
Is mandating "smart meters" smart?

Thomas-Olivier Léautier�

Toulouse School of Economics (IAE, IDEI, University of Toulouse)
PRELIMINARY AND INCOMPLETE

June 8, 2011

Abstract

This article examines the marginal welfare increase (lower installed generation capacity require-

ment, energy savings, and emissions reductions) arising from consumers switching to real-time price

usage of electricity. It �rst develops an analytically tractable framework, that produces closed form

solutions while matching actual demand data. It then applies the methodology to data from the

French power market, and �nds that, for small residential and non residential users, the marginal

value of switching is around 10 e per customer per year, much lower than the cost of the "smart

meters" required to enable the switch estimated around 25 e per customer per year. This �nding

challenges the economic wisdom of mandating full deployment of "smart meters", a policy adopted

in many regions.

1 Introduction

"Smart meters", which allow electric power users to react to real time wholesale prices, are expected to

transform the electric power industry. First, price sensitive users will consume less electricity on peak,

hence reduce installed generation capacity requirements and emissions of CO2 and other pollutants.

Second, increased elasticity of demand will reduce potential exercise of market power by producers.

Finally, smart meters will allow grid operators to improve operations of the grid. These e¤ects are

expected to generate signi�cant savings. For example, Faruqui et al. (2009), estimate the annual

potential bene�ts from "smart meters" deployment in all of Europe at e 5.9 billions: e 4.8 billions

from reduced capacity cost, e 600 millions from reduced electricity consumption, and e 500 millions

from T&D savings. The Present Value of these bene�ts exceeds the deployment cost, estimated at e

53 billions. As a result, full deployment of "smart meters" is mandated by the European Union and

underway in many US states.

Yet, the notion that full deployment is optimal is surprising, since the largest users are orders of

magnitude larger than the smallest ones, while the cost of smart meters are not that di¤erent. For
�leautier@cict.fr. I am grateful to Claude Crampes and seminar participants at the Toulouse School of Economics for

insightful comments, and for a grant from Electricité de France that supported this research. All errors and omissions
are mine.
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example, the 35 000 largest industrial sites in France represent 43% of electricity consumption, more

than the 30 millions residential users (32% of electricity consumption). As a result, the marginal

value of a user switching to real-time price usage (i.e., perfectly adapting its consumption to real-time

prices) should be (roughly) 1000 times smaller for a residential than for a large industrial customer.

Equivalently, the marginal cost of enabling 1% of load to switch to real-time price usage should be

1000 times higher for residential users than for large industrials. This sharp convexity suggests there

may exist a deployment ratio after which the marginal cost of enabling customers to switch exceeds

the marginal value: optimal deployment ratio may not necessarily be 100%.

Curiously, I have not found any analysis of the optimal deployment level, neither in the academic

nor in the policy literature. Allcott (2010) is the only related article, that estimates the value of a

20% users switching to real-time price usage, using market data from the mid Atlantic region of the

United States. This article aims to �ll that gap, that proposes a rigorous evaluation of the marginal

value of the reductions in electricity consumption and required installed generation capacity arising

from a fraction of load switching to real-time price usage, and compares it to the cost of installing the

necessary "smart" meters.

This article contribution�s is twofold. First, it proposes an analytically tractable approximation

of the solution to the optimal investment problem for a power system. The general principles of

peak-load pricing have been developed in the late 1940s (Boiteux (1949)), and revisited recently (e.g.,

Borenstein and Holland (2005), Joskow and Tirole (2007)). However, the approximation developed

here is the only one I am aware of that provides (almost) closed form solutions to the problem, while

closely matching real data. This approximation may be used to examine other issues pertaining to

power markets, but also more general issues of sizing and pricing of facilities when demand is uncertain

and multiple technologies are available (e.g., infrastructure, cloud computing, etc.)

This article�s second contribution is an estimate of the increase in net surplus of a customer

switching from constant price to real-time price usage. Using data from the French market, this

value is estimated at 9 to 14 e/customer per year for a small non residential customer and 4 to 10

e/customer per year for a small residential customer1. As a comparison point, this value is far below

the cost of installing smart meters for small customers (residential and non residential), currently

estimated around 25 e/meter per year. This result should also hold for other power markets, as

long as its main driver does: the marginal impact of a single small customer on the total electricity

consumption (and required installed capacity) is much smaller than the cost of a "smart meter".

This analysis does not constitute a full-blown marginal cost bene�t analysis. First, it does not

include other bene�ts of "smart meters", such as reduction in metering costs and other optimization

for the distribution network owner/operator. Second, the cost of installing a meter is the marginal

cost of enabling the switch to real-time price usage, hence the analysis does not include the cost of

informing consumers and inducing them to switch, as well as data storage and processing costs. Nor

1The structure of the French power industry, namely EDF�s dominant position, is not pertinent for this analysis.
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does it factor in the fact that, for a variety of reasons, not all consumers equipped with "smart meters"

will switch.

While not being a full-blown cost bene�t analysis, the modest magnitude of the estimated value of

a small customer switching (around 10 e/customer per year) has three practical implications. First,

additional � and more thorough � cost-bene�t analysis is required before policy makers commit to

the tens of billions of euros of investment in "smart meters". It may be the case that equipping

the largest 20% of consumers provides 80% of the bene�ts for a fraction of the cost. Second, the

economic value from getting a customer to switch seems low compared to a customer�s acquisition

cost (retailers often mention 20 to 50 e/customer2). The business model for energy retailers o¤ering

innovative energy savings solutions is therefore unclear. Finally, the bene�ts of smart meters arise

from a variety of sources, and accrue to a di¤erent stakeholders (distribution network owner/operator,

supplier, consumers). Sharing the costs among these classes will prove complex.

This article is structured as follows. The model used in this article is the one that developed by

Borenstein and Holland (2005) and Joskow and Tirole (2007), building on the earlier work by Boiteux

(1949). For convenience, Section 2 summarizes its main features and results. The reader familiar with

the model can proceed to Section 3, that presents general results on the impact of a marginal switch to

real-time price usage. Section 4 then presents the approximation leading to the closed form solution,

and the main analytical results. Section 5 discusses the development of numerical simulations for the

French market, and presents the main empirical results. Section 6 concludes, that proposes avenues

of future work.

2 The model

2.1 Model structure

2.1.1 Uncertainty

Uncertainty is an essential feature of power markets. In this work, demand uncertainty is explicitly

modeled. Including production uncertainty does not modify the economic insights. The number of

possible states of the world is in�nite, and these are indexed by t 2 [0;+1). f (t) and F (t) are
respectively the ex ante probability and cumulative density functions of state t. Since all market

participants have the same information about future demand and supply conditions, it is realistic to

assume that all participants share a common perspective on f (t) and F (t).

2.1.2 Demand, supply, and rationing

Demand
2Source: private communication with the author.
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Assumption 1 Customers are homogeneous, and all have the same underlying demand D (p; t) in
state t up to a scaling factor, non increasing in p, the electric power price.

Assumption 1 greatly simpli�es the derivations, while preserving the main economics insights.

Inverse demand is P (q; t) is de�ned by D (P (q; t) ; t) = q, and gross consumers surplus is S [p; t] =R D(p;t)
0 P (q; t) dq.

Without loss of generality, states of the world are ordered by increasing demand:

@D

@t
(p; t) � 0

Customers are split in two categories: a fraction � of consumers faces and react to real time

wholesale price ("price reactive" consumers), and a fraction (1� �) of consumers faces a two-part
pricing scheme, with price pR per MWh, constant across all states of the world, and connection

charge A per year ("constant price" consumers).

Since all consumers have the same load pro�le up to a scaling factor by Assumption 1, � is constant

across states of the world.

Assumption 2 The SO has the technical ability to curtail "constant price" load while not curtailing
"price reactive" load.

Assumption 2 is unrealistic today, as the SO can only organize curtailment by zone, and cannot

di¤erentiate by type of customer. However, it will be fairly realistic when "smart meters" are being

rolled out, which is precisely the situation considered.

Supply N generation technologies are available. cn is the marginal cost, and rn is the hourly

investment cost (i.e., annual investment cost expressed in e=MW=year divided by 8760 hours per

year) of technology n 2 f1; :::; Ng, both expressed in e=MWh. Generation technologies are ordered
by increasing marginal cost: cn > cm 8 n � m.

As described in Section 4, not all available technologies are included in the optimal investment

plan. However, to simplify the exposition, n = 1 (resp. n = N) denotes the �rst (resp. the last)

technology used at the optimum.

There is a trade-o¤ between investment and marginal costs: if a technology requires lower invest-

ment cost, it then produces at higher variable cost, i.e., rn < rm 8 n � m.

Rationing and Value of Lost Load Denote 
 2 [0; 1] the serving ratio: 
 = 0 means full

curtailment, while 
 = 1 means no curtailment. For state t, D (p; 
; t) is the demand for price p
and serving ratio 
, and P (q; 
; t) is the inverse demand for a given serving ratio 
; de�ned by
D (P (q; 
; t) ; 
; t) = q. Then S (p; 
; t) =

R D(p;
;t)
0 P (q; 
; t) dq is the gross consumer surplus. We

verify that: @S(D(p;
;t);
;t)@p = p@D@p .
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Any rationing technology satis�es: (1) D (p; 0; t) = 0, (2) @D@
 > 0 for 
 2 [0; 1], and (3) S (p; t) �
S (p; 1; t) and D (p; t) � D (p; 1; t).

The Value of Lost Load (V oLL) represents the value consumers would place on an extra unit of

non delivered electricity. Formally, it is de�ned as

v (p; 
; t) =

@S
@


@D
@


(p; 
; t)

Assumption 3 1. Rationing does not increase the net surplus: 8p > 0;8t � 0;8
 > 0

S (p; 
; t)� pD (p; 
; t) � S (p; t)� pD (p; t)

2. If the serving ratio is positive, the Value of Lost Load is always higher than the price of power,

i.e., 8p > 0;8t � 0;8
 > 0 we have:
v (p; 
; t) > p

Assumption 3 holds for example for anticipated and proportional rationing: S (p; 
) = 
S (p) and
D (p; 
) = 
D (p), hence (1) S (p; 
; t) � pD (p; 
; t) = 
 (S (p; t)� pD (p; t)) � S (p; t) � pD (p; t) for

 � 1; and (2) v (p; 
; t) = S(p)

D(p) > p.

Assumption 3 should hold for all possible rationing technologies: rationing does not increase net

surplus, and consumers are always willing to pay at least as much for a MWh when curtailment is

possible as they are for a MWh in normal circumstances.

2.2 Optimal dispatch and investment

2.2.1 First-order conditions

Under Assumption 1 to 3, Joskow and Tirole (2007) show that it is never optimal to ration "price

reactive" customers. The total consumer surplus and demand in state t are therefore:(
~S
�
p; pR; 
; �; t

�
= �S (p; t) + (1� �)S

�
pR; 
; t

�
~D
�
p; pR; 
; �; t

�
= �D (p; t) + (1� �)D

�
pR; 
; t

�
The optimal program is then:

W (�) =

8>><>>:
max

p(:);pR;
(:);un(:);kn

E

(
~S
�
p (t) ; pR; 
 (t) ; �; t

�
�
P
n�1
cnun (t) kn

)
�
P
n�1
rnkn

st : 8t � 0 ~D
�
p (t) ; pR; 
 (t) ; �; t

�
�
P
n�1
un (t) kn (� (t))

where p (t) is the price faced by price reactive customers, 
 (t) 2 [0; 1] the serving ratio, un (t) 2 [0; 1]
the dispatch ratio of technology n, � (t) � 0 the Lagrange multiplier in state t, pR the optimal retail

5



price, kn � 0 the optimal investment in technology n.
The Lagrangian is:

L = E

8<: ~S �X
n�1
cnun (t) kn + � (t)

24X
n�1
un (t) kn � ~D

359=;�X
n�1
rnkn

and the �rst-order derivatives are:8>>>>>>><>>>>>>>:

@L
@p(t) = � (p (t)� � (t))Dp

@L
@un(t)

= (� (t)� cn) kn
@L
@
(t) = (1� �) (v (t)� � (t))D

@L
@pR

= (1� �)E
��
pR � � (t)

�
Dp
�

@L
@kn

= E ([� (t)� cn]un (t))� rn

The �rst-order conditions yield familiar results (see for example Borenstein and Holland (2005)

and Joskow and Tirole (2007), who also discuss su¢ cient conditions for the program to be concave).

First, @L
@p(t) = 0 yields p (t) = � (t): price reactive customers pay the opportunity cost of electricity

in each state.

Second, @L
@un(t)

yields the dispatch rule:

un (t) =

8>><>>:
1 if cn < p (t)

0 if cn > p (t)
~D�
P
m<n km
kn

if cn = p (t)

Technology n produces at capacity (resp. does not produce) if its marginal cost is lower than the price

(resp. exceeds the price) in state t. If technology n is marginal, i.e., price setting, energy balance sets

the dispatch ratio. p (t) = � (t) > 0 is therefore the real time wholesale electricity price.

Third, @L
@
(t) yields the rationing rule:


 (t) =

8>><>>:
1 if v (t) > p (t)

0 if v (t) < p (t)
~D�
P
m<n km
kn

if v (t) = p (t)

Rationing occurs if only if the V oLL is no higher than the real time price.

Fourth, @L
@pR

= 0 yields:

pR =
E [p (t)Dp]
E [Dp]

As in Joskow and Tirole (2007), the optimal retail price is the weighted average wholesale price, where

the weights are the marginal "rationed demand". Since Dp < 0 and � (t) � 0, pR � c: the optimal

retail price is always higher than the marginal cost. However, the retail price needs not cover the full
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production cost. The �xed part of two part retail price balances the retailers�pro�ts.

Finally, @L
@kn

= 0 yields:

E [(p (t)� cn)un (t)] = rn

The optimal capacity is such that the marginal pro�t when the plant operates equals the investment

(or capacity) cost.

2.2.2 Investment plan

If the program is concave (which we assume here), the �rst-order conditions determine a unique

optimum. Denote Kn =
Pn
m=1 km the total installed capacity up to and including technology n, tn

(resp. �tn) the �rst state of the world where technology n is dispatched (resp. is at capacity). Adopt

the convention tN+1 ! +1. From the previous �rst order conditions, real time price equals marginal

cost of technology n when this one is marginal, but not yet constrained. When technology n is at

capacity, but technology (n+ 1) is not yet dispatched, the energy balance determines the price:

�D (p; t) + (1� �)D
�
pR; 
; t

�
= Kn

Hence:

p (t) =

8<: cn for t 2 [tn; �tn]
~P (Kn; t) = P

�
Kn�(1��)D(pR;
;t)

�

�
for t 2 [�tn; tn+1]

for n 2 f1; :::; ; Ng. By construction, we have:(
~P (Kn; �tn) = cn

~P (Kn; tn+1) = cn+1

This is illustrated on Figure 1.

As the price p (t) is increasing, we have: un(t) � 0 8 t � tn and un(t) = 1 8 t � �tn. The �rst-order
condition determining kn then becomes:

E
h�
~P (Kn; t)� cn

�i
t��tn

= rn (1)

Equation (1) for n = N yields:

E
h�
~P (KN ; t)� cN

�i
t��tN

= rN (2)

Combined with ~P (KN ; �tN ) = cN , we can solve for (KN ; �tN ). As is well known, the total installed

capacity is determined by the long-run marginal cost of the last invested technology.
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Then, for 1 � n < N , equation (1) yields:Z tn+1

�tn

h
~P (Kn; t)� cn

i
f (t) dt+

Z �tn+1

tn+1

[cn+1 � cn] f (t) dt+
Z +1

�tn+1

h
~P (t)� cn

i
f (t) dt = rn

, Z tn+1

�tn

h
~P (Kn; t)� cn

i
f (t) dt+

Z +1

tn+1

[cn+1 � cn] f (t) dt = rn � rn+1 (3)

Combined with ~P (Kn; tn+1) = cn+1 and ~P (Kn; �tn) = cn we solve for (Kn; �tn; tn+1).

3 Increasing the proportion of price reactive customers

This section examines the impact of a marginal increase in � assuming all values, in particular,

generation capacity and mix and retail prices, are optimal. This represents the long-term equilibrium.

One could challenge this choice as being unrealistic: where are the installed generation mix and the

retail price optimal? However, I believe this is the appropriate analysis, as it isolates the impact of

switching to real-time price usage. Other analyses would run the risk of mixing this with the impact

of moving closer to the optimum.

3.1 Impact on welfare

We �rst establish the following:

Result 1 Increasing the proportion of price-reactive customers always increases the net surplus from
consumption, since price-reactive customers are not rationed, and consume in each state according to

the state-contingent price and not a �xed price (even optimally chosen).

Proof. The envelope theorem yields:

dW

d�
=
@W

@�
= E

�
[S (p (t) ; t)� p (t)D (p (t) ; t)]�

�
S
�
pR; 
 (t) ; t

�
� p (t)D

�
pR; 
 (t) ; t

��	
then:

S
�
pR; 
 (t) ; t

�
� p (t)D

�
pR; 
 (t) ; t

�
< S

�
pR; t

�
� p (t)D

�
pR; t

�
since rationing does not generate value; and

S
�
pR; t

�
� p (t)D

�
pR; t

�
< S (p (t) ; t)� p (t)D (p (t) ; t)

since p = argmaxx fS (x; t)� pD (x; t)g.

Result 1 di¤ers from Borenstein and Holland (2005), who propose a counter-example, where in-

creasing the share of price-reactive consumers reduces overall welfare. However, Borenstein and Holland

(2005) operate in a slightly di¤erent setting, who assume that the retail price is set so that the retail

pro�t is equal to zero. In this work, however, we consider, following Joskow and Tirole (2007), that
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retailers�budget balance can be achieved by a two-part tari¤. In that case, the variable part of the

retail price is chosen optimally, and the envelope theorem then applies.

Result 1 matters for methodological reasons. Numerous analyses (e.g., Faruqui et al. (2009))

consider all demand reduction as a bene�t. Result 1 shows this is incorrect, as one should also include

the (lost) value of the foregone consumption in the analysis.

3.2 Impact on average price

Result 2 Increasing the share of price reactive customers has no impact on the expected price.
Proof. By construction, we have: t1 = 0. Equation (1) for n = 1 then yields:

E [(p (t)� c1)]t��t1 = r1

,
E [p (t)]t��t1 = r1 + c1 Pr (t � �t1)

Then:

E [p (t)] = c1 Pr (t � �t1) + E [p (t)]t��t1 = r1 + c1

hence
dE [p (t)]
d�

= 0

Since the �rst technology dispatched produces in all states of the world, the zero-pro�t condition

implies that the expected spot price is simply its long run marginal cost, i.e., the sum of its marginal

and capacity cost. It is therefore independent of the share of price sensitive customers. This contradicts

commonly held wisdom that real time pricing lowers average power price.

3.3 A speci�c case: linear demand, rationing linear and anticipated

In this Section, we assume demand is linear and is given by:

P (q; t) = a (t)� bq

We also assume that no rationing occurs at the optimum. This assumption is justi�ed, since in

most power markets, the largest customers already face real prices: demand elasticity is then high

enough that no rationing be required to balance demand and supply in the high states of the world.

It is veri�ed in all numerical applications presented in Section 5.

We then establish the following:
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Result 3 When demand is linear and rationing does not occur at the optimum, the marginal net
surplus is proportional to the spot price volatility.

Proof. Since demand is linear D (p; t) = a(t)�p
b , then

S (p; t) =

Z D(p;t)

0
(a (t)� bq) dq =

�
a (t)� b

2
D (p; t)

�
D (p; t)

=

�
a (t) + p

2

�
D (p; t)

Hence:

S (p; t)� pD (p; t) = S (p; t)� pD (p; t)

=

�
a (t)� p

2

�
D (p; t) =

b

2
D2 (p; t)

Since there is no rationing at the optimum, we have: Dp = Dp = �1
b hence

pR = E [� (t)] = c1 + r1

and

S
�
pR; t

�
� pD

�
pR; t

�
= S

�
pR; t

�
� pD

�
pR; t

�
=

 
a (t)�

bD
�
pR; t

�
2

� (a (t)� bD (p; t))
!
D
�
pR; t

�
= b

 
D (p; t)�

D
�
pR; t

�
2

!
D
�
pR; t

�
Then:

W 0 (�) =
b

2
E
n�
D (p (t) ; t)�D

�
pR; t

��2o
=

1

2b
E
n�
pR � p (t)

�2o
=
1

2b
V ar (p (t))

4 A closed form solution

A closed form solution is available if we further assume that a (t) = a0 � a1e��2t and f (t) = �1e��1t.
As will be shown in Section 5, for an optimal choice of the parameters (a0; a1; �1; �2), this speci�cation

is consistent with observed load duration curves and estimated price elasticities, while leading to simple

expressions for the values of interest. Richer speci�cations will be tested in further work. However,

initial tests suggest that the results hold for changes in the parameters, hence the results are likely to
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be robust.

4.1 Optimal investment

Result 4 The marginal technology N is the last technology such that

cN � cN�1 <
�a1
�

� �
1+�
�
[(1 + �) rN�1]

1
1+� � [(1 + �) rN ]

1
1+�

�
where � = �1

�2
. The optimal total capacity KN is then the solution of:

�
a0 � bKN �

�
�cN + (1� �) pR

��1+�
= �a�1 (1 + �) rN (4)

If �
a0 � (1� �) pR � �cn

�1+� � �a0 � (1� �) pR � �cn+1�1+� > �a�1 (1 + �) (rn � rn+1)
Kn, the optimal capacity up to technology n < N , is the unique solution of:�
a0 � bKn � (1� �) pR � �cn

�1+� � �a0 � bKn � (1� �) pR � �cn+1�1+� = �a�1 (1 + �) (rn � rn+1)
(5)

otherwise, Kn = 0.

Proof. The proof is presented in the appendix.

The structure of result 4 is standard in the peak-load pricing literature. The demand and uncer-

tainty speci�cation selected here allows us to derive simple expressions, hence highlight the economic

intuition. The �rst condition states that it is optimal to invest in a higher marginal cost technology

as long as the marginal cost increase is lower than (a function of) the increase in investment cost.

Then, equation (4) determines the optimal total capacity KN , that depends only on the marginal and

investment costs of the marginal technology N (and of course demand parameters and the �xed retail

price) It is then optimal to invest in inframarginal technologies as long as (a function of) the reduction

in marginal cost exceeds the investment cost increase. Equations (5) then determines the switching

points between technologies n and (n+1), that depend on the marginal and investment costs of both

technologies.

4.2 No rationing conditions

No rationing is optimal as long as price is lower than the Value of Lost Load, which yields:

Result 5 No rationing occurs at the optimum if and only if Rn > 0 where

Rn =

8>><>>:
�
a0 � 2cn+1 + pR + � (cn+1 � cn)

�1+� � �a0 � 2cn+1 + pR�1+�
��a�1 (1 + �) (rn � rn+1)

n 2 f1; :::; (N � 1)gh
a0�2cN+pR

2

i1+�
�
�
a1
�

��
[(1 + �) rN ] n = N

(6)
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Proof. The proof is presented in the appendix.

The �rst conditions are for t 2 [�tn; tn+1] for n 2 f0; :::; (N � 1)g and the last condition is for t � �tN .
From this last condition, rationing must occur for � = 0, and by continuity, for low values of �.

4.3 Marginal value of real-time pricing

Result 6 We have:

W 0 (�) =
8760

b

8>><>>:
PN�1
n=1

h�
a1
�

�2
�2Jn + rn+1 (cn+1 � cn)

i
+
�
a1
�

� �
1+� [(1+�)rN ]

2+�
1+�

(1+�)(2+�) � r21
2 N > 1

r1

��
a1
�

� �
1+� [(1+�)r1]

1+�
1+�

2+� � r1
2

�
N = 1

(7)

where Jn =
R tn+1
�tn

�
e��2�tn � e��2t

�
e�(�1+�2)tdt.

Proof. The proof is presented in the appendix.

Intuition for expression (7) for N = 1 is as follows:

V ar [p (t)] = V ar [p (t)� c1] = E
h
(p (t)� c1)2

i
� (E [p (t)� c1])2

=

Z +1

�t1

(p (t)� c1)2 f (t) dt� r21

The speci�c shapes of p (t) and f (t) then yield
R +1
�t1

(p (t)� c1)2 f (t) dt = 2r1
�
a1
�

� �
1+� [(1+�)r1]

1+�
1+�

2+� ,

which then yields expression (7) for N = 1.

For N > 1, the same procedure is applied to each interval 
n = [tn; tn+1], for n = 1; :::; N :

V ar [p (t)] =

NX
n=1

(Z tn+1

tn

(p (t)� cn)2 f (t) dt�
�Z tn+1

tn

(p (t)� cn) f (t) dt
�2)

The computation is more complex, and not all terms cancel out, yielding expression (7) for N > 1.

For a given demand pro�le (a0; a1; b; �)and available technology mix fcn; rngn, equation (7) can
be used estimate the marginal value of real time pricing, as in Section 5 for the French market.

Furthermore, it can be used to perform comparative statics on the marginal value of switching to real

time pricing.

5 Optimal deployment of real time meters: application to the French

market

To determine the optimal proportion of price reactive load �, estimates of (1) the demand curve, and

(2) the marginal cost of increasing � are required.

12



5.1 Demand curve

The demand curve parameters are estimated in two steps: (i) an actual load duration curve, assuming

price is constant, is used to estimate � and derive a �rst set of relationships, and (ii) estimates of price

elasticity are then used to derive the last relation among parameters. This approach is consistent with

the reality of power markets: today, most customers pay a constant power price, denoted p0. Observed

demand �uctuations are due therefore to variations in the states of the world (a (t) and f (t)). As

demand becomes more price reactive, joint estimation of all parameters will become possible.

5.1.1 Estimation of � and �rst set of relationships

Denote G (:) the cumulative distribution of demand, i.e., G (x) is the probability that demand is lower

than x. If demand is linear:

G (x) = Pr

�
a (t)� p0

b
� x

�
= Pr (a (t) � x+ bp0)

= Pr
�
t � a�1 (x+ bp0)

�
= F � a�1 (x+ bp0)

Demand measured depends both on the state of the world t and demand conditional on that state

of the world t. Estimating the distribution G (:) allows us to identify F � a�1. F (:) and a (:) cannot
be identi�ed separately.

If a (t) = a0 � a1e��2t and f (t) = �1e��1t:

G (x) = 1� exp
�
��1
�2
ln
a0 � (x+ bp0)

a1

�

= 1�
�
a0 � (x+ bp0)

a1

��1
�2

Then, 1 � G (x) = Pr (load � x) =
h
a0�(x+bp0)

a1

i�
can be estimated from an actual load duration

curve.

a0 and a1 cannot be estimated by Maximum Likelihood from the data. The minimum and maxi-

mum admissible values for load must be set exogenously. We choose these values to be the observed

minimum and maximum values for load. Denote � < 1 the ratio of minimum to maximum demand

for price p0 and Q1 = lim
t!+1

Q (p0; t) =
a0�p0
b the maximum demand. We have:

(
a0 � bQ1 = p0

a0 � a1 � b�Q1 = p0

which yields: (
a1 = bQ

1 (1� �)
a0 = p0 + bQ

1

Estimation on 2009 demand in France (source: RTE website) leads to Q1 = 92:4 GW and � =

13



31:5
92:4 = 0:34. Then, Maximum Likelihood estimation yields � = �1

�2
= 1:78.

Actual and �tted demand are presented on Figure 2.

5.1.2 Estimation of b and all other parameters

As of today, the empirical literature on price elasticity of electricity is inconclusive, which is not

surprising, as most end-consumers pay a �xed price for electric power. Lijesen (2007) provides an up

to date survey, as well as his own estimate.

Using the average elasticity of demand � for a given price � and � < 1, we have:

� = �1
b

�

E [Q (�; t)]
= � �

E [a (t)]� � = �
��

a0 � a1
2

�
� �

hence

a0 =
a1
2
+ �

�
1� 1

�

�
We have � = p0 = 100 e=MWh . This then leads to:8>><>>:

bQ1 = � 2�
�(1+�)

a0 = �
�
1� 2

�(1+�)

�
a1 = �2�(1��)

�(1+�)

From Lijesen (2007), we select as a base case � = �0:05 (at price � = 100 e=MWh), which

corresponds to the upper estimate from Patrick and Wolak (1997) using UK data, and much higher

than Lijesen (2007) own estimate on Dutch data. We also run a robustness check with � = �0:1.
A higher elasticity of demand will render real-time pricing more attractive. This high elasticity case

should therefore provide an upper bound for the optimal �.

With these values, for the base case, we have:8><>:
bQ1 = 2 984 e=MWh

a0 = 3 084 e=MWh

a1 = 1 968 e=MWh

Consider now the units. Equation (7) can be rewritten as W 0 (�) = 8760Q1 LN
bQ1 , where LN =

V ar[p(t)]
2 . LN is expressed in e2 � MWh�2, which is denoted as [LN ] =e2 � MWh�2. Thenh

8760Q1 LN
bQ1

i
= 103e=year, since [Q1] = GW , [bQ1] =e=MWh, and [8760] = h=year. Finally,h

W 0 (�) = 8:76Q1 LN
bQ1

i
=e millions=year.

5.2 Production cost

French electricity is mostly produced from nuclear assets, with gas turbines providing peaking capacity.

As a �rst approximation, this article ignores hydraulic assets and other thermal generation units. This
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reduces the marginal value of switching to real time price usage, as including these technologies would

increase generation �exibility, hence reduce the value of demand �exibility.

IEA (2010) provides the following estimates for the cost of nuclear assets (n = 1) and gas turbines

(n = 2):

1 2

cn 10:99 71:56

rn 34:16 6:00

c2 includes a 25 e/ton carbon price. The marginal value of switching therefore includes the envi-

ronmental cost of emissions. r2 is equivalent to 53 e=kW=year, slightly lower than most commonly

used estimates of the annual �xed cost of peaking capacity (around 70 e=kW=year). The di¤erence

is attributable mostly to taxes. This is justi�ed as this analysis examines the net total welfare, and

taxes are internal transfers that do not a¤ect it.

5.3 Cost of real time meters

Each real time meter is estimated to cost e250, a rather conservative estimate, as other estimates

range around e500 per meter3. As a �rst approximation, this cost is assumed to be independent of

the characteristics of the site where the meter is installed, in particular peak-demand. Assuming a

cost of capital at 10%, the annualized cost of each meter is 25 e/meter/year.

Denote C (�) is the annualized cost of installing real-time meters for a proportion � of the total

load. C (�) = 25�(number of sites required to reach the fraction � of the total load). We estimate
C (�) for France, using data provided by the Commission de Régulation de l�Energie (CRE). The total

cost for the 34.8 millions sites is around 8.7 e billions, which corresponds to C (1) = 870 millions e

per year.

CRE provides the total number of sites and the total consumption (MWh) for four categories of

customers:

1. large non residential: demand higher than 250 kW, representing 0.1% of the total number of

sites, and 43% of total demand

2. medium non residential: peak-demand between 36 and 250 kW, representing 1% of the total

number of sites, and 15% of total demand

3. small non residential: peak demand smaller than 36 kVA, 13% of the total number of sites, 10%

of total demand

4. residential sites: peak demand lower than 36 kVA, 86% of the total number of sites, 32% of total

demand.
3Sources: http://www.freenews.fr/spip.php?article8878?? , private communications with the author.
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All customers in each class are assumed to have the same size. This is a conservative assumption, as

allowing for di¤ering sizes would increase the convexity of the cost function. After a few manipulations,

we �nd:

C 0 (�) =

8>>>><>>>>:
2 if � � 43%
58 if 43% � � � 58%
1130 if 58% � � � 68%
2336 if 68% � �

where C 0 (�) is measured in e millions per percent per year. For example, the incremental cost of

a 1% deployment for residential customers (� � 68%) is 2336 � 10�2 = 23:36 e million per year.

The marginal cost increases rapidly, as the number of sites required to increase � by 1% increases

signi�cantly as sites become smaller.

It is also helpful to present the marginal value of one consumer switching to real-time pricing.

Denote �� the incremental increase in � from a single consumer. Since all customers in each class are

assumed to have the same size, �� is constant for each class, and given by:

� (%) (0; 43) (43; 58) (58; 68) (68; 100)

�� (%=user) 1:24� 10�5 4:31� 10�7 2:21� 10�8 1:07� 10�8

Then, �W (resp. �C), the incremental increase in net surplus (resp. incremental cost) from one

consumer is estimated as �W = W 0 (�) �� (resp. �C = C 0 (�) ��). Since �� is discontinuous at the

boundaries between classes, so is �W (�C = 25 is continuous, while C 0 (�) is discontinuous). For these

values, �W� and �W+(incremental values respectively for �� < 0 and �� > 0) are evaluated and

reported.

5.4 Simulation results

K1=Q
1, K2=Q1, W 0 (�) and �W are computed using equations (4), (5), and (7), and the previous

values of the parameters.

For the base case � = �0:05:

� (%) 15 43 58 68 100

K1=Q
1 (%) 59:3 59:3 59:3 59:3 59:4

K2=Q
1 (%) 95:7 92:7 91:6 90:9 89:1

W 0 (�)

(e millions/year)
688 436 389 366 324

�W�

(e /user/year)
8512 5386 168 8 3

�W+

(e /user/year)
8512 188 9 4 n=a
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The no rationing conditions (6) are met for � > 15%:

Consider �rst the evolution of installed capacity generation (expressed here as a fraction of peak

demand). The total installed capacity decreases as aggregate demand becomes more price reactive. For

example, (1) increasing the share of price reactive demand from 15% to 100% reduces the installed

capacity by 6:9%, slightly lower than Faruqui et al. (2009) who assumes a 10% decrease in peak

demand, and (2) increasing � from 15% to 35% reduces the installed capacity by 2:4%, slightly higher

than Allcott (2010), who estimates a 1.9% peak demand decrease from a 20% switch.

The nuclear installed capacity increases slightly.

Consider now the marginal value of switching. W 0 (�) decreases sharply as � increases, in particular

for low values of �. The discontinuity at the boundaries between customer class is arti�cial. In reality,

sites are continuously getting smaller. It may be that the optimal deployment should exclude the

smallest medium non residential sites, or include the largest small non residential sites.

These numbers are lower from Allcott�s (2010), who estimates the average welfare increase at 38:9 $

per kW of (peak) demand switching per year (around 30 e=kW=year). Assuming the peak demand

shares by class are equal to total demand shares by class, the marginal value per kW of peak demand

ranges from 7 e=kW=year for large industrials to 13 e=kW=year for residential users. Further work

will investigate this di¤erence.

It is also helpful to compare the marginal value of switching to the marginal cost of installing smart

meters. �W� (43%) = 5386 e=kW=year > �C = 25 e=kW=year and �W� (58%) = 168 e=kW=year >

�C: for large and medium non residential customers, the value of switching exceeds the cost of in-

stalling a smart meter. If a mechanism can be devised for them to appropriate a share of this surplus,

these customers will accept to pay for installation of the meters, and switch to real time pricing.

However, �W+ (58%) = 9 e=kW=year < �C: the marginal value of the "�rst" small non residential

customer switching is lower than the marginal cost of installing a "smart meter". As mentioned in the

introduction, this �nding does not constitute a full blown cost-bene�t analysis. Including additional

costs and bene�ts, installing smart meters for small customers may still be socially optimal.

Consider now the very elastic demand case, � = �0:1 at price � = 100 e=MWh. Following the
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procedure described above:

� (%) 16 43 58 68 100

K1=Q
1 (%) 61:1 61:2 61:2 61:3 61:4

K2=Q
1 (%) 95:6 91:7 90:2 89:2 86:7

W 0 (�)

(e millions/year)
981 681 620 592 533

�W�

(e /user/year)
12 129 8 419 268 13 6

�W+

(e /user/year)
12 129 294 14 6 n=a

If the underlying demand were more elastic, the no rationing conditions (6) would be met for

� � 16%. The optimal total installed capacity would be lower, as expected. The maximum e¤ect is

for � = 1, where installed capacity would be 2:7% lower. The optimal mix would also change: base

generation assets would raise to 70:8% of total installed capacity compared to 67:2%.

The marginal value of switching to real time price usage would also increase, for example by 64.5%

for � = 1. Yet, this increase would be not be su¢ cient to balance the marginal cost of smart meters.

The marginal cost of installing real-time would exceed the marginal bene�t for small non residential

users.

These observations are summarized in the following:

Result 7 For small users (less than 36 kVA peak demand) in the French power market, the marginal
value of switching to real-time price usage of electricity is lower than the marginal cost of the "smart

meters" enabling that switch. This challenges the economic wisdom of mandating full deployment of

"smart meters".

6 Conclusion

This article has derived the marginal value of a share of demand (or a consumer) switching to real

time price usage of power. Using data from the French power market, it has compared this marginal

value to the marginal cost of installing smart meters, and found that the latter exceeds the former.

This analysis can be expanded in at least three directions. First, the methodology will be applied

to other power markets. The main �nding � that the marginal cost of installing smart meters for

small users (residential and non residential) exceeds its marginal value �is expected to be con�rmed

in other power markets, as they exhibit higher supply �exibility than the French market: for example,

most American markets have a large fraction of combined cycle gas turbines in their generation mix,

with lower capital cost than the nuclear assets that constitute the core of the French generation �eet.
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Second, the impact of aggregate demand elasticity on the exercise of generators�market power

will be included in the analysis. Allcott (2010) �nds a limited impact, but it is worth validating this

�nding.

Finally, alternative speci�cation of demand can be used. For example, demand can be assumed to

be log-linear, multiple classes of users and intertemporal substitution can be introduced. This would

likely result in closed-form solutions no longer being available. Instead, numerical analysis will be

required.

A Derivations of the closed-form solutions

A.1 Optimal investment

For n 2 f1; :::; Ng, ~P (Kn; t) = a(t)�bKn�(1��)pR
� , hence:(

~P (Kn; �tn) =
a(�tn)�bKn�(1��)pR

� = cn
~P (Kn; tn+1) =

a(tn+1)�bKn�(1��)pR
� = cn+1

, (
a0 � a1e��2�tn � bKn � (1� �) pR = �cn

a0 � a1e��2tn+1 � bKn � (1� �) pR = �cn+1

Then:

e��2
�tn � e��2tn+1 = �

a1
(cn+1 � cn)

For n 2 f1; :::; Ng, de�ne In =
R tn+1
�tn

h
~P (Kn; t)� ~P (Kn; �tn)

i
f (t) dt. In is determined as:

In =
a1
�

Z tn+1

�tn

�
e��2

�tn � e��2t
�
�1e

��1tdt

=
a1
�

�h
�
�
e��2

�tn � e��2t
�
e��1t

itn+1
�tn

+ �2

Z tn+1

�tn

e�(�1+�2)tdt

�
=

a1
�

�
� �
a1
(cn+1 � cn) e��1tn+1 +

�2
�1 + �2

�
e�(�1+�2)

�tn � e�(�1+�2)tn+1
��

= � (cn+1 � cn) e��1tn+1 +
a1
�

�2
�1 + �2

�
e�(�1+�2)

�tn � e�(�1+�2)tn+1
�

with the convention tN+1 ! +1.
Equation (2) is:

IN = rN

As tN+1 ! +1, this yields:
a1
�

�2
�1 + �2

e�(�1+�2)
�tN = rN
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,

Pr
�
~D (t) = KN

�
= e��1

�tN =

�
�rN
a1

�2 + �1
�2

� �1
(�2+�1)

=

�
�rN
a1

(1 + �)

� �
1+�

The optimal total capacity is the solution of:

�
a0 � bKN �

�
�cN + (1� �) pR

��1+�
= �a�1 (1 + �) rN�1

Then, for 1 � n < N :
In + [cn+1 � cn]1 e

��1tn+1 = rn � rn+1

Hence:

e�(�1+�2)
�tn � e�(�1+�2)tn+1 = �1 + �2

�2

�

a1
(rn � rn+1)

For n 2 f1; :::; (N � 1)g, de�ne:

�n (x) =
�
a0 � bx� (1� �) pR � �cn

�1+���a0 � bx� (1� �) pR � �cn+1�1+���a�1 (1 + �) (rn � rn+1)
Then:

�0n (x) = �b (1 + �)
h�
a0 � bx� (1� �) pR � �cn

�� � �a0 � bx� (1� �) pR � �cn+1��i < 0
Kn > 0 if and only if �n (0) > 0,�

a0 � (1� �) pR � �cn
�1+� � �a0 � (1� �) pR � �cn+1�1+� > �a�1 (1 + �) (rn � rn+1)

Then, Kn is de�ned by:�
a0 � bKn � (1� �) pR � �cn

�1+� � �a0 � bKn � (1� �) pR � �cn+1�1+� = �a�1 (1 + �) (rn � rn+1)
If �n (0) � 0, Kn = 0: it is optimal not to invest in technologies "lower" than (n+ 1), which is then
the baseload technology.

Similarly, it is optimal to invest in technology N if and only if KN�1 < KN , �N�1 (KN ) < 0,�
�

1
1+�a

�
1+�

1 [(1 + �) rN ]
1

1+� + � (cN � cN�1)
�1+�

�
�
�

1
1+�a

�
1+�

1 [(1 + �) rN ]
1

1+�

�1+�
< �a�1 (1 + �) (rN�1 � rN )

, �
�

1
1+�a

�
1+�

1 [(1 + �) rN ]
1

1+� + � (cN � cN�1)
�1+�

< �a�1 (1 + �) rN�1
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,
cN � cN�1 <

�a1
�

� �
1+�
�
[(1 + �) rN�1]

1
1+� � [(1 + �) rN ]

1
1+�

�
A.2 No rationing condition

No rationing is optimum as long as the V oLL exceeds than price faced by price reactive load. If

rationing is proportional and anticipated:

v (p; 
; t) =
S (p; t)

D (p; t)

Hence:

v (p; 
; t) =
a (t) + p

2

Then, no rationing is optimal if and only if, for all t � 0:

a (t) + pR

2
� p (t)

,

81 � n � N :

(
a(t)+pR

2 � cn 8t 2 [tn; �tn]
a(t)+pR

2 � ~P (Kn; t) 8t 2 [�tn; tn+1]
,

n 2 f1; :::; Ng :
(

a (tn) � 2cn � pR

a (tn+1) � 2
2��bKn + p

R

Since a (:) is increasing, we examine each condition in turns. For n 2 f1; :::; Ng:

a (tn) � 2cn � pR

,
bKn�1 + �cn + (1� �) pR � 2cn � pR

,
bKn�1 � (2� �)

�
cn � pR

�
Then, for n 2 f1; :::; (N � 1)g:

a (tn+1) �
2

2� �bKn + p
R

,
(2� �)

�
bKn + �cn+1 + (1� �) pR

�
� 2bKn + (2� �) pR

,
�bKn � � (2� �)

�
cn+1 � pR

�
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Since �n (:) is decreasing and �n (bKn) = 0, this is equivalent to �n
�
(2� �)

�
cn+1 � pR

��
� 0,

�
a0 � 2cn+1 + pR + � (cn+1 � cn)

�1+� � �a0 � 2cn+1 + pR�1+� � �a�1 (1 + �) (rn � rn+1)
Finally, for n = N :

a (tN+1) �
2

2� �bKN + p
R

,
bKN � (2� �)

a0 � pR
2

,

a0 � a1
�
�rN
a1

(1 + �)

� 1
1+�

�
�
�cN + (1� �) pR

�
� (2� �) a0 � p

R

2

,
a0 �

�
2cN � pR

�
� 2 ((1 + �) rN )

1
1+�

�a1
�

� �
1+�

, "
a0 �

�
2cN � pR

�
2

#1+�
�
�a1
�

��
[(1 + �) rN ]

A.3 Marginal value of �

W 0 (�) = 1
2bE

n�
pR � p (t)

�2o
= 8760

b LN , where LN =
V ar[p(t)]

2 . Then:

2LN =

(
NX
n=1

(Z �tn

tn

�
cn � pR

�2
f (t) dt+

Z tn+1

�tn

�
~P (Kn; t)� pR

�2
f (t) dt

))

=

NX
n=1

8<:
R �tn
tn

�
cn � pR

�2
f (t) dt+

R tn+1
�tn

�
~P (Kn; t)� cn

�2
f (t) dt

+2
�
cn � pR

� R tn+1
�tn

�
~P (Kn; t)� cn

�
f (t) dt+

R tn+1
�tn

�
cn � pR

�2
f (t) dt

9=;
=

NX
n=1

��
cn � pR

�2 Z tn+1

tn

f (t) dt+ 2
�
cn � pR

�
In +Hn

�

where Hn =
R tn+1
�tn

�
~P (Kn; t)� cn

�2
f (t) dt is determined as:

Hn =
�a1
�

�2(�
�
�
e��2

�tn � e��2t
�2
e��1t

�tn+1
�tn

+ 2�2

Z tn+1

�tn

�
e��2

�tn � e��2t
�
e�(�1+�2)tdt

)

=
�a1
�

�2�
�
�
e��2

�tn � e��2tn+1
�2
e��1tn+1 + 2�2Jn

�
= � (cn+1 � cn)2 e��1tn+1 + 2

�a1
�

�2
�2Jn
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where Jn =
R tn+1
�tn

�
e��2�tn � e��2t

�
e�(�1+�2)tdt is determined as:

Jn =

"
�
�
e��2

�tn � e��2t
� e�(�1+�2)t
�1 + �2

#tn+1
�tn

+
�2

�1 + �2

Z tn+1

�tn

e�(�1+2�2)tdt

=
1

�1 + �2

�
� �
a1
(cn+1 � cn) e�(�1+�2)tn+1 +

�2
�1 + 2�2

�
e�(�1+2�2)

�tn � e�(�1+2�2)tn+1
��

HN and JN are determined by the same expressions, with tN+1 ! +1. Then:

SN =
NX
n=1

�
cn � pR

�2 Z tn+1

tn

f (t) dt =
NX
n=1

�
cn � pR

�2 �
e��1tn � e��1tn+1

�
=

NX
n=1

e��1tn+1
h�
cn+1 � pR

�2 � �cn � pR�2i+ �c1 � pR�2 e��1t1 � �cN+1 � pR�2 e��1tN+1
=

NX
n=1

e��1tn+1 (cn+1 � cn)
�
cn+1 + cn � 2pR

�
+ r21

Hence, for N > 1:

2LN =

N�1X
n=1

(
e��1tn+1 (cn+1 � cn)

�
cn+1 + cn � 2pR

�
� (cn+1 � cn)2 e��1tn+1 + 2

�
a1
�

�2
�2Jn

+2
�
cn � pR

� �
rn � rn+1 � (cn+1 � cn) e��1tn+1

� )

+2

"
N�1X
n=1

�
cn � pR

�
(rn � rn+1) +

�
cN � pR

�
rN +

�a1
�

�2
�2JN

#
+ r21

= 2

(
N�1X
n=1

��a1
�

�2
�2Jn + rn+1 (cn+1 � cn)

�
+
�a1
�

�2
�2JN �

r21
2

)

Solving for N = 1, we obtain:

LN =

8>><>>:
PN�1
n=1

h�
a1
�

�2
�2Jn + rn+1 (cn+1 � cn)

i
+
�
a1
�

� �
1+� [(1+�)rN ]

2+�
1+�

(1+�)(2+�) � r21
2 N > 1

r1

��
a1
�

� �
1+� [(1+�)r1]

1+�
1+�

2+� � r1
2

�
N = 1
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