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IN HONOUR OF LOUIS EECKHOUDT

Matei, Zoli (University of Verona) Restricted Finite Time Dominance Risk & Choice, Toulouse 2012 2 / 16



Restricted Finite Time Dominance Framework and Motivation

Motivation

Appraisal of sustainable development policies.

Intertemporal choices.

Individual comparisons of lifetime outcomes (health pro�les).

Evaluation of long term investments.

Cost Bene�t Analysis.
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Restricted Finite Time Dominance Framework and Motivation

Framework

Finite, discrete time t 2 f0, 1, . . . ,Tg.
Mutually exclusive intertemporal alternatives, a, b 2 RT+1

a = (a0, a1, ..., aT ) 2 RT+1, b = (b0, b1, ..., bT ) 2 RT+1;
stream of net outcomes
x = (x0, x1, ..., xT ) = (a� b) = (a0 � b0, ..., aT � bT ) 2 RT+1

t 0 1 2 3 4 5 6 7 8
xt -1 -2 3 3 -2 4 3 -2 -4

Temporal preferences v = (v0,v1, . . . , vt , . . . , vT ) � 0 with v0 = 1

NPVv (x) :=
T
∑
t=0
vt � xt
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Restricted Finite Time Dominance Setting

How to evaluate the distant future?

V0 positively valued, with v0 = 1.

v 2 V1 � V0, time impatience.
v 2 V2 � V1, are also strictly convex (decreasing time impatience).
Restrictions to the set of discounting functions.
Let v0t = vt ; for any k = 1, 2, let v

k
t := v k�1t+1 � v k�1t

Vk : = fv : v 2 Vk�1, and (�1)kv kt � 0g
that is

V1 : = fv : v 2 V0, and ∆t = vt � vt+1 � 0g,
V2 : = fv : v 2 V1, and ∆t � ∆t+1 � 0g.
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Restricted Finite Time Dominance Related works
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Restricted Finite Time Dominance Setting and Preliminary Results

Time Dominance

NPVv (x) = NPVv (a)�NPVv (b)

De�nition

NPVv (a) � NPVv (b) for all v 2 Vn is denoted as a <n b.

Repeated summations of the net distribution x . X 0t = xt .For n = 1, 2.

X nt =
t

∑
s=0

X n�1s

De�nition

Project a dominates b by the nth order time dominance, denoted by
a >n b, if and only if for the net project x = a� b

X kT � 0 for all k = 1, 2, ..., n� 1
X nt � 0 for all t 2 f0, 1, ...,Tg.
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Restricted Finite Time Dominance Setting and Preliminary Results

Example

Let T = 8 and n 2 f1, 2g.

t 0 1 2 3 4 5 6 7 8
xt -1 -2 3 3 -2 4 3 -2 -4

# #% #% #% #% #% #% #% #%
X 1t -1 -3 0 3 1 5 8 6 2
X 2t -1 -4 -4 -1 0 5 13 19

Theorem (Ekern, J. Fin. 1981)

a <n b if and only if a >n b.
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Restricted Finite Time Dominance Setting and Preliminary Results

Non Dictatorship of the Present (NDP)

Dictatorship of the present: no compensation between future net
outcomes and current outcome if x0 < 0.

0 T1 2 H T­1

T

0 0 0 xh<0 w >0 w >0...

T­1

w>0

0

De�nition (NDP)

Let H 2 f1, ...,Tg. For xh < 0, where h < H, xt = 0 for all
t 2 f0, 1, ..., h� 1g and for any v 2 VH � V2 there exists ω > 0 with
xt = ω, for all t 2 fh+ 1, . . . ,Tg s.t. NPVv (x) > 0.

Remark NPVv (x) for v 2 VH � V2 satis�es NDP if and only if
vH > 0 and bounded from below. Alternatively:
9 α 2 [0, 1) s.t. ∆t = vt � vt+1 � α, 8t, with ∑H�1

t=0 α = αH < 1.
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Restricted Finite Time Dominance Setting and Preliminary Results

Link alpha - H

Example

α = 0.2; Hα =
1
α � 1 = 4

vt

t
0 1 2 3 4 5 6 7 8

1

0.8

0.6

0.4

0.2

Hα

Matei, Zoli (University of Verona) Restricted Finite Time Dominance Risk & Choice, Toulouse 2012 10 / 16



Restricted Finite Time Dominance Results and Discussion

Alfa-Restricted 1st order Time Dominance

De�nition

Let n 2 f1, 2g, and α 2 [0, 1), then

V α
n := fv 2 Vn s.t. ∆t = vt � vt+1 � α for all tg.

α : maximum magnitude of the variation of discounting functions.

De�nition

Let n 2 f1, 2g, NPVv (a) � NPVv (b) for all v 2 V α
n is denoted as a <α

n b.

Theorem (α� TD1)
For α 2 (0, 1) then a <α

1 b if and only if GX 1�
� 1

α � 1
�
� 0.

If α = 0 then then a <01 b if and only if X 1T � 0.
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Restricted Finite Time Dominance Results and Discussion

Alfa - TD1

Example

t 0 1 2 3 4 5 6 7 8
xt -1 -2 3 3 -2 4 3 -2 -4

X 1t -1 -3 0 3 1 5 8 6 2
X 1[t ] -3 -1 0 1 2 3 5 6 8
X 1�[t ] -3 -1 0 1 2 2 2 2 2
GX 1�(t) -3 -4 -4 -3 -1 1 3 5 7

Note that GX 1�(4.5) = 0 thus NPVv (x) � 0 if and only if
Hα =

1
α � 1 � 4.5 that is

1
5.5 = 0.18 � α.

Cut o¤ point α� = 0.18
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Results and Discussion

Alfa-Restricted 2nd order TD

Theorem (α-TD2)

For α 2 (0, 1) then a <α
2 b if and only if:

(A) X 1T � 0, and
(B) X 2t + X

1
T � [ 1α � 1� t]+ � 0.

If α = 0 then then a <02 b if and only if X 1T � 0.

where [x ]+ := maxf0, xg. Let Hα =
1
α � 1

Condition (B) can be rewritten as:
(B1) X 2t � 0 for all t � Hα

(B2) X 2t + X
1
T [Hα � t] � 0 for all t < Hα

Example

t=0: x0 + X 1T [
1
α � 1] � 0

t=1: (2x0 + x1) + X 1T [
1
α � 2] � 0

t=2: (3x0 + 2x1 + x2) + X 1T [
1
α � 3] � 0
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Results and Discussion

Example

Example

t 0 1 2 3 4 5 6 7 8
xt -1 -2 3 3 -2 4 3 -2 -4

X 1t -1 -3 0 3 1 5 8 6 2
X 2t -1 -4 -4 -1 0 5 13 19 21

note that for αo = 0.2 then a <αo
2 b, in fact:

- time threshold Hα0 =
1

αo � 1 = 4, with X 2t � 0 for t � 4
for t=2: X 22 + X

1
T [Hα0 � 2] = (�4) + 2 � [4� 2] = 0

for t=3: X 23 + X
1
T [Hα0 � 3] = (�1) + 2 � [4� 3] = 1 � 0

for t=0 and t=1 the analogous conditions are also satis�ed.
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Results and Discussion

Remarks/Corollaries

Corollary

If X 1T = 0 then a <α
n b () a <n b () a >n b for n 2 f1, 2g.

That is, α-TD is more decisive w.r.t. standard TD only if X 1T > 0.

Corollary

Let n 2 f1, 2g. If a 6= b, if there is no TDn, i.e., neither a >n b nor
b >n a, then

(i) if X 1T > 0 then 9α s.t. a <α
n b,

(ii) if X 1T < 0 then 9α s.t. b <α
n a.

No disagreement problems for the α� TDn criterion: it is not possible
that there exists an α for which a <α

n b, and another α0 for which b <α0
n a.
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Results and Discussion

Remarks/Corollaries/Links with....

Corollary

Let α0 < α then a <α
n b =) a <α0

n b for n 2 f1, 2g.

Corollary

Suppose a <α0
1 b then 9 α � α0such that a <α

2 b.

Links with...

Literature on internal rates of return (IRR), but ... unique upper
bound for α s.t.a <α

n b versus possible multiple IRR.
Almost Stochastic Dominance (ASD). The α�TD criterion considers
a restriction on the absolute magnitude of the "marginal" change of
the discount function between two adjacent periods. The set of
restrictions considered are logically distinct and results are
conceptually di¤erent. They can provide novel results if re-mapped in
the ASD space.
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