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Abstract 

This paper compares two popular models of oligopolistic electricity markets, Cournot and the 

Supply Function Equilibrium (SFE), and then tests which model best describes the observed 

market data. Using identical demand and supply specifications, both models are calibrated to the 

German electricity market by varying the contract cover of firms. Our results show that each 

model explains an identical fraction of the observed price variations. We therefore suggest using 

Cournot models for short-term analysis, since these models can accommodate additional market 

details, such as network constraints, and the SFE model for long-term analysis (e.g., the study of 

a merger) since it is less sensitive to the calibration parameters selected.  

JEL: L94, L13, C72, D43 
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1 Introduction 

Within the last two decades, as electricity markets throughout the world have undergone 

significant structural changes because of liberalization, a demand for sophisticated market 

analyses has emerged. Typically, such analyses are especially complex because the decentralized 

structure of the new markets increases the interactions between market players, and factors such 

as regulatory guidelines, market design (and redesign) and the particular nature of electricity itself 

must be considered. In addition, desire on the part of regulators and politicians to determine 

market outcomes, interest in simulating expected market situations and modeling the behavior of 

market players have fostered the development of novel approaches.  

Since classical economic tools, such as the Herfindahl-Hirschman Index (HHI), are largely 

unsuitable for electricity markets, specific tools and models must be designed (Borenstein, et al. 

1999).
2
 Ventosa et al. (2005) identify three basic trends: optimization models, equilibrium models 

and simulation models. This paper will focus on two equilibrium models for oligopolisic 

wholesale electricity markets: the Cournot model and the Supply Function Equilibrium model 

(SFE). While standard Cournot models are simple to calculate, the results often do not represent 

reasonable market outcomes. For realistic values of demand elasticities, prices are too high and 

output too low. In Cournot models for electricity markets, it is, therefore, usually assumed that a 

fixed percentage of sales are covered by forward contracts.
3
  

Supply Function Equilibrium models (e.g. Klemperer and Meyer, 1989) on the other hand are 

deemed to represent electricity markets more realistically because they assume that generators, 

instead of one single quantity, compete by bidding complete supply functions in an oligopolistic 

market with demand uncertainty. The SFE approach has been used in several applications to 

analyze electricity markets since its first application by Green and Newbery (1992) for England 

and Wales. The major drawbacks of SFE models are that they are difficult to calculate, often have 

multiple equilibria, often give unstable solutions and require strong simplifications with respect to 

market and cost structures.  
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 See Twomey et al. (2005) for an overview of the basic characteristics and economic analysis tools suitable 

for electricity markets. 

3
 Alternatively, one could assume that generators are vertically integrated with the retail sector for a portion 

of their activities.  
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Given the strengths and weaknesses of both approaches, we set out to discover whether the two 

models offer similar predictions and ranges of feasible outcomes. We ask whether the added 

complexity of SFE models relative to Cournot models can be compensated for by more robust, 

realistic predictions. In order to investigate this issue, we calibrate the two models with an 

identical dataset from the German electricity market, and then compare the results with the 

observed market clearing prices.  

The remainder of our paper is structured as follows: In the next section, an overview of the theory 

of SFE and Cournot modeling is given. Section 3 describes the implementation of the models and 

the underlying assumptions. Section 4 presents a dataset for the German market and the model 

calibration methods. Section 5 presents and discusses the simulation results. We find that Cournot 

approaches allow for more complex market models while SFE models are less sensitive to 

adjustments. Section 6 closes with a summary and our conclusions about the suitability of each 

approach for short- and long-term economic analysis and policy-making. 

2 Literature Review 

2.1 Theoretical Background 

Two major trends have emerged to analyze oligopolistic electricity market outcomes, in 

particular, wholesale markets.
4
 Both approaches assume that companies are profit- maximizing, 

but differ in the assumption regarding the free choice variables and the behavior of the remaining 

market participants. We now discuss these differences. 

In both models the profit function of the firms is equal to the revenue minus generation costs: 

 ( )i i ip q c q−  (1) 

with iq  the output of firm i , p  the price of electricity, and (.)ic  the production cost of the firm 

i . For the paper we assume that the inverse demand function depends on total production 
j

j

q∑ , 

the time period t  and a random error component ξ . Hence we have the following.  

 ( , , )
j

j

p p q t ξ= ∑  (2) 

                                                   

 

4
 Another classic approach is the Bertrand model. As this is seldom used in electricity markets, given the 

difficulty of presenting capacity constraints, we do not consider it in detail. 
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Generally speaking, a firm i  can submit a bid function to the power exchange that represents its 

willingness to supply a specific quantity q  at a given price p , a given time period t  and -- in 

case the firms observes the demand shock before bidding -- the error term ξ . 

 ( , , )i iq B p t ξ=  (3) 

The market clearing condition determines the production quantities and prices in each time period 

t  and for each demand shock ξ . That is, they are determined jointly by equations (2) and (3).  

Cournot and SFE models make different assumptions regarding the strategy space and the 

information set of the bidding firms. In a Cournot equilibrium the demand realization ( , )t ξ  is 

known by the firm before bidding. The firms therefore bid the following: 

 ( , )C

i iq B t ξ=  (4) 

It follows from equation (4) that the firm might bid a high quantity during peak hours and a low 

quantity during off-peak hours. For a given time period t  and demand shock ξ  each firm 

maximizes profits by setting production quantities and sales 
iq  knowing that the market price is a 

result of its own output and the output of its competitors iq− . The Cournot approach yields a 

direct outcome in terms of price and quantities for a given demand realization. Cournot models 

generally provide a unique Nash equilibrium. 

In the SFE models (Klemperer and Meyer, 1989), firms cannot condition their bids on the 

demand realization ( , )t ξ . It is assumed that firms do not know the size of the demand shock ξ , 

and are not allowed to submit a different bid for different time periods t . The bidding function 

depends solely on the price: 

 ( )SFE

iq B p=  (5) 

Each firm maximizes (expected) profits by bidding a supply curve ( )SFE

iB p , assuming that the 

supply function of its competitors ( )SFE

iB p−  remains fixed. Hence, the quantity that the 

competitors produce depends on the market price and, thus, indirectly on the output decision of 

the firm itself. In order to solve the SFE-model, it is assumed that the stochastic demand shock 

and the time period shift the demand function horizontally:. 

 ( ( ))jj
p p q f tξ= − −∑  (6) 

Under these assumptions the (stochastic) optimization problem that each firm must solve can be 

rewritten as a differential equation. Typically, a range of feasible equilibrium supply functions is 

found when solving a set of differential equations, one for each firm. It can be shown that every 
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SFE supply function lies between the Cournot and the Bertrand solution for any realized demand 

shock. Delgado and Moreno (2004) show, however, that only the least-competitive equilibrium is 

coalition proof when the number of firms is sufficiently large. SFE models require simplified 

assumptions of the markets’ supply structure to obtain feasible solutions. This is a serious 

drawback of SFE models. 

Whether a more realistic representation of the bidding process is to neglect the price dependency 

as in the Cournot model, or to neglect the market state dependency as in the SFE model is unclear 

a priori.  

2.2 Use of Cournot and SFE models in electricity markets 

2.2.1 Cournot models 

Although Cournot models are ubiquitous, they often overestimate observed market prices and 

underestimate market quantities. As the model outcome is based only on quantity competition, 

the results are highly sensitive to assumptions about demand elasticity: in equilibrium, firm i  sets 

its output such that its markup is proportional to its market share 
is  and inversely proportional to 

the demand elasticity ε of the total market. 

 
'
i i

P c s

P e

-
= -  (7) 

Given that most electricity markets have few oligopolistic firms ( is  is large) and low, short-term 

demand elasticities, markups are accordingly very high.  

Following Allaz and Villa (1993), we allow for forward contracts that can be used to predict more 

realistic outcomes. Firms can both sell energy in a spot market and sell a certain amount of their 

supply in the forward market. In a two-stage game, the oligopolists first determine the quantity to 

be sold in the forward market before entering the spot market and playing a Cournot game. Thus, 

forward sales reduce the oligopolists’ available quantity in the spot market, resulting in a more 

competitive market. When using a single-stage game, the impact of forward contracts can be 

simulated by accounting for the contract volume Fi in the profit function: 

 ( )( ) ( )j i i ij
p q q F c q- -å  (8) 

This results in a reduced markup on marginal costs since the contracting factor iii qFf = must 

be considered: 

 ( )
'

1i i
i

P C s
f

P e

-
= -  (9) 
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By varying the contracting factor, a “bundle” of feasible Cournot solutions that resemble SFE 

outcomes can be generated.  

The role of forward contracts, when comparing Cournot results with real market outcomes, is 

clearly demonstrated by Bushnell et al. (2005). They look at California, PJM and New England 

markets and compare price data of the power exchanges with competitive model outcomes, a 

standard Cournot model and a Cournot model using contract cover as an approximation for 

vertical arrangements. They conclude that neglecting the contract cover yields results that vastly 

exceed observed market prices. Ellersdorfer (2005) analyses the competitiveness of the German 

electricity market using a multi-regional two-stage Cournot model. He shows the extent to which 

cross-border network extensions and increased forward capacities enhance competition and 

decrease market power.  

Cournot approaches are often preferred when technical characteristics such as network constraints 

(voltage stability, loop flows) or generation characteristics (start-up costs, ramping constraints, 

unit commitment) need to be considered. The impact of congestion on market prices and market 

power has been analyzed in several studies. Smeers and Wei (1997) use variational inequalities to 

describe the Cournot model. Willems (2002) discusses the assumptions necessary to include 

transmission constraints in Cournot models. Neuhoff et al. (2005) summarize different 

characteristics of Cournot network models. They show that although all models predict the same 

outcomes, in cases of competitive markets they vary with respect to assumptions about market 

design and expectations of generators.  

A more general overview of Cournot models used to analyze market power issues appears in 

Bushnell et al. (1999). Other reviews of electricity market models with respect to network issues 

are given in Day et al. (2002) and Ventosa et al. (2005). 

2.2.2 SFE models 

In general, SFE models are frequently used in determining market power issues. Bolle (1992) 

makes a theoretical application to electricity markets by analyzing the possibility of tacit 

collusion when bidding in supply functions. He concludes that if firms coordinate on bidding the 

highest feasible supply function, a decrease in market concentration does not necessarily result in 

convergence of aggregated profits to zero. Green and Newbery (1992) present an empirical 

analysis for England and Wales using symmetric players. They compare the duopoly of National 

Power and PowerGen with a hypothetical five firm oligopoly, concluding that the latter results in 

a range of supply functions closer to marginal costs.  
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Baldick and Hogan (2002) set up another model of the England and Wales markets which 

incorporates price caps, capacity constraints, and varies the time horizon by which supply 

functions must remain fixed. They show that the latter characteristic has a large impact on market 

competitiveness.  Evans and Green (2005) simulate the same market for the period of April 1997 

to March 2004, assuming linear marginal cost functions to determine linear supply functions of 

asymmetric firms. They conclude that the change to a decentralized market has no impact on 

short-term prices but that the reduction in concentration does. Sioshansi and Oren (2007) study 

the Texas balancing market, using supply function equilibria with capacity constraints. They find 

that the larger firms more or less behave according to the SFE for incremental bids. They argue 

that SFE models with capacity constraints are an interesting tool to study balancing markets since 

demand is very inelastic, and hence the supply elasticity of competitors is a major component in 

determining the elasticity of the residual demand of the firms. These SFE models with capacity 

constraints are also useful because they reflect the actual bidding behavior of the firms, i.e. 

“hockey stick bidding”: firms bid (too) low for low levels of supply and have a steep supply 

function for larger levels of supply.  

Several theoretical contributions have extended Klemperer and Meyer (1989) by incorporating 

typical market characteristics. Holmberg (2005) considers the problem of asymmetric companies 

by simplifying the supply structure to constant marginal costs. He shows that under this setup 

there is a unique SFE that is piece-wise symmetric. Anderson and Hu (2005) propose a numerical 

approach using piece-wise linear supply functions and a discretization of the demand distribution. 

They show that the approach also has good convergence behavior in models with capacity 

constraints. Holmberg (2006) studies capacity constraints on generation units and shows that a 

unique, symmetric SFE exists with symmetric producers, inelastic demand, price cap, and 

capacity constraints. Green (1996), Rudkevich (2005) and Baldick, et al (2004) develop the 

theory of linear supply functions. These linear supply functions are easier to solve, can also be 

used in asymmetric games, and generally give stable and unique equilibria. However, they do not 

take capacity constraints into account. Boisseleau et al. (2004) use a piece-wise linear supply 

function and describe a solution algorithm which obtains an equilibrium even when there are 

capacity constraints. 

2.3 Comparing the models 

Only a few authors have compared the equilibria in both models. Related to our paper is recent 

work by Vives (2007), who studies the properties of two auction mechanisms: one where firms 

bid supply functions and one where they bid à la Cournot. Firms are assumed to have private 
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information about their costs. Solving for a Bayesian equilibrium in linear supply functions, 

Vives (2007) shows that supply functions aggregate the dispersed information of the players, 

while the Cournot model does not. Hence, Cournot games might be socially less efficient, since 

the dispersed information is not used efficiently. Our paper differs since we are less interested in 

understanding the properties of auction mechanisms. In our model, firms have perfect information 

about their costs, firms sell forward contracts, and supply functions are not restricted to linear bid 

functions.  

Hu et al. (2004) use a bilevel game to model markets for delivery of electrical power on looped 

transmission networks with the focus on the function of an ISO. Within this analysis they 

compare supply function and Cournot equilibria and show that in case of transmission congestion, 

SFE need not be bounded from above by Cournot equilibria as is the case for unconstrained 

networks. They conclude that in the presence of congestion, Cournot games may be more 

efficient than supply function bidding. 

Ciarreta and Gutiérrez-Hita (2006) undertake a theoretical analysis of collusion in repeated 

oligopoly games, using a supergame model that is designed both for supply function and quantity 

competition. They show that depending on the number of rivals and the slope of the market 

demand, collusion is easier to sustain under supply function rather than under quantity 

competition. An experimental approach by Brandts, Pezanis-Christou and Schram (2003) 

includes the impact of forward contracts on electricity market outcomes with differences due to 

Cournot and supply function competition. They show that the theoretical outcomes of SFE 

models (mainly their feasibility range between Cournot and marginal costs) can be reproduced by 

experimental economics. Furthermore, they find that introducing a forward market significantly 

lowers prices for both types of competition.  

3 Model formulation 

The Cournot and SFE supply models are found by simultaneously solving a set of equations 

describing the market equilibrium for different demand realizations k.. In order to compare the 

results, we use identical assumptions with respect to the demand and supply structure of the 

market: the market demand is assumed to be linear whereas the marginal cost curve is a cubic 

function based on the actual power plant costs (see Section 4). 

The demand equation describes for demand realization k , how the demand 
o

kD  that strategic 

players (oligopolies) face depends on a demand shock 
k∆  and the price 

kp : 
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 O

k k kD pα γ= − ⋅ − ∆  (10) 

with 1,...,k K=  the index of the aggregate demand shock, both due to the stochastic demand 

component and the deterministic time component: ( )k f tξ∆ = +  with 1k k+∆ < ∆ , 1 0∆ =  and 

K α∆ = . 

The energy balance equation describes that for all demand realizations k , demand should equal 

total supply: 

 O O

k kD S=  (11) 

where 
1

n
O

k ik

i

S q
=

=∑  

The marginal cost equation relates output of firm i with the marginal cost of that production plant 

given by: 

 2 3

, 0, 1, , 2, , 3, ,k i i i k i i k i i k ic q q qλ λ λ λ= + + +  (12) 

The continuity equation (13) imposes continuity of the supply function. It describes the relation 

between the slope of the supply functionβ , the production levels, and the price level of the firms. 

Continuity implies that the arc-slope of the supply function can be written as the weighted sum of 

the slopes at the two endpoints of the interval. That is, the following holds: 

 [ ], 1 , 1 1- ( - ) (1- )i k i k k k ik ik ik ikq q p p ξ β ξ β+ + += +  (13) 

with 0 1ikξ< < . This formulation specifies a piecewise linear supply function.5  

The pricing equation describes the first order conditions of each player i for each demand shock 

k. It requires that a player’s marginal revenue and marginal cost are equal:  

 ( )
R

ik
ik ik k ik

ik

dp
q F p c

dq
− = −  (14) 

ikF  is the amount of contracts signed in equilibrium by firm i  in realization k , and 
R

ik

ik

dp

dq
 is the 

slope of its inverse residual demand function. We allow the firms to sign fixed-capacity contracts 

specified as a quantity (in MW) which is independent of the demand shock k : ik iF f= . A 

                                                   

 

5
 This formulation is based on Anderson and Hu (2005). It rewrites their equations (13) and (19) by 

eliminating �
ikp . 
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typical fixed contract is a baseload contract (the firm commits to sell forward a fixed amount of 

energy).
6
  

The pricing equation differs for the two models. In the Cournot equilibrium, each player assumes 

the production of the other players as given, and therefore the slope of the residual inverse 

demand function depends only on the slope of the demand function ( 1
γ ).  

Firm i  signs if  fixed contracts and the pricing equation becomes: 

 ( - )ik i k ikq f p c γ− =  (15) 

By contracts, for the SFE model the slope of the residual demand function depends on the slope 

of the demand function and the slope of the supply functions of the competitors. With the 

assumed fixed contract cover  if  the pricing equation becomes:  

 -  ( - ) ( )ik i k ik jk

j i

q f p c β γ
≠

= +∑  (16) 

A Cournot equilibrium is a solution of equations (10), (11), (12) and (15). A SFE is a solution of 

equations (10), (11), (12), (13) and (16). The equilibrium is described as the price and demand 

level for realization k, ,k kD p  and for each firm i a description of production, marginal costs and a 

slope of the demand function , ,ik ik ikq cβ . The solution of these equations is not straightforward, 

given the non-linearities in equations (16) and (13).  

The model is solved using the COIN-IPOPT solver in GAMS (Wächter and Biegler, 2006).
7
  

4 Data 

4.1 An oligopolistic market: Germany 

For this paper, we chose Germany because its oligopolistic market structure lends itself to valid 

representations for both Cournot and SFE models. The German market consist of two large firms 

(E.ON and RWE) owning about 50% of generation capacity, two smaller firms (Vattenfall and 

                                                   

 

6
 An earlier version of this paper also considered load-following contract. For these contracts, certain 

fraction of the sales is contracted forward for each realization of the demand shock: 
ik i ikF qφ= . Such load-

following contracts are typically signed between a generator and a retailer. In this case, the generator does 

not sign a contract for a fixed quantity, but promises to fulfill all demand by the retailer.  

7
 The CONOPT solver which was used by Anderson and Hu (2005) did not always converge.  
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EnBW) each with about 15% of the market, and a competitive “fringe” that acts as a price-taker.
8
 

Germany is a winter peaking system with a large share of nuclear and coal units and a significant 

share of wind production in the North and East. The transmission grid is well connected with the 

rest of Europe, and the country is a net exporter of electrical energy.  

We study the winter period since strategic behavior is more likely to occur when capacity is 

scarce. As the models assume that the underlying cost structures remain constant for the duration 

of the bidding period we restrict our analysis to January and February of 2006. Most of 

Germany’s electricity is traded bilaterally, but voluntary power exchanges selling standardized 

products are gaining favor. The main price index for Germany is the day ahead price at the 

European Energy Exchange (EEX). Figure 1 shows the price distribution during the observation 

period. Within the sample period, we consider four ‘time periods’: January peak and off-peak 

hours, and February peak and off-peak hours.9 For each time period the observed demand, wind 

production and net import amounts, as well as prices are used to estimate the corresponding 

demand function for Germany (See section 4.3).  

                                                   

 

8
 Due to the characteristics of electricity markets small companies can have market power potentials 

(Sioshansi and Oren, 2007). Neglecting the strategic behavior of the fringe may lead to price 

underestimations.  

9
 All hours in our sample which are between 8am and 8pm are classified as peak hours; the others are 

classified as off-peak. 
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Figure 1 Price distribution on the EEX. 

4.2 Approximation of the cost functions of the generators 

The marginal costs of generator i is described by a function ( )ic q , which takes into account the 

generation portfolio of each player. Generation capacities and ownership are obtained from public 

sources, mainly VGE (2006). More than 300 power plants are considered summing to 100 GW of 

fossil and hydro generation. Wind, biomass and solar capacities are not considered within the 

firm’s generation portfolios. Plant capacities are decreased by seasonal availability factors 

following Hoster (1996). Using a type-specific algorithm based on Schröter (2004) with 

construction year as proxy, we calculate a plant-specific efficiency to derive marginal costs. Fuel 

prices are taken from Bafa (2006) and resemble average monthly cross border prices for gas, oil 

and coal. We include the price of CO2-emission allowances in the cost estimate based on fuel 

type and plant efficiency. Allowance prices are taken from the EEX. The marginal cost functions 

are estimated for January and February respectively. 

In our model, the marginal cost functions of the generators are simplified to a cubic function
10
  

                                                   

 

10
 We decided not to incorporate production capacity constraints in the model. To our feeling the 

theoretical literature on supply function equilibria with capacity constraints is not yet sufficiently 

developed, especially for situations with multiple asymmetric firms. For instance Holmberg (2008) shows 
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 2 3

0 1 2 3( )i i i i ic q q q qλ λ λ λ= + + +%  (17) 

where the parameters of the function are found by minimizing the weighted squared difference of 

the parameterized function and the true cost function, subject to the condition that marginal cost 

should be upward sloping. The following optimization problem is solved 

 
( )

0 3

2

,..,

( ) ( ) ( ( ))min

s.t. '( ) 0

i i

i

c q c q dF c q

c q

λ λ
−

≥

∫ %

%

 (18) 

with ( )F ⋅  the cumulative density function of the prices in the EEX. Figure 2 shows the 

approximate marginal cost function for Germany’s four largest players averaged for both months. 
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Figure 2: Competititve supply functions 

                                                                                                                                                       

 

that with symmetric players, inelastic demand, a price cap and (binding) capacity constraints there exists a 

unique, symmetric equilibrium. Delgado (2006) shows that there might be multiple equilibria in oligopoly 

models with capacity constraints and that it is no longer evident that the firms will co-ordinate on the 

Cournot equilibruim. 
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4.3 The demand function faced by the oligopolists 

The final demand D  for energy is served by wind production WQ , by imports IQ , by production 

of the four German oligopolists iQ  and by the fringe generator FQ .  

 
4

1

W F I i

i

D Q Q Q Q
=

= + + +∑  (19) 

We assume that the final demand for electricity D  does not depend on the price, but varies 

through time t and has a random component: 
D D

t tD α ε= + . Wind production might also vary 

through time and have a random component: 
W W

W t tQ α ε= + .  

The production level of the fringe generators depends on the price they can obtain for their 

output. The supply of the fringe is determined by the inverse of its marginal cost function.  

 1( ) ( )FQ p MC p−=  (20) 

We approximate the marginal cost function of the fringe linearly, and rewrite the supply function 

as  

 ( )F F FQ p pα γ= +  (21)  

We use two approaches to determine the parameters Fα  and Fγ . In the first, we use a weighted 

least squares regression (the “weights” are derived from the price density function of the EEX 

prices). This approach typically underestimates the marginal cost for large prices as no capacity 

constraint is considered. In the second approach, we assume that the fringe is always producing at 

full capacity ( 0Fγ = ) which underestimates marginal costs for low prices. The fringe marginal 

cost function is derived using information on monthly fuel prices and generation capacities. We 

obtain a distinct estimate for January and February. 

German imports are determined by the difference of the price in Germany and the neighboring 

regions. If the price in Germany is high relative to the price in neighboring regions, imports 

increase. We estimate imports by regressing the following equation: 

 I

It I t j jt z zt t

j z

Q p pγ γ β δ ε= − + +∑ ∑  (22) 
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where 
tp  is the price in Germany, 

jtp  is the price in border country j , ztδ  is a vector of time 

dummies (day of week) for all hours t in the relevant period.
11
 We use a two-stage least squares 

estimator to address the endogeneity of the German price p  with respect to imports. As 

instruments, we use the total demand level in Germany 
tD  and German wind production W

tQ . As 

explained in Bushnell et al. (2005), the demand level is a valid instrument for import levels since 

demand is inelastic in the short-term, and does not depend on the price level in Germany. The 

import elasticities are estimated for each of the four periods we consider. Note that we do not 

explicitly model cross-border capacity constraints. The results of the regression can be found in 

the appendix. 

Combining equations (19) to (22), we can rewrite the residual demand function for the 

oligopolists D
O
: 

 ( ) ( )O O O

t t F I t tD p pα γ γ ε= − + +  (23) 

Our four German oligopolists, therefore, face an elastic demand function due to import elasticity 

and the supply of the fringe generators (
F Iγ γ+ ). An increase in the German electricity prices 

will increase the import levels and the production by the fringe generators. In the model, the 

demand shock tα  and the random component tε  for each time period t  are transferred into a 

constant demand intercept 
Oα  and a positive shock k∆ for a specified set of demand realizations 

k  (see equation (10)). We choose the intercept of the demand level such that when the shock is 

zero, 98% of the observations in the German market are below the demand function (2% of the 

outliers are not taken into account).  

Within the sample period, the demand elasticity varies according to the considered period. The 

estimation results show that demand is more elastic during off-peak hours and in January, and 

less so in February and during peak hours. The higher demand elasticity probably reflects the fact 

that cross-border transmission lines are less congested in off-peak hours, and that imports create 

more competitive pressure within Germany. 

                                                   

 

11
 Hourly price data was used from the Netherlands, France, Austria, Poland, Sweden, East Denmark and 

West Denmark.  
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5 Results of the models 

Combining the price data of the German power exchange, the demand, the import and the wind 

data, Figure 3 shows the aggregate supply function of German thermal production during January 

and February 2006. The aim of this paper is to test whether a Cournot model or a SFE approach is 

capable to explain this observed aggregated supply function taking into account the cost of the 

firms and strategic behavior of the four largest generation firms.  
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Figure 3: Aggregate supply function of the oligopolists and the fringe generator 

The Cournot model produces a single equilibrium given the demand realization and the contract 

cover. The SFE model gives, for a given contract cover, a bundle of equilibria. Which 

equilibrium firms choose, depends on how the firms coordinate. We assume that firms co-

ordinate on the least competitive SFE equilibrium, i.e. the equilibrium where prices are highest.
12
 

The outcome of both models depends on the amount of contracts that firms have signed. We use 

the contract coverage as a calibration parameter. The contract coverage if  is specified relative to 

                                                   

 

12
 This approach is also taken by most other studies who use the SFE-model for policy studies. (e.g. Green 

and Newbery (1992). See also Delgado and Moreno, 2004).  
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the total installed (and available) capacity for each firm ( max
iq ) – and not relative to the demand 

level: 

 max

i i if qφ=  (24) 

with iφ  the contract coverage of firm i in percent.   

There is no reliable data on the long-term commitments and contracting positions of German 

electricity firms. Only about 20% of electrical power is traded on the EEX power exchange spot 

market. The uncontracted position of firms might, however, be significantly different from this 

number as (i) an unknown amount of energy is traded in short-term OTC markets, (ii) the net 

position of each firm might be significantly smaller than the gross level of trade in the market, 

(iii) only contracts which specify a fixed price reduce market power, whereas contracts indexed 

on the spot price have no effect. We therefore conclude that the contract cover that calibrates the 

model should not be interpreted as the actual amount of forward contracts that firms have signed. 

Furthermore, the model itself neglects important market aspects like start-up times, capacities, 

and network constraints. The calibration parameter might pick up some of these effects as well. 

 

To test numerically which model predicts the market outcomes more realistically, we use the 

observed price-demand results at the German sport market EEX as a benchmark. To compare the 

models’ prices with the prices observed in the market, we conduct a non-linear least squares 

regression: 

 ( )t tP P φ ε= +%  (25) 

with Pt the average observed price on the market, 
tP
%  the prediction of the model, and ε as error-

term. If the error-term is normally distributed this estimator of the contract cover will converge to 

the true value of the regression. For the regression we minimize the (squared) error between the 

prices we observe and the prices predicted by the model:  

 2min( ( ))Obs

t tP P
φ

φ− %  (26) 



 

 

18 

The model predictions 
tP
%  are calculated for the same demand shock k∆  as observed in the 

market defined by equation (10).
13
 By measuring goodness-of-fit in this way, we measure only 

the errors in the supply side of the model conditional on the demand functions being correctly 

defined.  

The first two lines of Table 1 show the results of the regression analyses. The optimal contract 

coverage for the Cournot model is one where firms contract 50% of their installed capacity. This 

is about twice as much as for SFE. At the optimal contract cover, the standard deviation of the 

error term in the regression is about 9.41 EUR/ MWh for the Cournot model and 9.31 EUR / 

MWH for the SFE model. Hence both models perform equally well in predicting the market 

outcome. An alternative measure of the goodness-of-fit is the R-squared term. It is a (relative) 

measure of how much of the variation in observed prices is explained by the model: 

 
model

2

data
1
V

R
V

= −  (27) 

with V
model

 the variance of the error term of the regression and V
data

 the variance of the observed 

market prices. Assuming that the error is normally distributed we can calculate a confidence 

interval for contract covers, expressed as a variance of the estimate. The variance of contract 

cover for the SFE model is higher than the variance of the Cournot model. This reflects the fact 

that the SFE-model is less sensitive to changes in the contract cover, while the results of the 

Cournot model depend more heavily on the contract cover. 

Figure 4 shows the Cournot solution and the bundle of SFE solutions for the contract positions 

found in the regression. That is Cournot firms sign contract for 49.8% of their installed generation 

capacity, while SFE firms contract 27.4%. We only consider the SFE solution with the highest 

price in our analysis thus neglecting the remainder of the bundle. In the mid-load range both 

models produce the same outcome. However, during peak load the SFE solution is above the 

Cournot one and in off-peak situations it is vice versa. In general the Cournot solution follows a 

more linear trend whereas the SFE solution is slightly backward bending. 

 

                                                   

 

13
 This means that for the observed price and quantity 

obs

t
P , 

,O obs

t
Q , the price and quantity predictions 

t
P% , 

%
O

tD  are such that %,
( )

O
O obs obs

t tt t
D D p pγ− = − % . 
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  Contract Cover Var 

Correction 

term τ Var 
Std Dev 
Error R

2
 

Number of 
Observations 

Cournot 49.8% 0.234 - - 9.41 0.85 

SFE 27.4% 0.664 - - 9.31 0.85 

Cournot 50.4% 0.311 0.064 0.001 9.39 0.85 

SFE 25.5% 0.876 -0.106 0.001 9.26 0.85 

1361 

Table 1: Results of the regression analysis  
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Figure 4 Unique Cournot outcome and bundle of SFE outcomes at the calibrated contract cover 

As both models neglect start-up and capacity restrictions we adjust the regression analysis by 

introducing a constant term τ depending on the difference between marginal fuel costs and 

marginal costs including start-up and capacity restrictions: 

 mod( ) ( )startup

t t t tP P MC MCφ τ ε= + − +%  (28) 



 

 

20 

with MC
mod

 the marginal costs as used in the Cournot and SFE model and MC
startup

 the 

corresponding marginal costs of a model approach including start-up costs and restrictions.
14
  

If the start-up adjusted marginal costs reflect the real costs better than the marginal costs used in 

the model, then we should observe a negative τ . As the start-up adjusted costs are on average 

larger than the modeled marginal costs, the price cost mark-up of the firms is slightly smaller and 

we, therefore, expect that the model predicts that a lower amount of fixed contracts is signed.  

The last two lines of Table 1 show the results of the regression including the term reflecting start-

up costs. For the SFE-model, the impact of the marginal cost has the expected sign, but is (in 

absolute terms) relatively small.
15
 Correcting for the start-up costs, the contract cover has 

decreased. For the Cournot model, the parameter has the wrong sign, but remains very small in 

absolute terms. For both models the optimal contract coverage only varies slightly with an 

increase in the according variance and the R-squared value remains constant. Thus the fit of the 

models cannot be increased.  

In order to test which of the approaches performs better under varying assumptions we conduct a 

series of robustness tests. The aim of these robustness checks is to test whether the relative 

performance of the Cournot and the SFE model depend on the particular assumptions we make. 

We will give some hints about which specifications perform better, but this is not the aim of the 

robustness tests.  

• We will allow for different contract coverage during peak and off-peak periods, vary 

marginal generation costs on monthly basis, and estimate different import elasticities for 

peak and off-peak periods in each month respectively.  

• For the behavior of the fringe, we consider the two cases as explained in section 4.3: one 

where the fringe has an elastic supply function and one where the fringe always produces 

at full capacity. The elastic supply function is on average the best representation of the 

supply of the fringe generator, but neglects capacity constraints. The inelastic supply 

function might be a better representation of the supply by the fringe during peak periods 

when capacity constraints play a larger role. 

• We introduce load-following contracts in the Cournot simulations allowing for an extra 

flexibility in the contracting options of the firms.  

                                                   

 

14
 The hourly values for MC

startup
 are obtained from Hischhausen and Weigt (2007). 

15
 In the SFE-model, firms are unable to make bids conditional on the time period, and are therefore not 

able to reflect the start-up costs in their bids.  
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We first assume an elastic fringe (Table 3). We observe that the contract coverage is higher 

during off-peak periods for both the Cournot and SFE approach. Likewise the variance during 

off-peak is higher – particularly for the SFE model – indicating that the results are less sensitive 

to the chosen coverage. The Cournot model still yields a higher optimal contract cover than the 

SFE model. Surprisingly, the R-squared values decrease compared to the average base case, 

which does not allow for contract levels that are differentiated according to the time of day. The 

reason for this is that the R-squared is a relative measure of the quality of fit based on the 

underlying sample data, and not an absolute measure. Another reason that makes it hard to 

compare the R-squared measures is that we drop 2% of the outliers in the peak and 2% of the off-

peak hours, which is different than dropping 2% over the total sample.  

Furthermore, we observe that the off-peak outcome of the oligopolistic models is only slightly 

better than the competitive solution which has an R-squared of 0.71. However, during peak hours, 

the competitive equilibrium is a bad predictor of market results. (R=0.05) indicating that during 

peak hours, it is more important to consider strategic company behavior. The impact of start-up 

and capacity restrictions has the expected sign in most cases, although the coefficient is relatively 

small. 

 

  

Contract 

Cover Var 

Correction 

term τ Var Std Dev Error R 

Number of 

Observations 

Cournot Peak 46.4 0.458 -0.033 0.001 11.26 0.77 727 

Cournot Off-Peak 56.8 0.851 0.056 0.003 5.53 0.84 631 

SFE Peak 23.0 0.739 -0.120 0.001 10.18 0.81 727 

SFE Off-Peak 41.9 4.130 -0.180 0.003 6.03 0.81 631 

Table 2: Results of the regression analysis for different periods, elastic fringe 

When we fix the fringe output to its maximum generation capacity, the resulting residual demand 

function for the oligopolists will be steeper in both peak and off-peak. However, during off-peak 

the residual demand level is lower as a larger fraction of the total demand will be satisfied by the 

fringe (see Table 4). We observe that during peak times the optimal contract cover increases for 

both approaches and the variance goes down. Particularly, for the SFE model the decreased 

demand elasticity results in a twice as high contracting. During off-peak the optimal contract 

level decreases.  

The impact of start-up and capacity restrictions reverses if we fix the fringe output. However, the 

impact remains below 20% of the marginal cost difference (MC
mod

 - MC
startup

). Hence we 
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conclude that the prices that we observe are only marginally driven by start-up costs (as simulated 

in our model).  

Comparing both fringe assumptions,  the optimal model is probably one where the inelastic fringe 

is used during peak hours – the production capacity is binding – and the elastic fringe during off-

peak hours – the production capacity is not binding. In that case we have similar amount of 

contracts being signed during peak and off-peak periods. This implies that during off-peak hours, 

a larger fraction of total demand is covered by contracts. The Cournot model has a coverage 10 to 

15 percent higher than the SFE approach; and corrections for start-up and capacity constraints 

have the expected sign in three out of four cases. 

 

  
Contract 
Cover Var 

Correction 

term τ Var Std Dev Error R 
Number of 

Observations 

Cournot Peak 53.7 0.071 -0.025 0.001 10.48 0.80 726 

Cournot Off-Peak 47.7 0.227 0.234 0.001 5.10 0.86 629 

SFE Peak 42.2 0.141 0.048 0.001 12.13 0.73 726 

SFE Off-Peak 32.8 1.111 0.103 0.001 5.23 0.85 629 

Table 3: Results of the regression analysis for different periods, inelastic fringe 

As a last robustness check, we analyse the impact of load following contracts for the Cournot 

approach.
16
 The regressions show that the optimal amount of load following contracts is equal to 

0%. This means that the model can be calibrated well during both peak and off-peak by relying 

only on fixed contracts. 

 

6 Conclusion 

This paper compares the classical Cournot model with the SFE approach to test whether the 

higher complexity of SFE results in a better representation of strategic market outcomes. Both 

models are tested using the dataset of Germany’s electricity market and the same assumptions 

regarding demand and generation. The modeling results are then compared to observed market 

outcomes. We calibrate the model by changing the amount of fixed capacity contracts that firms 

sign and the behavior of the fringe.  

                                                   

 

16
 Load following contracts can be understood as a representation of vertically integrated generators that 

aim to satisfy the demand of their customers.  
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The results indicate that the Cournot approach can be calibrated well to the observed market 

outcomes by assuming a relatively high level of fixed-capacity contracts. For the SFE model, the 

best fit is found when firms sign few contracts. Using the R-squared coefficient of a non-linear 

least squares regression as a measure, the calibrated SFE and Cournot models perform equally 

well, i.e., they explain the same percentage of the price variation in the market. We conclude 

therefore that the SFE model does not significantly outperform the Cournot model as a tool to 

study the German electricity market. However, the SFE models rely less on calibration 

parameters than the Cournot model, and appear, therefore, to give more robust, “realistic” 

predictions.  

To solve the models numerically, especially the SFE model, we made several simplifying 

assumptions with respect to the generation and demand data. These assumptions may bias the 

quantitative and qualitative results of our models. For example, the linearization of import and 

fringe behavior can lead to a general overestimation of demand elasticity especially for high-

demand periods, resulting in wholesale prices that are too low. The neglect of start-up and 

ramping issues leads to an overestimation of costs during off-peak periods. The general 

assumption of continuous supply function may lead to an underestimation of generation costs 

close to peak capacity. We conduct a robustness check, testing for different fringe behavior, 

analyzing the impact of start-up costs and splitting the sample in different time periods. However, 

the results do not differ significantly for both models. 

We do not know whether our results extend to other electricity markets, but we conjecture that 

the difference between the two models becomes less pronounced as markets become less 

concentrated and more dependent on imports. We observe that the SFE may give better results for 

markets that are less import-dependent and more concentrated than Germany and that therefore 

have a lower demand elasticity. 

Given the limited flexibility of SFE approaches to incorporate technical characteristics (unit 

commitment, start-up costs and network issues), we suggest that Cournot models should be the 

preferred option when electricity market characteristics must be modelled in technical detail. 

Thus, Cournot models are aptly suited for the study of market rules or congestion allocation 

mechanisms. However, when long-term aspects play a role, for instance in a merger study, SFE 

models might become more relevant because they are less sensitive with respect to calibration 

parameters. Furthermore, for long-term simulations, one cannot assume that contract positions are 

exogenous, increasing the complexity of Cournot models.  

We foresee that both models (Cournot and SFE) will continue to be used for practical purposes, 

with each model being further tailored for its specific range of applications. We hope that this 
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paper will assist policy-makers, regulators, and industry actors to understand the advantages and 

disadvantages of the different models.  
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Appendix 

 

 January  

Peak 

February  

Peak 

January  

Off-Peak 

February  

Off-Peak 

January & 

February 

 Coef. t Coef. t Coef. t Coef. t Coef. t 

EEX 

(Germany) 
0.09 3.34 0.06 5.23 0.40 2.52 0.14 4.03 0.13 5.81 

day_1 1.49 1.77 0.50 1.19 0.62 1.18 0.26 0.81 1.00 3.13 

day_2 1.22 1.51 0.08 0.21 0.26 0.41 0.04 0.13 0.77 2.47 

day_3 0.72 0.91 -0.03 -0.08 0.77 1.37 0.37 1.19 0.73 2.34 

day_4 0.01 0.01 0.40 1.05 0.73 1.09 -0.13 -0.37 0.37 1.02 

day_5 -0.36 -0.44 0.67 1.78 1.06 1.95 0.52 1.57 0.55 1.70 

day_6 0.64 0.97 0.18 0.65 0.08 0.15 -0.15 -0.46 0.34 1.16 

Netherlands 0.00 -0.25 -0.02 -5.71 -0.14 -2.65 -0.05 -2.57 -0.02 -3.78 

France -0.06 -3.26 -0.02 -5.15 -0.06 -3.14 -0.05 -4.88 -0.04 -6.95 

Austria -0.02 -0.9 0.00 -0.22 -0.14 -1.72 -0.03 -1.31 -0.06 -3.29 

Poland 0.00 -0.43 -0.01 -0.89 0.01 0.77 0.03 2.24 -0.01 -1.28 

DKeast -0.02 -1.92 -0.01 -2.89 0.03 1.39 -0.02 -1.48 -0.01 -2.81 

DKwest -0.05 -1.75 0.02 2.12 -0.10 -2.00 0.01 0.23 -0.01 -1.12 

Sweden 0.05 2.72 -0.01 -0.94 -0.01 -0.19 -0.03 -0.79 0.02 1.77 

_cons -3.28 -6.57 -3.25 -13.97 -2.89 -6.31 -3.00 -11.38 -3.12 -13.97 

Table 4: 2-SLS regression with demand and wind input as instruments (see equation 22) 

 

 
January February 

January & 

February 

Firm 1  

λ0 -2.369 -2.916 -2.614 

λ1 7.308 6.881 7.075 

λ2 -0.720 -0.577 -0.643 

λ3 0.031 0.024 0.028 

Firm 2  

λ0 -20.674 -20.697 -20.411 

λ1 13.842 13.576 13.613 

λ2 -1.200 -1.108 -1.143 

λ3 0.037 0.033 0.034 

Firm 3  

λ0 -58.565 -51.792 -60.969 

λ1 40.472 37.287 41.759 

λ2 -5.431 -4.873 -5.529 

λ3 0.244 0.218 0.245 

Firm 4  

λ0 -5.726 -5.975 -6.035 

λ1 11.549 10.852 11.482 

λ2 -1.675 -1.267 -1.534 

λ3 0.158 0.125 0.145 

Table 5: Coefficients of the cubic marginal cost functions (see equation 17)  
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 January February 
January & 

February 

Elastic 

Fringe 
   

αF 8.439 4.856 7.610 

γF  0.077 0.140 0.094 

Inelastic 

Fringe 
  

 

αF 17.930 17.930 17.930 

γF  0.000 0.000 0.000 

Table 6: Values for fringe supply function (see equation 21) 

 


