On Prudence, Temperance, and Monoperiodic Portfolio Optimization

Olivier Le Courtois

Outline of the Talk

- 1) Bibliography
- 2) Prudence and temperance coefficients
 - 2.1) Arrow-Pratt development up to order four
 - 2.2) Interpretation of coefficients
 - 2.3) Prudence and temperance for HARA functions
- 3) Portfolio optimization
 - 3.1) The portfolio problem
 - 3.2) Optimizing with one risky asset
 - 3.3) A closed-form formula
 - 3.4) Illustration
 - 3.5) Optimizing with several risky assets
- 4) Perspectives and conclusion

Bibliography

- ★ Kimball, Econometrica [1990]
- Eeckhoudt, Gollier and Schneider, EL [1995]
- Crainich, Eeckhoudt and Trannoy, AER [2012]
- De Athayde and Flôres, JEDC [2004]
- Mitton and Vorkink, RFS [2007]
- Scott and Horvath, JOF [1980]

Arrow-Pratt development up to order four

Recall the definition of the risk premium π :

$$u(E[V] - \pi) = E[u(V)]$$

The Arrow-Pratt development up to order four is:

$$\pi \simeq \left[-\frac{u''(E[V])}{u'(E[V])} \right] \frac{\text{var } V}{2} - \left[\frac{u'''(E[V])}{u'(E[V])} \right] \frac{m_3(V)}{6} + \left[-\frac{u''''(E[V])}{u'(E[V])} \right] \frac{m_4(V)}{24}$$
where $m_3 = E[(V - E[V])^3]$ and $m_4 = E[(V - E[V])^4]$

Arrow-Pratt development up to order four

Reexpress the risk premium as:

$$\pi \simeq \frac{1}{2} \lambda \operatorname{var} V - \frac{1}{6} \psi m_3(V) + \frac{1}{24} \varphi m_4(V)$$

What is the link between the coefficient ψ of appetite to m_3 , and the coefficient φ of aversion to m_4 , to the coefficients of prudence and temperance?

Interpretation of coefficients

The coefficient of appetite to m_3 satisfies :

$$\psi = \lambda \zeta$$

where ζ is the coefficient of prudence :

$$\zeta = -\frac{u'''(E[V])}{u''(E[V])}$$

Interpretation of coefficients

The coefficient of aversion to m_4 satisfies :

$$\varphi = \chi \zeta \lambda$$

where χ is the coefficient of temperance :

$$\chi = -\frac{u''''(E[V])}{u'''(E[V])}$$

Interpretation of coefficients

It is interesting to reexpress the risk premium as follows:

$$\pi \simeq \frac{1}{2} \lambda \left(\operatorname{var} V - \frac{1}{3} \zeta \left(m_3(V) - \frac{1}{4} \chi m_4(V) \right) \right)$$

or, more simply at order 3:

$$\pi \simeq \frac{1}{2} \lambda \left(\operatorname{var} V - \frac{1}{3} \zeta \, m_3(V) \right)$$

to let appear the impact of prudence and temperance as perturbation factors.

Prudence and temperance for HARA functions

Consider a HARA utility function:

$$u(x) = \frac{1-a}{a} \left(\frac{b}{1-a} \ x + c \right)^a$$

The coefficients of risk aversion, appetite to asymmetry, and aversion to leptokurticity are :

$$\lambda(x) = \frac{1}{\frac{1}{1-a}x + \frac{c}{b}}$$

$$\psi(x) = \frac{(1-a)(2-a)}{\left(x + \frac{c(1-a)}{b}\right)^2} \qquad \varphi(x) = \frac{(1-a)(2-a)(3-a)}{\left(x + \frac{c(1-a)}{b}\right)^3}$$

Prudence and temperance for CRRA functions

Consider a CRRA utility function:

$$u(x) = \frac{x^a}{a}$$

The coefficients of risk aversion, appetite to asymmetry, and aversion to leptokurticity are :

$$\lambda(x) = \frac{1-a}{x}$$

$$\psi(x) = \frac{(1-a)(2-a)}{x^2} \qquad \varphi(x) = \frac{(1-a)(2-a)(3-a)}{x^3}$$

Prudence and temperance for CRRA functions

The coefficient of prudence can be expressed as:

$$\zeta(x) = \frac{2-a}{x}$$

whereas the coefficient of temperance admits the expression:

$$\chi(x) = \frac{3-a}{x}$$

The portfolio problem

The goal is to compute optimal portfolio compositions, satisfying :

$$\max E[u(V)] = \max u(V^*)$$
 or, equivalently :
$$\max (E[V] - \pi)$$

Replacing with the expression of π , we obtain the general problem :

$$\max \left(E[V] - \frac{\lambda}{2} \operatorname{var}(V) + \frac{\psi}{6} m_3(V) - \frac{\varphi}{24} m_4(V) \right)$$

Denote by x the proportion of funds invested in the risky asset, by R the return of the risky asset, and by r the risk-free rate. The final portfolio wealth is worth :

$$V = (V_0 - xV_0)(1+r) + xV_0(1+R) = V_0(1+r) + xV_0(R-r)$$
 where the total return of the portfolio is :

$$R_p = \frac{V - V_0}{V_0} = \frac{V_0 r + x V_0 (R - r)}{V_0} = r + x (R - r).$$

We first replace the moments of V by those of R_p in the portfolio problem :

$$E[V] = V_0 + V_0 E[R_p]$$
 $var(V) = V_0^2 var(R_p)$

$$m_3(V) = V_0^3 m_3(R_p)$$
 $m_4(V) = V_0^4 m_4(R_p)$

Then, we replace the moments of R_p by those of R in the portfolio problem :

$$E[R_p] = r + x(E[R] - r)$$
 $var(R_p) = x^2 var(R)$
 $m_3(R_p) = x^3 m_3(R)$ $m_4(R_p) = x^4 m_4(R)$

The portfolio problem can then be rewritten as:

$$\max_{x} \left(r + x(E[R] - r) - \frac{x^{2}\tilde{\lambda}}{2} \operatorname{var}(R) + \frac{x^{3}\tilde{\psi}}{6} m_{3}(R) - \frac{x^{4}\tilde{\varphi}}{24} m_{4}(R) \right)$$

where $\tilde{\lambda}=\lambda~V_0$, $\tilde{\psi}=\psi~V_0^2$, and $\tilde{\varphi}=\varphi V_0^3$ are the coefficients of relative risk aversion, relative appetite to asymmetry and relative aversion to leptokurticity.

The corresponding first order condition is:

$$E[R] - r - x \ \tilde{\lambda} \operatorname{var}(R) + x^2 \ \frac{\tilde{\psi}}{2} m_3(R) - x^3 \ \frac{\tilde{\varphi}}{6} m_4(R) = 0$$

A closed-form formula

The (unique) real solution of the above third-degree equation is :

$$x = \frac{\tilde{\psi}m_{3}(R)}{\tilde{\varphi}m_{4}(R)} + \frac{2}{\tilde{\varphi}m_{4}(R)} \left(\frac{1}{2} \left(\Lambda_{1}(R) + \sqrt{\Lambda_{1}(R)^{2} - 4\Lambda_{2}(R)^{3}} \right) \right)^{\frac{1}{3}} + \frac{2}{\tilde{\varphi}m_{4}(R)} \left(\frac{1}{2} \left(\Lambda_{1}(R) - \sqrt{\Lambda_{1}(R)^{2} - 4\Lambda_{2}(R)^{3}} \right) \right)^{\frac{1}{3}}$$

where:

$$\Lambda_1(R) = \frac{\tilde{\psi}^3}{4} m_3(R)^3 - \frac{3\tilde{\varphi}\tilde{\psi}\tilde{\lambda}}{4} m_4(R) m_3(R) \operatorname{var}(R) + \frac{3\tilde{\varphi}^2}{4} m_4(R)^2 (E[R] - r)$$

and where:

$$\Lambda_2(R) = \frac{\tilde{\psi}^2}{4} m_3(R)^2 - \frac{\tilde{\varphi}\tilde{\lambda}}{2} m_4(R) \operatorname{var}(R)$$

Illustration

We conduct a calibration over the period 1950-2012. The risk-free rate is deduced from US treasury bills:

$$r = 4.5 \%$$

The distribution of the annual log-returns of the SP500 index is characterized by :

$$E[R] = 6.75 \% Var(R) = 0.02753$$

$$m_3(R) = -0.00399$$
 $m_4(R) = 0.0029636$

The relative risk aversion parameter is set to 2.5; a CRRA utility function is assumed.

Illustration

The Merton (mean-variance) optimal weight that should be invested in the risky asset is :

$$x^* = 32.75 \%$$

Correcting for m_3 and prudence yields :

$$x^* = 30.35 \%$$

A further correction for m_{4} and temperance gives :

$$x^* = 29.71 \%$$

Optimizing with several risky assets

In dimension d, the terminal value of the portfolio is given by :

$$V = V_0(1 - \langle \mathbf{x}, \mathbf{1} \rangle)(1+r) + V_0\langle \mathbf{x}, \mathbf{1} + \mathbf{R} \rangle = V_0(1+r) + V_0\langle \mathbf{x}, \mathbf{R} - r\mathbf{1} \rangle$$

The portfolio return R_p becomes :

$$R_p = \frac{V - V_0}{V_0} = \frac{V_0 r + V_0 \langle \mathbf{x}, \mathbf{R} - r \mathbf{1} \rangle}{V_0} = r + \langle \mathbf{x}, \mathbf{R} - r \mathbf{1} \rangle$$

Optimizing with several risky assets

The formulas linking the moments of V to the ones of R_p are unchanged. However, one should use the following relationships between the moments of R_p and those of R:

$$E[R_p] = r + \langle \mathbf{x}, E[\mathbf{R}] - r\mathbf{1} \rangle = r + \sum_{i=1}^d x_i (E[R_i] - r)$$
 and :

$$\operatorname{var}(R_p) = \mathbf{x}' \ M_2(\mathbf{R}) \ \mathbf{x},$$

$$m_3(R_p) = \mathbf{x}' \ M_3(\mathbf{R}) \ \mathbf{x} \otimes \mathbf{x},$$

$$m_4(R_p) = \mathbf{x}' \ M_4(\mathbf{R}) \ \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x},$$

where \otimes is the tensorial product.

Perspectives and conclusion

Iso- m_3 and iso-skewness lines in the Machina triangle.

Perpectives and conclusion

Iso- m_4 and iso-kurtosis lines in the Machina triangle.