗,15 then

this would according to (14) imply that at least some of the supply functions are
not di�erentiable at p∗. Thus they are not ODE solutions according to De�nition
1, and we can rule out that asymmetric ODE solutions can constitute SFE.

4.2 First Period Pro�t function under perfect arbitrage

The no-arbitrage condition (4) is an identity, which is true for any contracting
choices of the producers. By reversing the order of integration and using the

14Baldick and Hogan (2002) show how the Klemperer and Meyer equations for uncontracted
�rms can be written in the standard form for N �rms.

15This can occur if c′(Q) is constant for low levels of production.
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arbitrage condition, we can rewrite the contracting revenue of �rm i:

ˆ p

0

σ (r) · dXi (r) + σ(0) ·Xi(0) (15)

=

ˆ p

0

Eε [min (P (ε)− r, 0)] · dXi (r) + Eε [P (ε)] ·Xi (0)

= Eε

[ˆ P (ε)

0

(P (ε)− r) · dXi (r) + P (ε) ·Xi (0)

]

= Eε [P (ε) ·Xi(P (ε))]− Eε

[ˆ P (ε)

0

r · dXi (r)

]
.

This expression shows that under perfect arbitrage the contracting revenue is equal
to the expected revenue that the �rm forgoes by not selling its output directly
into the spot market, minus the expected revenue that the �rm receives from the
exercised options. Substituting the expected contract revenue (15) in the pay-o�
(3) and simplifying we obtain:

Eε [πi (ε)] = Eε [P (ε) ·Qi(P (ε))− Ci(Qi(P (ε)))] , (16)

where we use the fact that Qi(p) = Si(p) + Xi(p). Thus �rm i's pay-o� does
not depend on the contract position directly, but the �rm will decide its contract
level in stage 1 for strategic reasons. By selling more or less contracts (Xi), it can
strategically change the price it might be able to charge in the spot market (P )
or a�ect its output (Qi).

4.3 Strategic contracting

The next step is to determine the option contracts that �rm 1 will sell in stage
1 to maximize its pro�t. It will do so taking into account the option sales of its
competitors and how contracts in�uence the equilibrium that will be played in
the sub-game. Its stage 1 pro�t is given by (16) pQ1(p) − C1 (Q1(p)). The spot
price is determined by the subgame equilibrium of the second stage satisfying (12).
Moreover, clearing of the spot market requires that spot demand must equal spot
supply. For simplicity we assume further that costs are set to zero Ci(Qi) ≡ 0.
Thus �rm 1's optimal contracting level is determined by the following optimization
problem.

max

ˆ p

0

p ·Q1(p) · f (ε (p)) · u(p) dp︸ ︷︷ ︸
dε

. (17)

s.t.

 ∀i ∈ {1, . . . , N} :
∑

j 6=iQ
′
j(p) = D′(p) + Qi(p)−Xi(p)

p

ε′ = u(p)
D (p) + ε(p) =

∑
i Qi (p)

Note that in the constraints of the optimal control problem we have replaced
net-supply Si (p) in the Klemperer and Meyer equation by Qi(p) − Xi(p). In
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equilibrium, �rm 1 takes other �rms' contracting decisions {Xi(p) : i 6= 1} as
given. In the optimal control problem, X1(p) only appears in the �rst constraint if
i = 1. This implies that this constraint is never going to be binding, as �rm 1 can
freely choose X1(p) to satisfy this equation without in�uencing other constraints
or the objective function. In the objective function and in the second and third
constraints, competitors' total output matters, but not how it is divided between
these �rms. For cases i 6= 1, we can therefore sum up the remaining (N − 1)
equations of the �rst constraint into one constraint. Using that F (ε) = 1 and
integration by parts we can now rewrite the dynamic optimization problem as
follows:

max

ˆ p

0

(pQ1)′ [1− F (ε)] dp (18)

subject to

(N − 1)pQ′1 + (N − 2)pQ′−1 = (N − 1)pD′ +Q−1 −X−1 (19)

Q−1 +Q1 = D + ε, (20)

where, as before, the subscript −i refers to the sum of a variable over all �rms,
excluding �rm i. Thus �rm 1's expected pro�t is given by the integral of its
marginal pro�t ∂

∂p
(pQ1(p)) at price p, weighted by 1 − F (ε(p)), the probability

that the realized price is larger than p, and this also makes sense intuitively.
The Proposition below states an equation from which �rm's optimal contract-

ing can be calculated. Note that d
dε

(
1−F (ε)
f(ε)

)
≤ 1

N−1
is a fairly non-restrictive

condition, as it is satis�ed for all probability distributions with a decreasing in-
verse hazard rate, which is equivalent to an increasing hazard rate. This includes
most probability distributions that one encounters in practice, such as the normal
distribution, and the uniform-distribution.

Proposition 5 Di�erentiable solutions to the dynamic optimization problem de-
�ned by (18), (19) and (20) are symmetric and satisfy the equations

1− F (NQ−D)

f(NQ−D)
=

1

N − 1

[
(N − 1)2(pQ)′ − (N − 2) (NQ+ pD′)

]
(21)

X = −p (N − 1)Q′ + pD′ +Q.

Provided that competitors' contract Xi(p) = X (p) for i 6= 1, �rm 1 globally maxi-

mizes its expected pro�t by also choosing X1(p) = X (p) if and only if d
dε

(
1−F (ε)
f(ε)

)
≤

1
N−1

for ∀ε ∈ [ε, ε].

Proof. Step 1 We �rst simplify the dynamic optimization problem by rewrit-
ing the constraints and then substitute them into the objective function. By
adding the constraint (19) and N − 1 times constraint (20) we get the following:

(N − 1)(pQ1)′ = (N − 1) (pD)′ −X−1 + (N − 1)ε− (N − 2)(pQ−1)′. (22)

We use the identity in equation (20) to write (pQ−1)′ as a function of (pQ1)′.

(pQ−1)′ = (pD)′ + (pε)′ − (pQ1)′,
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which we can substitute into (22), to give an expression for the marginal pro�t
(pQ1)′

(pQ1)′ = (pD)′ −X−1 + ε− (N − 2) · p · ε′.
Substituting this marginal pro�t into the objective function in (18) gives the
following optimization problem:

max

ˆ p

0

{(pD)′ −X−1︸ ︷︷ ︸
h1(p)

+ ε− (N − 2) · p · ε′} [1− F (ε)] dp. (23)

Step 2 We now derive the �rst order conditions of the optimal solution by
applying integration by parts to the last term of the integrand. First we rewrite
(23) as the sum of two integrals:

max

ˆ p

0

{h1(p) + ε} [1− F (ε)] dp − (N − 2)

ˆ p

0

p · (G(ε)−G (ε))′dp,

where G(ε) =
´ ε

0
(1− F (t))dt. Note that (G (ε))′ is zero. The second term can be

rewritten using integration by parts:

max

ˆ p

0

{[h1(p) + ε] [1− F (ε)] + (N − 2) (G(ε)−G (ε))}︸ ︷︷ ︸
θ(p,ε)

dp.

This function only depends on ε (p), and we can maximize the integral by maxi-
mizing θ (p, ε) for each p.

∂θ (p, ε)

∂ε
= (N − 1) (1− F (ε (p)))− (h1(p) + ε (p)) f (ε (p)) (24)

= f (ε (p)) ·
[

(N − 1) (1− F (ε (p)))

f (ε (p))
− (h1(p) + ε (p))

]
.

Thus the �rst order condition of this optimization problem is:

[1− F (ε)] (N − 1)

f(ε)
− [h1(p) + ε] = 0. (25)

Step 3 We want to know under what circumstances solutions to this condition
globally maximizes pro�ts. Let ε̃ (p) be a solution to this equation for a given

contracting choice of the competitors, X−1 (p). We see from (24) that ∂θ(p,ε)
∂ε

has the

same sign as (N−1)(1−F (ε(p)))
f(ε(p))

− (h1 (p) + ε (p)). Thus provided that d
dε

(
1−F (ε)
f(ε)

)
≤

1
N−1

we realize that for all price levels p:

(1− F (ε)) (N − 1)

f (ε)
− (h1 (p) + ε)

≤ 0 if ε > ε̃ (p)
= 0 if ε = ε̃ (p)
≥ 0 if ε < ε̃ (p) .

Accordingly, ε̃ (p) globally maximizes θ at each price if d
dε

(
1−F (ε)
f(ε)

)
≤ 1

N−1
. But if

this condition on the inverse hazard rate is violated at some ε∗ ∈ [ε, ε] then ε̃ (·)
will be at a pro�t minimum at the price level where ε̃ (p) = ε∗.
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Step 4. The next step is to verify that solutions must be symmetric to our
problem. In an equilibrium where all �rms choose contracting optimally, equations
corresponding to (25) must be simultaneously satis�ed for all �rms. This is only
possible if ∀i, h (p) = hi (p). Thus it follows from the de�nition of hi (p) in (23)
that contracting must be symmetric in equilibrium, i.e. X (p) = Xi (p).

Step 5. Finally we rewrite the �rst order condition in (25), which is a function
of ε(p), to derive a relation that can be used to determine the optimal output that
�rms commit to in equilibrium. Substituting the de�nition of h1(p) in (23) into
(25) we �nd:

[1− F (ε)] (N − 1)

f(ε)
− [(pD)′ −X−1 + ε] = 0. (26)

As �rms costs and their contracting positions are symmetric, it follows from Propo-
sition 4 that di�erentiable net-supply o�ers to the spot market are symmetric as
well. In a symmetric equilibrium it follows from the constraints in (22) and (20)
that:

Q = Qi = {D + ε} /N
X = Xi = (p ·D)′ + ε− (N − 1)(pQ)′.

Equation (26) can now be written as a function of Q, using the last two expressions
and eliminating ε.

1− F (NQ−D)

f(NQ−D)
=

1

N − 1

[
(N − 1)2(pQ)′ − (N − 2) (NQ+ pD′)

]
.

Before presenting analytical solutions for contracting in equilibrium, we will
have a brief look at the residual demand function that �rm 1 faces to get some
intuition. We get the residual demand by summing the constraints (19) and (20):

Q1 = D + ε︸ ︷︷ ︸
I

−X−1︸︷︷︸
II

− (N − 1) p |D′|︸ ︷︷ ︸
III

− (N − 1)Q′1p︸ ︷︷ ︸
IV

− (N − 2)pQ′−1︸ ︷︷ ︸
V

(27)

The �rst term is the demand function for di�erent realizations of ε. The other
terms correspond to the output of the competitors. II is the production that
other �rms have sold in the contract market. It corresponds to the Stackelberg
e�ect. By being �rst movers, competitors can reduce the residual demand of �rm
1. Competitors' net-sales in the spot market are proportional to the slope of their
residual demand, which explains terms III and IV . If �rm 1's bid function is
�atter (Q′1 is large), the competitors will act more aggressively (and the residual
demand that �rm 1 faces decreases). Term V is an interaction e�ect between
competitors of �rm 1. If one competitor sets a �atter supply function, then other
competitors will be more competitive as well, and the residual demand that �rm
1 faces decreases.

It follows from (27) that it is going to be 'costly', either in terms of a reduced
quantity or a reduced price, to set a positive slope Q′1 > 0, because it makes
competitors' residual demand curves more elastic, which increases their output.
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Thus we would intuitively expect that �rm 1 would �nd it optimal to keep this
slope relatively small or even negative. To achieve this and still sell a signi�cant
amount, it will be optimal to o�er a relatively large quantity at p = 0 and then
to keep output fairly inelastic or even backward bending in the whole price range.
This is con�rmed by the result below, which we derive for demand shocks that are
Pareto distributed of the second-order (Holmberg, 2009), so that 1−F (ε)

f(ε)
= αε+ β.

This is a family of probability distributions with a wide range of properties. For
example, we note that α = 0 gives the exponential distribution and α = −1
corresponds to uniformly distributed demand.

Proposition 6 If the demand function D(p) = −D1p is linear with D1 > 0 and

demand shocks are Pareto distributed of the second-order, so that 1−F (ε)
f(ε)

= αε+ β

and f (ε) = β1/α (αε+ β)−1/α−1for ε > 0, where β > 0 and α ∈
(
−∞, 1

(N−1)N

)
,

then

Q(p) =
β (N − 1)

1− α (N − 1)N
+

α (N − 1)− (N − 2)

1− α (N − 1)N + (N − 1)2
D1p

X(p) =
β (N − 1)

1− α (N − 1)N
+

2α (N − 1)− 2N + 2

1− α (N − 1)N + (N − 1)2
D1p

is a unique solution to (21), and it is a SPNE.

Proof. When demand shocks are Pareto distributed of the second-order, we
can simplify equation (21) as follows:16

(N − 1) [α (NQ+D1p) + β] = Q+ (N − 1)2pQ′ + (N − 2) pD1

This equation can be rewritten in the form

aQ+ pQ′ = g(p) (28)

with

a =
1− α (N − 1)N

(N − 1)2

and

g(p) =
β

N − 1
+
α (N − 1)− (N − 2)

(N − 1)2
pD1.

We multiply both sides of (28) with the integrating factor pa−1 and then integrate
both sides. As long as a > 0 or equivalently α < 1

(N−1)N
, we have that paQ (p) is

zero at p = 0, so

Q(p) = p−a
ˆ p

0

g(t)ta−1dt

=
β

a (N − 1)
+
α (N − 1)− (N − 2)

(a+ 1) (N − 1)2
D1p.

=
β (N − 1)

1− α (N − 1)N
+

α (N − 1)− (N − 2)

1− α (N − 1)N + (N − 1)2
D1p. (29)

16Note that we use the fact that (N − 1)2(pQ)′ = (N − 1)2pQ′ +Q+ (N − 2)NQ
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We have from Proposition 5 that the contract level of the �rm is given by the
following expression:

X(p) = Q(p)− ((N − 1)Q′(p)−D′(p)) · p

=
β (N − 1)

1− α (N − 1)N

+
(2−N)α (N − 1) + (N − 2)2 − 1 + α (N − 1)N − (N − 1)2

1− α (N − 1)N + (N − 1)2
D1p

=
β (N − 1)

1− α (N − 1)N
+

2α (N − 1)− 2N + 2

1− α (N − 1)N + (N − 1)2
D1p.

Now we want to check whether this solution is also a SPNE. It follows from Propo-
sition 5 that this solution (globally) maximizes each �rm's contracting decisions

as, d
dε

(
1−F (ε)
f(ε)

)
= α < 1

N−1
. Thus according to Proposition 3 it also constitutes a

Nash equilibrium as mark-ups are positive and

S(p) = Q (p)−X (p) =
α (N − 1)− (N − 2)− 2α (N − 1) + 2N − 2

1− α (N − 1)N + (N − 1)2
D1p

=
−α (N − 1) +N

1− α (N − 1)N + (N − 1)2
D1p

is positive and has a positive slope, because D1 > 0 and α (N − 1)N < 1. Ac-
cordingly Q(p) is sub-game perfect.

Hence, when demand is linear, the contracting and output functions are also
linear for a Pareto distribution of the second order. The net-supply is up-ward
sloping, but the contracting function is backward bending; producers sell forward
contracts and buy call options for strike prices above zero. The output function
is also backward bending for N > 2 or when α < 0. Hence �rms produce less,
although the demand shock increases. As a result prices increase steeply as de-
mand shocks increases. Even in the alternative case where total output is forward
bending (duopoly N = 2 and α ≥ 0) , the total output curve is still very steep.
That is, the slope of the total output as a function of price is less than |D′|. This
is lower than in the monopoly case without contracting, where the optimal output
equals p |D′|. 17

It follows from Proposition 6 that Q′ (p) becomes less negative when α in-
creases, which corresponds to a higher demand uncertainty.18 This uncertainty mit-
igates the anti-competitive consequences of contracts, but in some cases (N > 2)
total supply is backward bending also for the highest demand uncertainty that we
consider α = 1

(N−1)N
. Demand becomes certain in the other limit when α→ −∞.

17Moreover, α ≥ 0 implies that the support of the probability density is in�nite (Holmberg,
2009). Hence, there exist high prices for which, total output in an oligopoly market with con-
tracting is lower than the monopoly output without contracting.

18For α ≤ 0, the demand shock range is
[
0, β|α|

]
, so a less negative α increases the range of

demand shocks. For α ≥ 0, a larger α increases the thickness of the tail of the demand density
(Holmberg, 2009).
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Figure 4: Total contracting and output for the SPNE of a duopoly market with
uniformly distributed demand.

In this limit we have Q (p) → −|D′|p
N

, which is less than the monopoly output.
Thus for su�ciently small α, social welfare is lower than in a monopoly market
without contracts.

It is also straightforward to verify that total contracting in the market at price
p = 0, increases with the number of �rms. This ensures that the market becomes
more competitive for low shock outcomes. However, the total output function will
bend backwards more, as the number of �rms increase. NQ′ (p) decreases with
more �rms in the market. Thus for α ≥ 0 (when the support of the shock density
is in�nite) the market will be less competitive for the highest shock outcomes if
there are more �rms in the market. Hence, our �nding that �rms have incentives
to use option contracts to commit to fairly inelastic or even a backward bending
output, becomes more apparent in markets with more �rms. We can explain this
with the interaction e�ect between competitors in (27). If one competitor sets a
�atter supply function, then other competitors will be more competitive as well.
Thus the payo� of having an inelastic or even backward bending output is greater
in markets with more competitors.

5 Conclusion

Option contracts are very useful to hedge the risk of agents. However, in an
oligopoly market they will also be used strategically by producers. Solving for
a subgame perfect Nash equilibrium of a two-stage game with contracting and
then spot market competition, we show that the strategic interaction implies that
risk-neutral producers sell call option contracts at low strike prices and buy them
at high strike prices. This trading strategy is called a bear call spread. Traders
use it when speculating on a lower commodity price, but it also commits strategic
�rms to a fairly inelastic or even backward bending supply function in the spot
market. This makes competitors' residual demand less elastic, so their mark-ups
are high and the strategic �rm can increase its pro�t at competitors' expense.

We show that the anti-competitive e�ects of strategic option contracting are
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most apparent when the number of �rms is large and demand uncertainty is small.
When demand uncertainty is small, strategic contracting results in spot prices
higher than the monopoly price, which hurt both producers and consumers. When
demand uncertainty becomes larger, it is optimal for �rms to o�er supply functions
that have a less negative slope, as this allows them to bene�t more from high
demand realizations. Thus to avoid the anti-competitive e�ect of speculation, this
suggests that option contracts should not be traded near delivery when �rms have
a good estimate of demand in the spot market. When more �rms are active in
the market, competition is improved for low demand realizations, but speculative
strategic behavior for high demand realizations o�sets this e�ect. As the number
of �rms increases a strategic interaction e�ect between competitors kicks in: If
a negative supply slope induces a competitor to choose a less competitive supply
function with a less positive slope, then this response will induce other competitors
to further increase their mark-ups. Thus the payo� of having an inelastic or even
backward bending output is greater in markets with more competitors. Unlike spot
markets with Cournot competition (Willems, 2005), our results do not depend on
whether contracts are �nancial or physical.

Oren (2005) recommends that electricity markets should use call options with
high strike prices in other to steady the revenue �ow of peak power plants in elec-
tricity markets. These plants have a high marginal cost and are used infrequently,
so such a recommendation makes much sense from a hedging perspective. But our
results indicate that there are also drawbacks with introducing option contracts
with high strike prices, because especially large producers with market power have
incentives to misuse them, i.e. to go short at high strike prices. This is something
that market monitors should scrutinize.

In our model producers are risk neutral and arbitrage in the �nancial market is
perfect. Therefore, commitment is costless. As this is not the case in practice, our
results should be seen as a limiting case. With risk aversion, �rms are expected
to reduce tail risk and to hold contracting portfolios that are closer to their actual
output, and therefore to o�er supply functions that are less steep. Also transaction
costs in the �nancial market are likely to reduce the pro�tability of speculative
positions.

In practice �rms will also use other commitment tactics than �nancial con-
tracts, for instance by delegating decisions to managers, merging with downstream
�rms, and irreversible investments. We believe that the main intuition of our pa-
per, that �rms would like to commit to downward sloping supply functions, re-
mains valid in those settings. In this sense our result has parallels in Zöttl (2010),
who models the strategic (irreversible) investments of �rms, where �rms compete
in quantities in a spot market with random demand. He shows that �rms will
over-invest in technology with low marginal costs (base-load), but choose total
investment capacities that are too low from a welfare viewpoint.
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