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1 Introduction

Energy industries have undergone a liberalization process worldwide. Traditionally, these

industries were vertically integrated monopolies, state-owned or not, operating under

regulatory constraints. Owing to the recent trend of privatization and liberalization in

network industries, separation of transportation services from commodity production and

distribution has taken place in a number of gas and electricity markets. In the production

and distribution segments policymakers attempt to promote competition by facilitating

market entry by emerging firms. To ensure successful entry into the market, pipelines and

power networks must grant access to the transportation system to new players. After a

process of entry and exit, in recent days, the gas and electricity markets are essentially

oligopolistic, with a few firms operating at the supply side of the market.1 Transportation

services usually remain regulated because of the natural monopoly characteristics of most

services offered by the transportation operator (TSO).

In the gas industry, the extent to which gas producers have access to pipelines relates

to the scope of gas market competitiveness. Pipeline capacity and access prices are thus

two valuable instruments available to the operator/regulator to enhance competition in

the gas market. Since capacity of the pipelines is somewhat fixed in the medium run and

in any case rather costly to alter, attention has been given to the institutional details

regarding the transportation of the commodity as well as to the pricing of transmission

services.

Optimal transmission pricing has been studied thoroughly in the economics literature

on power markets. The seminal work of Schweppe et al. (1988) shows that with perfect

competition, in the absence of congestion, equilibrium prices are equal in all nodes of

the power network. In the most simple case where the TSO bears no cost of providing

services at all, optimal transportation tariffs are equal to zero. If one or more lines in

the network become congested, then the price of transmission services is just the price

difference between the nodes that are connected by the congested line. This pricing

scheme, referred to as “nodal pricing,” implies that an energy supplier receives its local

price for all energy sold, independent of where its output is consumed.

Although nodal pricing is optimal in a perfectly competitive environment, it has also

been used in models studying market power in energy industries. For example, Borenstein,

Bushnell and Stoft (2000) consider an electricity network in which generators have market

power and assume the existence of a fringe of arbitrageurs which ensure there are no price

differences between nodes if the network is not congested. When the network becomes

congested, the transportation tariffs are again equal to the difference in prices. The crucial

1Several empirical studies have shown that energy-supplying firms have the ability to set prices above
the price that would prevail under perfect competition (see e.g. Wolfram, 1999; Borenstein and Bushnell,
1999; Borenstein, Bushnell and Wolak, 2002). In a recent report, the European Commission (EC, 2007)
states that consumers cannot reap the full benefits of the recent EU-energy market liberalization because
suppliers still have substantial power to manipulate market outcomes.
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assumption in electricity studies using nodal pricing is that arbitrage opportunities are

exhausted so there are no price differences across nodes in a non-congested network.

Clearly, this assumption is justified if the market structure is one of perfect competition.

However, in contrast to most electricity markets, possibilities for arbitrage in the gas

industry are still fairly limited. Among the most important institutional factors preventing

the exercise of arbitrage in gas markets are the absence of liquid hubs, physical bottlenecks

in the network, and shippers’ contractual obligations vis-à-vis consumers (see EC, 2007).

Another feature that distinguishes the gas industry from the market for electricity is

that the physical laws governing the transmission of the commodities over the networks

are not the same. The technical distinction, put forward neatly by Wilson (2002, p. 1301),

has economic consequences:

Power transfers are complicated by the difficulty of directing flows in trans-

mission systems with alternating current. [...] The absence of point-to-point

transmission has had the economic consequence that property rights are not

assigned by title (in contrast, title to gas is tracked continuously, even though

it is perfectly homogeneous). No one owns power per se; rather, qualified mar-

ket participants obtain privileges to inject or withdraw power from the network

at specific locations.

The fundamental difference between the two markets is that while gas producers typ-

ically have control over the gas flows, power producers generally do not. As a result, a

gas producer can decide where it will inject the gas in the system and where it will take

it out, thus being able to target output plans to distinct gas markets. In electricity, by

contrast, the decision of a producer of power is just how much to inject in the system.

This dissimilarity between industries, together with the lack of full arbitrage, implies

that the existing models of nodal pricing developed for the electricity sector do not apply

straightforwardly to the gas industry.

In this article, we study the incentives of gas producers and the role of transporta-

tion prices to foster competition in the gas market. We consider a setting where two

downstream gas producers serve two distant markets connected by a pipeline, which is

under control of a regulated TSO. Each producer is located at one of the ends of the

pipeline and chooses gas supplies for the local and for the distant market. The fact that

gas suppliers can control the gas flows in real-world markets has led to some important

institutional details that we incorporate in our four-stage game. At the beginning of the

market interaction, the TSO announces transmission tariffs for direct and reverse gas

flows. In the second stage of the game, firms book transmission capacity for the gas they

intend to sell in the distant market. In the third stage of the game, the TSO allocates

transmission rights by netting out the reserved capacities and taking into consideration
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the overall pipeline capacity.2 In the last stage, firms produce gas and inject it into the

system; the consumers withdraw it and consume it.

Our model is similar in spirit to that in Cremer and Laffont (2002).3 Their paper

shows how the standard notion of nodal pricing has to be modified to account for the

particular cost structure of gas pipelines.4 The main differences are that we allow for

market power in each node and that we do not adopt nodal pricing as the transportation

pricing system. These differences imply that the booking system for capacity and the

allocation mechanism for transmission rights need to be spelled out in detail. If the

transmission line had no capacity whatsoever, firms would be monopolists in their own

local markets, while if capacity were sufficiently large, the market would be fully integrated

and each firm would behave as a duopolist in a large global market. Pipelines of limited

capacity and the possibility of netting give firms an incentive to restrict their transmission

bookings thereby also restricting the actual exports of the rival firm and increasing local

market power.

The first part of the paper focuses on situations where pipeline capacity is large. In

this case, a symmetric equilibrium exists in which flows are netted out so the pipeline

is not fully utilized. In the absence of pipeline congestion, attaining the first-best calls

for negative transportation prices, thus effectively lowering the cost of producing gas

intended for exports and thereby raising exports till competitive levels. The first-best

tariffs then correct for market power and are therefore smaller than corresponding first-

best nodal prices (Cremer and Laffont, 2002). More interesting is the case in which the

TSO operates under a budget constraint (second-best pricing). In this situation too,

nodal pricing is not optimal: relative to nodal prices, a budget-constrained and welfare-

maximizing TSO adjusts its transportation tariffs upwards to account for the presence

of downstream market power. This is because gas producers with market power supply

too little output relative to the competitive level, which implies that the tax base of

the TSO is smaller and so nodal prices would generate a loss for the TSO. As a result,

our second-best tariffs are higher than nodal prices. Finally, we examine the nature of

profit maximizing transportation tariffs. We find that a profit-maximizing TSO charges

tariffs that are too large from the viewpoint of society. This result arises because a profit-

maximizing TSO does not internalize the effects of its tariffs on consumer’s surplus and

profits of the downstream firms.5

The second part of the article deals with the case where pipeline capacity is relatively

small. In this situation, an (essentially) unique asymmetric equilibrium is shown to exist.

2With netting, flows in opposite directions cancel out and the line only has to let through the (physical)
net flow, that is, the difference between the booked flow from 1 to 2 and the booked flow from 2 to 1.

3A similar framework is used in Joskow and Tirole (2000) and Gilbert, Neuhoff and Newbery (2004)
to study the role of transmission contracts in the power sector. Likewise, Borenstein, Bushnell and Stoft
(2000) use this model to examine the effects of pipeline capacity in the electricity market.

4See also Cremer, Gasmi and Laffont (2003) for the case of competitive gas markets and a three-node
network.

5Results on asymmetric markets to be added.
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Relative to the symmetric equilibrium, in this asymmetric situation one of the firms

continues to lower its gas exports till the pipeline is congested. Interestingly, in equilibrium

the commodity flows into the market where the price is lower. This result, which is at odds

with the received wisdom from competitive markets, is not only a theoretical curiosity

but has been observed in real world gas markets. For example, in the gas interconnector,6

a two-way pipeline that links the UK (Bacton) and continental Europe (Zeebrugge), net

flows have been seen to go from the UK to Belgium in a period where UK gas prices were

significantly higher.7 Our analysis suggests that this outcome can be a natural result of

profit-maximizing behavior when demand is large relative to pipeline capacity.

In this case of small pipeline capacity where the equilibrium features pipeline conges-

tion, it turns out that a budget-constrained and welfare-maximizing TSO has an incentive

to subsidize the reverse flow and tax the dominant one. This second-best tariffs are meant

to weaken the incentives of a firm to congest the pipeline in equilibrium, so that total

supply on both markets increases and so does welfare. Since in equilibrium gas flows dif-

fer across markets, transportation tariffs are not equal to one another in absolute value.

Therefore, also in this case of absence of excess pipeline capacity, our second-best tariffs

differ from nodal prices.

In sum, our analysis shows that the market outcome, and so the nature of transporta-

tion pricing, crucially depends on the capacity of the pipeline. During summer seasons,

demand is expected to be relatively low compared to capacity and so distinct geographic

markets are expected to exhibit similar commodity prices. By contrast, if pipelines have

not sufficient capacity, tough winters may lead to asymmetric equilibria and therefore to

significant price differentials across separated geographic markets. Our results on optimal

pricing suggests transportation tariffs should be seasonal.

The remainder of this paper is organized as follows. In the following Section we

describe in detail the model we use for our analysis. In Section 3, we consider the case of

no congestion and demonstrate that socially optimal tariffs differ from nodal prices. We

also provide tariffs that maximize the profits of the TSO. Section 4 discusses second-best

transportation prices when there is congestion and shows that in this case, tariffs are

again not equal to nodal prices. Finally, section 5 gives the subgame perfect equilibrium

of the game and section 6 concludes.

2 The model

We consider a gas network that consists of two nodes, labelled 1 and 2, which are connected

by a pipeline with capacity K. There is demand for gas as well as gas production in both

nodes. We focus on the case of symmetric demand, so P1(·) = P2(·) = P (·). Assume the

6See www.interconnector.com.
7In fact, this triggered a EU competition investigation of the operation of the interconnector during

January 2001 (see European Commission, 2002).
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common demand function is given by

P (Qi) = a−Qi

where Qi is the aggregate quantity of gas consumed in node i with i = 1, 2. In each node,

gas is produced by a single downstream firm, where firms are indexed by i = 1, 2. Due to

the existence of the transmission line a producer cannot only sell gas in its local market

but also in the distant market.8

To make clear the distinction between a producer’s supply for its local market and its

output targeted to the distant node, we refer to qij as the total output of a firm located

in node i to serve demand in node j. Then Q1 = q11 + q21 and Q2 = q12 + q22. For the

sake of clarity, qii and qij, i 6= j, are referred to as “local supply” and “exports” of firm

i, respectively. In case the pipeline capacity is insufficient to accommodate the desired

exports of the producers, a specific rationing rule has to be used by the TSO. We will

introduce this rationing rule below when we spell out the booking system for transmission

rights in the gas industry. The marginal cost of supplying gas (net of transportation

charges) equals c for all firms, irrespective of whether it concerns domestic supply or

exports. The cost function of downstream firm i is given by

Ci(qii, qij) = c(qii + qij) + tijqij, with i 6= j and i, j = 1, 2

where tij denotes the linear transportation tariff firms are charged to get one unit of their

gas shipped from node i to j. Note that the pipeline is needed for gas exports and that

firms can sell locally without using it. We shall assume that |tij| ≤ (a − c)/2; if this

assumption were not satisfied markets would be served by monopolies and the problem

would not be so interesting.9

We consider a TSO having control over the pipeline and being able to charge firms for

the use of the transportation services. Throughout the paper, we treat pipeline capacity as

exogenous and assume that past investment outlays for capacity are sunk costs. The only

costs for the TSO arise from shipping the (net) gas flow over the line and from pipeline

maintenance; let cO be the constant marginal cost of transporting the gas and C(K) the

fixed costs necessary to maintain the network operational. The pipeline is used by firms

only to ship gas to the distant market. Moreover, as gas is completely homogeneous we

assume that the operator is able to net out gross exports against each other. As a result,

pipeline capacity has to be sufficiently large to let through the net flow, which equals the

difference in gross exports, or |q21 − q12|. The cost function of the TSO is then as follows:

CO(q12, q21, K) = cO |q21 − q12|+ C(K)

8Here we notice the difference between the gas industry and the market for electricity: while in the
latter producers receive the local price for the total amount sold and therefore cannot sell in different
consumer markets, in the former firms have the ability to target their output to geographically distinct
markets.

9We get that if tariffs are very large, demand in a particular node is served only by the local firm.
In contrast, when transportation prices become sufficiently negative there is no local supply and exports
cover total demand in both nodes.
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The core of the analysis focuses on the case in which the TSO is perfectly controlled by

a welfare-maximizing regulator. As will become clear later, the first-best outcome would

entail a loss for the TSO. To circumvent this problem, we let the TSO maximize welfare

under the constraint that it has to break even. The resulting second-best tariffs are known

as “Ramsey-Boiteaux” prices (see e.g. Laffont and Tirole, 2002). The paper also presents

a comparison of profit-maximizing transportation prices with socially optimal tariffs.

We model the interaction in the market as a four-stage game. In the first stage, the

TSO decides on transportation prices tij with i 6= j and i, j = 1, 2. In the second stage,

firms book transmission capacity to be able to export gas to the distant node. Let us

denote these bookings by bij with i 6= j and i, j = 1, 2. Then, in the third stage of

the game, the TSO allocates transmission rights b̄ij to the firms taking into account the

transport capacity of the pipeline and the possibilities for netting the flows. In the last

stage, production is realized and firms compete on both markets given their transmission

rights and the tariffs set by the operator. In line with the actual practice in the industry,

we assume that penalties for imbalances ensure that actual exports are always equal to

the transmission rights granted to the firm, that is, qij = b̄ij. We define the last three

stages of the game as the “gas market subgame”, since throughout the paper these stages

are discussed together. The game is solved by backward induction.

In what follows, we derive the subgame perfect equilibria (SPE) of this model. We

first consider the case where in the gas market subgame, producers play strategies that

yield an equilibrium in which the pipeline is not congested. Then, we determine for this

gas market equilibrium first-best, second-best, and profit-maximizing tariffs. Thereafter,

we move to the situation in which firm do bookings that lead to pipeline congestion and

solve for the second-best tariffs.

3 Non-congested pipeline

In this section we study pipeline access in situations where the capacity of the pipeline is

large and therefore there is not congestion in the market. We first consider the downstream

gas

market subgame. Then we solve for the socially optimal and profit-maximizing trans-

portation tariffs.

3.1 Equilibrium in the gas market

Here we characterize firm strategies that are part of an equilibrium without congestion.

Proceeding backwards, we start with the last stage of the game. In this stage, taking as

given the transportation tariffs set by the TSO and the transmission rights allocated to

the firms, both gas producers compete in quantities. A firm i chooses the pair (qii, qij) to
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maximize its profits, which are given by

πi(qii, qij; ·) = (a− (qii + qji)− c)qii + (a− (qij + qjj)− c− tij)qij

The existence of penalties for imbalances between the actual exports of a firm and its

transmission rights ensures that firms do not withhold transmission rights in equilibrium,

i.e. qij = b̄ij. This has the implication that the booking system serves as a commitment

device and confers the rival exporter a first-mover advantage over its local counterpart.

Therefore, the local supply qii of firm i is the best reply to the transmission rights allocated

to firm j, i.e. qii = BR(qji) = BR(b̄ji). Equilibrium strategies in this stage are then given

by

qii(bji) =

{
a−bji−c

2
if bji < a− c

0 otherwise

qij(bij) = bij (1)

with i 6= j and i, j = 1, 2.

We now move to describe the equilibrium of the third stage of the game. In this

stage, anticipating that actual exports will be equal to the transmission rights allocated

to the players, the TSO assigns transmission rights. For this, the TSO takes into account

the capacity of the pipeline and the desired net export flow. Consider first a situation

where firms request transmission rights b12 and b21 such that the net flow does not exceed

the capacity of the pipeline. In this case, the amount of transmission rights granted to

the firms equals the booked capacity. In case line capacity is not large enough to let

through the desired net flow, the TSO rations the firm requesting the largest amount

of transmission rights. In particular, this firm is allocated the maximum transmission

capacity which is compatible with pipeline capacity. Therefore, the equilibrium TSO’s

mechanism for transmission rights allocation is:10

(b̄12, b̄21) =


(b12, b21) if |b21 − b12| < K

(b12, b12 +K) if b21 − b12 ≥ K
(b21 +K, b21) if b12 − b21 ≥ K

(2)

We now move to the second stage of the game. In this stage, firms book transmission

capacities to maximize profits taking into account transportation tariffs and anticipating

the equilibrium strategies in the continuation game. Consider the strategy profile (b12, b21).

Figure 1 shows the congesting nature of different strategy profiles. When the difference

between b12 and b21 does not exceed K, there is no congestion; otherwise either firm 1 or

firm 2 is rationed by the TSO according to (2).

While studying whether a pair of booking strategies can be part of an equilibrium,

it is useful to distinguish between booking profiles which result in no congestion of the

10This rationing rule is the only possible one in our model, since the TSO cannot force the firm that
is booking the smallest amount to book more.
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Figure 1: Booking strategies, pipeline congestion and implied rationing

pipeline and booking profiles resulting in congestion. We start by considering the set of

booking profiles in the “No congestion” region of Figure 1. Later in Section 4 we consider

booking strategy profiles which lead to pipeline congestion.

Let us study whether a booking profile (b12, b21) satisfying |b21 − b12| < K can be

part of an equilibrium. Consider the problem of firm i. This firm chooses a booking bij

to maximize its profits taking into account firm j’s booking as well as the equilibrium

strategies in the continuation game. Under the assumption |tij| < (a− c)/2, the reduced-

form second-stage profits of firm i would be

πi =

(
a− bji − c

2

)2

+

(
a− bij − c

2
− tij

)
bij, i 6= j, i, j = 1, 2

where we note that b̄ij = bij and qii = BR(qji). Taking the FOC and solving for bij gives

b∗ij =
a− c− 2tij

2
, i 6= j, i, j = 1, 2. (3)

Equation (3) describes the optimal capacity bookings of the firms (provided transportation

rates are lower than (a − c)/2 for otherwise firms would prefer not to export at all).

Note that booking the amounts in (3) does not lead to pipeline congestion as long as

|t21 − t12| < K.

If these strategies were part of an equilibrium, aggregate production, prices and profits

would be given by

Q∗i = b∗ji + q∗ii =
3(a− c)− 2tji

4
(4)

p∗i =
a+ 3c+ 2tji

4
(5)

π∗i =
(a− c+ 2tji)

2

16
+

(a− c− 2tij)
2

8
, i 6= j, i, j = 1, 2. (6)

We note that these outcomes do not depend on K, since there is no congestion and both

firms are able to ship to the distant market their desired levels of exports.
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We now examine the conditions under which firms cannot profitably deviate from the

strategies in (3). We first consider a deviation by firm 1. Given firm 2’s equilibrium

booking b∗21, consider firm 1 deviates by lowering its booking so as to generate pipeline

congestion, i.e, firm 1 deviates by booking an amount bd12 ∈ [0, b∗21−K).11 This deviation

is potentially profitable for firm 1 because by doing so this firm in effect controls the

amount of exports flowing into its market, which increases its local market power.

In the third stage, following the deviation by firm 1, the TSO allocates transmission

rights to the firms equal to b̄12 = bd12 and b̄21 = bd12 + K < b∗21. Therefore, the deviant’s

reduced-form profits are given by

πd
1(bd12, b

∗
21) =

(
a− bd12 −K − c

2

)2

+

(
a− bd12 − c

2
− t12

)
bd12 (7)

Taking the FOC and solving for the optimal deviation yields

bd12 =

{
K − 2t12 if t12 < K/2

0 otherwise

Using this optimal deviating strategy, one obtains the profits of the deviant:

πd
1(·) =

{
1
4
(a− c−K)2 +

(
K
2
− t12

)2
if t12 < K/2

1
4
(a− c−K)2 otherwise

(8)

Comparing equilibrium profits in (6) with deviating profits in (8) yields

π∗1(b∗12, b
∗
21) ≥ πd

1(bd12, b
∗
21)⇔ K ≥ K1(a, c, t12, t21) (9)

where

K1(·) ≡

{ (
1− 1√

2

)
a−c
2

+ t12 − t21√
2

if t12 < K/2

a− c− 1
2

√
3(a− c)2 + 4(a− c+ t21)t21 − 8(a− c− t12)t12 otherwise

(10)

Proceeding analogously, we can compute the condition under which firm 2 does not

deviate from the equilibrium strategy in (3). This condition is symmetric to the condition

in (9) and therefore K2(·) can be obtained from the expression for K1(·) by interchanging

the subindexes i and j.

We are now ready to state our first equilibrium result. For this purpose, we define the

set of parameters

ZNC ≡ {(a, c, t12, t21, K) : K ≥ K1(·); K ≥ K2(·)} (11)

We then come to the following proposition:12

11Note that bd
12 < b∗21 − K must hold, since otherwise firm 2 still gets transmission rights allocated

equal to b∗21 and there would be no congestion.
12Note from (3) that a necessary condition for an equilibrium without congestion to exist is |t21−t12| <

K. It is easy to see that this condition is satisfied if (a, c, t12, t21, K) ∈ ZNC . Suppose, without loss of
generality, t12 ≤ t21 so that K1(·) ≤ K2(·) and therefore that (a, c, t12, t21, K) ∈ ZNC if K ≥ K2(·).
Simple computation shows that K ≥ K2(·) > |t21− t12|, which implies that |t21− t12| < K automatically
holds when (a, c, t12, t21, K) ∈ ZNC .
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Proposition 1 For any vector of parameters (a, c, t12, t21, K) ∈ ZNC there exists a down-

stream gas market equilibrium where firms book the amounts given in (3), transmission

rights satisfy (2) and production levels are given by (1). In equilibrium, the net flow is

less than K so there is no congestion. Firms obtain a profit given in (6).

In this equilibrium, firms do not have an incentive to congest the line and thus play

strategies as if pipeline capacity were unlimited.

To illustrate Proposition 1, Figures 2(a) and 2(b) show, for given a, c, and K, the

space of transportation prices (t12, t21) for which a downstream market equilibrium with no

congestion exists. Figure 2(a) is drawn for the case of relatively large pipeline capacity,

while Figure 2(b) shows the case of small capacity. In both cases, for pairs of tariffs

(t12, t21) that lie between the two bounds K = K1(·) and K = K2(·), the equilibrium

described in Proposition 1 exists.

To get some intuition, consider the bound K = K1(·). For all tariff combinations that

lie on this bound, firm 1 is indifferent between deviating from the strategy given by (3)

or not. Clearly, for any t12 to the left of this bound firm 1 strictly prefers not to deviate,

since a lower t12 raises the profitability of exporting to market 2. Furthermore, any t21

above K = K1(·) also makes that firm 1 does not have an incentive to deviate. This is

because a higher t21 lowers the exports of firm 2 in case the line is not congested. Thus,

for any pair of tariffs to the left and above of K = K1(·) firm 1 does not have an incentive

to deviate. A similar reasoning applies for the bound K = K2(·): firm 2 does not deviate

from the equilibrium strategy if the pair of tariffs is below and to the right of K = K2(·).
A comparison of Figures 2(a) and 2(b) reveals that the set of tariffs for which an

equilibrium without congestion exists depends on pipeline capacity. When capacity is

small, only negative transportation prices ensure that the pipeline is not congested (Figure

2(b)). The reason for this is that negative tariffs act as an export subsidy, which reinforces

the incentives for firms to export a lot and makes congestion less attractive. By contrast,

when capacity is large, positive transportation tariffs also allow for an equilibrium without

congestion (Figure 2(a)). This is because when capacity is sufficiently large, it is not

profitable for a firm to provoke congestion by lowering exports since the rival firm is

anyway able to export an amount equal to (or close to) the desired amount.

3.2 Transportation pricing

Moving back to the first stage of the game, we now examine socially optimal transportation

prices. We first consider the benchmark case of first-best transportation tariffs, then we

study second-best tariffs. Finally, we discuss profit-maximizing transportation prices.

Social welfare equals

SW =

∫ Q1

0

(
a− x− c

)
dx+

∫ Q2

0

(
a− x− c

)
dx

− CO(q12, q21, K) (12)
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(a) Large pipeline capacity (K = 0.2) (b) Small pipeline capacity (K = 0.1)

Figure 2: An equilibrium with no congestion exists in the shaded areas (a = 2; c = 1)

where CO(·) ≡ cO|q21 − q12| + C(K) is the total cost of the TSO. Notice that changing

either transportation tariff has no direct effect on the level of social welfare. This is

because transportation prices are just transfers from the firms to the TSO. However,

transportation prices have a bearing on welfare via the quantities firms put in the market.

3.2.1 First-best tariffs

Without any restrictions on the revenues of the TSO, the problem of the operator is to set

tariffs that maximize (12). Simple computations show that the first-best transportation

prices equal

t12 = t21 = −a− c
2

(13)

To attain the socially optimal allocation, access charges should be negative. This is

because negative transportation tariffs result in an increase in the exports, which has a

positive effect on welfare. Note that with these transportation tariffs firms export an

amount equal to the competitive output and do not supply any gas locally.13

Finally, we note that in our model transportation tariffs are used to stimulate pro-

duction so they differ in nature from nodal prices. In fact, while in our case first-best

transportation pricing entails the use of subsidies, first-best nodal prices are equal to zero

(see e.g. Cremer and Laffont, 2002).

3.2.2 Second-best tariffs

The previous section shows that in order to obtain the first-best solution, the TSO has

to set negative transportation prices. However, this pricing scheme entails losses for the

13Note that a similar aggregate outcome could be obtained if the government directly subsidized gas
production instead of gas transportation. In that case, however, total public funding needed to obtain
the social optimum would be lower. In fact, the production tax should be set to t = −(a− c)/3 and the
total government expenditures would be (a− c)2/3.
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TSO. To get around this problem, we now assume that the TSO is not allowed to run a

deficit.

The budget constraint of the TSO is given by

t12q12 + t21q21 − CO(·) ≥ 0 (14)

The TSO then maximizes (12) subject to (14), where the latter holds with equality at the

optimum.14 The resulting second-best transportation tariffs are Ramsey-Boiteaux prices,

although adjusted for the presence of imperfect competition.

We consider the subset of tariffs that lead to the non-congested equilibrium (NCE)

and ask which tariffs yield the highest level of social welfare. This set has been denoted

ZNC and its characterization is given in Proposition 1. Assume, without loss of generality,

that t12 ≥ t21; this implies q∗12 ≤ q∗21, so that the problem of the TSO can be written as

max
(t12,t21)∈ZNC

{SW =

∫ Q∗1(t21)

0

(
a− x− c

)
dx+

∫ Q∗2(t12)

0

(
a− x− c

)
dx− CO(·)}

subject to:

t12q
∗
12(t12) + t21q

∗
21(t21)− CO(·) = 0

t12 ≥ t21

We then come to the following result.

Proposition 2 For fixed parameters a, c,K, cO, C(K) consider the set TNC(a, c,K, cO, C(K))

of TSO’s-budget-constraint-satisfying tariff combinations that lead to the NCE of Propo-

sition 1:

TNC(a, c,K, cO, C(K)) ≡ {(t12, t21) ∈ R2 : (t12, t21) ∈ ZNC(a, c,K);
∑

tijq
∗
ij ≥ CO},

with q∗ij given in Proposition 1. If TNC(a, c,K, cO, C(K)) is non-empty, the pair of tariffs

t∗12 = t∗21 =
a− c−

√
(a− c)2 − 8C(K)

4
(15)

dominates in terms of social welfare all other elements in this set TNC(a, c,K, cO, C(K)).

The proof is in the Appendix.

Proposition 2 gives the transportation prices (t∗12, t
∗
21) that maximize social welfare

given that firms play strategies that lead to the equilibrium without congestion in the

continuation game. It is easy to see that these tariffs are (i) increasing in the cost of

the downstream firms and in the cost of capacity, and (ii) decreasing in the demand

parameter a.15 When there is no cost of capacity (maintenance), these tariffs are equal

to zero. In smaller markets, the tax base is smaller so tariffs have to be raised to be able

to cover capacity costs.

14To see that the budget constraint is binding at the optimum, suppose by contradiction that this
constraint does not bind. But then one of the tariffs (or both) can be lowered without violating the
budget constraint, since this constraint is continuous everywhere. Lowering the tariff increases welfare,
which implies that the budget constraint binds at the optimum.

15Since there is no net flow in our symmetric equilibrium, tariffs do not depend on distance.
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Figure 3: Optimal tariffs in the equilibrium without congestion (a = 2, c = 1, K =
0.2, cO = 0.01, C(K) = 0)

The problem of the TSO and the reason why it chooses tariffs (t∗12, t
∗
21) can be illus-

trated by Figure 3. This Figure builds on Figure 2(a) above, which showed the region

of parameters for which a NCE exists, by adding isowelfare levels and the TSO’s budget

constraint. The dashed concave and decreasing curves in the figure represent different

isowelfare curves. To see why these isowelfare levels are decreasing, note that increasing

(decreasing) a tariff has a negative (positive) effect on social welfare. Therefore, to keep

welfare constant, a rise in one tariff has to be accompanied by a fall in the other tariff.

Since social welfare decreases in tariffs, isowelfare levels increase as we move from the

northeast of the (t12, t21) space to the southwest. The solid convex and decreasing curve

represents the TSO’s budget constraint. This curve is decreasing since a lowering of one

tariff must be met by an increase in the other tariff to keep the budget in balance. The

problem of the TSO consists of picking the point on the budget constraint that yields the

highest social welfare and therefore, at the optimum the isowelfare curve is tangent to

the budget constraint. Moreover, observe that this point lies above K = K1(·) and below

K = K2(·) so that for tariffs (t∗12, t
∗
21) the equilibrium without congestion exists.

Now the question becomes how these transportation tariffs relate to tariffs that would

be set if there were full competition in both nodes. From Cremer and Laffont (2002),

we know that the second-best nodal prices are implicitly given by the difference in the

consumer price and the producer price. With the demand and cost structure chosen in

this paper, nodal prices are then given by

tN12 = tN21 = pd
1 − c =

C(K)

(a− c)2

where pd
1 is the consumer price in node 1. Comparing these nodal prices with the tariffs

stated in Proposition 2 shows that if producers have market power, nodal prices are too

low to cover the cost of the TSO. The reason for this is that under imperfect competition

aggregate output is lower than under perfect competition, which also means that the tax
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Figure 4: second-best tariffs and nodal prices (a = 2, c = 1)

base is lower. Therefore, the TSO has to increase tariffs to be able to meet the break-

even constraint. Figure 4 illustrates the difference between nodal prices and the tariffs in

Proposition 2. Observe that tNij and t∗ij diverge when C(K) increases and that both prices

are equal to each other only when C(K) = 0.

3.2.3 Profit-maximizing tariffs

Until now, we have assumed that the TSO acts as a benevolent social planner and thus

implements transportation tariffs that maximize social welfare. Recently, however, there

have been some attempts to privatize network operators.Therefore, it is useful to com-

pare socially optimal tariffs with tariffs set by a profit-maximizing TSO. Notice that the

solution of the gas market subgame still holds, so we only have to focus on the first stage

of the game. The problem of the profit-maximizing TSO is then given by

max
(t12,t21)∈ZNC

{πP =
a− c− 2t12

2
t12 +

a− c− 2t21

2
t21 − CO(·)}

The following result describes the solution to this problem.

Proposition 3 Consider the set of tariff combinations

TNC ≡ {(t12, t21) ∈ R2 : (a, c, t12, t21, K) ∈ ZNC}

Then tP12 and tP21 denote the tariffs that generate the highest profit in this set, where

tP12 = tP21 =

{
a−c
4

if K ≥
(
1−
√

11/4
)

(a− c)
1
6
(a− c)− 1

3

√
3K2 + (a− c)2 − 6(a− c)K otherwise

The proof is in the Appendix.

Comparing these tariffs with the tariffs set by a benevolent but budget-constrained

planner, given by (15), one observes that profit-maximizing tariffs are excessive in terms

of social welfare.
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4 Congested pipeline

We now examine whether there are strategies that yield an equilibrium with congestion.

We notice that the discussion on the equilibrium strategies of the last two stages in the

previous section also applies here. So, there will be congestion in equilibrium only if

firms’ bookings violate the capacity constraint. After we have described the gas market

equilibrium with congestion, we determine the second-best tariffs for this equilibrium.

4.1 Equilibria in the gas market

Let us turn to the question whether strategies b12 and b21 satisfying |b21 − b12| ≥ K can

be part of an equilibrium. Notice that if this were true, at the resulting equilibrium the

pipeline would be congested. To start with, consider first a booking strategy profile such

that b12 ≤ b21−K (northwest of Figure 1), which implies that firm 2 will be rationed and

obtain transmission rights b̄21 = b12 +K. The second-stage profits of firm 1 equal

π1(·) =

(
a− b12 −K − c

2

)2

+

(
a− b12 − c

2
− t12

)
b12

where we have substituted q21 = b̄21 = b12 + K. Note that this profit expression is equal

to the deviating profits expression we derived above in (7). The optimal booking of firm

1 is therefore given by

b̂12 =

{
K − 2t12 if t12 < K/2

0 otherwise
(16)

Consider now the profits of firm 2. If the two producers’ bookings satisfied b12 ≤
b21 −K, firm 2 would obtain a level of profits given by the expression

π2 =

(
a− b12 −K − c

2
− t12

)
(b12 +K) +

(
a− b12 − c

2

)2

Observe that the profits of firm 2 do not depend on its own booking b21 but on the rival’s

booking b12. As a result, any booking strategy that satisfies b21 ≥ b̂12 + K is consistent

with equilibrium. Therefore, any booking

b̂21 ≥ x ≡
{

2K − 2t12 if t12 < K/2
K otherwise

(17)

is an equilibrium strategy for firm 2.

If the strategies in (16) and (17) were part of an equilibrium, the aggregate market

outcomes would be given by

Q̂1 =

{
1
2
(a− c) +K − t12 if t12 < K/2

1
2
(a− c+K) otherwise

(18)

p̂1 =

{
1
2
(a+ c) + t12 −K if t12 < K/2

1
2
(a+ c−K) otherwise

(19)
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for market 1, and

Q̂2 =

{
1
2
(a− c) + 1

2
K − t12 if t12 < K/2

1
2
(a− c) otherwise

(20)

p̂2 =

{
1
2
(a+ c) + t12 − 1

2
K if t12 < K/2

1
2
(a+ c) otherwise

(21)

for market 2. Furthermore, profits of firm 1 and firm 2 would, respectively, be equal to

π̂1 =

{
1
4
(a− c−K)2 +

(
K
2
− t12

)2
if t12 < K/2

1
4
(a− c−K)2 otherwise

(22)

π̂2 =

{
(a−c)2

4
+ (a−c)K

2
+ 2(t12 −K)t21 + 3t12K − 7K2

4
− t212 if t12 < K/2(

a−K−c
2
− t21

)
K +

(
a−c
2

)2
otherwise

(23)

To see whether the strategies in (16) and (17) are in fact part of an equilibrium,

we have to find conditions under which neither firm has an incentive to deviate. For

convenience, let us first check when firm 2 does not have an incentive to deviate. Consider

firm 2 deviates by booking an amount bd21. We start by noting that a deviation by firm

2 can only be profitable if bd21 < b̂21. Indeed, as mentioned above, we can ignore upward

deviations since all booking strategies b21 > b̂21 ≥ b̂12 +K yield the same profit to firm 2.

We next observe that any deviation bd21 ∈ [̂b12 −K, b̂12 + K) cannot be profitable either.

This is because this deviation results in a lowering of firm 2’s exports to market 1 and it

does not constrain firm 1’s exports in any way.16

These two observations imply that, if a deviation is profitable for firm 2, it must be

the case that bd21 ∈ [0, b̂12−K), or, using (16), bd21 ∈ [0,−2t12). Note that such a deviation,

which is only possible for negative t12, changes the direction of the net flow and leads to

a situation where firm 1 is rationed. If deviating is possible, the best deviation bd21 solves

the problem:

max
bd
21∈[0,−2t12)

{πd
2 = −

(
a− bd21 − c

2
− t21

)
bd21 +

(
a− bd21 −K − c

2

)2

} (24)

Taking the first order condition yields

∂πd
2

∂bd21

= −b
d
21

2
+
K

2
− t21,

which shows that deviating profits in (24) are monotonically decreasing in bd21 when t21 ≤
K/2 + t12 so no profitable deviation exists in that case. For other ranges of t21, we get

that deviation profits are maximized when

bd21 =

{
K − 2t21 if K/2 + t12 < t21 < K/2

0 if t21 ≥ K/2
(25)

16Note that profits of firm 2 are concave in q21 so that its profits are increasing in q21 for all q21 ≤ q∗21.
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Substituting (25) into (24) yields the optimal deviating profits:

πd
2 =


1
4
(a− c−K)2 +

(
K
2
− t21

)2
if K/2 + t12 < t21 < K/2

1
4
(a− c−K)2 if t21 ≥ K/2

(26)

Comparing (23) and (26), we conclude that firm 2 does not have an incentive to deviate

whenever

π̂2(̂b12, b̂21) ≥ πd
2 (̂b12, b

d
21)⇔ K ≥ K̂2(a, c, t12, t21)

where

K̂2(·) ≡


0 if t21≤K/2+t12

2
9

(
a−c+3t12−t21−

√
(a−c+3t12−t21)2−9(t12−t21)2

)
if K/2+t12<t21<K/2

1
4

(
a−c+3t12−2t21−

√
(a−c+3t12−2t21)2+8(2t21−t12)t12

)
if t21≥K/2

(27)

Next, consider a deviation by firm 1 and let bd12 denote its defection from the equilib-

rium strategy in (16). Since the equilibrium booking is the maximizer of the profits of

firm 1 when b12 ≤ b̂21−K, a deviating booking can only be profitable if it decongests the

pipeline, i.e. if bd12 > b̂21 −K. Under such a deviation, firm 2 is not rationed any longer

and is allocated transmission rights equal to b̂21. Note furthermore that if firm 1 deviates

by booking bd12 > b̂21 + K, it will be rationed by the TSO. The deviant thus solves the

following constrained maximization problem:

max
bd
12∈[0,̂b21+K)

{πd
1 = (a− b̂21 −BR(̂b21)− c)BR(̂b21) + (a− bd12 −BR(bd12)− c− t12)b

d
12}

It is readily seen that the optimal deviation of firm 1 is

bd12 = min{b̂21 +K,
a− c

2
− t12}

yielding profits equal to

πd
1 =


(

a−b̂21−c
2

)2

+ (a−c−2t12)2

8
if a−c

2
− t12 ≤ b̂21 +K(

a−b̂21−c
2

)2

+
(

a−b̂21−K−c
2

− t12

)(
b̂21 +K

)
otherwise

Therefore firm 1 does not deviate from playing the strategy given by (16) if

π̂1(̂b12, b̂21) ≥ πd
1(bd12, b̂21)⇔ K ≤ K̂1(a, c, t12, b̂21)

where

K̂1(·) ≡


(

1
2
− 1√

2

)
(a−c)+t12+

b̂21√
2

if a−c
2
−b̂21−K≤t12<K/2

a−c− 1
2

√
3(a−c)2

8
+( 1

4
b̂21−a−c

2 )b̂21+( 1
2
t12−a−c

2 )t12 if t12≥max{a−c
2
−b̂21−K,K/2}

1
2

(
a−c−b̂21−

√
(a−c−2b̂21)(a−c)−4(̂b21+t12)t12

)
if t12<min{a−c

2
−b̂21−K,K/2}

2
3

(
a−c−b̂21−t12−

√
(a−c−b̂21−t12)2− 3

4
(̂b21+4t12 )̂b21

)
otherwise

(28)
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Having derived the conditions under which no firm deviates from the strategies in (16)

and (17), we are now ready to state our second equilibrium result. For this purpose, let

us define the following set of parameters:

ZC(x) ≡ {(a, c, t12, t21, K) : K ≤ K̂1(a, c, t12, x); K ≥ K̂2(·).}

The next proposition summarizes our second equilibrium result.

Proposition 4 For any vector of parameters (a, c, t12, t21, K) ∈ ZC(x) there exists a

continuum of gas market equilibria where firms’ pipeline capacity bookings (̂b12, b̂21) satisfy

(16) and (17) respectively, transmission rights allocated are given by (2) and production

levels are stated in (1). In any equilibrium, bookings are such that the network is congested

and firm 2 is rationed.

Proposition 4 tells us that for some pipeline capacity and transportation prices, there

exists an equilibrium in which firm 1 lowers its request for capacity such that the pipeline

becomes congested. Firm 2 is then rationed, while the net flow is in the direction of node

1. Although it loses some profits from exporting, firm 1 gains local market power in this

way since firm 2 cannot export as much as it wants to. Whether this gain outweighs the

loss from lower exports depends on pipeline capacity and tariffs, as is discussed below.17

To illustrate further Proposition 4 we need to resolve somehow the indeterminacy of

equilibria. In what follows we shall consider that b̂21 =
a− c

2
− t21; arguably, this booking

may be a natural focal point since it is the amount that firms would book in an equilibrium

with no congestion.18 Substituting this value for b̂21 into (28) gives

K̂1(·) =


(
1− 1√

2

)
a−c
2

+t12− t21√
2

if t21−K≤t12<K/2

a−c− 1
2

√
3(a−c)2+4(a−c+t21)t21−8(a−c−t12)t12 if t12≥max{K/2,t21−K}

1
4

(
a−c+2t21−2

√
2
√

(a−c+2t12)(t21−t12)
)

if t12<min{K/2,t21−K}
1
3

(
a−c+2(t21−t12)−

√
1
4
(a−c)2+(2t12+t21)2−(a−c)(10t12−7t21)

)
otherwise

Figures 5(a) and 5(b), drawn for b̂21 =
a− c

2
− t21, show the regions of parameters

for which equilibrium described in Proposition 4 exists. Again, the left (right) figure

corresponds to the case of large (small) capacity. All combinations of tariffs that lie

below the two bounds lead to the congested equilibrium.

Some intuition can be gained if one considers the incentives for firm 1 to deviate from

the equilibrium strategy. If t12 is relatively high, exporting, and therefore also deviating

from equilibrium, becomes less attractive. Further, a relatively low t21 makes a defection

17This result is related to the study in Borenstein, Bushnell and Stoft (2000), who show that when
capacity of the power network is small there does not exist an equilibrium without congestion.

18Indeed, since during the summer season there is typically no congestion in most markets while the
opposite holds for the winter season, one may argue that summer bookings maybe natural bookings for
the winter season in this case of indeterminacy. In addition, we note that b̂21 = a−c

2 −t21 is an equilibrium
booking for firm 2 as long as a−c

2 − t21 ≥ 2K − 2t12 if t12 < K/2 and a−c
2 − t21 ≥ K if t12 ≥ K/2, which

in equilibrium indeed holds.
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less beneficial, because in that case firm 2 would export a large amount to market 1. In

regard to the deviating incentives for firm 2, observe that firm 2 also has no incentive to

deviate from the equilibrium strategy if t12 is high and t21 is low, but for different reasons

than firm 1. First, a deviation is not profitable for firm 2 when t21 is high. If this is

the case, the exports of firm 1 are low and firm 2 does not gain much by changing the

direction of the flow while it loses a lot due to the reduction in exports. Moreover, firm 2

does not deviate if t21 is low, since a low t21 makes it more profitable for firm 2 to export

a large amount.

(a) Large pipeline capacity (K = 0.2) (b) Small pipeline capacity (K = 0.1)

Figure 5: Shaded areas: parameters for which an equilibrium with congestion exists
(a = 2; c = 1)

Finally, comparing Figures 5(a) and 5(b) one sees that when pipeline capacity is small

the set of tariffs for which the congested equilibrium of Proposition 4 exists is larger. To

see why this is true, note that firm 2 can only export an amount b̄21 = b12 + K if it is

rationed. Then, it is more often beneficial for firm 1 to provoke congestion in case of small

capacity since the exports of firm 2 remain low no matter what.

In order to complete the analysis in this section, we need to examine booking strategy

profiles satisfying b21 ≤ b12 −K (southeast of Figure 1). These strategy profiles lead to a

situation where firm 1 will be rationed and obtain transmission rights b̄12 = b21 +K. This

case is similar to the case analyzed above in detail so, to save space, we do not present

the derivations. The equilibria in which firm 1 is rationed exist when t12 is relatively low

and t21 is relatively high.

4.2 Transportation pricing

We have shown in Proposition 2 that the pair of tariffs (t∗12, t
∗
21) is socially optimal if the

pipeline is not congested. Note however that if pipeline is relatively small, setting these

tariffs does not lead to an equilibrium without congestion. It also holds that in such a case,

no other pair of tariffs satisfies both K ≥ max{K1(·), K2(·)} and the budget constraint,
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which implies that the pipeline will be congested in the ensuing equilibrium. If this is so,

it is no longer necessarily true that (t∗12, t
∗
21) are (constrained) welfare-maximizing.

4.2.1 Second-best tariffs

We now analyze the second-best transportation tariffs when firms’ strategies in the con-

tinuation game lead to the congested equilibrium (CE) of Proposition 4, i.e. where firm

1 lowers its exports and firm 2 is rationed (the analysis is similar for the symmetric

case where firm 1 is rationed instead). For fixed a, c,K, the TSO solves the following

constrained maximization problem:

max
(t12,t21)∈ZC(·)

{SW =

∫ Q̂1(t12)

0

(
a− x− c

)
dx+

∫ Q̂2(t12)

0

(
a− x− c

)
dx− CO(·)}

subject to:

t12q̂12(t12) + t21q̂21(t12)− CO(·) = 0 (29)

This leads to the following result.

Proposition 5 For fixed a, c,K, cO, C(K), consider the set TC(a, c,K, cO, C(K)) of TSO’s-

budget-constraint-satisfying pairs of tariffs that result in firms playing strategies that lead

to the equilibrium with congestion of Proposition 4:

TC(a, c,K, cO, C(K)) ≡ {(t12, t21) ∈ R2 : (t12, t21) ∈ ZC(·);
∑

tij q̂ij ≥ CO}

with q̂ij given in Proposition 4. If this set is non-empty, the element (t̂12, t̂21) that solves

the system of equations

t12q̂12(t12) + t21q̂21(t12)− CO(·) = 0 (30)

K − K̂1(a, c, t12, t21, K) = 0 (31)

yields the highest welfare.

The proof is in the Appendix.

Figure 6, which builds on Figure 5(a) above by adding isowelfare curves and the TSO’s

budget constraint, illustrates Proposition 5. Notice that the isowelfare curves are vertical

and that welfare increases as we lower the tariff on firm 1’s exports. As a result, welfare is

maximized at the point where the line representing K = K1(·) and the curve representing

the budget constraint (BC) intersect. Observe that t̂12 < 0 and t̂21 > 0, so that the

dominant flow is taxed while the reverse flow is subsidized.

In contrast to the situation described in Proposition 2 where firms play strategies

that lead to no congestion, if the pipeline is congested optimal transportation prices are

not equal to each other. More specifically, the dominant flow (firm 2’s exports) is taxed

while the reverse flow (firm 1’s exports) is subsidized. As firm 2 does not respond to

changes in tariffs when it is rationed, a raise in t21 has no effect on welfare. However,
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Figure 6: Optimal tariffs in equilibrium with congestion (a = 2, c = 1, K = 0.2, cO =
0.01, C(K) = 0)

by increasing t21 the TSO generates more revenue coming from firm 2 thereby relaxing

the budget constraint. This enables the TSO to lower t12, which has a positive effect on

aggregate output on both markets so that total welfare goes up. This cross-subsidization

is in line with the principles of Ramsey-Boiteaux pricing, as the firm with the lower export

elasticity (with respect to the transportation tariff) is taxed more heavily.

To compare the pair of tariffs (t̂12, t̂21) with nodal prices, for simplicity we focus on

the case where C(k) = 0. Since under nodal pricing we would get tN12 = −tN21 while we

have t̂12 6= −t̂21, it is clear that (t̂12, t̂21) are not equal to nodal prices.

5 Subgame perfect equilibrium

We have derived the second-best tariffs in two cases, the case where firms equilibrium

strategies lead to no congestion (Proposition 2) and the case where firms strategies lead

to pipeline congestion and firm 2 is rationed (Proposition 5). The case where firm 1 is

rationed is similar and has been omitted to save space. We also know that if for the tariffs

(t∗12, t
∗
21) given in Proposition 2 an equilibrium without congestion does not exist, then no

other TSO’s-budget-constraint-satisfying tariffs exist such that firms play the NCE.

We now ask whether the level of welfare attained when the TSO sets (t∗12, t
∗
21) and

firms play the NCE of Proposition 1 is higher or lower than in case the TSO sets (t̂12, t̂21)

and firms play the CE of Proposition 4.

Lemma 1 For fixed parameters (K, c, cO, C(K)) such that TNC(·) 6= ∅ and TC(·) 6= ∅,

SWNCE(t∗12, t
∗
21) > SWCE(t̂12, t̂21),

where SWNCE and SWCE are the levels of social welfare in the equilibrium without con-

gestion and the equilibrium with congestion, respectively.

The proof is in the Appendix.
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Lemma 1 shows that when the TSO can choose among the transportation tariffs

that lead to the equilibrium without congestion and the tariffs that yield the equilibrium

without congestion, then he prefers the symmetric equilibrium with no congestion.

This remarks allows us to state our final result in this section.

Proposition 6 For fixed parameters (a, c,K, cO, C(K)), we can distinguish two cases:

(i) (t∗12, t
∗
21) ∈ ZNC(·), in which case the (unique) SPE of the game is as follows: the

TSO sets transportation tariffs t∗12 = t∗21 given in (15), firms’ exports are equal to the

bookings and market outcomes are given by (4) and (5).

(ii) (t∗12, t
∗
21) /∈ ZNC(·), in which case there are two SPE with congestion. In one

equilibrium, optimal tariffs are given by the solutions to (30) and (31), firm 1 provokes

congestion, firm 2 is rationed and market outcomes are given by (18),(19),(20), and (21).

The other equilibrium is the mirror of this SPE.

6 Conclusion

We have studied the role of transportation pricing in shaping the incentives of down-

stream gas suppliers with market power. The model has considered a setting where two

downstream gas producers serve two distant markets connected by a pipeline, which is

under control of a regulated TSO. Each producer is located at one of the ends of the

pipeline and chooses gas supplies for the local and for the distant market.

Abstracting from any friction between the regulator and the TSO, the first-best so-

lution calls for subsidies so as to induce producers to export the competitive quantity.

However, such a transportation pricing system would lead to significant losses for the

TSO. To circumvent this problem, we have studied tariffs that satisfy the TSO’s budget

constraint.

Which transportation prices maximize welfare depends on pipeline capacity, and indi-

rectly on the profit-maximizing strategies of the downstream firms. When capacity of the

pipeline is sufficiently large, neither firm has an incentive to deliberately congest the line

and the second-best tariffs are the lowest ones that satisfy the budget constraint. When

markets are similar, these tariffs are symmetric so the optimal transportation pricing

system is non-discriminatory.

Yet, in case pipeline capacity is relatively small one of the gas suppliers has an incen-

tive to lower its exports thereby provoking congestion in the transportation system. In

this situation, the TSO finds it optimal to subsidize the such firm so as to weaken the

distortions arising from congestion. To balance budget, the TSO charges the rival firm

a strictly positive tariff. Therefore, with small pipeline capacity firms do not pay the

same transportation tariffs and the optimal pricing system is discriminatory. Moreover,

it follows the principles of Ramsey-Boiteaux pricing: the firm with the lowest supply elas-

ticity faces the highest price for shipping its gas. These results on optimal transportation
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pricing show that when gas production is not competitive, socially optimal tariffs differ

from transportation prices based on nodal pricing principles.

The paper has also presented a comparison of transportation prices that maximize

the profits of the TSO with second-best transportation tariffs. Profit-maximizing prices

are excessive from the point of view of social welfare maximization. As usual, when the

TSO chooses tariffs to maximize its own profits, it does not take into account how tariffs

influence consumer’s surplus and the profits of the downstream gas suppliers.
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Appendix

Proof of Proposition 2. We start by showing that t∗12 = t∗21. As a first observation, note

that the net flow in the NCE is zero if tariffs are equal to each other. In contrast, when

tariffs are not the same the TSO deals with a positive net flow. Therefore, if optimal tariffs

are symmetric in case cO = 0 we know for sure that symmetry also holds in situations

where the TSO incurs a cost of shipping the gas. We thus only have to prove for the case

cO = 0.

The FOC’s that yield the solution for this case are as follows:

−1

2
(a−Q∗1 − c) + λ

(
a− c− 4t21

2

)
− µ = 0

−1

2
(a−Q∗2 − c) + λ

(
a− c− 4t12

2

)
+ µ = 0

where λ and µ are the multipliers for the TSO’s budget constraint and the condition

t12 ≥ t21, respectively. Suppose now that the latter constraint does not bind; we then get

µ = 0 and
a−Q∗1 − c
a−Q∗2 − c

=
a− c− 4t21

a− c− 4t12

But the left hand side is smaller than one (since Q∗1 > Q∗2) while the right hand side

is larger than one, hence a contradiction. Therefore, the condition t12 ≥ t21 binds and

optimal tariffs are symmetric.

We are now able to obtain exact expressions for the transportation prices. Since

t21 = t12, the net flow is zero and tariffs thus have to solve

2t12q
∗
12 = C(K)

where we have substituted t21 = t12. Solving for t12 gives the optimal transportation

tariffs stated in Proposition 2.

As a final step, we prove that TNC = ∅ if (t∗12, t
∗
21) /∈ TNC . First we show that when

(t∗12, t
∗
21) /∈ TNC , no pair of asymmetric tariffs is in this set. Note that (t∗12, t

∗
21) is not

in TNC only if this combination does not yield the equilibrium without congestion, or

if (a, c, t12, t21, K) /∈ ZNC . Hence, the vector of parameters (a, c, t12, t21, K) is such that

K < max{K1(·), K2(·)}. But since t∗12 = t∗21 and K2(·) is just the mirror of K1(·), we get

K < K1(a, c, t
∗
12, t

∗
21) = K2(a, c, t

∗
12, t

∗
21). Now it is easy to see that there is no pair of asym-

metric tariffs included in the set. One could for example lower t12 such that K ≥ K1(·),
but an increase of t21 is then required to again satisfy the budget constraint. This leads

to an increase in K2(·), so K < K2(·) still holds. We still have to show that there are

no other pairs of symmetric tariffs in the set. Clearly, lower symmetric tariffs violate

the budget constraint and higher symmetric tariffs increase the critical values K1(·) and

K2(·). Therefore, any combination of symmetric tariffs for which holds that tariffs are

higher or lower than (t∗12, t
∗
21) are not in TNC if the pair (t∗12, t

∗
21) itself is not in this set.
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Q.E.D.

Proof of Proposition 3. Again, we have that optimal tariffs are equal to each other

(which is shown below) so that it is sufficient to restrict the analysis to the case cO = 0.

Suppose that the constraint does not bind; from the FOC’s we get that the profit-

maximizing tariffs are given by the interior solution tP12 = tP21 =
a− c

4
. If, in contrast,

the constraint is binding, we have that tariffs tP12 = tP21 solve K = K1(·) = K2(·), a

corner solution. To see that the corner solution also yields tariffs being equal to each

other, suppose, without loss of generality, that t12 ≤ t21 which implies that K1(·) ≤ K2(·).
Clearly, K1(·) ≤ K2(·) < K cannot be profit-maximizing because the TSO can raise t21

without violating the constraint, thereby increasing its profits. We therefore must have

that K1(·) ≤ K2(·) = K. Suppose now that t12 < t21 so that K1(·) < K2(·) = K. But

then one can gain by increasing t12 such that constraint is still satisfied. As a result,

t12 = t21 and K = K1(·) = K2(·). Since the TSO wants to set tariffs as high as possible

(provided that for the corner solution it holds that t12 = t21 <
a− c

4
), the second part of

(10) applies. Respecting that t12 = t21 and rewriting a bit gives the corner solution stated

in Proposition 3. Q.E.D.

Proof of Proposition 5. First observe from (29) that welfare in the CE (i) is con-

stant in t21 and (ii) is decreasing (constant) in t12 for t12 < K/2 (t12 ≥ K/2). Therefore,

the TSO wants to set t12 as low as possible without violating the constraints stated in

(29). We already know that at the optimum, the budget constraint binds. We com-

plete this proof by showing that the condition K = K1(·) also binds. First note that

for (a, c, t12, t21, K) ∈ ZC(·), we have K̂2(·) ≤ K̂1(·) so that K ≥ K̂2(·) is automatically

satisfied if K ≤ K̂1(·) is binding. Suppose now by contradiction that the latter constraint

does not bind, so K < K̂1(·). But then we could gain in terms of social welfare by lowering

t12 (and raising t21) up to the point where the constraint becomes binding. Therefore, at

the optimum the condition K ≤ K1(·) binds. Q.E.D.

Proof of Lemma 1. This proof consists of two steps. The first step is to show

SWNCE(t̂12, t̂21) > SWCE(t̂12, t̂21)

It is obvious that this inequality holds, since for equal tariffs output in each node (and

therefore welfare) is higher in the NCE than in the CE. Next, we have to prove

SWNCE(t∗12, t
∗
21) > SWNCE(t̂12, t̂21)

For this, we first show that the pair of tariffs (t̂12, t̂21) is in the choice set of the TSO

if firms play strategies that lead to the equilibrium without congestion. For the sake of

clarification, let BCNCE and BCCE denote, respectively, the TSO’s budget constraint in
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the NCE and CE. Then the following must hold:

BCNCE(t̂12, t̂21) ≥ 0

meaning that the TSO’s budget constraint has to be satisfied when the pair of tariffs

(t̂12, t̂21) is implemented and firms play strategies yielding the NCE. Substituting the

equilibrium quantities gives

t̂12q
∗
12(t̂12) + t̂21q

∗
21(t̂21)−

∣∣∣q∗21(t̂21)− q∗12(t̂12)
∣∣∣cO − C(K) ≥ 0

To prove that this inequality holds, first notice that if the NCE with tariffs (t∗12, t
∗
21) exists,

we have

K ≥ K1(a, c, t
∗
12, t

∗
21)

This implies that tariffs (t̂12, t̂21) satisfying K = K̂1(a, c, t̂12, t̂21) have to be such that

t̂12 ≥ t̂21, as can be seen from (10). Note moreover that these tariffs also have to satisfy

BCCE, which is given by

t̂12q̂12(t̂12) + t̂21q̂21(t̂21)−KcO − C(K) = 0

Since q̂21(t̂21) > q̂12(t̂12), we now also get that t̂12 > |t̂21|. Now define, for given tariffs

t̂12 and t̂21, the differences between quantities in the NCE and the CE as ∆12(t̂12) ≡
q∗12(t̂12)− q̂12(t̂12) and ∆21(t̂21) ≡ q∗21(t̂21)− q̂12(t̂21)−K. We then get

∆12(t̂12)−∆21(t̂21) = q∗12(t̂12)− q∗21(t̂21) +K > 0

where the inequality follows from the fact that in the equilibrium without congestion the

net flow is smaller than K. As a final step, we rewrite the BCNCE(t̂12, t̂21) as follows:(
t̂12 + cO

)(
q̂12(t̂12) + ∆12(t̂12)

)
+
(
t̂21 − cO

)(
∆21(t̂12) + q̂12(t̂12) +K

)
− C(K)

= t̂12q̂12(t̂12) + t̂21q̂21(t̂21)−KcO − C(K) + (t̂12 + cO)∆12(t̂12) + (t̂21 − cO)∆21(t̂21)

= (t̂12 + cO)∆12(t̂12) + (t̂21 − cO)∆21(t̂21)

where we have used BCCE(t̂12, t̂21) = 0, or

t̂12q̂12(t̂12) + t̂21q̂21(t̂21)−KcO − C(K) = 0

Now given t̂12 > |t̂21| and ∆12(t̂12) > ∆21(t̂21), we have BCNCE(t̂12, t̂21) > 0. This

shows that t̂12 and t̂21 are also in the choice set of the TSO if firms’ bookings lead to the

NCE. However, Proposition 2 tells us that the TSO prefers to choose the tariff combination

(t∗12, t
∗
21) rather than implementing (t̂12, t̂21) if both pairs of tariffs are in its choice set.

Therefore, we have

SWNCE(t∗12, t
∗
21) > SWNCE(t̂12, t̂21) > SWCE(t̂12, t̂21)

Q.E.D.
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