The Utility Premium and The Risk Premium as Jensen's Gaps: A Unified Approach

E. Briys, B. Magdalou & R. Nock CEREGMIA - University of French West Indies

Risk and Choice: A Conference in Honor of Louis Eeckhoudt

Toulouse School of Economics

July 12-13, 2012

Motivations

- Louis (and his close friends)'s coming out: « Pratt's paper has become too famous », one should focus on the utility premium.
- The current economic crisis has raised serious challenges to the ways choices under uncertainty are modelled.
 - Expected Utility, Non-Expected Utility, ... etc,
 - Distributional assumptions: Tail events, black swan, ... etc.
- Even without the current crisis, far too many so-called puzzles remain, which still beg for explanations:
 - Asset allocation between risk-free and risky assets,
 - The magnitude of the equity risk premium.
- Talking a lot with R. Nock made us discover very promising interactions with computer science & information theory

• Notation:

- A finite set of states of the world $\mathscr{S} := \{s_1, s_2, \dots, s_n\}$
- A outcome $x_i \in \mathscr{X}$ is associated to each state $s_i \in \mathscr{S}$
- A risky situation $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathscr{X}^n$
- A riskless situation ${\boldsymbol c}=(c,\dots,c)\in {\mathscr X}^n$

Smooth Preferences:

• Complete, transitive, continuous, monotone

$$\exists \mathcal{V}: \mathscr{X}^n \longrightarrow \mathbb{R} \text{ so that } \boldsymbol{x} \succeq \boldsymbol{y} \Longleftrightarrow \mathcal{V}(\boldsymbol{x}) \geq \mathcal{V}(\boldsymbol{y}), \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathscr{X}^n$$

• We assume that $\mathcal V$ is differentiable

• Expected Utility Model:
$$\mathcal{V}_{\mathrm{EU}}(m{x}) = \sum_{i=1}^n p_i \, u(x_i) \,, \,\, \forall \,\, m{x} \in \mathscr{X}^n$$

• The gradient of $\mathcal V$ at $\boldsymbol x$:

$$\nabla_{\mathcal{V}}(\boldsymbol{x}) = \left(\frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_1}, \frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_2}, \dots, \frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_n}\right)$$

• The gradient of $\mathcal V$ at x:

$$\nabla_{\mathcal{V}}(\boldsymbol{x}) = \left(\frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_1}, \frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_2}, \dots, \frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_n}\right)$$

• The risk-neutral probabilities:

$$oldsymbol{\pi}(oldsymbol{x}) = rac{
abla_{\mathcal{V}}(oldsymbol{x})}{
abla_{\mathcal{V}}(oldsymbol{x}) \cdot oldsymbol{1}}$$

• The gradient of $\mathcal V$ at x:

$$\nabla_{\mathcal{V}}(\boldsymbol{x}) = \left(\frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_1}, \frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_2}, \dots, \frac{\partial \mathcal{V}(\boldsymbol{x})}{\partial x_n}\right)$$

• The risk-neutral probabilities:

$$oldsymbol{\pi}(oldsymbol{x}) = rac{
abla_{\mathcal{V}}(oldsymbol{x})}{
abla_{\mathcal{V}}(oldsymbol{x}) \cdot oldsymbol{1}}$$

• If EU and riskless initial situation:

Risk-neutral prob. = True prob.

• The Utility Premium:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) = \mathcal{V}(\boldsymbol{x} + \boldsymbol{z}) - \mathcal{V}(\boldsymbol{x})$$

• The Utility Premium:

$$\mathcal{J}(z;x) = \mathcal{V}(x+z) - \mathcal{V}(x)$$

• The Risk Premium:

$$\mathcal{V}(x + z) = \mathcal{V}(x + \mathcal{C}(z; x).1)$$

where
$$C(z;x) = E_{\pi(x)}(z) - \mathcal{R}(z;x)$$

Expected Utility Model

Proposition 2. Consider a twice differentiable function $u : \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $\mathbf{c} \in \mathscr{X}^n$ and a small risk $\mathbf{z} \in \mathscr{X}^n$. We obtain the following approximation for the utility premium:

$$\mathcal{J}_{\text{EU}}(oldsymbol{z}; oldsymbol{c}) pprox u'(c) \left[\mathrm{E}(oldsymbol{z}) - rac{1}{2} \, a(c) \, \mathrm{E}(oldsymbol{z}^2)
ight] \, .$$

where a(c) = -u''(c)/u'(c) be the Arrow-Pratt coefficient of absolute risk aversion, at $c \in \mathscr{X}$.

Expected Utility Model

Proposition 2. Consider a twice differentiable function $u : \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $\mathbf{c} \in \mathscr{X}^n$ and a small risk $\mathbf{z} \in \mathscr{X}^n$. We obtain the following approximation for the utility premium:

 $\mathcal{J}_{\text{EU}}(\boldsymbol{z}; \boldsymbol{c}) pprox u'(c) \left[\mathrm{E}(\boldsymbol{z}) - \frac{1}{2} \, a(c) \, \mathrm{E}(\boldsymbol{z}^2) \right]$

where a(c) = -u''(c)/u'(c) be the Arrow-Pratt coefficient of absolute risk aversion, at $c \in \mathscr{X}$.

≈ Risk Premium

Expected Utility Model

Proposition 2. Consider a twice differentiable function $u : \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $\mathbf{c} \in \mathscr{X}^n$ and a small risk $\mathbf{z} \in \mathscr{X}^n$. We obtain the following approximation for the utility premium:

 $\mathcal{J}_{\text{eu}}(\boldsymbol{z}; \boldsymbol{c}) pprox u'(c) \left[\mathrm{E}(\boldsymbol{z}) - \frac{1}{2} \, a(c) \, \mathrm{E}(\boldsymbol{z}^2) \right]$

where a(c) = -u''(c)/u'(c) be the Arrow-Pratt coefficient of absolute risk aversion, at $c \in \mathscr{X}$.

≈ Risk Premium

Smooth Preferences

Proposition 7. Consider a function $V \in \mathcal{D}$ twice differentiable, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a small risk $\mathbf{z} \in \mathcal{X}^n$. We obtain the following approximation for the utility premium:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) \approx (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \boldsymbol{1}) \left[E_{\pi(\boldsymbol{x})}(\boldsymbol{z}) - \frac{1}{2} \boldsymbol{z} \cdot \Sigma_{\pi(\boldsymbol{x})} \cdot \boldsymbol{z} \right],$$

where $\Sigma_{\pi(x)} = -\nabla^2_{\mathcal{V}}(x)/(\nabla_{\mathcal{V}}(x) \cdot 1)$, which depends on the Hessian matrix $\nabla^2_{\mathcal{V}}$ of \mathcal{V} .

Expected Utility Model

Proposition 2. Consider a twice differentiable function $u : \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $\mathbf{c} \in \mathscr{X}^n$ and a small risk $\mathbf{z} \in \mathscr{X}^n$. We obtain the following approximation for the utility premium:

 $\mathcal{J}_{\text{EU}}(\boldsymbol{z}; \boldsymbol{c}) pprox u'(c) \left[\mathrm{E}(\boldsymbol{z}) - \frac{1}{2} \, a(c) \, \mathrm{E}(\boldsymbol{z}^2) \right]$

where a(c) = -u''(c)/u'(c) be the Arrow-Pratt coefficient of absolute risk aversion, at $c \in \mathscr{X}$.

≈ Risk Premium

Smooth Preferences

Proposition 7. Consider a function $V \in \mathcal{D}$ twice differentiable, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a small risk $\mathbf{z} \in \mathcal{X}^n$. We obtain the following approximation for the utility premium:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) \approx (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \mathbf{1}) \left[E_{\pi(\boldsymbol{x})}(\boldsymbol{z}) - \frac{1}{2} \boldsymbol{z} \cdot \Sigma_{\pi(\boldsymbol{x})} \cdot \boldsymbol{z} \right],$$

where $\Sigma_{\pi(x)} = -\nabla^2_{\mathcal{V}}(x)/(\nabla_{\mathcal{V}}(x) \cdot 1)$, which depends on the Hessian matrix $\nabla^2_{\mathcal{V}}$ of \mathcal{V} .

Definition 2. Consider a function $\phi \in \mathcal{D}$ and two situations $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$. A Bregman divergence $D_{\phi}: \mathcal{X}^n \times \mathcal{X}^n \longrightarrow \mathbb{R}$ is defined by:

$$D_{\phi}(\boldsymbol{x} \| \boldsymbol{y}) = \phi(\boldsymbol{x}) - \phi(\boldsymbol{y}) - (\boldsymbol{x} - \boldsymbol{y}) \cdot \nabla_{\phi}(\boldsymbol{y}).$$

Definition 2. Consider a function $\phi \in \mathcal{D}$ and two situations $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$. A Bregman divergence $D_{\phi}: \mathcal{X}^n \times \mathcal{X}^n \longrightarrow \mathbb{R}$ is defined by:

$$D_{\phi}(\boldsymbol{x} \| \boldsymbol{y}) = \phi(\boldsymbol{x}) - \phi(\boldsymbol{y}) - (\boldsymbol{x} - \boldsymbol{y}) \cdot \nabla_{\phi}(\boldsymbol{y}).$$

Geometric Interpretation

Definition 2. Consider a function $\phi \in \mathcal{D}$ and two situations $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$. A Bregman divergence $D_{\phi}: \mathcal{X}^n \times \mathcal{X}^n \longrightarrow \mathbb{R}$ is defined by:

$$D_{\phi}(\boldsymbol{x} \| \boldsymbol{y}) = \phi(\boldsymbol{x}) - \phi(\boldsymbol{y}) - (\boldsymbol{x} - \boldsymbol{y}) \cdot \nabla_{\phi}(\boldsymbol{y}).$$

Geometric Interpretation

$\phi(oldsymbol{x})$ $\phi(oldsymbol{y})$ $\phi(oldsymbol{y})$ $\phi(oldsymbol{y})$ $\phi(oldsymbol{y})$

(Differential) Calculus Interpretation

$$\phi(\mathbf{x}) = \phi(\mathbf{y}) + (\mathbf{x} - \mathbf{y}) \cdot \nabla_{\phi}(\mathbf{y}) + D_{\phi}(\mathbf{x}||\mathbf{y})$$

Definition 2. Consider a function $\phi \in \mathscr{D}$ and two situations $\mathbf{x}, \mathbf{y} \in \mathscr{X}^n$. A Bregman divergence $D_{\phi} : \mathscr{X}^n \times \mathscr{X}^n \longrightarrow \mathbb{R}$ is defined by:

$$D_{\phi}(\boldsymbol{x} \| \boldsymbol{y}) = \phi(\boldsymbol{x}) - \phi(\boldsymbol{y}) - (\boldsymbol{x} - \boldsymbol{y}) \cdot \nabla_{\phi}(\boldsymbol{y}).$$

Geometric Interpretation

(Differential) Calculus Interpretation

$$\phi(\mathbf{x}) = \phi(\mathbf{y}) + (\mathbf{x} - \mathbf{y}) \cdot \nabla_{\phi}(\mathbf{y}) + D_{\phi}(\mathbf{x}||\mathbf{y})$$

The rest of a Taylor's series expansion

Definition 2. Consider a function $\phi \in \mathcal{D}$ and two situations $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$. A Bregman divergence $D_{\phi}: \mathcal{X}^n \times \mathcal{X}^n \longrightarrow \mathbb{R}$ is defined by:

$$D_{\phi}(\boldsymbol{x} \| \boldsymbol{y}) = \phi(\boldsymbol{x}) - \phi(\boldsymbol{y}) - (\boldsymbol{x} - \boldsymbol{y}) \cdot \nabla_{\phi}(\boldsymbol{y})$$
.

Proposition 8. Consider a function $V \in \mathcal{D}$, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a risk $\mathbf{z} \in \mathcal{X}^n$. The utility premium can be rewritten as:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) = (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \boldsymbol{1}) \left[\mathrm{E}_{\boldsymbol{\pi}(\boldsymbol{x})}(\boldsymbol{z}) - D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x}) \right].$$

where $\phi_{\boldsymbol{x}}(\boldsymbol{y}) = -\mathcal{V}(\boldsymbol{y})/(\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \boldsymbol{1})$. It is worthwhile observing that, for small risks $\boldsymbol{z} \in \mathcal{X}^n$, $D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x})$ corresponds to the risk premium.

Definition 2. Consider a function $\phi \in \mathcal{D}$ and two situations $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$. A Bregman divergence $D_{\phi}: \mathcal{X}^n \times \mathcal{X}^n \longrightarrow \mathbb{R}$ is defined by:

$$D_{\phi}(\boldsymbol{x} \| \boldsymbol{y}) = \phi(\boldsymbol{x}) - \phi(\boldsymbol{y}) - (\boldsymbol{x} - \boldsymbol{y}) \cdot \nabla_{\phi}(\boldsymbol{y})$$
.

Proposition 8. Consider a function $V \in \mathcal{D}$, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a risk $\mathbf{z} \in \mathcal{X}^n$. The utility premium can be rewritten as:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) = (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \boldsymbol{1}) \left[\mathrm{E}_{\pi(\boldsymbol{x})}(\boldsymbol{z}) - D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x}) \right].$$

where $\phi_{\boldsymbol{x}}(\boldsymbol{y}) = -\mathcal{V}(\boldsymbol{y})/(\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \boldsymbol{1})$. It is worthwhile observing that, for small risks $\boldsymbol{z} \in \mathcal{X}^n$, $D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x})$ corresponds to the risk premium.

Illustration: EU with Zero-Mean Risk

$$\max_{\boldsymbol{z} \in \mathscr{X}^n} \mathcal{J}_{\scriptscriptstyle{\mathrm{EU}}}(\boldsymbol{z}; \boldsymbol{x}) \iff \min_{\boldsymbol{z} \in \mathscr{X}^n} D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x})$$

Illustration: EU with Zero-Mean Risk

$$\max_{\boldsymbol{z} \in \mathscr{X}^n} \mathcal{J}_{\scriptscriptstyle{\mathrm{EU}}}(\boldsymbol{z}; \boldsymbol{x}) \iff \min_{\boldsymbol{z} \in \mathscr{X}^n} D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x})$$

Utility function	Related Divergence	
Quadratic	Squared Euclidean distance	
Logarithmic	Itakura-Saito divergence	
Power (CRRA)	Bregman-Csiszar divergence	
Exponential (CARA)	(see Magdalou & Nock, JET 2011)	

Illustration: EU with Zero-Mean Risk

$$\max_{\boldsymbol{z} \in \mathscr{X}^n} \mathcal{J}_{\scriptscriptstyle{\mathrm{EU}}}(\boldsymbol{z}; \boldsymbol{x}) \quad \Longleftrightarrow \quad \min_{\boldsymbol{z} \in \mathscr{X}^n} D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x})$$

Utility function	Related Divergence	If riskless initial situation:
Quadratic	Squared Euclidean distance ←	Variance
Logarithmic	Itakura-Saito divergence 👡	2nd Theil measure
Power (CRRA)	Bregman-Csiszar divergence	
Exponential (CARA)	(see Magdalou & Nock, JET 2011)	

Applications

- Generalizing Markowitz:
 - Mean-Divergence / non-Normal distributions (Briys & al., 2010)
- Generalizing Tobin's asset allocation:
 - Optimization with cumulant generating functions (Martin, 2012)
- ... and applications in other economic disciplines:
 - Measure of goodness-of-fit (Cowell, Davidson & Flachaire, 2011),
 - Measure of distance between fair an unfair income distributions (Magdalou & Nock, 2011) ... etc.

Thanks for your attention ...

Many thanks to Mr Louis!

Proposition 1. Consider a differentiable function $u : \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $c \in \mathscr{X}^n$ and a small risk $z \in \mathscr{X}^n$. We obtain the following approximation:

$$\mathcal{J}_{\text{EU}}(\boldsymbol{z}; \boldsymbol{c}) \approx u'(c) \left[\mathrm{E}(\boldsymbol{z}) - \mathcal{R}_{\text{EU}}(\boldsymbol{z}; \boldsymbol{c}) \right]$$
.

Proposition 2. Consider a twice differentiable function $u : \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $\mathbf{c} \in \mathscr{X}^n$ and a small risk $\mathbf{z} \in \mathscr{X}^n$. We obtain the following approximation for the utility premium:

$$\mathcal{J}_{\text{EU}}(oldsymbol{z};oldsymbol{c})pprox u'(c)\left[\mathrm{E}(oldsymbol{z})-rac{1}{2}\,a(c)\,\mathrm{E}(oldsymbol{z}^2)
ight]\,.$$

where a(c) = -u''(c)/u'(c) be the Arrow-Pratt coefficient of absolute risk aversion, at $c \in \mathscr{X}$.

Proposition 3. Consider a differentiable function $u: \mathscr{X} \longrightarrow \mathbb{R}$, an initial riskless situation $\mathbf{c} \in \mathscr{X}^n$ and a risk $\mathbf{z} \in \mathscr{X}^n$. The utility premium can be rewritten as:

$$\mathcal{J}_{\text{EU}}(\boldsymbol{z}; \boldsymbol{c}) = u'(c) \left[\mathrm{E}(\boldsymbol{z}) - D_{\phi_c}(\boldsymbol{c} + \boldsymbol{z} \| \boldsymbol{c}) \right] ,$$

where $\phi_c(\mathbf{y}) = -\mathcal{V}_{\text{EU}}(\mathbf{y})/u'(c)$. It is worthwhile observing that, for small risks $\mathbf{z} \in \mathcal{X}^n$, the second term in (3) within bracket is the risk premium.

Proposition 4. Consider a function $V \in \mathcal{D}$, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a risk $\mathbf{z} \in \mathcal{X}^n$. The utility premium can be rewritten as:

$$\mathcal{J}(oldsymbol{z};oldsymbol{x}) = \int_0^1 \left[oldsymbol{z} \,.\,
abla_\mathcal{V}(oldsymbol{x} + \lambda oldsymbol{z})
ight] d\lambda \,.$$

Proposition 5. Consider a function $V \in \mathcal{D}$, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a risk $\mathbf{z} \in \mathcal{X}^n$. The utility premium can be rewritten as:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) = \int_0^1 \alpha(\boldsymbol{x} + \lambda \boldsymbol{z}) P(\boldsymbol{z}; \boldsymbol{x} + \lambda \boldsymbol{z}) d\lambda$$
,

where $\alpha(\mathbf{y}) = (\nabla_{\mathcal{V}}(\mathbf{y}) \cdot \mathbf{1}) \geq 0$ by vertue of monotonicity of \mathcal{V} .

Proposition 6. Consider a function $V \in \mathcal{D}$ twice differentiable, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a small risk $\mathbf{z} \in \mathcal{X}^n$. We obtain the following approximation:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) \approx (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \mathbf{1}) \left[E_{\pi(\boldsymbol{x})}(\boldsymbol{z}) - \mathcal{R}(\boldsymbol{z}; \boldsymbol{x}) \right] .$$

Proposition 7. Consider a function $V \in \mathcal{D}$ twice differentiable, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a small risk $\mathbf{z} \in \mathcal{X}^n$. We obtain the following approximation for the utility premium:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) \approx (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \mathbf{1}) \left[E_{\pi(\boldsymbol{x})}(\boldsymbol{z}) - \frac{1}{2} \boldsymbol{z} \cdot \Sigma_{\pi(\boldsymbol{x})} \cdot \boldsymbol{z} \right],$$

where $\Sigma_{\pi(x)} = -\nabla^2_{\mathcal{V}}(x)/(\nabla_{\mathcal{V}}(x) \cdot 1)$, which depends on the Hessian matrix $\nabla^2_{\mathcal{V}}$ of \mathcal{V} .

Proposition 8. Consider a function $V \in \mathcal{D}$, an initial situation $\mathbf{x} \in \mathcal{X}^n$ and a risk $\mathbf{z} \in \mathcal{X}^n$. The utility premium can be rewritten as:

$$\mathcal{J}(\boldsymbol{z}; \boldsymbol{x}) = (\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \mathbf{1}) \left[\mathbb{E}_{\boldsymbol{\pi}(\boldsymbol{x})}(\boldsymbol{z}) - D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x}) \right].$$

where $\phi_{\boldsymbol{x}}(\boldsymbol{y}) = -\mathcal{V}(\boldsymbol{y})/(\nabla_{\mathcal{V}}(\boldsymbol{x}) \cdot \boldsymbol{1})$. It is worthwhile observing that, for small risks $\boldsymbol{z} \in \mathcal{X}^n$, $D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} || \boldsymbol{x})$ corresponds to the risk premium.

Proposition 9. Consider a function $V \in \mathcal{D}$ twice differentiable, an initial situation $\mathbf{x} \in \mathcal{X}^n$, a risk $\mathbf{z} \in \mathcal{X}^n$ and a function $\phi_{\mathbf{x}}$ as defined in Proposition 8. We have:

$$D_{\phi_{\boldsymbol{x}}}(\boldsymbol{x} + \boldsymbol{z} \| \boldsymbol{x}) = \int_{0}^{1} (1 - \lambda) \left[\boldsymbol{z} \cdot \Sigma_{\boldsymbol{\pi}(\boldsymbol{x})}(\lambda) \cdot \boldsymbol{z} \right] d\lambda.$$

where $\Sigma_{\pi(x)}(\lambda) = -\nabla_{\mathcal{V}}^2(\mathbf{x} + \lambda \mathbf{z})/(\nabla_{\mathcal{V}}(\mathbf{x}) \cdot \mathbf{1})$. For small risks $\mathbf{z} \in \mathscr{X}^n$, we have $\Sigma_{\pi(x)}(\lambda) \approx \Sigma_{\pi(x)}$, as defined in Proposition 7, and $D_{\phi_x}(\mathbf{x} + \mathbf{z} || \mathbf{x}) \approx \frac{1}{2} \mathbf{z} \cdot \Sigma_{\pi(x)} \cdot \mathbf{z}$.