Dynamic Competition in Electricity Markets Hydropower and Thermal Generation

Talat Genc Henry Thille

Department of Economics University of Guelph

The Economics of Energy Markets, June, 2008

Introduction

- ► Competition between hydro and thermal electricity generators.
- Examples:
 - Ontario
 - Norway (98%), New Zealand (80%), Brazil (97%)
 - Quebec, Manitoba?
- ► Hydro:
 - ▶ Low marginal production cost.
 - Dynamics: water use across periods.
 - Difficult to increase capacity.
- ► Thermal:
 - ► Higher marginal production cost.
 - Capacity constraint.

Introduction

- Competition between hydro and thermal electricity generators.
- Examples:
 - Ontario
 - Norway (98%), New Zealand (80%), Brazil (97%)
 - Quebec, Manitoba ?
- ► Hydro:
 - Low marginal production cost.
 - Dynamics: water use across periods.
 - Difficult to increase capacity.
- Thermal:
 - Higher marginal production cost.
 - Capacity constraint.

This paper

- ▶ Dynamic game between hydro and thermal power generators facing stochastic demand.
- Questions:
 - How does asymmetric nature of technologies affect competition?
 - Distribution of price?
 - Thermal producer's incentives to increase capacity?
- Two variations on model:
 - ▶ Infinite horizon game.
 - Two-period game.

Previous work

Papers with mixed hydro – thermal generation:

- Crampes and Moreaux (IJIO 2001)
- Bushnell (OR 2003)
- Scott and Reid (ITOR 1996)
- Ambec and Doucet (CJE 2003) hydro duopoly.

- ▶ Duopoly outcome can be "nearly efficient" in terms of average levels of outcomes — depending on capacities.
- Duopoly prices are "too smooth".
- ▶ Incentive for hydro producer to strategically withold water.
- ▶ Thermal capacity choice: incentive to overinvest relative to open-loop.

- ▶ Duopoly outcome can be "nearly efficient" in terms of average levels of outcomes — depending on capacities.
- Duopoly prices are "too smooth".
- ▶ Incentive for hydro producer to strategically withold water.
- ▶ Thermal capacity choice: incentive to overinvest relative to open-loop.

- ▶ Duopoly outcome can be "nearly efficient" in terms of average levels of outcomes — depending on capacities.
- Duopoly prices are "too smooth".
- ▶ Incentive for hydro producer to strategically withold water.
- ► Thermal capacity choice: incentive to overinvest relative to open-loop.

- ▶ Duopoly outcome can be "nearly efficient" in terms of average levels of outcomes depending on capacities.
- Duopoly prices are "too smooth".
- ▶ Incentive for hydro producer to strategically withold water.
- ► Thermal capacity choice: incentive to overinvest relative to open-loop.

Model (Infinite Horizon)

Inverse demand:

$$P_t = D_t - \beta(h_t + q_t), \qquad D_t \sim N(\mu, \sigma^2)$$

► Water dynamics:

$$W_{t+1} = (1 - \gamma)(W_t - h_t) + \omega.$$

Hydro production: Zero production costs and

$$0 \leq h_t \leq W_t$$

► Hydro payoff:

$$E_0 \sum_{t=0}^{\infty} \delta^t \left[\left(D_t - \beta (h_t + q_t) \right) h_t \right]$$

► Thermal production: $C(q_t) = c_1 q_t + (c_2/2) q_t^2$ $0 < q_t < K$

► Thermal payoff:

$$E_0 \sum_{t=0}^{\infty} \delta^t \left[(D_t - \beta(h_t + q_t)) q_t - c_1 q_t - (c_2/2) q_t^2 \right]$$

Feedback Equilibrium

► Feedback strategies:

$$h_t = \sigma^H(D_t, W_t)$$
$$q_t = \sigma^T(D_t, W_t)$$

ightharpoonup Thermal producer faces "static" problem \Rightarrow

$$\sigma^{T}(D_t, W_t) = \max \left[0, \min \left[\frac{D_t - c_1 - \beta \sigma^{H}(D_t, W_t)}{2\beta + c_2}, K\right]\right]$$

Feedback Equilibrium

Feedback strategies:

$$h_t = \sigma^H(D_t, W_t)$$
$$q_t = \sigma^T(D_t, W_t)$$

▶ Thermal producer faces "static" problem ⇒

$$\sigma^{T}(D_{t}, W_{t}) = \max \left[0, \min \left[\frac{D_{t} - c_{1} - \beta \sigma^{H}(D_{t}, W_{t})}{2\beta + c_{2}}, K\right]\right]$$

Hydro producer's problem

Bellman equation:

$$V(D_t, W_t) = \max_{h_t \in [0, W_t]} \left\{ (D_t - \beta(h_t + \sigma^T(D_t, W_t))) h_t + \delta E_t V(D_{t+1}, W_{t+1}) \right\}$$

subject to $W_{t+1} = (1 - \gamma)(W_t - h_t) + \omega$.

▶ Optimal *h*_t:

$$\psi(h_t) + b_{0t} - b_{Wt} = 0$$

where

$$\psi(h_t) = D_t - 2\beta h_t - \beta \sigma^T(D_t, W_t) - \delta(1 - \gamma) E_t V_W(D_{t+1}, (1 - \gamma)(W_t - h_t) + w)$$

Hydro producer's problem

Bellman equation:

$$V(D_t, W_t) = \max_{h_t \in [0, W_t]} \left\{ (D_t - \beta(h_t + \sigma^T(D_t, W_t))) h_t + \delta E_t V(D_{t+1}, W_{t+1}) \right\}$$

subject to $W_{t+1} = (1 - \gamma)(W_t - h_t) + \omega$.

Optimal h_t:

$$\psi(h_t) + b_{0t} - b_{Wt} = 0$$

where

$$\psi(h_t) = D_t - 2\beta h_t - \beta \sigma^T(D_t, W_t) - \delta(1 - \gamma) E_t V_W(D_{t+1}, (1 - \gamma)(W_t - h_t) + w).$$

Strategic water usage:

▶ We show

$$E_t V_W(D_{t+1}, W_{t+1}) = E_t \left[-\beta \sum_{s=t+1}^{\infty} \delta^s (1-\gamma)^s h_s \sigma_W^T(D_s, W_s) + \sum_{s=t+1}^{\infty} \delta^s (1-\gamma)^s b_{Ws} \right]$$

▶ Strategic witholding of water if $\sigma_W^T < 0$.

Strategic water usage:

▶ We show

$$E_t V_W(D_{t+1}, W_{t+1}) = E_t \left[-\beta \sum_{s=t+1}^{\infty} \delta^s (1-\gamma)^s h_s \sigma_W^T(D_s, W_s) + \sum_{s=t+1}^{\infty} \delta^s (1-\gamma)^s b_{Ws} \right]$$

▶ Strategic witholding of water if $\sigma_W^T < 0$.

Numerical algorithm

- Solve via collocation method.
- ▶ Approximate $E_t V(.,.)$:

$$E_t V(D_{t+1}, W_{t+1}) \approx \sum_{i=1}^n d_i \phi_i(W_{t+1}) \equiv \tilde{V}(W_{t+1})$$

 $ightharpoonup \phi_i()$ are Chebyshev polynomials.

Numerical application

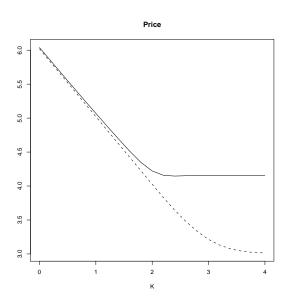
- $c_1 = 0, c_2 = 1.0, \ \delta = 0.9, \ \gamma = 0.3, \ \mu = 10.0, \ \beta = 1.0, \ \sigma = 1.0.$
- "large" thermal capacity: K = 4.0.
- ▶ Three levels of water inflow:
 - Low: $\omega = 1.0$
 - ▶ Medium: $\omega = 4.0$ hydro's "static" Cournot output.
 - ▶ High: $\omega = 5.0$ 2.5 s.d. above "static" hydro output.
- Note: "static" Cournot output: h = 4.0, q = 2.0.

Simulation Statistics

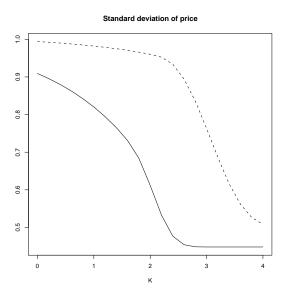
	Low inflow		Medium inflow		High Inflow	
	Duopoly	Efficient	Duopoly	Efficient	Duopoly	Efficient
E(h)	1.00	1.00	3.78	4.00	4.00	5.00
E(q)	3.00	3.96	2.07	2.99	2.00	2.50
E(p)	6.00	5.04	4.14	3.00	4.00	2.50
st.dev.(p)	0.67		0.44	0.51	0.40	0.49
		0.34	0.23	0.25		0.13
% h = W	0.994	0.997	0.039			0.969
% q = K	0.001					0.001
$E\Pi^T$	137.0	122.1	65.3	46.6	60.7	32.7
$E\Pi^H$	60.1		158.6	120.5	162.0	125.4
E(Welfare)	277.8	295.7	397.4	413.3	405.0	440.9

Simulation Statistics

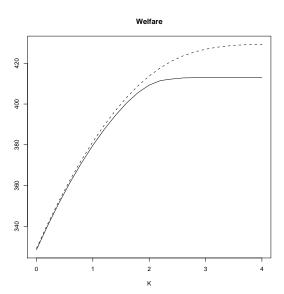
	Low inflow		Medium inflow		High Inflow	
	Duopoly	Efficient	Duopoly	Efficient	Duopoly	Efficient
E(h)	1.00	1.00		4.00	4.00	
E(q)			2.07	2.99	2.00	2.50
E(p)	6.00	5.04	4.14		4.00	2.50
st.dev.(p)	0.67		0.44	0.51	0.40	0.49
		0.34	0.23	0.25		0.13
% h = W	0.994	0.997	0.039	0.988	0.000	0.969
% q = K	0.001	0.840	0.000	0.022	0.000	0.001
$E\Pi^T$	137.0	122.1	65.3	46.6	60.7	32.7
$E\Pi^H$	60.1		158.6	120.5	162.0	125.4
E(Welfare)	277.8	295.7	397.4	413.3	405.0	440.9

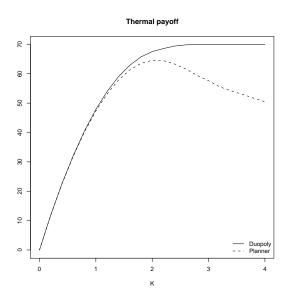

Simulation Statistics

	Low inflow		Medium inflow		High Inflow	
	Duopoly	Efficient	Duopoly	Efficient	Duopoly	Efficient
E(h)	1.00	1.00		4.00	4.00	
E(q)			2.07	2.99	2.00	2.50
E(p)	6.00	5.04	4.14		4.00	2.50
st.dev.(p)	0.67	0.92	0.44	0.51	0.40	0.49
skew(p)	0.02	0.34	0.23	0.25	0.00	0.13
% h = W	0.994	0.997	0.039			0.969
% q = K	0.001					0.001
$E\Pi^T$	137.0	122.1	65.3	46.6	60.7	32.7
$E\Pi^H$	60.1		158.6	120.5	162.0	125.4
E(Welfare)	277.8	295.7	397.4	413.3	405.0	440.9


Effects of Thermal Capacity

- ▶ Vary *K* from 0.1 to 4.0.
- ▶ Water inflow at medium level: $\omega = 4.0$.
- ▶ Plot averages from 100 runs of 1,000 period simulations.


Average Price


Price Volatility

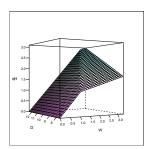
Welfare

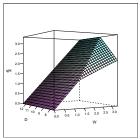
Thermal Payoff

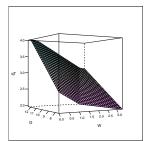
Two-period game with thermal investment

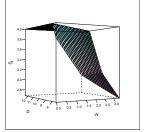
- Uncertain demand in second period.
- Thermal producer can invest to increase capacity in first period.
- Sufficient water that hydro producer is unconstrained.
- Sufficient thermal capacity that thermal producer is not always constrained.
- Compare S-adapted Open-Loop equilibrium with Closed-Loop equilibrium.

Two-period game: results

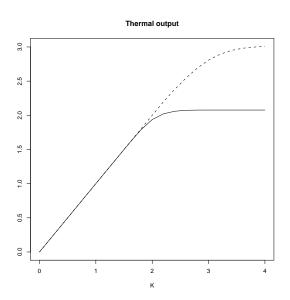

- ► Strategic incentive to increase thermal capacity results in higher level of capacity than in open-loop.
- ▶ Equilibrium investment may be higher or lower than efficient.
 - ightharpoonup W
 ightharpoonup 0: underinvestment (thermal monopoly).
 - $V \to \infty$: overinvestment.
 - Suggests a point where investment is efficient?

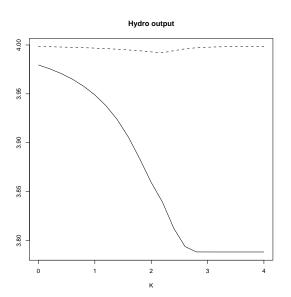

Two-period game: results


- ► Strategic incentive to increase thermal capacity results in higher level of capacity than in open-loop.
- ▶ Equilibrium investment may be higher or lower than efficient.
 - $W \rightarrow 0$: underinvestment (thermal monopoly).
 - $W \to \infty$: overinvestment.
 - Suggests a point where investment is efficient?


Thank You

Strategies: Duopoly (left), Planner (right)





Averge Thermal Production

Average Hydro Production

