Economic Consequences of Nth-Degree Risk Increases and Nth-Degree Risk Attitudes

Diego Nocetti (Clarkson University), with Elyes Jouini (CEREMADE) and Clotilde Napp (CNRS-DRM)

July 4, 2012

The Problem

$$Max_{x}E\left[U\left(K-xp,x\tilde{\mu}+\tilde{\alpha}\right)\right].$$

- What is the effect of an increase in additive -endowment- risk $(\tilde{\alpha})$ or multiplicative -asset payoff- risk $(\tilde{\mu})$ in the choice variable x?
 - General problem with R&S changes in risk: Dardanoni (1988)
 - Increases in Nth-degree risk (Ekern, 1980): Precautionary saving (Eeckhoudt and Schlesinger, 2008), precautionary labor supply (Chiu and Eeckhoudt, 2010), portfolio choice (Chiu, Eeckhoudt, Rey, 2011), Environmental uncertainty (Baiardi and Menegatti, 2011).
- Focus of extant literature: Finding *sufficient* conditions for unambiguous comparative statics of risk

• What are the necessary and sufficient conditions?

- What are the necessary and sufficient conditions?
- How are these conditions related to more primitive attitudes towards risk (e.g. simple lottery choices)?

- What are the necessary and sufficient conditions?
- How are these conditions related to more primitive attitudes towards risk (e.g. simple lottery choices)?
- Main contribution: We establish the equivalence between

- What are the necessary and sufficient conditions?
- How are these conditions related to more primitive attitudes towards risk (e.g. simple lottery choices)?
- Main contribution: We establish the equivalence between
 - 1 The direction of the response to a change in Nth-degree risk

- What are the necessary and sufficient conditions?
- How are these conditions related to more primitive attitudes towards risk (e.g. simple lottery choices)?
- Main contribution: We establish the equivalence between
 - 1 The direction of the response to a change in Nth-degree risk
 - 2 Properties of the bivariate utility function

- What are the necessary and sufficient conditions?
- How are these conditions related to more primitive attitudes towards risk (e.g. simple lottery choices)?
- Main contribution: We establish the equivalence between
 - 1 The direction of the response to a change in Nth-degree risk
 - Properties of the bivariate utility function
 - Opening Preferences towards a particular class of bivariate lottery pairs.

A Preliminary Result

Lemma

Let q be a given real valued function that is N times continuously differentiable on \mathbb{R}_+ . The following are equivalent.

- For all pair $(\widetilde{\alpha}_1, \widetilde{\alpha}_2)$ such that $\widetilde{\alpha}_2 \succcurlyeq_N \widetilde{\alpha}_1$, we have $E[q(\widetilde{\alpha}_2)] \ge E[q(\widetilde{\alpha}_1)]$.
- ② For all $x \ge 0$, we have $(-1)^N q^{(N)}(x) \ge 0$.
 - Ekern (1980) shows that 2. implies 1.
- We show the reverse implication that 1. implies 2.

Endowment Risk

Proposition

For all initial endowments, any increase in Nth-degree risk increases the optimal level of the choice variable if and only if for all (y,z) we have $(-1)^{N+1} p U^{(1,N)} (y,z) + (-1)^N \mu U^{(0,N+1)} (y,z) \geq 0$.

• Example: For the classical 2-date precautionary saving problem with U(y,z)=u(y)+v(z), we obtain that an increase in Nth-degree risk increases saving if and only if $(-1)^N v^{(N+1)} \geq 0$. The "if" part of this result has been established by Eeckhoudt and Schlesinger (2008).

Uncertainty over the asset's payoff

Examples: saving with rate of return risk, labor supply with risky wages, portfolio choice

Proposition

For all initial endowments, any increase in Nth-degree risk over the asset's payoff increases the optimal level of the choice variable if and only if for all (y, z) we have $(-1)^N U^{(1,N)}(y, z) \leq 0$, $\left(-1
ight)^{N}\left(zU^{\left(0,N+1
ight)}\left(y,z
ight)+NU^{\left(0,N
ight)}\left(y,z
ight)
ight)\geq0$ and

$$(-1)^{N} \left(zU^{(0,N+1)}(y,z) + NU^{(0,N)}(y,z) \right) \ge 0$$
 as $(-1)^{N} U^{(0,N)}(y,z) \ge 0$.

• Note *necessary* condition $(-1)^N U^{(0,N)}(y,z) \ge 0$: No consumer with mixed risk aversion in z (i.e. with $(-1)^N U^{(0,N)}(y,z) < 0$) always increases the demand for the asset!!

Uncertainty over the asset's payoff

Examples: saving with rate of return risk, labor supply with risky wages, portfolio choice

Proposition

For all initial endowments, any increase in Nth-degree risk over the asset's payoff increases the optimal level of the choice variable if and only if for all (y,z) we have $(-1)^N U^{(1,N)}(y,z) \leq 0$, $(-1)^N \left(zU^{(0,N+1)}(y,z) + NU^{(0,N)}(y,z)\right) \geq 0$ and

$$(-1)^{N} \left(zU^{(0,N+1)} (y,z) + NU^{(0,N)} (y,z) \right) \ge$$

$$(-1)^{N} U^{(0,N)} (y,z) \ge 0.$$

- Note *necessary* condition $(-1)^N U^{(0,N)}(y,z) \ge 0$: No consumer with mixed risk aversion in z (i.e. with $(-1)^N U^{(0,N)}(y,z) \le 0$) always increases the demand for the asset!!
- Measures of partial or relative risk attitudes cannot be applied to characterize *increases* in the choice variable for all initial endowment levels. Usually *assume* $(-1)^N U^{(0,N)}(y,z) \leq 0$.

Uncertainty over the asset's payoff

- It is true, however, that the optimal level of the choice variable decreases if we reverse the signs of the conditions above
 - For example, if relative prudence is positive and lower than 2 in the saving problem with separable utility and a mean preserving increase in return risk.

Lottery Choices and Optimal Exposure to Risk

Following the literature on apportioning of risks (e.g.*), we propose concepts of directional Nth-degree risk aversion that are characterized via preferences for harms disaggregation across outcomes of 50-50 bivariate lotteries.

* Eeckhoudt and Schlesinger (2006), Eeckhoudt, Rey, and Schlesinger (2007), Eeckhoudt, Schlesinger, and Tsetlin (2009), and Chiu, Eeckhoudt, and Rey (2011)

A location experiment

Starting from the 50-50 lottery $[(y,z+\widetilde{\alpha}_1);(y,z+\widetilde{\alpha}_2)]$, where $\widetilde{\alpha}_2 \succcurlyeq_N \widetilde{\alpha}_1$, the DM must locate the bundles $(x_1\rho_y,x_1\rho_z)$ and $(x_2\rho_y,x_2\rho_z)$, with $x_2>x_1$, across the outcomes of the lottery. To which outcome will she affect each bundle?

Definition

We say that preferences display Nth-degree risk aversion in the direction of $\left(\rho_y,\rho_z\right)$ if, for all $(y,z,x_1,x_2)\in\mathbb{R}_+^4$ such that $x_2>x_1$ and for all pair of random variables $(\widetilde{\alpha}_1,\widetilde{\alpha}_2)$ such that $\widetilde{\alpha}_2\succcurlyeq_N\widetilde{\alpha}_1$, we have

$$\left[\left(y + x_2 \rho_y, z + x_2 \rho_z + \widetilde{\alpha}_2 \right); \left(y + x_1 \rho_y, z + x_1 \rho_z + \widetilde{\alpha}_1 \right) \right]
\succ \left[\left(y + x_1 \rho_y, z + x_1 \rho_z + \widetilde{\alpha}_2 \right); \left(y + x_2 \rho_y, z + x_2 \rho_z + \widetilde{\alpha}_1 \right) \right]. \tag{1}$$

• For example, if $\rho_y>0$ and $\rho_y>0$, $\left(x_1\rho_y,x_1\rho_z\right)$ is the relatively "bad bundle", which a DM displaying the preferences in (1) prefers to locate with the relatively "good risk" $\widetilde{\alpha}_1$

Corollary

The following properties are equivalent:

- For all initial endowments, any increase in Nth-degree risk over the second attribute initial endowment increases the optimal level of the choice variable
- ② For all (y, z) we have $(-1)^{N+1} pU^{(1,N)}(y, z) + (-1)^{N} \mu U^{(0,N+1)}(y, z) \ge 0.$
- The preferences represented by U display Nth-degree risk aversion in the direction of $\left(\rho_y,\rho_z\right)=(-p,\mu)$.

In the case with $\rho_y=0$ and $\rho_z>0$, and for a fixed value of y, Eeckhoudt et al. (2009) established that 2. implies 3. The contribution of our proposition is twofold.

- First, our bivariate notion of directional Nth-degree risk aversion is more encompassing.
- Second, the proposition characterizes a unique set of expected utility maximizers that display Nth-degree risk aversion in the direction of $\left(\rho_y,\rho_z\right)$.
- This is important because, without the "only if" part, we would not be able to establish a direct link between lottery choices and optimal exposure to risk, i.e. the equivalency of 3. and 1.

Multiplicative risks

Now $x_1\rho_z$ and $x_2\rho_z$ scale the risks $\widetilde{\alpha}_1$ and $\widetilde{\alpha}_2$. The consumer evaluates the following lotteries:

$$L_{1} = \left[\left(y + x_{2} \rho_{y}, z + x_{2} \rho_{z} \widetilde{\alpha}_{2} \right); \left(y + x_{1} \rho_{y}, z + x_{1} \rho_{z} \widetilde{\alpha}_{1} \right) \right]$$

$$L_{2} = \left[\left(y + x_{1} \rho_{y}, z + x_{1} \rho_{z} \widetilde{\alpha}_{2} \right); \left(y + x_{2} \rho_{y}, z + x_{2} \rho_{z} \widetilde{\alpha}_{1} \right) \right].$$

$$(2)$$

Definition

We say that preferences display Nth-degree multiplicative-risk attraction (resp aversion) in the direction of $\left(\rho_{y},\rho_{z}\right)$ if, for all (y,z,x_{1},x_{2}) such that $x_{2}>x_{1}\geq0$ and for all pair of random variables $(\widetilde{\alpha}_{1},\widetilde{\alpha}_{2})$ such that $\widetilde{\alpha}_{2}\succcurlyeq_{N}\widetilde{\alpha}_{1}$, we have $L_{1}\succ L_{2}$ (resp. $L_{2}\succ L_{1}$).

Multiplicative risks

Corollary

The following properties are equivalent:

- For all initial endowments and all asset's cost and payoff, an increase in Nth-degree risk over the asset's payoff increases (resp. decreases) the optimal level of the choice variable
- ② For all (y, z) we have $(-1)^N U^{(1,N)}(y, z) \le 0$ (resp. ≥ 0), $(-1)^N U^{(0,N)}(y, z) \ge 0$ (resp. ≤ 0) and $(-1)^N \left(zU^{(0,N+1)}(y,z) + NU^{(0,N)}(y,z)\right) \ge 0$ (resp. ≤ 0).
- **③** The preferences represented by U display Nth-degree multiplicative-risk attraction (resp. aversion) in the direction of $\left(\rho_{y},\rho_{z}\right)\in\mathbb{R}_{-}\times\mathbb{R}_{+}$.

Thank you!!!