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Abstract

The Nordic power market presents a unique opportunity to test market power

in storage behavior due to preciseness of data on market fundamentals determining

hydro resource use. We develop and calibrate an aggregative hydro storage model.

We …nd that historical market experience in 2000-2005 implies a 7.3 per cent welfare

loss, or that the cost of meeting the same demand could have been 636 mill.

lower. The data suggests a behavioral pattern that we can match with a model

of market power. A market structure where 30 per cent of the storage capacity is

strategically managed outperforms the competitive model. Market power increases

expected reservoir and price levels, and also implies a considerable increase in the

price risk.
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1 Introduction

Market power in a storable-good market is notoriously di¢cult to detect because price-

cost margins depend on expected future market conditions that cannot be observed ex

post. There exists a well-developed theory on competitive storage that can explain some

stylized patterns of price series (work by Williams and Wright is summarized in their book

1991; see also Deaton and Laroque, 1992, 1993). However, there is little work on market

structure and storage and, in particular, empirical applications or tests are practically

nonexistent.1 This paper is concerned with a unique opportunity to use an electricity

market as a natural laboratory for testing the nature and degree of market power in a

storage market for water. The opportunity is unique since it is hard to think of other

markets where the level of storage, prices, demand, production, and technical information

on market fundamentals are reported with similar preciseness. We study the storage of

hydroelectricity in the Nordic power market where about half of annual consumption is

met by hydro. In this market, there are several hundred hydro power stations connected

to a relatively tightly integrated Nordic market area covering Finland, Denmark, Norway,

and Sweden. The market is operated through a common pool determining day-ahead

hourly prices.

Using data on historical in‡ows, demands, and thermoelectric supply, we estimate how

hydro producers should view these market fundamentals. We then develop and calibrate

an aggregative hydro storage model. We …nd that historical market experience in 2000-

2005 implies a 7.3 per cent welfare loss, or that cost of meeting the same demand could

have been 636 mill. lower. We estimate structurally various unobserved constraints

on the hydro system and do not …nd evidence that such constraints could explain the

deviation. However, the data suggests a behavioral pattern that we can match with a

model of market power. A market structure where 30 per cent of the storage capacity is

strategically managed outperforms the competitive model.

The Nordic market has features of an exhaustible-resource market. About 50 per

cent of the annual in‡ow is concentrated to Spring weeks, leading to a market arbitrage

1Mc Laren (1999) builds on Newbery (1984) to descibe a Markov perfect equilibrium in an oligopolistic

storage market. Market power leads to reduced storage levels and increased price risk. Rothenberg and

Saloner include storage as a strategic device supporting collusive oligopoly equilibria. There is also

an extensive literature on exhaustible-resource oligopoly where the resource stock can be interpreted

as a storage (Lewis and Schmalensee 1980, Polansky 1986, Loury 1992, and Salo and Tahvonen, 2001).

However, stochastic ’harvest’ and the possibility of a market level stockout are material for understanding

commodity price behavior. These features are absent in exhaustible-resource literature.
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that seeks to use this endowment to equalize expected prices until the next Spring.

The market has also features of a traditional storage market: favorable demand-in‡ow

realizations lead to storage demand and savings to the next year. Using the model to

map the distributions of the market fundamentals to price distributions, we can …nd

support for these interpretations. Indeed, the socially optimal expected market price

increases at a rate very close to the interest rate throughout the hydrological year, while

in the end of the year the price is expected to drop at the arrival of the new allocation.

Also, towards the end of the hydrological year weekly price distributions have moment

properties familiar to those observed in other storable-commodity markets.

We …nd that market power seeks to shift available supply to the future, thereby

increasing the expected reservoir levels as well as prices. The distortion in the historical

reservoir development that we gauge by evaluating socially optimal policies along the

historical sequence of events, can be unambiguously matched with the market power

model. The market power model seems to produce a better match with the data with

respect to all key variables including hydro output, prices, and reservoirs, when …rst

moments are considered. Market power also implies an increase in the price risk.

We …nd that the expected cost of market power that we obtain by using the market

fundamentals estimated from the data, is extremely low: the best-…tting market structure

increases the expected average price of electricity by merely 1 /MWh. The reason for

the relatively large loss estimated from the historical data is that the market experienced

an in‡ow shortage in late 2002 that according to our calculations can occur once in every

200 years. Such extraordinary events provide a unique opportunity for exercising market

power, and this is what our model predicts: the model can replicate the price shock

experienced and explain 90 per cent of the welfare loss.

The paper is structured as follows. In Section 2, we provide an overview of insti-

tutional framework and the market fundamentals that are the main ingredients of the

model. In Section 3, we describe the formal model used in the socially optimal hydro

allocation problem. While complicated due to multidimensional state and uncertainties,

it is a standard stochastic dynamic programming problem. The model is general enough

to give traditional storage and exhaustible resource models as special cases, but when

speci…ed to match the power market framework, the implications become speci…c to this

market. We explain how this model is calibrated and discuss the properties of the socially

optimal path in detail. In Section 4, we formally develop the alternative market structure

that is then, for a given , calibrated as the socially optimal model (with some increase in

computational complexity). We develop a test statistic and search for the best matching
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and also explain the implications of market power in this storage market. The …nal

section concludes and discusses the shortcomings of the approach.

2 Institutions and market fundamentals

2.1 System price

The Nordic wholesale power market developed to its current form through a series of

steps, as the four continental Nordic countries (Finland, Denmark, Norway, Sweden)

underwent electricity market liberalization at di¤erent times in the 1990’s. Full integra-

tion was achieved in October 2000, when East Denmark was integrated into the market.

Wholesale electricity trade is organized through a common pool, Nord Pool, a power

exchange owned by the national transmission system operators.2 Market participants

submit quantity-price schedules to the day-ahead hourly market (Elspot market).3 The

demand and supply bids are aggregated, and the hourly clearing price is called the system

price. The Nordic market uses a zonal pricing system, in which the market is divided

into separate price areas. If the delivery commitments at the system price lead to trans-

mission congestion, separate price areas are established. However, we do not focus on

the hourly electricity market but de…ne the relevant market at the weekly level. Our ob-

jective is to analyze hydro storage for which extraordinary events may have rami…cations

over several years and, given this objective, we de…ne prices as well as other economic

variables as weekly averages. Decisions in an hourly market do not lead to signi…cant

changes in hydro stocks and, therefore, one is forced to aggregate over hours to make

the dimensions of stocks and ‡ows relevant for the analysis. At this level of aggrega-

tion, there are good reasons to argue that the Nordic area is a relatively well integrated

electricity market. The Nordic market forms a single price area for a signi…cant fraction

of time, as indicated by Table 1 which shows deviations from the system price for the

main price areas as percentage departures in weekly averages. About 94% of the hydro

resource stocks are located in the Norwegian and Swedish price areas, which are the least

problematic of all price areas in the Table. It would be di¢cult to choose any other price

2For more information, see www.nordpool.com.
3The day-ahead Elspot market is the relevant spot market. While there is an after market (Elbas

market) closing an hour before delivery, volumes in the Elbas market are small relative to the Elspot.

In some other markets, like the California PX, the day-ahead market is called the spot market.
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than the system price as the reference price for hydro storage decisions.4

2.2 Capacities

The attraction of a joint Nordic power market is due to the favorable mix of generation

technologies resulting from the integration of the national markets. Roughly one half of

annual Nordic generation is produced by hydro plants. In 2000-05, 61 per cent of hydro-

electricity was generated in Norway and 33 per cent in Sweden.5 Sweden is the largest

producer of thermoelectricity with a share of 46 per cent of annual mean production,

followed by Finland and Denmark, with shares of 35 and 19 per cent, respectively. The

direction of trade between the countries varies from year to year, depending mainly on

the availability of hydroelectricity. In years of high precipitation, the hydro power is

exported from the hydro dominated regions to Denmark and Finland. In these years, a

sizeable fraction of total thermal capacity is idle through much of the year. When in‡ow

is scarce, the ‡ow of trade is reversed, and power is exported from the thermally intensive

regions to Norway.

Hydro availability therefore is the one single market fundamental that would alone

cause considerable price volatility within and across the years even without other sources

of uncertainty. Figure 1 depicts the mean and the empirical support for aggregate weekly

in‡ow over the years 1980-1999. The mean annual in‡ow in the market area was 201

TWh of energy, and the maximum deviation from this -49 TWh in 1996. This di¤erence

translates into a value of ca. 1.3 billion using the average system price in 2000-05.

Within-the-year seasonal in‡ows follow a certain well-known pattern, as illustrated

by Figure 1. The hydrological year can be seen to start in Spring when expected in‡ows

are large due to the melting of snow; on average 50% of annual in‡ow arrives in the three

months following week 18. The aggregate reservoir capacity in the market is 120 TWh,

or 60 per cent of average annual in‡ow. There are several hundred hydro power stations

in the market area, with a great variety of plant types. At one extreme, the run-of-river

4The direction of congestion in the transmission links varies from year to year depending on the divi-

sion of labor between hydro-intensive and thermal-intensive regions in the market. Thus, the frequency

with which hydro producers receive a price deviating up or down depends on the state of the market and,

in principle, one could estimate the expected departure in the price and then use this information when

evaluating the hydro producers’ behavior. In the current paper, we do not model the hydro resource

stocks in di¤erent price areas separately and, therefore, cannot incorporate the information about area

price di¤erentials in a meaningful way.
5The capacities cited here are reported by the Organisation for the Nordic Transmission System

Operators (www.nordel.org) unless otherwise noted.
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power plants have no storage capacity, and usually produce as much electricity as the

current river ‡ow permits. At the other extreme, there are power stations connected with

one or more large reservoirs, that may take months to …ll or empty. In 2005, the total

turbine capacity of the hydro plants was 47 445 MW, or 72% of peak demand. Hydro

production is also constrained by environmental river ‡ow constraints. These constraints

together with the must-run nature of the run-of-river plants bound the hydro output

from below.

For our empirical application, it is important emphasize the following features of

the hydro system. First, there is an almost deterministic in‡ow peak in the Spring: in

our historical data, the Spring in‡ow has never been less than one third of the mean

annual in‡ow. In this sense, at the start of each hydrological year, the market receives a

reasonably large recurrent water allocation that must be depleted gradually. The annual

consumption of this exhaustible resource has marked implications for the equilibrium

price expectations, as we will explicate. Second, the remaining annual in‡ow, on average

50%, is learned gradually over the course of the Fall and Winter. This uncertainty is

important for the storage dynamics over the years: abundant Fall in‡ow, for example,

can lead to storage demand and savings to the next year; in case of shortage, a drawdown

of stocks can take place. The Nordic market for water can be seen, on one hand, as an

exhaustible-resource market and, on the other, as a storage market for a reproducible

good. For understanding potential market power, it is important to understand these two

interpretations. Third, the reservoir, turbine, and various ‡ow constraints for production

a¤ect the degree of ‡exibility in using the overall hydro resource. We take an estimate for

these constraints from the data and previous studies, but we also structurally estimate a

set of constraints best …tting the data using a nested …xed-point algorithm. The purpose

of this procedure is to distinguish the e¤ect of potentially mismeasured constraints on

the equilibrium from the e¤ect of potential market power.

2.3 Demand for hydro

Like hydro in‡ow, the overall electricity demand also follows a seasonal pattern, which

is closely temperature related. Figure 2 depicts the mean demand and empirical support

over the weeks of years 2000-2005. The relevant concept of demand for the purposes

of this paper is the residual demand for the hydro: when consumer demand is given,

the supply from non-hydro technologies determines the residual demand for hydro. In

the Nordic area, the non-hydro production capacity consists of nuclear, thermal (coal-,
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gas-, and oil-…red plants), industrial and wind power. An important part of thermal

capacity is combined heat and power (CHP) plants which primarily serve local demand

for heating but also generate power for industrial processes and very cost-e¢cient elec-

tricity as a side product. An implication of CHP capacity is that the non-hydro market

supply experiences temperature-related seasonal shifts, which we seek to capture in our

estimation procedure detailed later. Table 2 provides a breakdown of capacity, number

of plants, and the utilization rates of the capacity forms over the period 2000-2005. At

the market level, there is thus a rich portfolio of capacities with large number of plants

in each category determining a relatively smooth supply function or, alternatively put, a

smooth residual demand function for hydro.

The elasticity of this residual demand is almost exclusively determined by the slope

of the non-hydro supply curve because the consumer demand is insensitive to short-run

price changes. For this reason, in the analysis we will take the consumer demand as

a given draw from a week-speci…c distribution that we estimate from the data. The

industrial consumers have more ‡exibility in responding to short-run price changes, but

their own generation capacity is included as part of the overall market supply curve and,

therefore, their price responsiveness is accounted for.

3 Socially e¢cient allocation

3.1 The model

We describe now the socially optimal resource allocation problem. This way we introduce

the basic elements of the model which, for the most part, remain the same throughout

the rest of the paper.

Time is discrete and extends to in…nity, = 0 1 2 One year consists of 52 discrete

time periods. It will be important to keep track of the periods within a year, and therefore

we introduce another time index for the week, . Let denote the aggregate hydro stock

(measured in energy) in the reservoir, is the demand for energy, and is the week at

. State, denoted by at , is the vector

= ( )

The timing of decisions within period is the following:

1. state is observed;
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2. water usage from the stock, denoted by , is chosen;

3. residual demand = ¡ is met by non-hydro production;

4. in‡ow available at + 1 is realized.

In the empirical application the key variables are discrete and de…ned on a …nite

grid, and this is what we assume also for the theory model. In particular, the action

set 2 ( ) is …nite as well as the possible physical state space for . Choices are

constrained, e.g., by the availability of water, reservoir and turbine capacity, and river

‡ow restrictions.

Demand realization is drawn separately for each week from a week-speci…c distribu-

tion:

» ( ) (1)

= 2 f1 52g

where is a cumulative distribution function (CDF) on some …nite set of outcomes

(each element bounded). An alternative to this formulation would be to assume week-

by-week realizations of demand schedules depending on price, incorporating demand

elasticity in a more realistic manner. However, the analytical loss is small since for

our purposes the interesting elasticity is given by the residual demand for hydro. This

elasticity is to a large degree determined by the slope of the non-hydro supply curve. Yet

another formulation would be to include persistence in seasonal shocks, as high demand

in some week due to a cold spell may have implications for the next week’s demand.

However, we are uncertain on the relevance of this phenomenon in the Nordic area.

Production by other than hydro capacity has a week-speci…c aggregate cost curve

: £ ¡! 1
+

which is increasing in each week . We denote the weekly cost by ( ). As explained,

the seasonal variation comes from the availability of CHP capacity and from the main-

tenance pattern for nuclear and large coal plants. The de…nition of ( ) includes the

level of fuel prices and we could also incorporate changing fuel prices explicitly. However,

while an important source of uncertainty, fuel prices are not structural variables of the

Nordic market in the same sense as in‡ow and demand are; we cannot estimate fuel

price distributions with the same accuracy. Indeed, it is important not to mix fuel prices
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with the market fundamentals because, as will be demonstrated, excluding the fuel price

uncertainty has little e¤ect on the predicting power of the model.

The …nal stochastic element of the model is the water in‡ow which we denote by

. The in‡ow at is observed only after the hydro usage is chosen but it is observed

before the choice of the next period water use +1. The in‡ow realization is, like demand,

drawn separately for each week from a week-speci…c distribution:

» ( ) (2)

= 2 f1 52g

where is a CDF on some …nite set of outcomes (bounded elements).

Finally, the physical state, i.e. the hydro stock, develops according to

+1 = minf ¡ + g (3)

where we include the reservoir capacity . Any in‡ow leading to a stock exceeding

is spilled over and left unused. Now, if we …x a policy rule = ( ) and start from a

given state 0, the development of the state vector is fully determined by the stochastic

processes for and , and by the law of motion for +1. To determine the optimal policy,

we de…ne next the payo¤ for the decision maker at each as

( ) ´ ¡ ( ¡ )

Maximizing is equivalent to minimizing the cost of non-hydro production. If we let

be the discount factor per period, the optimal policy = ( ) maximizes the discounted

sum of the expected per period payo¤s, or alternatively put, minimizes the social cost of

meeting the current and future demand requirements generated by (1). Let ( ) denote

the maximum social value at state . This value satis…es the Bellman equation

( ) = max
2 ( )

f ( ) + +1j ( +1)g

Note that the existence of the optimal policy follows directly from the Blackwell’s The-

orem because the rewards are bounded and the state space is …nite (see Stokey et al.

1989).

In the empirical application, all production is dispatched by market clearing in a spot

market, where the residual demand ¡ is left for non-hydro producers. The market

is cleared through bidding such that the spot price satis…es

= 0 ( ¡ )
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We express the socially optimal hydro dispatch policy immediately in terms of the (so-

cially optimal) market price because the price will give (or approximate due to discrete

action space) the shadow cost of not using a unit of water in the current market. Us-

ing the optimal policy = ( ), we see that the state follows a stationary Markov

process, and therefore it generates a stationary weekly price distribution. Let = ( )

denote the socially optimal price following when optimal policy is applied at state .

As ! 1, we obtain a limiting week-by-week distribution for the state vector by the

stationarity of the underlying Markov process, and thereby also a limiting week-by-week

distribution for the prices:

» ( ) (4)

= 2 f1 52g

where ( ) is the discrete CDF on some …nite set of possible prices.

Denoting the …rst moments of the long-run weekly price distribution by , from

(4), we can describe the basic economic logic of the equilibrium using the long-run price

distribution. The model allows various interpretations, depending how the market fun-

damentals are speci…ed.

3.2 Interpretations

Exhaustible-resource interpretation. Suppose the long-run price moments satisfy

1 = 2 = = 51
52

52
1

a situation that can arise, e.g., when the annual in‡ow is concentrated to the …rst week

(or to some other week initiating the hydrological year). Then, the allocation problem is

e¤ectively an exhaustible-resource problem within the weeks of the year, equalizing the

expected present-value prices across the weeks but not across the years: the new in‡ow

at the beginning of the year makes the resource reproducible. Assuming that the decision

maker indeed has enough ‡exibility to equalize expected prices within the year (to be

discussed in detail below), the drop in the expected price must arise at the turn of the

year as long as there is expected annual scarcity.

Storable-good interpretation. The long-run price moments can satisfy

+1
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for all weeks when the weeks are relatively similar in terms of in‡ow and demand for

hydro. In this situation, the equilibrium progresses as in standard competitive commodity

storage models (Williams and Wright, 1991): inventories are held to the next period after

relatively favorable in‡ow-demand conditions, implying storage demand up to the point

where the current price equals the expected next period price, = +1; when the

current in‡ow-demand conditions are relatively unfavorable, stockout may take place, and

+1. However, when periods are ex ante similar in terms of in‡ow and demand,

the expected storage cannot be positive and long-run price means satisfy +1.

Consistent with this reasoning, the long-run price distribution is skewed as the storage

demand eliminates extremely low prices that would arise when storage is not allowed (see

also Deaton and Laroque, 1991).

When the market fundamentals are estimated from the Nordic data, we observe that

both of these interpretations are useful. The socially optimal long-run prices support

the exhaustible-resource view of the expected year but the storage market view describes

well the decisions at the annual level.

3.3 Characterization

The long-run price means are useful in conceptualizing the nature of the market, but the

realized price sequences may follow a logic that can be di¢cult to relate to the long-run

price distributions. For ease of interpretation of the empirical results, we explain next

how the state-dependent optimal policy, the current price, and the market fundamentals

are linked.

Consider the optimal policy ( ), and let = ( ) be an alternative policy that

deviates from ( ) only at current

( ) = ¢ + ( )

where ¢ 6= 0 and coincides with ( ) at all other dates and states. We can de…ne

¹ = ¹( ¢) =
( ( ))¡ ( ( ))

¢

as the average cost change caused by the one-shot deviation ¢. Recall that the grid for

actions determines the smallest feasible ¢; when ¢ is small, then ¹( ¢) is approxi-

mately equal to the market price, . We can thus interpret ¹ as the approximate price

in the following:

11



Proposition 1 Assume there is an alternative policy to ( ) at , i.e., ¢ 6= 0 and

2 ( ). Price ¹ and the alternative have the following relationship:

¢ 0 () ¹ · ¹ + for some ¸ 1 (5)

¢ 0 () ¹ ¸ 0
¹ + 0 for some 0 ¸ 1 (6)

Proof. See Appendix.

In the empirical application, feasible choices are constrained, e.g., by storage and

turbine capacity, water availability, and river ‡ow restrictions. When these constraints

allow a deviation upwards from the optimal policy at state , i.e. ¢ 0, then the

cost saving today, given by ¹ , is weakly lower than the expected loss from future cost

increase implied by increased usage today. That is, the current "price" is lower than

some expected future discounted "price". Similar reasoning holds in the other direction.

When in‡ow and demand distributions for hydro vary widely across weeks, the set

of conceivable prices can shift from one period to the next, and there is no general

way of achieving the present-value price equalization. Even when the optimal policy is

unconstrained in equilibrium, i.e., it is possible to use or save more water at state , the

current price can be lower than some expected future price

+

and higher than some other expected future price

0
+ 0

This pattern in no way contradicts Proposition 1. The optimal policy seeks to minimize

the di¤erence in expected present value prices but no price equalization is guaranteed.

For this reason the long-run price moments can satisfy

· +1

over some weeks when, for example, in‡ow is high in week so that the storage capacity

is likely to be binding. Then, in expectations water is frequently dumped to the market in

that period. Alternatively, expected demand may be high enough to frequently require

maximum production in week but even more so in the next week + 1. Finally,

minimum ‡ow requirements at low demand periods can bias price moments downwards

from what would otherwise hold for some particular weeks.
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3.4 Calibration and computation

In this section, we describe the inputs needed for the calibration of the model. For

demand, we use weekly demand data for the Nordic market in 2000-05 as published by

the Organization for Nordic Transmission System Operators. We could use a longer

data for demand estimation but this would be a source of problems because of trend

growth. As explained earlier, in a given week, the consumer demand is assumed to be

inelastically drawn from the demand distribution. We assume that demand is normally

distributed with the weekly means and standard deviations computed from the data.6

The distribution is then mapped to a …nite grid. The step length of the grid was …xed

at 200 GWh, leading to an average of 5.4 demand states per week. The weekly support

of demand in the model follows the empirical support as observed in the data.

In‡ow energy is assumed to be log-normally distributed, and the parameters of the

distributions are estimated using data from the period 1980-1999.7 National in‡ow data

is published by Norwegian Water Resources and Energy Directorate (NVE), Swedenergy

and the Finnish Environment Institute. As with demand, in‡ow is mapped to a …nite

grid, with an average of 27.5 possible in‡ow levels per week.

Hydroelectric generation is represented by a single reservoir and power plant, and we

use the aggregate market reservoir capacity of 120 TWh and the aggregate weekly turbine

capacity of 7.9 TWh as the key parameters of the hydro sector. There is no publicly

available information about minimum ‡ow constraints but, after presenting the main

results, we experiment with di¤erent levels of minimum production. As to the minimum

reservoir level, we use a lower bound of 10 TWh for the whole Nordic system.8 The

lower bound of the aggregate reservoir level is based on the importance of hydroelectric

resources as a fast power reserve supporting the electrical system. In principle, one can

6Demand for electricity showed little trend growth over the sample period. Testing for normality

is di¢cult due to the fact that the data contains only six observations for each week. Nevertheless, a

Shapiro-Wilk test supports the normality assumption, rejecting it (at the …ve percent level) only for

weeks 12, 25 and 41. On average, W = 90.0 and P = 46.9.
7A Shapiro-Wilk test was applied to the in‡ow series (1980-99) of each week of the year. Averaging

over the weeks, W = 95.5 and P = 52.5. The null hypothesis of log-normality was rejected at the …ve

percent level for two weeks (weeks 25 and 29).
8Bye et al. (2006) refer to a statement by the NVE, according to which the actual minimum level

of Norwegian reservoirs was 8 TWh in the spring of 2003. Nordel uses 5% (6 TWh) of total reservoir

capacity as the lower bound for aggregate reservoir level in the simulations of its Energy Balances

publication (Nordel 2006). Amundsen and Bergman (2006) refer to a total minimum reservoir level of

15 TWh in 2002, and to 12 TWh in 2003.
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structurally estimate the unobserved reservoir and minimum ‡ow constraints for a given

market structure. In the section after the main results, we take steps toward this goal to

evaluate if such constraints can produce similar implications as market power.

For the residual demand of hydro, we can follow two routes. We can use engineering

data on the ‡eet of non-hydro power plants in the Nordic area to build an aggregate mar-

ginal cost curve.9 Using this data we can in principle follow the approach from Wolfram

(1999), also used in Borenstein et al. (2002), to construct the theoretical supply curve

for nuclear and fossil-fuel …red plants. In this market the theoretical non-hydro supply

curve experiences considerable shifts because of heating demand (making electricity a

side product) and planned maintenance outages. If we have knowledge, e.g. from histori-

cal data, of the heating demand and maintenance decisions, the engineering supply curve

can be used in analysis. However, for hydro usage decisions, we need to know how the

non-hydro supply curve is linked to the state of the market, because the value of water

in a given state can be evaluated only by evaluating its future value in possible future

states. For this reason, we cannot avoid estimating how the available non-hydro capacity

is linked to the state of the market.

Rather than using the engineering data, we thus estimate the weekly supply function

of the thermal sector from data on the weekly system price and total demand in 2000-

05. A conceptual di¤erence to Wolfram (1999) follows: by estimating the thermal (all

non-hydro) supply from the data, we include all the strategic distortions that may exist

in this part of the market (nevertheless, it is a conceptually valid approach to evaluate

the e¢ciency of hydro use separately, given the behavior of the thermal sector).

The system price data is published by Nord Pool. We regress the thermal supply

on the price of electricity, the prices of fossil fuels and the time of year. A majority of

the marginal cost of thermal plants consists of the price of the fuel. As explained, the

thermal generation costs vary within the year for reasons related to heating demand and

maintenance, both of which follow a seasonal pattern (nuclear plants and other large

thermal power plants follow a seasonal maintenance schedule). To capture these e¤ects,

we include month dummies in the regression equation,

= 0 + 1 ln + + +

where is the thermal supply, and is the vector of fuel prices. The thermal generation

9A data set containing all plants of relevant size in Finland, Sweden and Norway has been collected by

the …rm EME Analys for use with the PoMo market simulation model. We thank Per-Erik Springfeldt

and Karl-Axel Edin for sharing this data with us.

14



is composed of all other production than hydro, including the net import of electricity.

The price depends on thermal generation, and is thus endogenous. There are two natural

candidates for instruments, the hydro production and the level of reservoirs, both of which

in‡uence the price level but not the cost of thermoelectricity. We report our estimation

results in Table 3. The …rst panel of the table contains the results of the …rst stage of

the two-stage least squares regression. The …rst column of the table represents the model

with fossil fuel (coal and oil) prices as regressors and aggregate reservoir level as the

instrument for price. Fossil fuel prices are strongly multicollinear, and the price of coal is

dropped from the model depicted in the second column. Finally, the third column reports

the results of the same model as in the second column, but using hydro output instead

of reservoir levels as the instrument. As expected, there is a strong negative relationship

between reservoir levels and price. The same holds true for total hydro output and price.

The second panel of Table 3 presents the second stage results. The parameter values and

the model …t are very similar for the two instruments. We take this as an indicator of the

strength of the instruments since the correlation between output and reservoir levels is

not perfect. Given its slightly better …t in the …rst stage, we use the model with reservoir

levels as instruments in the calibration.

Given , the estimated supply gives the relationship between hydro output and

market prices, and this is how the value of hydro is evaluated throughout the remaining

of the paper. It is therefore important to illustrate how well this key input to model

describes reality: Fig 3 depicts the historical weekly prices and the prices obtained by

using historical values for and the estimated thermal supply. The …t is reasonably

accurate for the whole period; in particular, the estimated price equation captures the

price spike of 2002-03. However, the predicted prices deviate more from the actual prices

after the price spike, which may be due to the fact that thermal plants rescheduled their

maintenance in response to the shortage of hydro after the price spike.

We solve the model using a combination of backward induction and modi…ed policy

iteration. Modi…ed policy iteration (see Puterman 1994) algorithms are a fast and easily

implementable method for solving discrete time Markov Decision problems. Modi…ed

policy iteration replaces the policy evaluation step of normal policy iteration with a …xed

number of successive approximation iterations. In our particular algorithm, we iterate

over the value of water in the …rst week of the year. Backward induction is used in the

policy improvement step of modi…ed policy iteration to compute the optimal policy for

each week within the year. The algorithm begins with an initial estimate of the value of

water at the end of the year. Given this end value, we can solve for the optimal policies
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and water values for the entire year by backward induction. The policy estimate thus

received is then evaluated by computing its value over a …xed number of years. In this

evaluation step, the end value of water is given by the current estimate for the value

function. The value of the evaluated policy then replaces the current estimate of the

value of water in the end of the year. We iterate until the value function converges.

Discount rate is 7.5 per cent throughout this paper.

3.5 Results from the model of e¢cient allocation

We …rst generate the long-run weekly price moments by running the model over 2000

years, using the market fundamentals that we calibrated as explained above. Recall that

we are not projecting the market to the future but, rather, studying how the model

maps the distributions of the fundamentals, describing the market in 2000-05, to socially

optimal price distributions. The …rst moments of the weekly prices are in the upper panel

of Fig. 4 , and the second moments together with skewness of the prices are in the lower

panel. The weekly long-run price mean reveals the exhaustible-resource nature of the

market: the Spring in‡ow is in expectations depleted over the course of the year, leading

to expected prices increasing quite closely at the rate the rate of interest until next in‡ow

peak. The drop in the price expectation from week 18 to week 19 is .063, a number close

to the discount rate.10 In this sense, various constraints in the hydro system, as speci…ed

above, do not prevent a relatively close equalization of the present-value expected prices

across the weeks. The average price level is 26 which is almost identical to historical

average of 26.3 from the period 2000-05.

From the lower panel we see that the socially optimal price risk, indicated by the

second moment of the weekly prices, increases towards the end of the hydrological year.

This makes sense: Summer and early Fall are periods of relatively abundant storage

and predictable demand. Considerable uncertainty regarding the overall annual in‡ow is

revealed gradually during the Fall, and unfavorable sequences of rainfall, or cold spells

increasing demand, can lead to drawdown of stocks. Such risks are larger, the longer the

period under consideration, which is why socially optimal prices risks must increase with

time, until removed by a new in‡ow at the turn of the season. The skewness of price

is positive and also increases towards the end of the hydrological year. This relates to

10The peak price is on week 17 and the lowest price on week 20. The reduction is .085 which is slightly

higher than the discount rate. Regressing the expected price on a constant and weeks, starting from

week 18 and ending at the next year’s week 17, gives the slope .085 for the price curve.
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the fact the storage motives across the hydrological years dominate the market dynamics

exactly there: the storage demand for the next year tends to eliminate the extremely

low price realizations so that there are relatively few downward price spikes to match the

upward spikes (see also Deaton and Laroque 1991 for discussion).

Let us now examine a particular sequence of events, i.e., the historical realizations

of demands and in‡ow over the period 2000-05. Figure 5 shows two panels over the

weeks of 2000-2005. The upper panel is for the aggregate storage and the lower one is for

hydro output, both measured as gigawatthours (GWh). The socially optimal paths are

calculated by setting the initial hydro stock equal to the observed stock at the beginning

of 2000 and then letting it evolve as determined by the optimal policy. Demand and

in‡ow realizations are taken as they in actuality occurred in each week but decisions are

made under genuine uncertainty regarding the future.

The planner’s output matches the observed output (the lower panel) quite well. Later,

after introducing the alternative market structure, we will explain in detail various criteria

for matching the model with the data. Here, we note that the seasonal …rst moments

(quarters of the year) for the observed historical output and social planner’s output

deviate on average by 5 per cent, which is less than one grid step in the planner’s choice

set for a signi…cant fraction of the time. The quarters are di¤erent with respect to

the match such that there seems to be some tendency for the planner to save more

water during the Summer and spend more in the Winter quarters. While there is no

clear systematic deviation in outputs, such a deviation is clear for the reservoir levels,

as illustrated by the upper panel of Fig. 5. The market and the planner have clearly

di¤ering target levels for the reservoirs. In the …rst two years, the planner seeks to save

more of the abundant in‡ow (recall that we are forcing the observed and model stocks

to be equal at the start), whereas later in the sample the planner would draw down the

stocks more aggressively in respond to the in‡ow shortage taking place in late 2002. Note

that the planners di¤ering stock levels arise not because of a systematic annual di¤erence

in usage but, rather, because of relative short and intensive ’steering’ of the stocks in

years 2001 and 2002-03.

The implications for prices are dramatic, see Fig. 9 (the SP price). The planner

can avoid the price spike of 2002-03 by more aggressive production. Excluding the price

spike, the seasonal means of predicted prices are not lower, while much more stable (see

Table 4).
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4 Market power

4.1 The Model

Given the deviations between the calibrated planner’s model and observed data, we now

look for potential explanations for the deviations. We …rst develop an alternative market

structure allowing for strategic management of the hydro reservoir. We do not seek to

map the observed market characteristics such as market shares or ownership of capacity

to market outcomes but, rather, develop a stylized, while consistent, model of market

power that remains empirically implementable in this relatively complicated dynamic

market.

Using the framework introduced in section 3, we now assume that a fraction of the

reservoir capacity is strategically managed. The share for the strategic capacity, 2 [0 1],
is our market structure parameter for which we can search values best …tting in Section

4.3. An oligopolistic market structure with multidimensional state and complicated un-

certainties becomes quickly intractable or, at least, produces implications that are hard

to test empirically. Instead, we assume that fraction of the total reservoir capacity is

managed by one strategic agent (single …rm, or an agent for a coherent group of coor-

dinating …rms). The rest of the reservoir capacity share, 1¡ , is owned and controlled

by a large number of competitive agents. Note that is the share of the capacities

(reservoir and turbine), not the share of the existing hydro stock. The small agents are

nonstrategic but forward looking, e.g., an individual competitive agent has no in‡uence

on the price but its decisions are rationally based on predictions for future prices, and

these are formed using the information that is available to all agents. This structure

for oligopolistic competition remains computationally tractable, achieves the planner’s

solution and monopoly as limiting cases ( = 0 and = 1, resp.), and, as we will show,

will reveal quite a natural pattern for market power.

To separate the state vectors, in‡ows, and payo¤s for the strategic and nonstrategic

agents, we use superscripts and , respectively. Competitive agents are treated as a

single competitive unit so that their state, for example, is

= ( )

where is the aggregate physical stock held by the competitive agents. There are thus

two physical stocks that evolve according to

+1 = minf ¡ + g, = , (7)
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where the reservoir capacity is what determines the size of the strategic agent: = .

Both parts of the market have their own choice sets, 2 ( ), and in‡ows .11

The division of the aggregate in‡ow can have important implications for the exercise

of power. In principle, we would like to experiment with the correlation of in‡ows into

the stocks and to study its impact on the equilibrium. Unfortunately, for compu-

tational reasons, we are able include only perfectly correlated in‡ows at this moment: the

aggregate in‡ow is …rst drawn from the weekly distribution ( ) as described earlier,

and then this in‡ow is divided into the two stocks in accordance with .

We look for a subgame-perfect equilibrium in the game between the strategic and

nonstrategic agents. To save on notation, we let now denote = ( ) At each

period, the sequence of events is

1. States = ( ) are observed;

2. Strategic agent chooses ;

3. Nonstrategic agents make the aggregate choice ;

4. Nonhydro production clears the market: = ¡ ¡ ;

5. In‡ow for + 1 is realized.

When we impose a Markov-restriction on strategies, this timing implies that the policy

rule for the strategic agent depends on both states, = ( ). As said, we treat the

nonstrategic agents as a single competitive unit and thus …nd a single policy rule for this

unit, = ( ).12 It is useful to think that the competitive agents’ policy seeks

to solve the planner’s problem of minimizing the overall social cost of meeting current

and future demand requirements, given the current and future strategic behavior of the

large agent. In this sense, the competitive agents minimize the cost of market power

arising from the concentration of capacity in the hands of the large agent. Solving such a

resource allocation problem for the competitive agents is the appropriate objective as it

will generate a policy rule that implies a no-arbitrage condition for small storage holders.

11For the planner’s model, we did not impose any formal restrictions on spilling of water as the planner

has no incentives to do so, but for the large agent this incentive is material. Therefore, we want to impose

a spilling constraint (implemented as a …nancial penalty on water spilled over in the numerical part).

We have been told that the hydro plants are monitored for spilling.
12Notice that the Stackelberg timing simpli…es the market clearing. Small agents’ policy depends not

only on the state but also on and so we do not have to dwell on complications caused by simultaneous

moves.
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Thus, no small agent can achieve higher pro…ts by rearranging its production plan from

what we describe below.

Letting ( ) denote the overall expected payo¤ for the strategic agent at state ,

we see that a pair of equilibrium strategies f ( ) ( )g must solve

( ) = max
2 ( )

f +
+1j ( +1)g

= 0 ( ¡ ¡ )

= ( )

While an individual small agent takes the expected path of both stocks as given,

aggregate can be solved by minimizing the expected cost-aggregate from meeting the

demand that is not served by the large agent. Let ( ) denote the value of this

cost-aggregate. We de…ne

( ) ´ ¡ ( ¡ ¡ )

as the per period payo¤ and note that equilibrium policy ( ) solves the follow-

ing recursive equation

( ) = max
2 ( )

f ( ) + +1j (~ +1 +1)g

where ~ +1 is taken as given by equilibrium expectations. Having observed the expec-

tation for the next period stock +1 is …xed by the knowledge of the in‡ow distribution.

Similarly, for a given , the next period competitive stock +1 can be estimated using

the in‡ow distribution. Therefore, competitive agents can correctly anticipate the next

period subgame ( +1 +1) and the strategic action +1 = ( +1). The equilibrium

expectation ~ +1 must be such that the current period action , through the physical

state equation (7) for +1, ful…lls this expectation:

~ +1 = ( +1)

In this way, competitive actions today are consistent with the next period expected

subgame, without any strategic in‡uence on the market price.

4.2 Interpretation

We have illustrated in section 3 that the hydro market has features of an exhaustible-

resource market (allocation of the Spring in‡ow) and a storage market (savings to the
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next year). In an exhaustible-resource market, market power is exercised by a sales policy

that is more conservative than the socially optimal policy: sales are delayed to increase

the current price 13. In the hydro market, the seller is not free to extend the sales path in

this way because of the recurrent Spring allocation which limits the length of the period

over which there is scarcity of supply. In this sense, the ability to exercise market power

as in exhaustible-resource models is limited. Nevertheless, the seller can shift sales to the

future by storing the resource excessively to the next year, and in general such behavior

is pro…table because of discounting.

For illustration, suppose that all actions are made at the annual level (one period is

one year), that there is no uncertainty, and that the decisions described in the previous

section are made in the beginning of the year where all agents receive a deterministic

annual allocation of water. It is then clear the strategic agent can reduce current supply

only by saving to the next year; in equilibrium, saving takes place to the point where

the current period marginal revenue equals the next period discounted marginal revenue,

minus the cost from marginally reducing next year’s potential for supply reduction. When

the agent cannot spill water, a given stock in the hands of the strategic agent has only

negative shadow price for him, as increasing the stock reduces the size of the ’sink’ that

is available for supply reduction. This mechanism will emerge clearly in the empirical

part below.

4.3 Empirical implementation

We calibrate the market power model using the estimates for weekly in‡ow, demand,

and thermoelectric supply, as in the model of e¢cient hydro use. However, we leave the

strategic agent’s market share parameter open, and consider in next what provides the

best match with the data. We would like …nd to the market share parameter structurally,

i.e., by maximizing the empirical match of the model, using the criteria discussed below,

with respect to . In principle, we follow this approach but we are limited to consider

only a subset of values for due to computational reasons. As opposed to the one-

decision maker problem, the game cannot be computed using policy iteration techniques.

Instead, we solve the equilibrium by straight backward induction over the weeks of 10

years. In each state, we need to solve the following …xed-point problem as part of the

procedure for …nding the market policy = ( ): a given induces the transition

13See Hotelling (1931) for the analysis of a monopoly; Lewis and Schmalensee (1981) consider an

oligopoly.
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of the expected stock +1, which when used together with +1 in ~ +1 = ( +1)

determines the expected behavior of the large agent; in equilibrium, the assumed for

the state transition must be the same as the cost minimizing optimal for an agent who

takes the aggregate state transition as given. Since such a …xed-point may not exist on

a discrete grid, we use a lexicographic criterion at each state: (i) if there exists a unique

most consistent when consistency is measured as the distance between the aggregate

and private , then this is chosen; (ii) if criterion (i) fails, we use the Pareto criterion

for choosing among the candidates. We need to apply the lexicographic procedure in

approximately 5% of the states depending on the size of the strategic storage . In total,

it takes several days to solve the model on a standard desktop computer, which limits

the set of parameters we can consider.

4.3.1 Simulated long-run distributions

For comparison with the social optimum, we generate the long-run weekly reservoir, price,

and production moments by running the model over 2000 years for various market shares

. Fig. 6 depicts the long-run weekly stock levels for the social planner (SP), and for

equal to 2 3, and 4. The expected stock levels increase monotonically with the share

of the strategically managed stock, which is consistent with the interpretation given in

section 4.2: the steady state stock increase is a way to organize the disposal of supply

not meant to reach the market. While under uncertainty the logic of market power is

slightly more intricate than in the deterministic case, as will be illustrated shortly, the

implication for the stock levels are clear.

The long-run weekly price moments are in Fig. 7, for the same parameter values.

Two features can be observed. First, as expected, the price level increases with the size

of the strategic agent, leading also to a more marked fall in prices at the turn of the

hydrological year in the Spring. Second, for su¢ciently large, the highest expected

prices are experienced earlier, before the end of the hydrological year. Our conjecture for

the result is that a larger agent can follow a riskier strategy in the sense that water is

withheld from the market earlier to take advantage of potential shortage of in‡ow during

the late Summer and Fall: an in‡ow below expectations provides a welcome ’sink’ for

unused stock, so that less of the excessive saving must be carried over to the next year.

On the other hand, if the in‡ow turns out be abundant, then the strategic agent needs

to produce excessively from his point of view, to prevent excessive storage to the next

year. This latter e¤ect tends to depress expected prices in the end of the year.
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4.3.2 Matching historical data

To consider the match with the historical data, we evaluate the equilibrium policies for a

given , using the historical realizations of demands and in‡ow over the period 2000-05.

We set the initial hydro stock equal to the observed stock at the beginning of 2000 and

then let it evolve as determined by the equilibrium policies.

We look for best matching the historical data and the model predictions for three

variables: the reservoir levels, output, and prices. It is clearly important to include

reservoir levels in the set of variables, because market power becomes evident through this

variable and also because there is a systematic discrepancy between observed reservoir

development and that chosen by the social planner. Including both prices and hydro

outputs in the set of variables would clearly be unnecessary if the historical prices were

the ones computed from the estimated supply relationship using the historical outputs; in

this case, there would be one-to-one relationship between outputs and prices. However,

since we use the real historical prices as our observations, it makes sense to use both

prices and outputs in the matching procedure to evaluate the overall performance of the

model.

Let ( ) be the model prediction for a (column) vector of the three variables at ,

given . If is the historical observation for the same vector, the sample mean of the

prediction error is14

( ) =
1 X

=1
( ( )¡ )

One criterion for choosing the model is to …nd that minimizes the quadratic form

( ) = ( )0 ( )

where is a 3£3 weighting matrix (to be discussed below). A very crude way to proceed

is to choose = 312, i.e., aggregate over all weeks of the six year period to form three

simple moment restrictions. When = the statistic has a straigthforward interpre-

tation: it is the sum of three least-square errors. This statistic can be very misleading

since it completely ignores the Markovian nature of the policy rule: the statistic should

be able discriminate how well the model predicts variables as the state of the market

changes. Another extreme is to let = 1, which allows one to calculate the statistics

1( ) for each of the 312 weeks, and then sum up these numbers (or average them). This

approach would pay maximum attention to actions at individual states, but would not

14We are abusing notation on purpose here, hopefully without a risk of confusion, in order to follow

the conventions of the literature using the GMM approach. See, for example, Cochrane (2001).
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allow weighting the variances of the prediction errors when choosing in ( ). The

latter shortcoming can be avoided, for example, when = 12 and the statistic 12( )

is calculated separately for each of the 24 quarters in the data. Then, we can use the

two-stage GMM approach15 where in the …rst stage is chosen for some given , and

in the second stage, we estimate the sample variance-covariance matrix of the prediction

errors associated with the chosen to construct a weighting matrix that depends on the

data.

We evaluate each model under di¤erent criteria ranging from moment restrictions for

aggregated data to "path matching" using weekly data. Fortunately, all speci…cations

support choosing the same , namely = 3.16 For Table 4, we have …rst calculated the

statistic ( ) for each model at di¤erent aggregation levels (weekly, monthly, quarterly,

half-year, and annual prediction errors). In this calculation, we took …rst as a given

diagonal matrix and used the inverses of squared means of the relevant variables on the

diagonal to transform the variables into comparable units.17 The mean value of the

statistic ( ), obtained this way, is reported in the …rst column for each model. The

30 per cent model provides the best score at all time aggregation levels.

For quarterly, half-year, and annual predictions there is enough variation to consider

the variance of the sample mean and to exploit the covariance-variance properties of the

data in choosing the weighting matrix for the statistics. The reported numbers are the

mean values of the statistic over the 24, 12, and 6 samples (quarterly, half-year, and

annual aggregation, resp.). Again, the 30 per cent model minimizes the statistic ( )

obtained this way. Note that ( ) from the 30 per cent model need not be the smallest,

for example, in each of the 24 quarters, but the only the mean value of the statistic has

this property. We are thus putting equal weights to the match in each of the time periods.

Our main result is that a market share of 30 per cent for the strategic agent provides

the best …t with the historical data under various criteria. In Table 5, we report statistics

on the entire observed and predicted price series. The average price in the sample period

was 26.3 euros. The socially optimal hydro policy would have yielded a mean price of

24.9. The 30% model outperforms the planner’s model in predicting the average, variance

15See, for example, Cochrane (2001).
16Recall that due to computational reasons we have computed only seven market share values for the

strategic agent: 0, 15, 20, 25, 30, 40, and 50 per cent. Since we …nd no evidence for perfect competition,

i.e., = 0, we do not believe that this coarse grid for is essential for the main result.
17Otherwise, the stock variable dominates in the calculation. Correcting dimensions this way favors

the hypothesis that there is no market power since the market power model is particularly good in

matching the stock development.
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and skewness of price. It also outperforms the other market structures in the Table, with

the exception of slightly underestimating the skewness of price compared to the 40%

model.

Recall that for computational reasons we did not cover a very large set of -values,

which is why a better …tting market share parameter is likely to exist. However, we do not

see a large gain from this search as has no clearly de…ned empirical counterpart. The

objective of the analysis is to merely show that there exists some market structure with

market power that has more predicting power than the socially optimal structure. While

it is clear that having one more parameter to choose, cannot hurt us ( = 0 is always a

choice), it is somewhat surprising that the model prediction is better in all dimensions

(price, output, stocks). In Fig. 9, we depict again the observed price, this time together

with the predicted price under = 3 and the planner’s solution. The market power

model can replicate the price shock of 2002-03 quite well (the price shocks in 2003-04

originate our supply curve estimation which does not capture well the change in the

available capacity of thermal; see Fig. 3). In Fig. 8, we see the systematic improvement

in the reservoir match throughout the period 2000-2005.

5 Robustness

[here we structurally estimate various unobserved constraints to distinguish the e¤ect of

potentially mismeasured constraints on the equilibrium from the e¤ect of market power]

6 Concluding remarks

We conclude by discussing the objectives of this paper and whether these have been

achieved. First, we presented a test for market power in a storage market. The hydro-

electricity provided a good case for such a study because of the precise data on market

fundamentals. The test involved developing a …rst-best and an alternative market struc-

ture, and applying both models to the historical data. We found that the alternative

market structure can outperform the predicting power of the socially optimal model, but

our statistical test remains rough at this point. We are also hoping to develop a more

structural approach to market power, e.g., by estimating hydro usage policies directly

from the data, and then using the estimated policies to simulate hydro resource val-

ues. These values could in principle be used in estimation of structural parameters as in

Bajari-Benkard-Levin (2007).
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Second, we conceptualized the Nordic market for hydroelectricity as partially an

exhaustible-resource market and partially a storable-good market. These features are

important for understanding both the price distributions and the price dynamics in a

given state of the market. The relatively stylized "water-value" model, the planner’s

model, can well illustrate these features of the market, which have not been documented

elsewhere. However, in its current state, the model remains aggregative. If one is inter-

ested in further developing a prediction tool, introducing heterogeneity in resource stock

holdings and in‡ows would seem an important extension.

7 Appendix: proof of Proposition 1

Proof. We can take ¢ as the smallest deviation allowed by the action space such that

( ) 2 ( ). The properties of optimal prices follow from non-optimality of one-shot

deviations described by ( ). By the optimality of ( ),

( ( )) + ( ( )) ¸ ( ( )) + ( ( )) (8)

()
( ( ))¡ ( ( )) ¸ ( ( ))¡ ( ( )) (9)

Recall that

( ( ))¡ ( ( )) = ¡ ( ¡ ( )) + ( ¡ ( ))

As in text, we can de…ne ¹ = ¹( ¢) such that

¡¹( ¢)¢ = ( ( ))¡ ( ( )) (10)

Note then that

( ( ))¡ ( ( )) =
X1

= +1

¡ f ( ( )¡ ( ( )g (11)

=
X1

= +1

¡ ¹( ) (12)

where X1

= +1
+¢ = 0 (13)

Changes in the optimal usage path, after the one-shot deviation from the optimal policy

at , are denoted by , and these must in expectations sum up to the deviated amount

at (equality in (13)); assuming the opposite would imply nonoptimality of policy ( ).
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Combining (9), (10) and (12) implies that one-shot deviations satisfy

¡¹( ¢)¢ ¸
X1

= +1

¡ ¹( )

But when¢ is the smallest deviation allowed by the grid for actions (same for all periods),

the condition reduces to

¡¹( ¢)¢ ¸ ¹( + ¡¢)(¡¢) for some ¸ 1. (14)

Now, if ( ) is constrained from above (i.e., there is no ( ) such that 2 ( )),

then only ¢ 0 is feasible, and, by (14), we have

¢ 0 , ¹( ¢) ¸ ¹( + ¡¢) for some ¸ 1 (15)

On the other hand, if ( ) is constrained from below, then only ¢ 0 is feasible, and

we have

¢ 0 , ¹( ¢) · 0
¹( + 0 ¡¢) for some 0 ¸ 1 (16)

Finally, if the optimal policy is not constrained, then both (15) and (16) must hold at
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Inflow distribution in the Nordic market area 1980-99
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Figure 1: Inflow energy in the Nordic market area in 1980-99. Sources: Norwegian Water Resources and Energy Directorate (www.nve.no),
Swedenergy (www.svenskenergi.se) and Finland’s environmental administration (www.ymparisto.fi).
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Demand in the Nordic market 2000-05
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Figure 2: Mean and empirical support of demand in Nordic market 2000-05



Figure 3: Observed (black) and estimated (blue) system price 2000-05. Estimation based on historical output levels.



Figure 4: Simulated expected price (upper panel) and the skewness and standard deviation (lower panel) of price



Figure 5: Social planner output (blue), observed output (black), social planner reservoir levels (blue), observed levels (black).



Figure 6: Simulated expected reservoir levels for different market structures.



Figure 7: Simulated weekly price expectations under different market structures.



Figure 8: Historical, the planner’s, and market power (30%) storage levels.



Figure 9: Historical, the socially optimal, and the market power (30%) price.



Quarter Sweden Finland E-Denmark W-Denmark Norway 1 Norway 2
Q1 2.0 % 2.6 % 8.2 % 5.2 % 1.5 % 1.7 %
Q2 7.5 % 8.1 % 21.1 % 6.8 % 4.0 % 2.7 %
Q3 6.2 % 12.9 % 24.6 % 6.5 % 2.8 % 4.8 %
Q4 2.5 % 4.3 % 14.9 % 10.8 % 1.4 % 2.1 %
All 4.6 % 7.0 % 17.2 % 7.5 % 2.5 % 2.8 %

Table 1: Average weekly area price deviations from the system price 2000-05 (Source: Nord Pool)



Denmark Finland Norway Sweden
Total generation 37.3 73.4 125.2 146.5
Hydro power 0.0 12.7 124.1 67.8
Other renewable power 5.8 2.0 0.3 1.9
Thermal power 31.5 58.8 0.8 76.7
- nuclear power 0.0 21.8 0.0 66.6
- CHP, district heating and condensing power 29.4 26.3 0.1 5.8
- CHP, industry 2.1 10.7 0.4 4.3
- gas turbines, etc. 0.0 0.0 0.3 0.0

Table 2: Average production levels (TWh) by technology in the Nordic market 2000-05



Panel A: First stage results (dependent variable log of system price)

Panel B: Second stage results (dependent variable total thermal output in GWh)

(1) (2) (3)
ln(price) 1192.7** 1177.8** 1252.4**

(43.8) (43.3) (48.6)
Oil price -25.5** -22.7** -23.2**

(1.6) (1.5) (1.6)
Coal price 6.3**

(1.5)
Observations 300 313 313

Table 3: Results of the 2SLS thermal supply estimation. The standard errors (in
parentheses) have been corrected for heteroskedasticity and autocorrelation. The
regression also includes monthly dummy variables. Statistical significance is
marked with (**) at the 1% level and (*) at the 5% level.

(1) (2) (3)
Oil price 0.0187** 0.0185** 0.0187**

(0.0018) (0.0016) (0.0018)
Coal price -0.0013

(0.0014)
Reservoir level -0.0282** -0.0291**

(0.0015) (0.0015)
Hydro output -0.0006**

(0.00004)
Observations 300 313 313
R-squared 0.70 0.69 0.58



Weeks SP 15 20 25 30 40 50

1 1.21 - 1.00 - 0.82 - 0.68 - 0.55 - 0.66 - 0.91 -
4 1.20 - 0.98 - 0.80 - 0.66 - 0.53 - 0.64 - 0.89 -

13 1.14 28.0 0.93 21.5 0.75 16.4 0.61 12.2 0.48 8.2 0.57 15.9 0.78 21.1
26 1.06 9.5 0.84 7.3 0.67 5.8 0.53 4.3 0.40 3.2 0.47 5.9 0.56 10.4
52 0.94 5.8 0.73 4.2 0.58 3.3 0.46 2.4 0.35 1.7 0.37 3.4 0.48 4.3

Table 4: Goodness-of-fit tests. The first column for each model reports the H-statistic (divided by
105) from the first stage of the estimation. The second column reports the H-statistic from the
second stage (for applicable models).



Observed SP 20 % 30 % 40 % 50 %
Mean price (€/MWh) 26.3 24.9 25.2 26.4 28.0 31.0
Standard deviation 11.9 7.5 8.3 10.6 16.6 28.7
Skewness 2.5 0.9 0.9 1.4 2.3 5.4
Total cost (bn.€) 9.3 8.7 8.8 9.2 9.8 10.9
Welfare loss (bn.€) 0.64 0 0.14 0.57 1.16 2.26

Table 5: Price and cost statistics for the historical series and model predictions. The estimates of
total cost are based on the estimated thermal supply.


