

Assessment of geographic scope of electricity markets: the case of flow-based market coupling

Dmitri Perekhodtsev LECG

The Economics of Energy Markets
Toulouse, June 20-21, 2008

Introduction

- Method currently used by ETSO to determine cross-border Net Transfer Capacity (NTC) available for commercial use is inefficient.
- NTC may result in allocating less cross-border capacity than is physically feasible.
- That aggravates to geographic fragmentation of electricity markets along national borders and potential competition problems in each national market
- Flow-based market coupling initiatives of ETSO and EuroPEX have a potential to significantly improve the efficiency of cross-border capacity determination and allocation. That alone may extend the geographic scope of national markets.
- This paper attempts to quantify the possible effect of market coupling on the geographic scope of European electricity markets

Outline

- Current methodology of NTC identification flow-based market coupling
- Assessment of geographic scope of electricity markets
- Model of measuring unilateral market power in a meshed network
- Data
- Results

ETSO methodology for cross-border NTC determination

- Current definition of cross-border capacity
 - Base case: load and gen
 - Base case exchange
 - Maximum interchange (ΔEmax)
 - Total Transfer Capacity (TTC)
 - Transmission reliability margin (TRM)
- Capacity is conditional on the base case
- Uncertainty in base case reduce capacity, although in reality it can be otherwise

Example: Transfer capacity B-A and C-A

wrto A:

- Base case:
 - 800 MWh load in A is served by local generation;
 - 0 generation at B and C.
 - 0 BCE: BA and CA
- **Emax BA**
 - Determined by BC limit
 - 400 MW
- **Emax CA**
 - Determined by BC limit
 - 133.3 MW
- Energy deliverable to A under cross-border
 - 400 MWh from B
 - 100 MWh from C
 - 500 MWh total
- Maximum actual energy deliverable to A
 - 700 MWh from B
 - 100 MWh from C
 - 800 MWh total
- **Current transfer capacity calculation does not** take into account possible counterflow that can be provided by C

Flow-based market coupling

- Simplified transmission model using:
 - Physical capacities of crossborder links and
 - Power Transfer Distribution Factors (PTDF)
- Coordinated cross-border congestion management based on:
 - Implicit auctions
 - Export-import bids from national power exchanges
- Does not rely on the base case
- Provides more flexibility to allocate available capacity

Identification of geographic relevant markets

SSNIP test

- Starts from a smallest candidate geographic market (a country)
- Tests whether if this market was controlled by a hypothetical monopolist, it would be profitable for the monopolist to raise prices.
- NO means that the competitive pressure from the neighboring countries is strong, need to expand the geographic market definition and repeat the exercise
- YES means that external competitive pressure is week, the boundary of the geographic market is reached

Profitability of a price increase by a hypothetical monopolist

- Pivotality whether the demand can be met without relying on the capacity of a particular generator
- Residual Supplier Index share of demand that can be met without relying on capacity of a particular generator.
- RSI < 1 means a generator is pivotal, the smaller RSI the smaller is the external competitive pressure on the generator

Model

Minimize the output of the considered firm, while:

- Meeting load in all locations;
- Respecting generation capacity constraints;
- Respecting transmission constraints

Flow-based market coupling

$$\min_{q_i,q_i^f,\,\forall i} \sum_{i=1}^N q_i$$

s.t.

1.
$$0 \le q_i \le c_i$$

$$2. \quad 0 \le q_i^f \le c_i^f$$

3.
$$\sum_{i=1}^{N} q_i + q_i^f = \sum_{i=1}^{N} d_i$$

4.
$$\mathbf{PTDF}^{(r)} \cdot (\mathbf{q} + \mathbf{q}^f - \mathbf{d}) \leq \mathbf{L}_{mc}$$

Bilateral cross-border NTC

$$\min_{q_i,q_i^f,f_j,\,orall ij}\sum_{i=1}^N q_i$$

s.t.

1.
$$0 \le q_i \le c_i$$

$$2. \quad 0 \le q_i^f \le c_i^f$$

3.
$$\mathbf{f} \leq \mathbf{L}_{cb}$$

4.
$$\mathbf{A} \cdot \mathbf{f} = (\mathbf{q} + \mathbf{q}^{\mathbf{f}} - \mathbf{d})$$

Data

Transmission model

- Market coupling scenario
 - Zhou and Bialek, 2005
 - PTDF matrix, transmission limits
- Current scenario:
 - NTC from ETSO

National load scenarios

- Winter Off-Peak/Peak,
- Summer Peak

National generating capacity

DG-TREN 2004

Results: Germany

	Cross-b	order allocation	1	Market coupling			
Candidate Market	Competitive import	Demand at candidate market	RSI	Competitive Import	Demand at candidate market	RSI	
D	20,253	49,899	41%	34,938	49,899	70%	
D-A	21,423	56,180	38%	36,886	56,180	66%	
D-CH	25,853	59,069	44%	41,209	59,069	70%	
D-CZ	21,178	58,054	36%	36,509	58,054	63%	
D-NL	17,603	57,136	31%	27,001	57,136	47%	
D-F	18,903	106,527	18%	42,213	106,527	40%	
D-PL	20,253	67,423	30%	32,293	67,423	48%	
D-A-CH	24,023	65,349	37%	42,233	65,349	65%	
D-A-CZ	20,778	64,335	32%	35,440	64,335	55%	
D-A-H	21,973	60,582	36%	34,768	60,582	57%	
D-CH-I	29,053	87,837	33%	43,314	87,837	49%	
D-A-CH-CZ	23,378	73,505	32%	40,139	73,505	55%	
D-A-CH-CZ-SV-CRT	23,178	76,221	30%	38,251	76,221	50%	

Result: Germany

Results: France

	Cross-b	order allocation	1	Market coupling			
Candidate Market	Competitive import	Demand at candidate market	RSI	Competitive Import	Demand at candidate market	RSI	
F	7,150	56,628	13%	19,757	56,628	35%	
F-E	6,800	79,587	9%	19,078	79,587	24%	
F-D	18,903	106,527	18%	42,213	106,527	40%	
F-B	7,000	66,388	11%	22,358	66,388	34%	
F-B-NL	7,500	73,624	10%	25,799	73,624	35%	
F-B-NL-D	10,653	123,523	9%	32,118	123,523	26%	
F-I	11,000	85,397	13%	19,780	85,397	23%	
F-CH	12,900	65,798	20%	19,811	65,798	30%	
F-CH-I	13,500	94,567	14%	16,445	94,567	17%	

Conclusion

- This work attempts to quantify the effect of a change of transmission model on geographic scope of electricity markets in Europe.
- The approach based on assessment of pivotality of hypothetical national monopolists.
- Little chances of expansion of relevant markets for France
- German market can be expanded to include Czech Republic, Switzerland, Austria, Slovakia, and Croatia
- Further analysis: perform for other countries