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Arrow-Pratt development up to order four

Recall the definition of the risk premium π :

u(E[V ] − π) = E[u(V )]

The Arrow-Pratt development up to order four is :

π ≃

[

−
u′′(E[V ])

u′(E[V ])

]

var V

2
−

[

u′′′(E[V ])

u′(E[V ])

]

m3(V )

6
+

[

−
u′′′′(E[V ])

u′(E[V ])

]

m4(V )

24

where m3 = E[(V − E[V ])3] and m4 = E[(V − E[V ])4]

4



Arrow-Pratt development up to order four

Reexpress the risk premium as :

π ≃
1

2
λ var V −

1

6
ψm3(V ) +

1

24
ϕm4(V )

What is the link between the coefficient ψ of appetite to m3,

and the coefficient ϕ of aversion to m4,

to the coefficients of prudence and temperance ?
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Interpretation of coefficients

The coefficient of appetite to m3 satisfies :

ψ = λ ζ

where ζ is the coefficient of prudence :

ζ = −
u′′′(E[V ])

u′′(E[V ])
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Interpretation of coefficients

The coefficient of aversion to m4 satisfies :

ϕ = χ ζ λ

where χ is the coefficient of temperance :

χ = −
u′′′′(E[V ])

u′′′(E[V ])
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Interpretation of coefficients

It is interesting to reexpress the risk premium as follows :

π ≃
1

2
λ

(

var V −
1

3
ζ

(

m3(V ) −
1

4
χm4(V )

))

or, more simply at order 3 :

π ≃
1

2
λ

(

var V −
1

3
ζ m3(V )

)

to let appear the impact of prudence and temperance

as perturbation factors.
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Prudence and temperance for HARA functions

Consider a HARA utility function :

u(x) =
1 − a

a

(

b

1 − a
x+ c

)a

The coefficients of risk aversion, appetite to asymmetry,

and aversion to leptokurticity are :

λ(x) =
1

1
1−ax+ c

b

ψ(x) =
(1 − a)(2 − a)
(

x+ c(1−a)
b

)2
ϕ(x) =

(1 − a)(2 − a)(3 − a)
(

x+ c(1−a)
b

)3
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Prudence and temperance for CRRA functions

Consider a CRRA utility function :

u(x) =
xa

a

The coefficients of risk aversion, appetite to asymmetry,

and aversion to leptokurticity are :

λ(x) =
1 − a

x

ψ(x) =
(1 − a)(2 − a)

x2
ϕ(x) =

(1 − a)(2 − a)(3 − a)

x3
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Prudence and temperance for CRRA functions

The coefficient of prudence can be expressed as :

ζ(x) =
2 − a

x

whereas the coefficient of temperance admits the expression :

χ(x) =
3 − a

x
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The portfolio problem

The goal is to compute optimal portfolio compositions,

satisfying :

max E[u(V )] = max u(V ∗)

or, equivalently :

max (E[V ] − π)

Replacing with the expression of π,

we obtain the general problem :

max

(

E[V ] −
λ

2
var(V ) +

ψ

6
m3(V ) −

ϕ

24
m4(V )

)
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Optimizing with one risky asset

Denote by x the proportion of funds invested in the risky

asset, by R the return of the risky asset, and by r the

risk-free rate. The final portfolio wealth is worth :

V = (V0 − xV0)(1 + r) + xV0(1 +R) = V0(1 + r) + xV0(R− r)

where the total return of the portfolio is :

Rp =
V − V0

V0
=
V0r+ xV0(R− r)

V0
= r+ x(R− r).
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Optimizing with one risky asset

We first replace the moments of V by those of Rp

in the portfolio problem :

E [V ] = V0 + V0 E [Rp] var (V ) = V 2
0 var(Rp)

m3 (V ) = V 3
0 m3 (Rp) m4 (V ) = V 4

0 m4 (Rp)
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Optimizing with one risky asset

Then, we replace the moments of Rp by those of R

in the portfolio problem :

E [Rp] = r+ x(E[R] − r) var (Rp) = x2 var(R)

m3 (Rp) = x3 m3 (R) m4 (Rp) = x4 m4 (R)
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Optimizing with one risky asset

The portfolio problem can then be rewritten as :

max
x

(

r+ x(E[R] − r) −
x2λ̃

2
var(R) +

x3ψ̃

6
m3(R) −

x4ϕ̃

24
m4(R)

)

where λ̃ = λ V0, ψ̃ = ψ V 2
0 , and ϕ̃ = ϕV 3

0 are the coefficients

of relative risk aversion, relative appetite to asymmetry and

relative aversion to leptokurticity.

The corresponding first order condition is :

E[R] − r − x λ̃ var(R) + x2
ψ̃

2
m3(R) − x3

ϕ̃

6
m4(R) = 0
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A closed-form formula

The (unique) real solution of the above

third-degree equation is :

x = ψ̃m3(R)
ϕ̃m4(R)

+ 2
ϕ̃m4(R)

(

1
2

(

Λ1(R) +
√

Λ1(R)2 − 4Λ2(R)3
))

1
3

+ 2
ϕ̃m4(R)

(

1
2

(

Λ1(R) −
√

Λ1(R)2 − 4Λ2(R)3
))

1
3

where :

Λ1(R) =
ψ̃3

4
m3(R)3−

3ϕ̃ψ̃λ̃

4
m4(R)m3(R) var(R)+

3ϕ̃2

4
m4(R)2 (E[R] − r)

and where :

Λ2(R) =
ψ̃2

4
m3(R)2 −

ϕ̃λ̃

2
m4(R) var(R)
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Illustration

We conduct a calibration over the period 1950-2012.

The risk-free rate is deduced from US treasury bills :

r = 4.5 %

The distribution of the annual log-returns

of the SP500 index is characterized by :

E[R] = 6.75 % Var(R) = 0.02753

m3(R) = −0.00399 m4(R) = 0.0029636

The relative risk aversion parameter is set to 2.5 ;

a CRRA utility function is assumed.
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Illustration

The Merton (mean-variance) optimal weight

that should be invested in the risky asset is :

x∗ = 32.75 %

Correcting for m3 and prudence yields :

x∗ = 30.35 %

A further correction for m4 and temperance gives :

x∗ = 29.71 %

19



Optimizing with several risky assets

In dimension d, the terminal value of the portfolio

is given by :

V = V0(1−〈x, 1〉)(1+r)+V0〈x, 1+R〉 = V0(1+r)+V0〈x,R−r1〉

The portfolio return Rp becomes :

Rp =
V − V0

V0
=
V0r+ V0〈x,R − r1〉

V0
= r+ 〈x,R − r1〉
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Optimizing with several risky assets

The formulas linking the moments of V to the ones of Rp are

unchanged. However, one should use the following

relationships between the moments of Rp and those of R :

E [Rp] = r+ 〈x, E[R] − r1〉 = r+
d
∑

i=1

xi(E[Ri] − r)

and :

var (Rp) = x
′ M2(R) x,

m3 (Rp) = x
′ M3(R) x ⊗ x,

m4 (Rp) = x
′ M4(R) x ⊗ x ⊗ x,

where ⊗ is the tensorial product.
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Perspectives and conclusion
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Iso-m3 and iso-skewness lines in the Machina triangle.
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Perpectives and conclusion
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