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Abstract

In most electricity markets generators must submit step-function o¤ers to a uniform price

auction and are most simply modelled as pure-strategy Nash equilibria of continuous supply

functions (SFs), in which each supplier has a unique pro�t maximising choice of SF given

competitors� choices. Critics argue that the discreteness and discontinuity of the required

steps can rule out pure-strategy equilibria, resulting in price instability. We argue that if

prices must be selected from a �nite set the resulting step function converges to the continuous

SF as the number of steps increases, reconciling the apparently very disparate approaches to

modelling electricity markets.
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1 INTRODUCTION

This paper �lls an increasingly embarrassing gap between theory and reality in multi-bid auction

markets such as electricity wholesale markets. The leading equilibrium theory underpinning

market analysis and the econometric estimation of strategic bidding behaviour in electricity

auctions assumes that generating companies o¤er a piecewise di¤erentiable supply function,

specifying the amounts they are willing to supply at each price. The market operator aggregates

these supplies and clears the market at the lowest price at which supply is equal to demand �

the Market Clearing Price (MCP). Generators on this theory choose their o¤ers by optimizing

against the smooth residual demand, which gives well-de�ned �rst-order conditions. In reality,

wholesale markets require o¤ers to take the form of a step function, and the resulting residual

demand facing any generator is also a step function, whose derivative is zero almost everywhere.

Faced with this, economists have chosen either to model the market as a discrete unit

auction, which typically leads to complex mixed strategy equilibria, or have argued that with

enough steps, the residual demand can be smoothed and then treated as di¤erentiable. The

di¤erence between these approaches appears dramatic, and it is the purpose of this paper to

demonstrate that in a well-de�ned sense it can be legitimate to approximate step-functions by

smooth di¤erentiable functions, and hence to draw on the well-developed theory associated with

continuous supply functions.

To prove this result, we develop a new discrete model with stepped o¤er functions, which has

a pure-strategy equilibrium that converges to the equilibrium of the limit game with continuous

supply functions. To our knowledge we are the �rst to prove convergence of equilibria in multi-

unit auctions to equilibria in divisible good auctions in this rigorous manner.

1.1 Modelling electricity markets

Electricity liberalization creates electricity markets. The two key markets that we wish to model

are the day-ahead market and the balancing market (in the English Electricity Pool they were

combined). In most such markets there is a separate auction for each delivery period, typically

an hour. Normally, the post-2001 British balancing mechanism being an exception, the markets

are organized as uniform price auctions. Thus all accepted bids and o¤ers pay or are paid the

market clearing price (MCP). Rationing of excess supply at the clearing price may be necessary

and so market designs must specify how rationing will take place, normally by pro-rata on-the-

margin rationing (Kremer and Nyborg, 2004a). Hence, only incremental supply at the clearing

price is rationed and the accepted share of each producer�s incremental supply at this price is

proportional to the size of its increment.
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Producers submit non-decreasing step function o¤ers to the auction (and in some markets

agents, normally retailers, may submit non-increasing demands). With its o¤er the producer

states how much power it is willing to generate at each price. The Amsterdam Power Exchange

(APX) provides a good example and the bid and o¤er ladders that determine the MCP can be

readily downloaded. The successive o¤ers specify a quantity that would be available at a �xed

per unit price. The smallest step in the ladder is given by the number of allowed decimals in the

o¤er. Thus all prices and quantities in an o¤er have to be a multiple of the price tick size and

quantity multiple, respectively. Table 1 summarizes these and other o¤er constraints for some of

the electricity markets in U.S. and Europe. In particular it is worth noting that most electricity

markets have signi�cantly more possible quantity levels compared with possible price levels. In

that sense, the quantity multiple is small relative to the price tick size.

O¤ers are submitted ahead of time (typically the day before) and may have to be valid for

an extended period (e.g. 48 half-hour periods in the English Pool) during which demand can

vary signi�cantly. Plant may fail suddenly, requiring replacement at short notice, so the residual

demand (i.e. the total demand less the supply accepted at each price from other generators)

may shift suddenly with an individual failure, again increasing the range over which o¤ers are

required.

Green and Newbery (1992) argued that the natural way to model such a market was to

adapt Klemperer and Meyer�s (1989) supply function equilibrium (SFE) formulation, in which

�rms make o¤ers before the realization of demand is revealed. Units of electricity are assumed

to be divisible, so �rms o¤er continuous supply functions (SFs) to the auction. Accordingly,

residual demand is piece-wise di¤erentiable and �rms have a well-de�ned piece-wise continuous

marginal revenue, which o¤ers the prospect of a well-de�ned best response function at each point.

An equilibrium is such that each �rm ensures that given the supplies o¤ered by all other �rms,
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it maximizes its pro�ts for each realization of demand.

With a uniform price auction and a continuous SF the e¤ect of lowering the price to capture

the marginal unit lowers the price for the large quantity of inframarginal units (the �price�e¤ect)

while only capturing an in�nitesimal sale (the �quantity�e¤ect). The quantity e¤ect is small if

competitors�supply functions are close to inelastic and as a result very collusive supply function

equilibria can be supported.

The �rst order conditions for the Nash equilibrium for each demand realization satisfy a

set of linked di¤erential equations. Analytical solutions can be found for the case of equal and

constant marginal costs and linear marginal costs. Closed form solutions are also available for

symmetric �rms and perfectly inelastic demand (Rudkevich et al, 1998; Anderson and Philpott,

2002). The literature on numerical algorithms for �nding SFE of markets with asymmetric �rms

and general cost functions (Holmberg, 2008; Anderson and Hu, 2008) is particularly relevant

to our investigation. For example, numerical instabilities often arise in computation especially

when mark-ups are small (Baldick and Hogan, 2002; Holmberg, 2008). Our analysis explains

this observation as the relationship between the discrete and continuous cases relies on positive

outputs, so that mark-ups are strictly positive.

Green and Newbery (1992) argued that the large number of possible steps meant that, given

the uncertainty about, and variability of, demand, such steps could reasonably be approximated

by continuous and piecewise di¤erentiable functions. von der Fehr and Harbord (1993), however,

argued that the ladders were step functions that were not continuously di¤erentiable, and it

would be inappropriate to assume that they were. Instead, they model the electricity market as

a multiple-unit uniform-price auction in which each generating set submits a single bid from a

continuum of prices (although in all existing electricity markets the set of prices is �nite) for its

entire capacity (supplies are chosen from a discrete set). With these assumptions, competition

is almost everywhere in prices, with winner takes all over the whole step. Thus the �price�e¤ect,

which can be made in�nitesimally small in their model, of stealing some market is no longer

larger than the now signi�cant �quantity�e¤ect. If a producer is pivotal, i.e. competitors are not

able to meet maximum demand without this producer, then such Bertrand competition often

destroys any pure strategy equilibrium, leaving only a mixed-strategy equilibrium in which �rms

randomize over a distribution of possible prices. Choosing a mixed strategy in prices means

that prices will be inherently volatile or unstable, even under unchanged conditions. Solving for

such mixed strategy equilibrium is extremely di¢ cult, so the result was destructive, in the sense

that existing supply function models were claimed to be �awed but suitable auction models were

intractable.

If one can show that the continuous SFE model is a valid approximation, this would justify
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the common practice in empirical work of smoothing the residual demand, allowing a well-de�ned

best response to be identi�ed. Three empirical studies applying this approach to the balancing

market in Texas (ERCOT) suggest that a continuous representation is consistent with pro�t-

maximizing behaviour for the largest producers in this market (Niu et al., 2005; Hortacsu and

Puller, 2008; Sioshansi and Oren, 2007). Sweeting (2007) similarly estimates best responses to

smoothed residual demand schedules in the English Electricity Pool to characterize the exercise

of market power.

Wolak (2003) has used observed bidding behaviour to back out the unobserved underlying

cost and contract positions of generators bidding into the Australian market. He notes continuity

of the SF gives a one-to-one mapping between the shocks and the market price and hence the

best response does not depend on the distribution of shocks. Wolak smooths the ex post observed

stepped residual demand schedule to �nd the best response supply, which is then compared with

the actual supply (chosen before the residual demand was realized). He notes, however, that,

unlike the continuous approximation, the choice of an optimal step function will depend on the

distribution of the shocks. Hence, discrete models might enhance accuracy in empirical work.

1.2 Reconciling step and continuous supply functions

The central question raised by the von der Fehr and Harbord critique and the empirical appli-

cations is whether smoothing and/or increasing the number of steps in the ladder can reconcile

the step function and continuous approaches to modelling electricity markets. Do markets with

uncertain or variable demand and su¢ ciently �nely graduated bidding ladders converge to supply

function equilibria, or do they remain resolutely and signi�cantly di¤erent? The central claim

of this paper is that under well-de�ned conditions, convergence can be assured, providing an

intellectually solid basis for accepting the SFE approach. As such it marks a major step forward

in the theory of supply function equilibria.

Fabra et al (2006) argue that the di¤erence between the two approaches derives from the

�nite bene�t of in�nitesimal price undercutting in the ladder model. But this argument assumes

that prices can be in�nitely �nely varied. In practice, the price tick size cannot be less than the

smallest unit of account (e.g. 1 US cent, 1 pence, normally per MWh), and might be further

restricted, as in the multi-round California PX auction. In this case, the undercutting strategy is

not necessarily pro�table, because the price reduction cannot be made arbitrarily small. Whereas

von der Fehr and Harbord (1993) considered the extreme case when the set of quantities is �nite

and the set of prices is in�nite, this paper considers the other extreme when the set of quantities

is in�nite and the set of prices is �nite, consistent with the practice noted in Table 1.

We show that, with su¢ ciently many allowed steps in the bid curves, the step function and
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the market-clearing price (MCP) converge to the supply functions and price predicted by the SFE

model. As in Dahlquist/Lax-Richtmyer�s equivalence theorem (LeVeque, 2007), convergence of

�rst-order solutions requires that the discrete system is consistent with the continuous system �

the �rst-order conditions of the two systems converge - and that the discrete solution is stable,

i.e. the di¤erence between the two solutions does not grow too rapidly. Moreover, solutions

should exist in both the discrete and continuous system. To get convergence of equilibria in the

two systems, the converging �rst-order solution must in addition be global pro�t maxima in both

systems. If a producer is pivotal, the stationary solutions with the lowest mark-ups will typically

not be equilibria, because such solutions give pivotal producers incentives to withhold output

until the capacity constraints of the competitors bind, so that the market price can be signi�cantly

increased. Disregarding such solutions and assuming concave demand, we prove that remaining

monotonically increasing �rst-order solutions of the discrete and continuous systems are Nash

equilibria if the number of price levels in the discrete system is larger than some su¢ ciently

large �nite number. Hence, convergence of the Nash equilibria follows straightforwardly from

convergence of the �rst-order solutions. Note that partly decreasing o¤ers are not in the strategy

set, as such o¤ers are not allowed in electricity markets.

Dahlquist/Lax-Richtmyer�s equivalence theorem is a standard technique for analyzing the

convergence of numerical methods, but it seems that we are the �rst to apply this method as

a crucial step to prove convergence of Nash equilibria. Our existence and convergence result

suggest that with a negligible quantity multiple and su¢ ciently many steps, the stepped supply

functions are deterministic (and hence so is the price for each realization, cet. par.) and a

continuous SFE is a valid approximation of bidding in such electricity auctions.

Our model has parallels in the theoretical work by Anderson and Xu (2004). They analyse

a duopoly model of the Australian electricity market, where each of two producers �rst chooses

and discloses its price grid and later its o¤ers at each price. They assume demand is random but

inelastic, with an elastic outside supply at some price, P , which e¤ectively sets a price ceiling.

In the uniform-price/single-price auction, they show that, under certain conditions, the second

stage has a pure strategy equilibrium in quantities, although the �rst stage only has mixed

strategies in the choice of prices. Their second stage has similarities with our model, because

prices are chosen from discrete sets in both models. On the other hand, generators�chosen price

vectors generally di¤er as the declared prices are chosen by randomizing over a continuous range

of prices. In our paper, however, the available price levels are given by the market design and

accordingly are the same for all �rms. Moreover, Anderson and Xu (2004) do not compare their

discrete equilibrium with a continuous SFE.

Wolak (2007), in a path-breaking empirical paper, develops a similar model of the Australian
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market to that of Anderson and Xu, but Wolak observes the step function bids, the contract

positions and the market clearing prices, and hence is able to construct the ex post residual

demand facing any generator. Wolak applies a standard kernel smoothing function to transform

the step function residual demand into a smooth function satisfying various rate restrictions,

which can be di¤erentiated to derive the marginal revenue that should be equal to the marginal

cost on the maintained assumption of pro�t maximization. This allows the cost function to

be identi�ed, and to test whether on average there is any evidence to reject the maintained

hypothesis that the generator selects stepped bids to maximize pro�ts, given its contract position.

This approach avoids the problem facing the generator of deciding the set of prices at which to

o¤er variable quantities, where the optimal choice is likely to be a mixed strategy. Given repeated

observations it is possible to test whether on average the bids were pro�t maximizing, without

having to solve for the pure or mixed strategy optimal bids. The same model is used by Gans

and Wolak (2007) to assess the impact of vertical integration between a large electricity retailer

and a large electricity generator in the Australian market.

Anderson and Hu (2008) develop a numerical method for solving asymmetric supply function

equilibria. To achieve this they approximate equilibria of the continuous system with piece-wise

linear supply functions and discretise the demand distribution. They show that equilibria of this

approximation converge to equilibria in the original continuous model. The piece-wise linear bid

functions are carefully chosen to avoid the in�uence of kinks in the residual demand curves. These

approximate bid curves are drawn so that all producers have locally well-de�ned derivatives in

their residual demand curves for all possible discrete demand realizations. Anderson and Hu�s

discrete model is motivated by its computational properties. In contrast, as in real electricity

markets, we deal with the worst kinks possible, i.e. steps, and we do so explicitly, because we

want to prove equilibrium convergence for a more problematic case where convergence has been

disputed both empirically and theoretically.

Kastl (2008) analyzes divisible-good auctions with certain demand and private values, i.e.

bidders have incomplete information. This set-up, introduced by Wilson (1979), is mainly used

to analyze treasury auctions. Kastl considers both uniform-price and discriminatory auctions.

He assumes that both quantities and prices are chosen from continuous sets, but the maximum

number of steps is restricted. He veri�es consistency, i.e. that the �rst-order condition (the Euler

condition) of the stepped bid curve converges to the �rst-order condition of a continuous bid-

curve when the number of steps becomes unbounded. But he does not verify stability, nor that

solutions exists and globally maximize agents�pro�ts in the discrete and continuous systems,

which all are necessary conditions for the convergence of Nash equilibria in the discrete system

to Nash equilibria in the continuous systems.
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More generally, the convergence problem under study is related to the seminal paper by

Dasgupta and Maskin (1986) on games with discontinuous pro�ts. They show that if payo¤s

are discontinuous, then Nash equilibria (NE) in games with �nite approximations of the strategy

space of a limit game may not necessarily converge to NE of the limit game. Later Simon

(1987) showed that convergence may depend on how the strategy space is approximated. This

intuitively explains why NE in the model by von der Fehr and Harbord (1993), in which payo¤s

are discontinuous, do not necessarily converge to continuous SFE, and also why it is not surprising

that NE in our discrete model, in which payo¤s are continuous, converge to continuous SFE.

However, Dasgupta and Maskin (1986) and Simon (1987) derive their convergence results for

a limit game in which the strategy space has a �nite dimension, whereas our limit game has

in�nitely many dimensions (a continuous supply function has in�nitely many price/quantity

pairs). Moreover, the purpose in Dasgupta and Maskin (1986), Simon (1987), and in related

papers by Bagh (2010), Gatti (2005), and Remy (1999) is di¤erent to ours. They want to use

existence of equilibria in discrete approximations in order to prove existence in the limit game,

whereas our intention is the opposite � to show that existence of continuous SFE, i.e. in the

limit game, implies existence of discrete NE which converge to the continuous SFE as the number

of steps increases. Hence we use a proof strategy that is very di¤erent from theirs. We check

whether a continuous NE is robust to discrete approximations, which is related to problems of

numerical analysis.

2 THE MODEL AND ANALYSIS

Consider a uniform price auction, so that all accepted o¤ers are paid the Market Clearing Price

with any excess demand or supply at the MCP rationed pro-rata on-the-margin. We calculate a

pure strategy Nash equilibrium of a one-shot game, in which each risk-neutral electricity producer

or Generator, i, chooses a step supply function to maximize its expected pro�t, E (�i) in (1)

below. There are M price levels, pj ; j = 1; 2; : : :M , with the price tick �pj = pj � pj�1, for the
most part assumed equal and then denoted by �p. The minimum quantity increment is zero -

quantities can be continuously varied.

Generator i (i = 1; ::; N) submits a supply vector si consisting of non-negative maximum

quantities
�
s1i ; : : : ; s

M
i

	
it is willing to produce at each price level

�
p1; : : : ; pM

	
. The step length

�sji = s
j
i � s

j�1
i � 0: o¤ers must be non-decreasing in price and bounded above by the capacity

si of Generator i. Let s = fs1; : : : ; sNg and denote competitors�collective quantity o¤ers at
price pj as sj�i and the total market o¤er as s

j . In the continuous model the set of individual

supply functions is fsi (p)gNi=1. The cost function of �rm i; Ci (si), is an increasing, convex and

twice continuously di¤erentiable function up to the capacity constraint si. Costs are common
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Figure 1: Stepped supply, demand shocks and key price levels.

knowledge.

Electricity consumers are non-strategic. Their demand is stepped and the minimum demand

at each price is dj + ", where " is an additive demand shock. Decremental demand is �dj = dj �
dj�1 � 0, with�dj � �dj+1, corresponding to a continuously di¤erentiable concave deterministic
demand curve, d(p); in the continuous case. The latter is such that lim

�pj!0
�dj

�pj
= d0

�
pj
�
and

lim
�pj!0

dj = d
�
pj
�
. Note that �pj is a local tick-size and that other tick-sizes �pk are �xed when

these limits are calculated, so that pj is �xed and pj�1 ! pj . The additive demand shock has a

continuous probability density, g("), which is strictly positive on its support ["; "].

Let � j = sj � dj be the deterministic part of total net supply (excluding the stochastic
shock) at price pj , and de�ne the increase in net supply from a positive increment in price as

�� j = � j � � j�1. Similarly, the residual deterministic net supply is � j�i = sj�i � dj and its
increase is �� j�i = �

j
�i � �

j�1
�i .

The Market Clearing Price (MCP) is the lowest price at which the deterministic net-supply

equals the stochastic demand shock. Thus the equilibrium price as a function of the demand

shock is left continuous, and the MCP equals pj if " 2
�
� j�1; � j

�
. Given chosen step functions,

the market clearing price can be calculated for each demand shock in the interval ["; "]. The

lowest and highest prices that are realized are denoted by pL and pH , respectively, where 1 �
L < H � M . Both depend on the available number of price levels, M , as well as the boundary
conditions, and these various price levels and the demand shocks are shown in Fig. 1. The lowest
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and highest realized prices in the corresponding continuous system are a and b respectively.

Given all players�chosen strategies, we can write the clearing price, p("), and producer i�s

accepted output, si("), as functions of the demand shock, so that

E (�i) =

"Z
"

[p (") si (")� Ci(si ("))]g (") d": (1)

With pro-rata on-the-margin rationing, all supply o¤ers below the MCP, pj , are accepted, while

o¤ers at pj are rationed pro-rata. Thus for " 2
�
� j�1; � j

�
, "� � j�1 is excess demand at pj�1, so

the accepted supply of a generator i is given by:

si (") = s
j�1
i +

�sji
�
"� � j�1

�
�� j

= "� � j�1�i �
�� j�i

�
"� � j�1

�
�� j

; (2)

(making use of the fact that � j = � j�i + s
j
i and ��

j = �� j�i +�s
j
i ).

2.1 First-order conditions

The contribution to the expected pro�t of generator i from realizations " 2
�
� j�1; � j

�
is:

Eji =
�jR

�j�1

�
pjsi (")� Ci(si ("))

�
g (") d" =

sji+�
j
�iR

sj�1i +�j�1�i

�
pj
�
"� � j�1�i �

��j�i("��j�1)
��j

�
� Ci

�
"� � j�1�i �

��j�i("��j�1)
��j

��
g (") d";

(3)

where again � j = � j�i + s
j
i . Generator i�s total expected pro�t is

E (�i (s)) =

MX
j=1

Eji

�
sji ; s

j�1
i

�
: (4)

The Nash equilibrium is found by deriving the best response of each �rm given its competitors�

chosen stepped supply functions. The �rst order conditions are found by di¤erentiating the

expected pro�t in (4). Proposition 1 characterizes these �rst order conditions over the range

of possible intersections of aggregate supply with demand (i.e. over the range on which it has

positive probability). All proofs are given in the appendix.

Proposition 1 With stepped supply function o¤ers, �ji (s) = @E (�i (s)) =@s
j
i is always well-

de�ned, and the �rst-order condition for the supply of �rm i at a price level j, such that " �
� j � ", is given by:

0 = �ji (s) =
@E(�i(s))

@sji
= ��pj+1sjig

�
� j
�
+

�jR
�j�1

�
pj � C 0i (si ("))

� ��j�i("��j�1)
(��j)2

g (") d"

+
�j+1R
�j

�
pj+1 � C 0i (si ("))

� ��j+1�i (�
j+1�")

(��j+1)2
g (") d";

(5)

where si(") is given by (2) if " 2
�
� j�1; � j

�
.
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The �rst point to note, pace Dasgupta and Maskin�s (1986) result for games with discon-

tinuous pro�ts, is that expected pro�ts E (�i (s)) are di¤erentiable. Thus expected pro�t is

continuous in the strategy variables, and convergence should be less problematic. The �rst-order

condition can be intuitively interpreted as follows. When calculating �ji (s) = @E (�i (s)) =@s
j
i ,

supply is increased at pj , while holding the supply at all other price levels constant. This implies

that the o¤er price of one (in�nitesimally small) unit of power is decreased from pj+1 to pj . This

decreases the MCP for the event when the unit is price-setting, i.e. when " = � j . This event

brings a negative contribution to the expected pro�t, which corresponds to the �rst term in the

�rst-order condition. On the other hand, because of the rationing mechanism, decreasing the

price of one unit (weakly) increases the accepted supply for demand outcomes " 2
�
� j�1; � j+1

�
.

This brings a positive contribution to the expected pro�t, which corresponds to the two integrals

in the �rst-order condition. The �rst integral represents " 2
�
� j�1; � j

�
when the MCP is pj , and

the other integral represents " 2
�
� j ; � j+1

�
when the MCP is pj+1.

The �rst-order condition in Proposition 1 is not directly applicable to parts of the o¤er curve

that are always or never accepted in equilibrium. The appendix shows that, because of pro-rata

rationing, a producer�s pro�t is maximized if o¤ers that are never accepted are o¤ered with a

perfectly elastic supply (until the capacity constraint binds) at pH , so that sHi = si; and o¤ers

that are always accepted are o¤ered below pL. In particular, we assume that

sji = s
L�1
i if j < L; (6)

because this o¤er curve discourages NE deviations that undercut the price level pL, and is

accordingly most supportive of an NE. In summary, equilibrium supply is constant for p < pL,

satis�es (5) for p 2 [pL; pH) and jumps to si at pH .
Note that the di¤erence equation in (5) is of the second-order. Thus solutions, should

they exist, would be indexed by two boundary conditions that could appear in a variety of

forms, e.g., initial and �nal (boundary) values or, as here, two boundary values at the upper

end of the interval. As argued above, one of the boundary conditions is pinned down by the

capacity constraint sHi = si. This leaves each �rm with one remaining free parameter, sH�1i ,

that will be tied down with a second boundary condition, sH�1i = bki, for some constant bki. This
latter condition corresponds to the single boundary condition needed for the continuous case,

presented shortly. De�nition 1 gives the notation for a set of discrete solutions, meaning a list

of simultaneous solutions, one for each player i and price level pj .

De�nition 1 By
�nbsjioj=H

j=L

�N
i=1

or
nbsjioH;N

L;1
we denote a set of solutions to the system of

di¤erence equations (5) given two boundary conditions bsHi = si and bsH�1i = bki, for some constantbki. We call this a discrete stationary solution and say this set is a segment of a discrete SFE if
11



the set of strategies
nbsjioH;N

L;1
formed by taking sji = bsL�1i if j < L, sji = bsji if L � j � H; and

sji = si if j > H is an SFE for the discrete game.

Section 2.2 studies convergence of �rst-order solutions of the discrete system to �rst-order

solutions of the continuous system. The system of �rst-order conditions in the continuous case

is given by Klemperer and Meyer (1989):

�si(p) + [p� C 0i(si(p))](s0�i(p)� d0(p)) = 0: (7)

This system has one degree of freedom, and hence an in�nite number of potential solutions. As

shown by Baldick and Hogan (2001), the system of di¤erential equations can be written in the

standard form of an ordinary di¤erential equation (ODE):

s0i(p) =
d0(p)

N � 1 �
si(p)

p� C 0i(si(p))
+

1

N � 1
X
k

sk(p)

p� C 0k(sk(p))
: (8)

We can therefore index the continuum of continuous SFE by boundary conditions si(b) =
^
k i. In

Section 2.2, we will link the discrete and continuous boundary conditions by requiring lim
�p!0

bki =
^
k i, where we note that bki depends on �p or, equivalently, on M .

The shape of the o¤er curves in the never-price-setting region of the continuous system is

the same as for the discrete system; bids that are always accepted are perfectly inelastic and bids

that are never accepted are perfectly elastic. This shape discourages competitors from deviating

from a potential NE, and is accordingly most supportive of an NE:

si(p) = si(a) if p < a; and si(p) = si if p > b: (9)

The next de�nition provides the notation for solutions to the continuous system.

De�nition 2 By
n
^
s i (p)

oN
i=1

we denote a set of continuous solutions to the system of the

di¤erential equations (8) on the interval [a; b] with boundary conditions
^
s i (b) =

^
k i. We call this

a continuous stationary solution. We say
n
^
s i(p)

oN
i=1

is a segment of a continuous SFE if the

set of strategies fsi (p)gNi=1 formed by taking si (p) =
^
s i (a) if p < a, si (p) =

^
s i (p) if p 2 [a; b],

and si (p) = si if p > b; is an SFE.

2.2 Convergence of stationary solutions

This section states (and the appendix proves) that for a market for which di¤erentiable solutions

to equations in (7) exist, there also exists a discrete stationary solution that converges to the

continuous solution as �p ! 0, which is non-obvious given the results in von der Fehr and
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Harbord (1993). Note that the existence of smooth solutions has been established for a broad

class of cases, see e.g. Klemperer and Meyer (1989), so their existence are not disputed. The steps

in the convergence proof are related to the steps in the proof of Dahlquist�s equivalence theorem1

for discrete approximations of ODEs (LeVeque, 2007). It is not standard to approximate ODEs

by systems that are both non-linear and implicit (since solving an approximating system then

requires an iterative procedure at each step of the integration). Nevertheless our convergence

proof has to deal with systems of di¤erence equations in Proposition 1 that are implicit and non-

linear; we extend the framework of LeVeque (2007) for this purpose. To facilitate the application

of approximation theory for ODEs, we restrict attention to the cases de�ned by:

Assumption 1. Bounded, increasing and di¤erentiable stationary solutions
n
^
s i(p)

oN
i=1

of (8)

exist on the interval [a; b]:

In order to prove that all producers have positive mark-ups, we �rst show that all producers

have positive outputs. Let n be the producer with the highest marginal cost at zero output,

C 0n (0). The Klemperer and Meyer equation (7) implies that its output can only be non-positive

if the market clears at a price at or below its marginal cost. From the same equation we see that

competitors, whose marginal costs at zero output are no higher than C 0n (0), will o¤er positive

outputs with positive mark-ups. Now, if the lowest demand curve crosses their marginal cost

curve at a price above C 0n (0) then producer n�s output must be positive at this outcome. This

is illustrated in Fig. 2, and motivates the following assumption on costs and shocks.

Assumption 2. Let n be the producer with the highest marginal cost at zero output. The lowest

shock is such that C 0�n ("+ d (C
0
n (0))) > C 0n (0) ; where C�n (s�n) is the minimum (e¢ cient)

production cost of competitors producing s�n units.

In case there are several such producers, the assumption is satis�ed for all producers that

have the same highest marginal cost at zero output. Given this assumption and our assumptions

on the shock density, it is straightforward to prove the following:

Lemma 1 If Assumptions 1 and 2 are satis�ed, then the mark-up, p�C 0i
�
^
s i (p)

�
, for continuous

stationary solutions is bounded below by a positive constant that is independent of i and p 2 [a; b].

Now we present the proof strategy and the convergence result; technicalities are relegated

to the appendix. Our task is to relate continuous solutions to solutions of the discrete system

(5). The �rst step in proving convergence of stationary solutions is to verify that the discrete

system of stationary conditions in Proposition 1 is consistent with the stationary conditions for

1The more general Lax-Richtmyer equivalence theorem applies to partial di¤erential equations.
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Figure 2: To ensure that producer n; who has the highest marginal cost at zero output, always

has a positive output, we assume that the competitors�marginal cost curve crosses the lowest

demand curve at a price strictly above C 0n (0) :

continuous SFE written as the ODE (8). Lemma 5 of the appendix shows this to be the case.

That the discrete system is a consistent approximation of the continuous one implies the former

set of equations converges to the latter as the number of price steps M goes to in�nity. Thus as

M ! 1, the second-order di¤erence equation in (5) converges to a di¤erential equation of the
�rst-order, which corresponds to the Klemperer and Meyer equation (7). If we let the error be

the di¤erence between the continuous and discrete solution, this ensures that the error grows at

a slower rate per step as the number of steps becomes larger. However, this does not ensure that

a discrete stationary solution will exist nor, if it does, that it will converge to the continuous

solution, because at the same time the number of steps between pL and pH increases. Thus even

if the discrete system is consistent with the continuous one, the error could explode when the

number of steps becomes large �the unstable case. Hence the second step in the convergence

analysis is to establish existence and stability.

Lemma 4 in the appendix shows that a solution at the price level H � 2 (the �rst step) is
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ensured, if the boundary conditions
n
sH�1i = bkioN

i=1
and

�
sHi = si

	N
i=1

satisfy:

0 < �psH�1i g
�
�H�1

�
�

"Z
�H�1

�
pH � C 0i (si ("))

�
��H�i

�
�H � "

�
(��H)2

g (") d" (10)

< min

2643
h
pH�1 � C 0i

�
sH�1i

�i2
g2min

2C 00maxgmax
;

3
h
pH�1 � C 0i

�
sH�1i

�i2
g2min

2
�
C 00maxgmax + [p

H�1 � C 0i (0)] g
0
max

�
375 ;

where �p is the uniform tick-size, C 00max is the highest slope of the marginal cost curves, gmax

and gmin are the largest and smallest densities in the support of g (") ; and g0max is the largest

slope of the density function in the support of g (").2 Recall that we have assumed gmin to be

strictly positive. With strictly positive mark-ups, the term on the right is always bounded from

below by some positive constant, independent of �p: Hence, we realize that the condition is

always satis�ed for some large but �nite M (and small �p) if we choose bki su¢ ciently close to
the continuous solution. For example, the integral is zero when

nbkioN
i=1

are chosen such that

�H�1 = ":

Provided the inequality above is satis�ed, Proposition 2 states that the discrete stationary

solution exists and is stable forM �Mo, which is a su¢ ciently large (but �nite) integer number.

Moreover, the proposition shows that the solution converges to the continuous stationary solution

asM !1. Recall that pL and pH are the lowest and highest realized prices, and that the indices
L and H vary with M (and the boundary conditions).

Proposition 2 Make Assumption 2 and let
n
^
s i (p)

oN
i=1

be a continuous stationary solution

on the interval [a; b] that satis�es Assumption 1. Consider the discrete stationary system of

di¤erence equations (in Proposition 1) with �pj = �p and boundary conditions bsH�1i = bki andbsHi = si satisfying (10) for each i. If asM !1 we have pH ! b and bki converges to ^k i = ^
s i (b),

then for M �Mo there exists a unique discrete solution
nbsjioN

i=1
. As the number of steps grows

(M !1),
nbsjioN

i=1
converges to

n
^
s i (p)

oN
i=1

in the interval [a; b]:

The meaning of convergence in this result is that if j is chosen to depend on M such that

pj ! p 2 [a; b] as M !1, then bsji ! bsi(p) as M !1 for each i.

As an illustration of the discrepancy between consistency and convergence, the following can

be noted. To prove consistency in our model it would have been enough to make Assumption 1,

which would allow for zero mark-ups when supply is zero. However, the error grows at an in�nite

rate when the mark-up is zero at zero supply, so the continuous and discrete stationary solutions

do not necessarily converge at this point. That is why we make the additional Assumption 2,

2We set g0max = 0, in case g
0 < 0 for all ":
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which ensures that output is always positive for all producers. This is related to the instabil-

ity near zero supply that has been observed when continuous SFE are calculated by means of

standard numerical integration methods (Baldick and Hogan, 2002; Holmberg, 2008).

2.3 Su¢ cient conditions

Here we show that a non-decreasing solution of the continuous stationary conditions, presented

above, must be an SFE if Assumption 3 below is satis�ed. That is, the non-decreasing condition

acts rather like a second-order condition in ensuring su¢ ciency. Lemma 2 gives a corresponding

result for the discrete system. These results are of independent interest. For example, Proposi-

tion 3, on the su¢ ciency in the continuous case, extends Klemperer and Meyer�s (1989) su¢ ciency

result for symmetric producers. We also generalize Klemperer and Meyer (1989) by considering

capacity constraints. But this comes at the price of additional complexity, because competitors�

capacity constraints introduce kinks and non-concavities in the pay-o¤ function of a producer.

These kinks will start to in�uence the range of possible equilibria when a producer is pivotal at

price p = b, i.e. competitors�total production capacity is not su¢ cient to meet market demand

at this price (Green and Newbery, 1992; Baldick and Hogan, 2002; Genc and Reynolds, 2004;

Holmberg, 2007; Anderson and Hu, 2008). Pivotal producers will �nd it pro�table to deviate

from the stationary solutions with the lowest mark-ups by withholding output to make competi-

tors�capacities bind. For example, the Bertrand equilibria in the model by von der Fehr and

Harbord (1993) can be ruled out as soon as one �rm is pivotal. To rule out boundary conditions

with too low mark-ups for a pivotal producer, i.e. b is too low, we make

Assumption 3.

b
^
k i � Ci

�
^
k i

�
� pd ["+ d (pd)� s�i]� Ci ["+ d (pd)� s�i] 8pd 2

�
b; pM

�
:

Note that the left-hand side of the inequality is the pro�t at the boundary condition p = b.

The right-hand side is the pro�t when supply is with-held until competitors�capacities bind, so

that the price can be increased, pd 2
�
b; pM

�
. If the assumption is not satis�ed then there will

always be some shock density f(") (with su¢ cient probability mass near "), such that
n
^
s i (p)

oN
i=1

with
^
s i (b) =

^
k i is not a segment of an SFE. Also note that Assumption 3 is always satis�ed if b

is su¢ ciently close to the price cap pM or if producers are non-pivotal. See Genc and Reynolds

(2004) for a more detailed analysis of pivotal producer�s in�uence on the existence of SFE. Given

Assumption 3 it is straightforward to verify that the stationary solution will have su¢ cient mark-

ups to deter deviations with pd > b by any pivotal producer for any shock outcome. (See Lemma

6 in the Appendix.). Proposition 3 below rules out deviations resulting in prices p � b. This
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is relevant for both pivotal and non-pivotal producers, to prove that non-decreasing, continuous

stationary solutions satisfying Assumption 3 are Nash equilibria.3

Proposition 3 Let Assumption 3 hold. If each
^
s i (p) is non-decreasing on [a; b] then

n
^
s i (p)

oN
i=1

is a segment of a continuous SFE.

The next lemma gives a corresponding su¢ ciency condition for discrete equilibria. The

lemma relies on the requirement that the discrete o¤ers are monotonic and that no producer is

su¢ ciently pivotal to �nd it pro�table to increase the price above pH by withholding production,

so that sHi < " + d(pH) � s�i (because bsH�i = s�i). In Section 2.4 we will prove that these

two conditions follow from the assumed properties of the continuous SFE and the proof that

the discrete stationary solution converges to the continuous stationary solution. Recall that

�dj � �dj+1, corresponding to concave demand.

Lemma 2 Consider a set
nbsjioH;N

L;1
of discrete stationary solutions to the system of di¤erence

equations in (5) under the usual boundary conditions bsHi = si and bsH�1i = bki. Let �pj = �p

and suppose that pj �C 0i(s
j
i ) > 0 for all price levels L � j � H � 1 and each i = 1; : : : ; N . If the

strategy
nbsjioH

L
is non-decreasing for each generator i, then

nbsjioH;N
L;1

is a segment of a discrete

SFE for M � M1; unless there are pro�table deviations such that sHi < "+ d(p
H)� s�i. In the

case with uniformly distributed demand we have M1 = 3:

M1 is a su¢ ciently large (but �nite) integer number. M1 = 3 is the smallest number of price

levels in our model.

2.4 Convergence of discrete and continuous SFE

This section states (and the appendix proves) the central result of the paper: that for a market

for which a continuous SFE exists, a discrete SFE also exists and converges to the continuous SFE

as �p ! 0. Section 2.2 proved convergence of stationary solutions, using techniques normally

applied to ODEs. We now depart from the theory of ODEs in order to prove convergence of

the equilibria themselves. Fortunately this turns out to follow relatively easily from convergence

of the stationary solutions. We use the observation that a stationary solution of the continuous

system is actually a Nash equilibrium strategy if it is increasing in price: see Proposition 3.

The convergence of the discrete stationary solution to the continuous one, proved in Proposition

3 In the proof we use the assumption that demand is concave: This is to avoid undercutting incentives at the

price a, but if a would equal producers�marginal cost at zero output (i.e. Assumption 2 is not satis�ed) as in

Klemperer and Meyer (1989) then concave demand is not needed to prove our general equilibrium result.
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2, ensures that the discrete stationary solution inherits three important properties from the

continuous stationary solution: 1) the discrete stationary solution is increasing, 2) mark-ups are

strictly positive, and 3) the stationary solution has su¢ ciently high mark-ups that any pivotal

producer will not wish to deviate to a price pd > pH ! b. According to Lemma 2, these properties

are enough to ensure that the discrete stationary solution is a Nash equilibrium, and the proof

of Theorem 1 is complete.

Theorem 1 Let Assumptions 1-3 hold, then:

a)
n
^
s i (p)

oN
i=1
is a segment of a continuous SFE.

b) In addition, suppose �pj = �p and that boundary conditions bsH�1i = bki and bsHi = si
satisfy (10) for each i. If as M !1 we have pH ! b and bki converges to ^k i = ^

s i (b), then for

M �M2 there exists a unique discrete solution
nbsjioN

i=1
that is a segment of a discrete SFE. As

the number of steps grows (M !1),
nbsjioN

i=1
converges to

n
^
s i (p)

o
in the interval [a; b]:

M2 is a su¢ ciently large (but �nite) integer number. Recall that pL and pH are the lowest

and highest realized prices, and that the indices L and H vary with M (and the boundary

conditions). The meaning of convergence in this result is that if j is chosen to depend on M

such that pj ! p 2 [a; b] as M ! 1, then bsji ! bsi(p) as M ! 1 for each i. Note that

the convergence result is valid for general convex cost functions, asymmetric producers and

general probability distributions of the demand shock. From Proposition 1 we know that the

latter in�uences the discrete di¤erence equation for a �nite number of steps, but apparently this

dependence disappears in the limit when the discrete solution converges to the continuous one,

which does not depend on the shock density.

One implication of Theorem 1 is that with a su¢ cient number of �nite steps, existence of

discrete SFE is ensured if a corresponding continuous SFE exists. As an example, Klemperer

and Meyer (1989) establish the existence of continuous SF equilibria if �rms are symmetric, "

has strictly positive density everywhere on its support ["; "] ; the cost function is C2 and convex,

and the demand function D(p; ") is C2, concave and with a negative �rst derivative. Thus with

a su¢ cient number of �nite steps, discrete SFE will exist under those circumstances as well.

In the study of SFEs there is little work that relates discrete games to their continuous

counterparts by convergence analysis. Anderson and Hu (2008) discretise a continuous SFE

system in order to get a numerically convenient discrete system with straightforward convergence

to the continuous solution. This is a valuable numerical scheme for approximating continuous

SFE. By contrast, we start with a class of self-contained discrete games with relevance to actual

electricity markets and demonstrate both existence and convergence of SFE for the discrete

system to those of the continuous system. This is a hitherto missing bridge from continuous SFE
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theory to discrete SFE practice.

Appendix Proposition 4 reverses the implication of Theorem 1 to show that if a discrete

stationary solution is non-decreasing and converges to a set of smooth functions (one per player)

with positive mark-ups, then the limiting set of functions is a continuous SFE. That is, the family

of increasing smooth SFE with positive mark-ups is asymptotically in one-to-one correspondence

with the family of corresponding well-behaved discrete SFE. This is in itself a useful contribution

to existence results for continuous SFEs.

3 EXAMPLE

Consider a market with two symmetric �rms that have in�nite production capacity. Each pro-

ducer has linear increasing marginal costs C 0i = si. Demand at each price level is by assumption

given by d
�
pj ; "

�
= "� 0:5pj . The demand shock, ", is assumed to be uniformly distributed on

the interval [1:5; 3:5], i.e. g(") = 0:5 in this range.

In the continuous case, there is a continuum of symmetric stationary solutions to the di¤er-

ential equation in (7). The chosen solution depends on the end-condition. Klemperer and Meyer

(1989) and Green and Newbery (1992) show that in the continuous case, the symmetric solution

slopes upwards between the marginal cost curve and the Cournot schedule, while it slopes down-

wards (or backwards) outside this wedge. The Cournot schedule is the set of Cournot solutions

that would result for all possible realizations of the demand shock, and the continuous SFE is

vertical at this line (with price on the y-axis). In the other extreme, when price equals marginal

cost the solution becomes horizontal. In�nite production capacities ensure that Assumption 3 is

satis�ed and in this case a continuous symmetric solution constitutes an SFE if and only if the

solution is within the wedge for all realized prices. Fig. 3 plots the most and least competitive

continuous SFE. All solutions of the di¤erential equations (7) or (8) in-between the most and

least competitive continuous cases are also continuous SFE.4

For the marginal cost and demand curves assumed in this example, the di¤erence equation

in Proposition 1 can be simpli�ed to:

��psji +
1

2

�
pj � c

3

�
sj�1i + 2sji

��
�� j�i +

1

2

�
pj+1 � c

3

�
2sji + s

j+1
i

��
�� j+1�i = 0: (11)

In a symmetric duopoly equilibrium with �d = �0:5�p, �� j�i = s
j
i � s

j�1
i + 0:5�p. Thus the

�rst-order condition can be written:

��psji + 1
2

�
pj � c

3

�
sj�1i + 2sji

���
sji � s

j�1
i + 0:5�p

�
+

1
2

�
pj+1 � c

3

�
2sji + s

j+1
i

���
sj+1i � sji + 0:5�p

�
= 0:

4The dotted continuous SFs are very close to the stepped SF and for the most competitive case are essentially

indistinguishable.
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Figure 3: The most and least competitive continuous SFE (dotted) and their discrete approx-

imations (solid). The discrete approximations have a tick-size of �p = 0:05 (non-competitive

case) and �p = 0:001 (competitive case).

In Fig. 3 the discrete stationary solutions are plotted. As producers are non-pivotal and demand

is uniformly distributed, it follows from Lemma 2 that these solutions are discrete SFE, and so

are all discrete non-decreasing stationary solutions in-between them. Our experience is that we

need a much smaller tick-size in the most competitive case compared to the least competitive

case in order to get a monotonic solution. We believe that it is related to that convergence is

poorer when mark-ups are small due to the singularity at zero mark-ups.

4 CONCLUDING REMARKS

Green and Newbery (1992), and Newbery (1998) assume that the allowed number of steps in the

supply function bids of electricity auctions is so large that equilibrium bids can be approximated

by continuous SFE. This is a very attractive assumption, because it implies that a pure-strategy

equilibrium can be calculated analytically for simple cases and numerically for general cost func-

tions and asymmetric producers. The pure-strategy equilibrium that has inherently stable prices

also justi�es empirical models of strategic bidding in electricity auctions, such as Wolak (2003)

who is able to deduce contract positions, marginal costs and the price-cost mark-up from observed
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bids.

von der Fehr and Harbord (1993), however, argue that as long as the number of steps is �nite,

then continuous SFE are not a valid representation of bidding in electricity auctions. Under the

extreme assumption that prices can be chosen from a continuous distribution so that the price tick

size is negligible, von der Fehr and Harbord (1993) show that uniform price electricity auctions

have an inherent price instability. If demand variation is su¢ ciently large, so that no producer is

pivotal at minimum demand and at least one �rm is pivotal at maximum demand, then there are

no pure strategy NE, only mixed strategy NE. The intuition behind the non-existence of pure

strategy NE is that producers slightly undercut each other�s step bids until mark-ups are zero.

Whenever producers are pivotal they have pro�table deviations from such an outcome.

We claim that the von der Fehr and Harbord result is not driven by the stepped form of the

supply functions, but rather by their discreteness assumption. We consider the other extreme in

which the price tick size is signi�cant and the quantity multiple is negligible. We show that in

this case step equilibria converge to continuous supply function equilibria. The intuition for the

existence of pure strategy equilibria is that with a signi�cant price tick size, it is not necessarily

pro�table to undercut perfectly elastic segments in competitors�bids.

Our results imply that the concern that electricity auctions have an inherent price instability

and that they cannot be modelled by continuous SFE is not necessarily correct. We also claim

that this potential problem can be avoided if tick sizes are such that the number of price levels is

small compared to the number of possible quantity levels, which is the case in many electricity

markets. To avoid price instability, we also recommend that restrictions in the number of steps

should be as lax as possible, even if some restrictions are probably administratively necessary.

Restricting the number of steps increases each producer�s incremental supply o¤ered at each

step, encouraging price randomization.

Our recommendation to have small quantity multiples contrasts with that of Kremer and

Nyborg (2004b) who recommend a large minimum quantity increment relative to the price tick

size to encourage competitive bidding. Their recommendation is correct for markets in which

bidders are non-pivotal for all demand realizations, because in such markets pure strategy equi-

libria with very low mark-ups are possible. For example, von der Fehr and Harbord�s (1993)

model has a Bertrand equilibrium in this case. However, when one or several producers are

pivotal for some demand realization, encouraging producers to undercut competitors�bids can

lead to non-existence of pure strategy Nash equilibria and not necessarily lower average mark-ups

(von der Fehr and Harbord, 1993). Even if mark-ups would be lower also in this case, the market

participants would bear the cost of uncertainty caused by the inherent price instability.

Because of a singularity at zero mark-up, equilibrium bid-curves tend to be numerically
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unstable and easily non-monotonic near such points (Baldick and Hogan, 2002; Holmberg, 2008).

We have the same experience with our stepped o¤er curves. The policy implication is that

smaller tick-sizes, and even smaller quantity multiples, are needed in competitive markets with

small mark-ups in order to get stable prices.

General convergence results for �nite-dimensional games by Dasgupta and Maskin (1986)

and Simon (1987) are not necessarily applicable to our problem, which is in�nitely-dimensional

in the limit. But their results suggest that the risk of non-convergence and price instability in

electricity auctions would be lower if payo¤s were continuous, for example by allowing piece-

wise linear o¤ers as in Nord Pool (Nordic countries) and Powernext (France). This conjecture

is supported by Anderson and Hu (2008) who show that equilibria in such auctions converge

to continuous SFE provided that the piece-wise linear o¤er curves are constructed to avoid the

in�uence of kinks in residual demand. Moreover, as illustrated by Parisio and Bosco (2003),

pure-strategy equilibria in von der Fehr and Harbord�s (1993) model exist if production costs are

private information to some extent, as then uncertainty about competitors�o¤ers would make

expected pro�ts continuous. In spite of this additional uncertainty, we believe that pure-strategy

equilibria in such a market can be approximated by a continuous SFE if demand uncertainty

dominates uncertainty about competitor�s production costs. We leave this as an interesting topic

for future research.

Still an electricity market may fail to have a pure-strategy NE if quantity increments are

large and producers are pivotal. In this case we conjecture that if �rms can choose a su¢ ciently

large number of steps (and most �rms have a large number of individual generating sets), then

the range over which each price is randomized may shrink as the number of possible price choices

increases. In future research, it may be possible to demonstrate convergence of step SFEs to

the continuous SFEs even when the possible price steps are smaller than the quantity steps. If

so, the price instability at any level of demand would be small, and errors in using continuous

representations also small.

In case discrete NE are useful as a method of numerically calculating continuous SFE, it

should be noticed that the assumed price tick size does not necessarily have to correspond to the

tick size of the studied auction. In a numerically e¢ cient solver, it might be of interest to vary

the tick size with the price. Our discrete model where quantities are chosen from a continuous set

and prices from a discrete set has the nice property that pay-o¤ functions are continuous, which

should ensure existence of (mixed-strategy) equilibria in the discrete model. This may turn out

to be a useful property in existence proofs of equilibria in the limit game with continuous supply

functions.

We show that never-accepted out-of-equilibrium bids of rational producers are perfectly
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elastic at the highest realized market price in uniform-price procurement auctions with stepped

supply functions and pro-rata on-the-margin rationing. This theoretical prediction, which should

not depend on the size of tick-sizes and quantity multiples or on whether costs are private

information, can be used to empirically test whether producers in electricity auctions believe

that some of their o¤ers are accepted with zero-probability, which is assumed in many theoretical

models of electricity auctions. Another by-product of our analysis is the result that any set of,

not necessarily symmetric, solutions to Klemperer and Meyer�s system of di¤erential equations

constitute a continuous SFE if supply functions are increasing for all realized prices, demand is

concave, and if a pivotal producer does not have a pro�table deviation at the highest demand

outcome.

Finally, we would not claim that the apparent tension between tractable but unrealistic

continuous SFEs and realistic but intractable step SFEs is the only, or even the main, problem

in modelling electricity markets. First, there are multiple SFE if some o¤ers are always accepted

or never accepted. Then under reasonable conditions, there is a continuum of continuous SFE

bounded by (in the short run) a least and most pro�table SFE. Second, the position of the SFEs

depends on the contract position of all the generators, and determining the choice of contracts

and their impact on the spot market is a hard and important problem. The greater the extent of

contract cover, the less will be the incentive for spot market manipulation (Newbery, 1995), and

as electricity demand is very inelastic and markets typically concentrated, this is an important

determinant of market performance. Newbery (1998) argued that these can be related, in that

incumbents can choose contract positions to keep both the contract and average spot price at the

entry-deterring level, thus simultaneously solving for prices, contract positions, and embedding

the short-run SFE within a longer run investment and entry equilibrium. A full long-run model of

the electricity market should also be able to investigate whether some market power is required

for (or inimical to) adequate investment in reserve capacity to maintain adequate security of

supply. With such a model one could also make a proper assessment of how many competing

generators are needed to deliver a workably competitive but secure electricity market.
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APPENDIX - PROOFS OF PROPOSITIONS

4.1 The discrete �rst-order condition

Proof of Proposition 1: To �nd an equilibrium we need to determine the best response of �rm

i given its competitors�o¤ers. The best response necessarily satis�es a �rst-order condition for

each price level, found by di¤erentiating (3) with respect to sji and s
j�1
i , noting that the limits

are functions of sji and s
j�1
i , as � j = � j�i + s

j
i :

@Eji
@sji

=

�jZ
�j�1

�
pj � C 0i (�)

� �� j�i �"� � j�1�
(�� j)2

g (") d"+
h
pjsji � Ci

�
sji

�i
g
�
� j
�

(12)

and

@Eji
@sj�1i

=

�jZ
�j�1

�
pj � C 0i (�)

�
�� j�i

�
� j � "

�
(�� j)2

g (") d"�
h
pjsj�1i � Ci

�
sj�1i

�i
g
�
� j�1

�
:

From the last expression it follows that:

@Ej+1i

@sji
=

�j+1Z
�j

�
pj+1 � C 0i (�)

�
�� j+1�i

�
� j+1 � "

�
(�� j+1)2

g (") d"�
h
pj+1sji � Ci

�
sji

�i
g
�
� j
�
: (13)

Combining (12) and (13) gives the �rst-order condition for step supply functions:

@E(�i(s))

@sji
=

@Eji
@sji

+
@Ej+1i

@sji
= ��pj+1sjig

�
� j
�
+

�jR
�j�1

�
pj � C 0i (si ("))

� ��j�i("��j�1)
(��j)2

g (") d"

+
�j+1R
�j

�
pj+1 � C 0i (si ("))

�
�� j+1�i

(�j+1�")
(��j+1)2

g (") d" = 0;

(14)

where si(") is given by (2) if " 2
�
� j�1; � j

�
.

@E (�i (s)) =@s
j
i is always well-de�ned, as from our de�nitions and assumed restrictions on

the bids it follows that �� j � �� j�i � 0 and �� j � "� � j�1 � 0 if " 2
�
� j�1; � j

�
.

The �rst-order condition in Proposition 1 is not directly applicable to parts of the o¤er

curves that are never accepted in equilibrium, i.e. for price levels pj such that � j > ". Recall

that pH is the highest price level that is realized with a positive probability. By di¤erentiating

the expected pro�t in (4), one can show that

0 <
@E (�i (s))

@sHi
=

"Z
�H�1

�
pH � C 0i (si ("))

� ��H�i �"� �H�1�
(��H)2

g (") d";
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because g (") = 0 for " > ". Thus to maximize its expected pro�t a �rm should o¤er all of

its remaining capacity at pH . The intuition for this result is as follows: due to pro-rata on-

the-margin rationing, maximizing the supply at pH maximizes the �rm�s share of the accepted

supply at pH ; and, because of the bounded range of demand shocks, there is no risk that an

increased supply at pH will lead to a lower price for any realized event. Hence sHi = si. Our

discreteness and uncertainty assumptions should not be critical for this result. Intuitively, we

expect never-accepted o¤ers to be perfectly elastic in any uniform price auction with stepped

supply functions and pro-rata on the margin rationing.

Now, consider o¤ers that are always infra-marginal. Recall that pL is the lowest price that

is realized with positive probability. Di¤erentiate expected pro�t in (4):

0 <
@E (�i (s))

@sL�1i

=

�LZ
�L�1

�
pL � C 0i (si ("))

�
��L�i

 
��L �

�
"� �L�1

�
(��L)2

!
g (") d" if �L�1 < "; (15)

because g (") = 0 for " < ". Hence �L�1 = ". This result makes sense intuitively. To increase

the accepted supply with pro-rata on-the-margin rationing at the price level pL, infra-marginal

o¤ers that are never price-setting should be o¤ered below pL rather than at pL, because bids at

pL are rationed for the lowest shock outcome. Again, we intuitively believe that always-accepted

o¤ers are generally o¤ered below pL in any uniform price auction with stepped supply functions

and a pro-rata on the margin rationing mechanism.

Lemma 3 below derives a Taylor expansion and other properties of the discrete �rst-order

condition - very useful when we later show that discrete SFE converge to continuous SFE.

Lemma 3 We can make the following statements if pj � C 0i
�
sji

�
> 0 for all price levels such

that L � j � H � 1:

1. The di¤erence sj+1i � sji is of the order �pj+1 8j = L : : :H � 2; and "� �H�1 is of order
�pH .

2. The discrete �rst-order condition in (14) can be approximated by the following Taylor series

expansions:

�ji (s) �
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�2
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�2��
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�H�1i (s) � @E(�i(s))
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= ��pHsH�1i g
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�H�1
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+
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H�1
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Proof: The sum

�jZ
�j�1

�
pj � C 0i (si ("))

� �� j�i �"� � j�1�
(�� j)2

g (") d" (16)

+

�j+1Z
�j

�
pj+1 � C 0i (si ("))

�
�� j+1�i

�
� j+1 � "

�
(�� j+1)2

g (") d" > 0

must be of the order �pj+1, otherwise the �rst-order condition in (5) cannot be satis�ed for

small �pj+1: Now, if there is some di¤erence �sj+1i that is of the order 1, then di¤erences �� j+1

and �� j+1�m will also be of the order 1 for some producer m 6= i. But this would lead to the

contradiction that the sum in (16) is of the order 1, as by assumption pj � C 0i
�
sji

�
> 0 for all

price levels such that L � j � H � 1. Hence, we can conclude that di¤erences
n
�sj+1i

oN
i=1

must

be of the order �pj+1 for L � j � H � 2: We have " � �H , so di¤erences
�
�sHi

	N
i=1

are not

necessarily of the order �pH . However, it must always be the case that "� �H�1 is of the order
�pH .

Given this result we now derive the Taylor expansions of the �rst-order condition.
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(17)

if L � j < H � 1, which gives us the �rst half of the second statement. But when j = H � 1 we
get:
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which is the other half of the second statement.

4.2 Convergence of stationary solutions

The �rst step is to prove that mark-ups are strictly positive under our assumptions.
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Proof of Lemma 1: The market design only allows for non-negative outputs. Hence, mark-ups

must be non-negative according to (7). Thus with continuous marginal costs, non-decreasing

o¤er curves and non-negative mark-ups, it follows from Assumption 2 that competitors to �rm

n must o¤er strictly less than "+ d (C 0n (0)) at the price C
0
n (0) ; and according to (7) the output

of �rm n is zero at this price. The demand curve is di¤erentiable and Assumption 1 makes the

same assumption for the supply curves. Thus the market must clear at a price strictly larger

than C 0n (0) for the lowest demand outcome. According to (7) this implies that all �rms have

strictly positive outputs at the lowest price. Supply curves are non-decreasing with respect to

price, so the output must be strictly positive for all shock outcomes.

From equation (7), strict positivity of si(p) implies that both the mark-up p � C 0i(si(p))
and the di¤erence s0�i(p) � d0(p) take nonzero values for p 2 [a; b]. In fact, since s�i(p) is non-
decreasing and d(p) non-increasing, s0�i(p) � d0(p) is non-negative, hence positive. Thus the
mark-up, which equals si(p)=(s0�i(p)� d0(p)), must be strictly positive. Moreover, continuity of
Ci(�) and si(p) yield that the mark-up is bounded below by a positive constant for all p in the
compact set [a; b]. The smallest of these constants over all i furnishes the result.

Lemma 4 below states that the system of �rst-order conditions implied by Proposition 1 has

a unique solution for the price level pj�1 if �pj is su¢ ciently small and if supplies for the two

previous steps, pj and pj+1; are known and satisfy certain properties and if producers never bid

below their marginal cost. We will later use Lemma 4 iteratively to ensure that we will be able

to �nd unique solutions to the discrete �rst-order condition for multiple price levels under given

boundary conditions and other speci�ed circumstances. We use the notation that C 00max is the

highest slope of the marginal cost curves, gmax and gmin are the largest and smallest densities in

the support of g (") ; and g0max is the largest slope of the density function in the support of g (") :

We set g0max = 0 if the slope of the density function is always negative. Recall that we have made

the assumption that gmin is strictly positive.

Lemma 4 Assume that
n
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and
n
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for local tick-sizes �pj = �pj+1 = �ep. Under these circumstances, there exists a unique solutionn
sj�1i

oN
i=1

that together with
n
sji

oN
i=1
;
n
sj+1i

oN
i=1

and �pj = �pj+1 = �ep satisfy the �rst-order
condition

n
�ji

oN
i=1

in Proposition 1.

Proof: We want to determine
n
sj�1i

oN
i=1
, i.e. a set of solutions for price level j � 1. As

�pj+1 = �pj = �ep, the implicit function �, de�ned by the �rst-order condition in Proposition
1, can be written:

�ji
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Note that � j+1, � j , � j+1�i and � j�i are known; whereas �
j�1 and � j�1�i depend on the unknown

vector sj�1.

The �rst step in the application of the implicit function theorem is to �x a point for which

(20) is satis�ed for all �rms. This is straightforward, because it is easy to show that sj�1 = sj

is a solution to (20) when �ep = 0, sj = sj+1 and dj�1 = dj = dj+1. The next step is to

prove that the Jacobian
�

@�ji
@sj�1k

�
is invertible at this �xed point. It follows from (2) that
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and that
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so it follows from (22) and (21) that
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For convenience let �i =
@�ji
@sj�1i

=
@�ji
@�j�1

����
�xed �j�1�i

and �i =
@�ji
@sj�1k 6=i

=
@�ji
@�j�1

����
�xed �j�1�i

+
@�ji
@�j�1�i

����
�xed �j�1

.

The Working Paper (Holmberg, Newbery and Ralph, 2008) proves that the Jacobian
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is invertible whenever �i < �i and �i < 0. It follows from (22) and (23) that this is true when

�� j�i < min

2643
h
pj � C 0i

�
sji

�i
g
min

C 00maxgmax
;

3
h
pj � C 0i

�
sji

�i
g
min

C 00maxgmax +
h
pj � C 0i

�
sj�1i

�i
g
0

max

375 ; (24)

which obviously is satis�ed at the �xed point where sj�1 = sj = sj+1; dj�1 = dj = dj+1 (so

that �� j�i = 0) and �ep = 0: It is straightforward to verify that the functions �j1 : : :�
j
N are

continuously di¤erentiable in �ep; sj , sj+1, dj�1, dj , and dj+1. Thus we can conclude from the

Implicit Function Theorem that there is a unique solution sj�1 to the di¤erence equation in

Proposition 1 around the �xed point given by sj�1= sj= sj+1, dj�1 = dj = dj+1 and �ep = 0.
We have assumed that

n
sj+1i

oN
i=1

and
n
sji

oN
i=1

are such that

�epsjig �� j��
min(";�j+1)Z

�j

�
pj+1 � C 0i (si ("))

�
�� j+1�i

�
� j+1 � "

�
(�� j+1)2

g (") d" > 0;

so that �� j�i > 0 from (20). It also follows from (20) that

�epsjig �� j��
min(";�j+1)Z

�j

�
pj+1 � C 0i (si ("))

�
�� j+1�i

�
� j+1 � "

�
(�� j+1)2

g (") d"

�

h
pj � C 0i

�
sji

�i
g
min
�� j�i

2
:
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Hence,

�� j�i �
2�epsjig �� j�� 2 min(";�j+1)R

�j

�
pj+1 � C 0i (si ("))

�
�� j+1�i

(�j+1�")
(��j+1)2

g (") d"h
pj � C 0i

�
sji

�i
g
min

:

Thus it follows from (24) that the the Jacobian
�

@�ji
@sj�1k

�
is invertible and unique solutions will

exist whenever

2�epsjig �� j�� 2 �j+1R
�j

�
pj+1 � C 0i (si ("))

�
�� j+1�i

(�j+1�")
(��j+1)2

g (") d"h
pj � C 0i

�
sji

�i
g
min

< min

2643
h
pj � C 0i

�
sji

�i
g
min

C 00maxgmax
;

3
h
pj � C 0i

�
sji

�i
g
min

C 00maxgmax +
h
pj � C 0i

�
sj�1i

�i
g
0

max

375 :

Lemma 5 Under Assumption 2, the di¤erence equation in Proposition 1 for price levels j =

L; : : : ;H�2 is consistent with the continuous equation in (8) if
n
^
s i (p)

oN
i=1

satis�es Assumption

1, and �pj = �p:

Proof : A discrete approximation of an ordinary di¤erential equation is consistent if the local

truncation error is in�nitesimally small when the step length is in�nitesimally small (LeVeque,

2007). The local truncation error is the discrepancy between the continuous slope and its discrete

estimate when discrete values sji are replaced with samples of the continuous solution
^
s i
�
pj
�
.

Under Assumption 1 and 2, Lemma 1 implies that mark-ups of the continuous solution are strictly

positive, so we can use the Taylor approximation from Lemma 3 and �pj = �p to approximate

the di¤erence equation in (14):

��psjig
�
� j
�
+

h
pj � C 0i

�
sji

�i�
�� j�i +��

j+1
�i

�
g
�
� j
�

2
+O

�
�p2

�
= 0:

We have assumed that g is bounded away from zero. Thus

��psji +

h
pj � C 0i

�
sji

�i�
�� j�i +��

j+1
�i

�
2

+O
�
�p2

�
= 0: (25)

Samples of the continuous solution have positive mark-ups. Hence, (25) can be rewritten as:

��psji
pj � C 0i

�
sji

� + sj+1�i � s
j�1
�i � dj+1 + dj�1

2
= O

�
�p2

�
: (26)
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Summing the corresponding expressions of all �rms and then dividing by N � 1 yields:

sj+1 � sj�1
2

� N

N � 1
�dj+1 +�dj

2
� 1

N � 1
X
k

�psjk

pj � C 0k
�
sjk

� = O ��p2� : (27)

By subtracting (26) from (27) followed by some rearrangements we obtain:

sj+1i � sj�1i

2�p
=

1

N � 1
�dj+1 +�dj

2�p
� sji

pj � C 0i
�
sji

� (28)

+
1

N � 1

NX
k=1

sjk

pj � C 0k
�
sjk

� +O ��p2� :
We know from the de�nition of the demand in the continuous system that d0

�
pj
�
= lim

�p!0
�dj

�pj
.

Hence,

lim
�p!0

sj+1i � sj�1i

2�p
=
d0
�
pj
�

N � 1 �
sji

pj � C 0i
�
sji

� + 1

N � 1

NX
k=1

sjk

pj � C 0k
�
sjk

� : (29)

It remains to show that if sji and s
j
k in the right-hand side of (29) are replaced by samples

of the continuous solution
^
s i
�
pj
�
and

^
s k
�
pj
�
then the right-hand side converges to

^
s
0
i

�
pj
�
.

But this follows from (8). Thus the local truncation error is zero and we can conclude that the

discrete system is a consistent approximation of the continuous system if �pj = �p.

We use this consistency property when proving convergence below. Recall that L and H are

the lowest and highest price indices, j, such that price pj occurs with positive probability, and

varies with M (and the boundary conditions).

Proof of Proposition 2: Lemma 5 states that the discrete di¤erence equation is a consistent

approximation of the continuous di¤erential equation. To show that the discrete stationary

solution converges to the continuous stationary solution, we need to prove that the discrete

stationary solution exists and is stable, i.e. the error does not explode as the number of steps

increases without limit. The proof is inspired by LeVeque�s (2007) convergence proof for general

one-step methods.

De�ne the vector of global errors at the price pj , Ej = sj �^
s (pj); and the corresponding

vector for the local truncation error:

�ji =

^
s i(p

j+1)�^
s i(p

j)

�pj+1
:

It is useful to introduce a Lipschitz constant � (LeVeque, 2007). Let it be some constant
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that satis�es the inequality5

� >









p� C 0i(

^
s i(p)) +

^
s i(p)C

00
i (
^
s i(p))h

p� C 0i(
^
s i(p)

i2








1

+ (30)

1

N � 1
X
k









p� C 0k(

^
s k(p)) +

^
s k(p)C

00
k (
^
s k(p))h

p� C 0k(
^
s k(p)

i2








1

8p 2 (a; b):

Such a Lipschitz constant exists since the mark-up, which appears in the denominator of each

fraction in (30), is bounded away from zero (because of Lemma 1), the cost function is twice

continuously di¤erentiable, and the prices and corresponding strategy values are bounded. For

su¢ ciently small �p, � puts a bound on the sensitivity of the vector sj�1 to small changes in

the solution of the previous step. It is also useful to introduce another constant �, such that

� >
d0 (p)

N � 1 +








^
s i (p)

p� C 0i
�
^
s i (p)

�







1

+
1

N � 1
X
k








^
s k (p)

p� C 0k
�
^
s k (p)

�







1

8p 2 (a; b) : (31)

The constant � will bound the di¤erence between the vectors sj and sj�1. Again we know that

such a constant will exist, because the continuous solutions are bounded according to Assumption

1 and mark-ups are bounded away from zero on the interval according to Lemma 1. It has been

assumed that boundary conditions are chosen such that the inequality in (10) is satis�ed, so it

follows from Lemma 4 that
n
sH�2i

oN
i=1
can be uniquely determined. For su¢ ciently small �p, it

also follows from (28) and (30) that the global error satis�es the following inequality:

EH�2

1 =



sH�2�^s �pH�2�




1
�


EH�1

1 + ��p 


sH�1�^s �pH�1�


1 +�p

�H�1

1

= (1 + ��p)


EH�1

1 +�p 

�H�1

1 :

Thus if �p is su¢ ciently small, so that the initial error


EH�1

1 and the local truncation

error


�H�1

�p are small enough, then 

EH�2

1 is su¢ ciently small. It now follows from the

assumed properties of the continuous solution that sH�1i �sH�2i � 0 and that pH�2�C 0i
�
sH�2i

�
�

� > 0 8i = 1 : : : N . Similar to the proof of claim 2 in Lemma 3, a Taylor expansion of the existence
condition in (19) yields:

0 < �psjig
�
� j
�
�

h
pj+1 � C 0i

�
sj+1i

�i
�� j+1�i g

�
� j
�

2
+O

�
�p2

�
(32)

< min

2643
h
pj � C 0i

�
sji

�i2
g2min

2C 00maxgmax
;

3
h
pj � C 0i

�
sji

�i2
g2min

2
�
C 00maxgmax + [p

j � C 0i (0)] g
0
max

�
375

5Note that kk1 is the max-norm, i.e.


Ej




1 = max

1�i�N

��Ej
�� (LeVeque, 2007).
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if L � j < H � 1. If �p is su¢ ciently small, so that the discrete solution of the previous step is

close to the continuous solution, the term on the right is bounded below by a positive constant,

independently of i; j and �p from Lemma 1. Thus the right inequality is obviously satis�ed for

M larger than some su¢ ciently large �nite number, so that �p becomes su¢ ciently small. This

is also true for the left inequality, because it follows from the consistency property and (7) that

lim
�p!0

h
pj+1 � C 0i

�
sj+1i

�i
�� j+1�i

2�p
=

h
pj � C 0i

�
^
s i
�
pj
��i �^

s
0
�i
�
pj
�
� d0

�
pj
��

2
=

^
s i
�
pj
�

2
:

The argument above and Lemma 4 can be used to prove that
n
sH�3i

oN
i=1

can be uniquely

determined for M larger than some su¢ ciently large �nite number. We know from (28) and (31)

that sH�1i � sH�2i � ��p. Thus if �p is su¢ ciently small, then the argument for the vector

sH�2 can be repeated iteratively to prove that the vector sk 8k = L; :::;H � 3 can be uniquely
determined and that


Ek




1
=



sk�^s �pk�




1
� (1 + ��p)




Ek+1



1
+�p




�k+1



1
: (33)

Let �kmax = max fk�nk1g
H�1
n=k . From the inequality in (33), we can show by induction that:

Ek

1 � (1 + ��p)H�1�k



EH�1

1 +�p H�1P
m=k+1

k�mk1 (1 + ��p)
m�k�1 <

(1 + ��p)H�1�k
�

EH�1

1 + (H � k � 1)�p�k+1max

�
� (1 + ��p)H�1�k

�

EH�1

1 + (H � L)�p�Lmax
�
:

(34)

Thus we can bound the global error at each price level by choosing a su¢ ciently small �p:

This and the properties of the continuous solution now imply that there will always be some

su¢ ciently large but �niteM0; such that the condition for a unique solution in (32) is satis�ed for

L+1 � j � H�2 andM �M0: In the limit as �p! 0 then


EH�1

1 ! 0, �L+1max ! 0 (because

of Lemma 5), (H � L)�p! b� a, and (1 + ��p)H�L ! e�(b�a). Thus from (34),


Ek

1 ! 0

when �p ! 0, proving that the discrete stationary solution converges to the continuous one.

4.3 Su¢ cient conditions

So far we have proven convergence of the stationary solutions. Now we want to look at su¢ ciency

conditions that will later be used to prove convergence of the equilibria as well. Lemma 6 shows

that if it is not pro�table to deviate from the continuous stationary solution by withholding

production until the capacity constraints of the competitors bind when the highest shock outcome

is realized, then this particular type of deviation will not be pro�table for lower shock outcomes

either.
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Lemma 6 If Assumption 3 is satis�ed then

p (")
^
s i (p ("))� Ci

�
^
s i (p ("))

�
> pd ["+ d (pd)� s�i]� Ci ["+ d (pd)� s�i] ;

8pd 2
�
b; pM

�
and " 2 ["; ") :

Proof : Let

� (") = p
^
s i (p)� Ci

�
^
s i (p)

�
� pd ["+ d (pd)� s�i] + Ci ["+ d (pd)� s�i]

where p = p("). Now di¤erentiate � with respect to ":

�0 (") =
h
p� C 0i

�
^
s i (p)

�i
^
s
0
i (p) p

0 (") +
^
s i (p) p

0 (")�
�
pd � C 0i ("+ d (pd)� s�i)

�
:

We have from (7) that
^
s i (p) =

h
p� C 0i

�
^
s i (p)

�i�
^
s
0
�i (p)� d0(p)

�
, so

�0 =
h
p� C 0i

�
^
s i (p)

�i h
^
s
0
i (p)� d0 (p)

i
p0 (")�

�
pd � C 0i ("+ d (pd)� s�i)

�
:

But
^
s (p)� d (p) � ", so

h
^
s
0
(p)� d0 (p)

i
p0 (") = 1. Thus

�0 =
h
p� C 0i

�
^
s i (p)

�i
�
�
pd � C 0i ("+ d (pd)� s�i)

�
< 0;

because pd > b � p and
^
s i (p) > "+ d (pd)� s�i. We know from Assumption 3 that � (") � 0,

so the above proves that � (") > 0 8" 2 ["; ") or equivalently that

p (")
^
s i (p ("))� Ci

�
^
s i (p ("))

�
> pd ["+ d (pd)� s�i]� Ci ["+ d (pd)� s�i] 8" 2 ["; ")

if Assumption 3 is satis�ed.

In both the discrete and continuous case, only non-decreasing solutions of the �rst-order

system can constitute valid SFE, because electricity auctions do not accept decreasing o¤ers.

Thus a necessary condition for an SFE is that solutions are non-decreasing. Proposition 3 states

that a set of increasing solutions to the continuous �rst-order conditions is a su¢ cient condition

for supply function equilibrium if Assumption 3 is satis�ed, no producer is su¢ ciently pivotal,

and the demand curve is concave.

Proof of Proposition 3: Consider an arbitrary �rm i. Assume that its competitors follow the

strategy implied by the continuous stationary solution. The question is whether it will be a best

response of �rm i to do the same. The pro�t of producer i for the outcome " is given by

�i (p; ") =
�
"+ d (p)�^

s�i (p)
�
p� Ci

�
"+ d (p)�^

s�i (p)
�
:
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Hence

@�i (p; ")

@p
=
h
d0 (p)�^s 0�i (p)

i h
p� C 0i

�
"+ d (p)�^

s�i (p)
�i
+ "+ d (p)�^

s�i (p) : (35)

From the �rst-order condition in (7) it is known thath
d0 (p)�^

s
0
�i (p)

i h
p� C 0i

�
^
s i (p)

�i
+
^
s i (p) = 0 8p 2 [a; b] :

Subtracting this expression from (35) yields:

@�i(";p)
@p =

h
^
s
0
�i (p)�d0 (p)

i24C 0i
0@"+ d (p)�^

s�i (p)| {z }
si

1A� C 0i �^s i (p)�
35+0@"+ d (p)�^

s�i (p)| {z }
si

�^s i (p)

1A 8p 2 [a; b] :

(36)

Let pd 2 [a; b] be the clearing price when producer i deviates and sells si units at the shock " rather
than

^
s i units. Due to monotonicity of the supply functions we know that

^
s
0
�i (p) � d0 (p) � 0

and that

pd � p, si �
^
s i , C 0i (si) � C 0i

�
^
s i

�
:

Thus for every p 2 [a; b) we can conclude from (36) that

@�i ("; si)

@p
� 0 if pd � p; and

@�i ("; si)

@p
� 0 if pd � p:

Hence, given
^
s�i (p) and ", the pro�t of �rm i is pseudo-concave in the price range [a; b) and the

pro�t maximum is given by the �rst-order condition if prices would have been restricted to this

range. The next step in the proof is to rule out pro�table deviations outside this price range.

We know from (9) that the price can never be higher than b unless the capacity constraints of

the competitors bind, but such deviations are never pro�table according to Assumption 3 and

Lemma 6. It is possible to push market prices below a, but as will be shown such deviations will

be unpro�table as well. The assumptions in (9) imply that all supply functions of the potential

equilibrium are perfectly inelastic below a. This assumption and concavity of the demand curve

implies that
d
n
d0(p)�^s

0
�i(p)

o
dp � 0 if p � a. Thus we have from (35)
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1A35+
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0
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"+ d (p)�^

s�i (p)
�

| {z }
�0

h
d0(p)�^

s
0
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i
| {z }

�0| {z }
�0

1CCCCCCCCCA
+

�
d0(p)�^

s
0
�i (p)| {z }

�
�0

� 0 8p 2 [C 0i(si); a] :

Hence, given that competitors stick to the strategies implied by the continuous stationary

solutions
^
s
0
�i (p), the pro�t function is concave in the range [C

0
i(si); a]. O¤ering positive supply

below marginal cost can never be pro�t maximizing. Thus we can conclude that
^
s i (p) must be

a best response to
^
s�i (p). This is true for any �rm and we can conclude that the stationary

solution is an equilibrium.

For a su¢ ciently large number of price levels, Lemma 2 shows that being non-decreasing is

also a su¢ cient condition for a discrete SFE (so the non-decreasing condition acts rather like a

second-order condition in ensuring su¢ ciency). Note that the result relies on the assumptions

that �dj � �dj+1, i.e. concave demand, and that mark-ups are su¢ ciently high to deter possible
pivotal producers.

Proof of Lemma 2: Consider a set of discrete stationary solutions bs = fbs1; : : : ;bsNg. The shock
distribution is such that pL and pH are the lowest and highest realized prices. In what follows it

will be shown that an arbitrary chosen �rm i has no incentive to unilaterally deviate from the

supply schedule bsi = �bs1i ; : : : ; bsMi 	 to any si = �s1i ; : : : ; sMi 	 given that �p is su¢ ciently small
and that competitors stick to bs�i = �bs1�i; : : : ; bsM�i	. Thus bs = fbs1; : : : ;bsNg constitutes a Nash
equilibrium. Now, assume that competitors stick to bs�i = nbs1�i; : : : ;bsM�io and calculate the total
di¤erential of the expected pro�t of �rm i for some si:

dE (�i (si)) =
MX
j=1

@E (�i (si))

@sji
dsji :

As a �rst step in the proof of a global maximum we �rst verify monotonicity properties of

�ji (s) =
@E(�i(si))

@sji
: First we look at the case where demand is uniformly distributed, so that

g (") = g. By means of Proposition 1 and Leibniz�rule we can show that:
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Using (2) it is straightforward to verify that @si(")

@sji
� 0 if " 2

�
� j�1; � j+1

�
: Thus monotonic

marginal costs and supply functions imply that:

@2E(�i(s))

@(sji)
2 � ��pg +

h
pj � C 0i

�
sji

�i
��j�i
��j

g � 2g
h
pj � C 0i

�
sji

�i �jR
�j�1

��j�i("��j�1)
(��j)3

d"

�
h
pj+1 � C 0i

�
sji

�i
��j+1�i
��j+1

g + 2g
h
pj+1 � C 0i

�
sji

�i �j+1R
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if L � j < H � 1. Note that @2E(�i(s))

@(sji)
2 � ��pg also holds for j = H � 1; because the last

integral in (38) becomes larger if we replace " by �H :

The case with general demand distributions is more complicated, but we can show the

following by means of the Taylor approximations in Lemma 3

@
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g(�j)

�
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C 00i
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�� j�i +��
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+O
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�
if L � j < H � 1, and
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= ��p�
C 00i
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sH�1i

�
��H�1�i
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� C 00i

�
sH�1i

�
��H�i

�
"� �H�1

�
(��H)

�
h
pH�1 � C 0i

�
sH�1i

�i
��H�i

�
�H � "

�
(��H)2

+O
�
�p2

�
:

Thus we can always �nd a su¢ ciently large integer numberM1, so that
@(�ji=g(�

j))
@sji

< 0 ifM �M1

for all j = L : : :H � 1 and i = 1 : : : N . In the case with uniformly distributed demand we have
already shown that it is enough with M1 = 3 (the smallest possible number of price levels in our

model). As g (") > 0 for " 2 ["; "] this implies that @E(�i(si))
@sji

> 0 for sji < bsji and @E(�i(si))

@sji
< 0 for

sji > bsji : Thus no �rm has any incentives to unilaterally deviate from the supply schedule bsi for
price levels j = L : : :H � 1: For deviations such that �L�1 > "; the argument above is valid for
the price level j = L�1 as well, so it is never pro�table to increase supply by undercutting pL: By
assumption we also know that it is not pro�table for pivotal producers to withhold production

39



and push the price above pH . Thus there are no pro�table unilateral deviations, and we can

conclude that bsi = �bs1i ; : : : ; bsMi 	 must be a Nash equilibrium.
4.4 Convergence of equilibria

Given the results of Propositions 2 and 3 and Lemma 2 we are now ready to prove Theorem 1:

Proof of Theorem 1: Part (a) is a restatement of Proposition 3. Our next step is to show part

(b). Proposition 2 ensures that the discrete stationary solution exists for M � M0, and that it

will converge to the continuous one. Thus Assumption 1 together with consistency (proved in

Lemma 5) implies that the discrete solution is non-decreasing forM larger than some su¢ ciently

large �nite number of price levels. Moreover, convergence of the stationary solutions and Lemma

1 ensure that mark-ups in the discrete stationary solution are strictly positive for M larger than

some su¢ ciently large �nite number of price levels. Finally, convergence of competitors�supply

curves implies that the di¤erence between a producer�s pro�ts in the discrete and continuous

system will converge to zero, and this is also true for all possible deviations of the producer.

Hence, because of Lemma 6, there are no pro�table deviations from the discrete stationary

solution such that sHi < " + d
�
pH
�
� s�i if M is larger than some su¢ ciently large �nite

number. Hence, in the limit, all conditions in Lemma 2 are satis�ed and we can conclude there

is some su¢ ciently large M2, such that the discrete stationary solution is a segment of a discrete

SFE when M �M2.

Theorem 1 established that for any well-behaved continuous SFE we can �nd a well-behaved

discrete SFE, which is stable and converges to the continuous one. The result below ensures

the reverse result. Whenever a well-behaved discrete equilibrium exists in the limit, when the

number of steps becomes arbitrarily large, then there always exists a corresponding continuous

equilibrium. This establishes that the family of increasing smooth SFE with positive mark-ups

is asymptotically in one-to-one correspondence with the family of corresponding well-behaved

discrete SFE. To prove the next result we make the assumption below, which ensures that no

producer is su¢ ciently pivotal.

Assumption 4.

pHbsH�1i � Ci
�bsH�1i

�
� pd

h
"+ dd � s�i

i
� Ci

h
"+ dd � s�i

i
8pd 2

�
pH ; pM

�
:

This assumption is analogous to Assumption 3. The left-hand side of the inequality is the

pro�t at the boundary condition when p = pH�1. The right-hand side is the pro�t for prices

pd 2
�
pH ; pM

�
when competitors� capacities bind. Note that if Assumption 4 is not satis�ed
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then there will always be some shock density g(") (with su¢ cient probability mass near "), such

that
�nbsjioj=H

j=L

�N
i=1

is not a segment of a discrete SFE. But also note that Assumption 4 is always

satis�ed if pH is su¢ ciently close to the price cap pM or if producers are non-pivotal.

Proposition 4 Assume for a su¢ ciently large number of equidistant steps M that there exists a

discrete stationary solution
nbsjioN

i=1
with strictly positive mark-ups that is a discrete SFE. If the

solution satis�es Assumption 4 and is stable, so that it converges to a set of continuous functions

f~si (p)gNi=1 on [a; b], where a = lim
�p!0

pL and b = lim
�p!0

pH , then f~si (p)gNi=1 is a segment of a
continuous SFE.

Proof: Only non-decreasing o¤ers are valid in the auction, so the discrete stationary solution and

its limit, f~si (p)gNi=1, must be non-decreasing as well. Convergence of the discrete solution implies
that

nbsjioN
i=1

is bounded in the limit. Convergence and properties of the di¤erence equation

outlined in Lemma 3 also imply that lim
�p!0

sj+1i �sj�1i
2�p exists, so that f~si (p)gNi=1 is di¤erentiable.

Moreover, the limit f~si (p)gNi=1 satis�es the di¤erence equation in Proposition 1, so it follows from
the properties of f~si (p)gNi=1 and Lemma 5 that f~si (p)g

N
i=1 will satisfy the continuous di¤erential

equation in (7). In the limit, convergence of competitors�supply curves implies that Assumption

3 is satis�ed if Assumption 4 is satis�ed. As f~si (p)gNi=1 is a set of non-decreasing functions in
the interval [a; b], it now follows from Proposition 3 that f~si (p)gNi=1 is a segment of a continuous
SFE.
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