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IIInnntttuuuiiitttiiiooonnn   
 
First-order risk aversion is not very intuitive. 

This is like having only one Chimay at the Grande Place de Mons!      
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Second-order (or 2 Chimay) is more acceptable for EU fans because it 
introduces some variance… 
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For more than two, I refer you to Eeckhoudt and Schlesinger. 
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MMMoootttiiivvvaaatttiiiooonnn 

The concepts of second-order and first-order risk aversion were coined by 
Segal and Spivak (1990). 

For an actuarially fair random variable ε , second-order risk aversion 
means that the risk premium the agent is willing to pay to avoid kε  is 

proportional to 2k  as → 0k . 

Under first-order risk aversion, the risk premium is proportional to k. 
With EU model, however: 

( ) ( )
( )επ σ≈ −



//2
2

/2

U xk
k

U x
 

( ) ( )
( )

επ σ π

=

∂ ∂
= − ≠ =

∂ ∂


2 //2

2 /
0

0; 0.
2 k

k U x

k U x k
  



 

5 
 

 

The reason differentiable EU is only second order is that the derivative is 
taken around the certainty line (k = 0 means no risk), and, in small 
neighborhoods, differentiable functions behave like linear functions (in the 
present context, expected value, hence risk neutrality). 

However, in many applications, first-order risk aversion implies that small 
risks matter. Because expected utility theory is limited to second-order risk 
aversion, it cannot take into account many real world results or 
phenomena. 

Loomes and Segal (1994) extend this notion to preferences about 
uninsured events, such as independent additive background risks. 

The conditional risk premium is the amount of money the decision maker 
is willing to pay to avoid ε  in the presence of y .  
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Utility functions in the von Neumann-Morgenstern expected utility class 
still exhibit only second-order conditional risk aversion, with independent 
additive background risks. 

In this paper, we extend the concepts of orders of conditional risk aversion 
to orders of conditional dependent risk aversion, for which ε  and the 
background risk y  are dependent and y  may enter the agent’s utility 

function arbitrarily ( ) ( ) ( )0 , , ,+ +     U w k y U wy U w yε . 

We propose conditions on the stochastic structure between ε  and y  that 

guarantee first-order conditional dependent risk aversion for expected 
utility agents with a certain type of risk preference, i.e., with correlation 
aversion, ≠12 0,U  a concept developed by Louis Eeckhoudt in many 

collaborations.  
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Different economic examples are discussed in the last part of the 
presentation. One of them is the link between market incompleteness, asset 
pricing and the equity premium puzzle.  
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TTThhheee   mmmooodddeeelll   wwwiiittthhhooouuuttt   bbbaaaccckkkgggrrrooouuunnnddd   rrriiissskkk   
For an agent with utility function u, Ey , kε  and non-random initial wealth 

w, the risk premium ( )kπ  must satisfy the following condition: 

( )( ) ( )+ − = +   , ,u w Ek k Ey Eu w k Eyε π ε . 

Segal and Spivak (1990) give the following definitions of first and second-
order risk aversion: 

Definition 2.1  (Segal and Spivak, 1990) The agent’s attitude towards risk 
at w is of first order if for every ε  with ( )= ≠ 0, ' 0 0Eε π . 

Definition 2.2  (Segal and Spivak, 1990) The agent’s attitude towards risk 
at w is of second order if for every ε  with ( )= = 0, ' 0 0Eε π  but ( ) ≠'' 0 0π .  
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(a) If a risk averse von Neumann-Morgenstern utility function u is not 
differentiable at w but has well-defined and distinct left and right 
derivatives at w, then the agent exhibits first-order risk aversion at w. 

( )
( ) ( )

ε

π ε ε
+

+

>
= −

 ∂
= − ∂  

∫
/

/ 0
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U w
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If not differentiable at w  and risk averse, ( ) ( )+ −</ /U w U w  and 
∂

≠
∂

0
k
π

. 

(b) If a risk averse von Neumann-Morgenstern utility function u is twice 
differentiable at w with ≠11 0u , then the agent exhibits only second-

order risk aversion at w. 

Suppose = 0w w .  
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In our approach, we suppose that w is random with, for example, 

( )− +0 0,w x w x . 

Suppose that risk ke is added to risk w and the two are not independent. 
For example, suppose that ( )= − +0 0, ; ,w w x H w x T  and ( )= − , ; ,ke k H k T  

(same H and T). 

When we take the derivative of the risk premium, we take derivatives of 
the utility function at two different points: −0w x  and w0 + x. Since these 

derivatives are typically different, the derivative of the risk premium with 
respect to k will not be zero but a function of the difference between the 
two derivatives of the utility function.  
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OOOrrrdddeeerrr   ooofff   cccooonnndddiiitttiiiooonnnaaalll   rrriiissskkk   aaavvveeerrrsssiiiooonnn   
For an agent with utility function u and initial wealth w, the conditional risk 
premium ( )c kπ  must satisfy the following condition: 

( )( ) ( )+ − = +   , ,cEu w Ek k y Eu w k yε π ε  

where ε  and y  are independent. 

Definition 3.1  (Loomes and Segal, 1994) The agent’s attitude towards risk 
at w is first-order conditional risk aversion if for every ε  with 

( )= ≠ 0, 0 0I
cEε π . 

Definition 3.2  (Loomes and Segal, 1994) The agent’s attitude towards risk 
at w is second-order conditional risk aversion if for every ε  with 

( )= = 0, 0 0I
cEε π  but ( ) ≠0 0II

cπ .  
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OOOrrrdddeeerrr   ooofff   cccooonnndddiiitttiiiooonnnaaalll   dddeeepppeeennndddeeennnttt   rrriiissskkk   
aaavvveeerrrsssiiiooonnn   
For an agent with utility function u and initial wealth w, the conditional 
dependent risk premium ( )cd kπ  must satisfy the following condition: 

( )( ) ( )+ − = +   , ,cdEu w Ek k y Eu w k yε π ε  

where ε  and y  are not necessarily independent. 

Definition 4.1  The agent’s attitude towards risk at w is first-order 
conditional dependent risk aversion if for every ε , ( ) ( ) ( )− =cd ck k O kπ π . 

Definition 4.2  The agent’s attitude towards risk at w is second-order 

conditional dependent risk aversion if for every ε , ( ) ( ) ( )− = 2 .cd ck k O kπ π   
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EEExxxpppeeeccctttaaatttiiiooonnn   dddeeepppeeennndddeeennnccceee   
Wright (1987) introduced the concept of expectation dependence in the 
economic literature. In the following definition, we use this definition of 

expectation dependence ( )( ).ED y  

Definition 4.3  If 

( ) ( ) = − ≤ ≥    0ED y E E y yε ε  for all y, 

and there is at least some 0y  for which a strong inequality holds, 

then ε  is positive expectation dependent on y . Similarly, ε  is negative expectation 

dependent on y  if the equation above holds with the inequality sign reversed. The 

family of all distributions F satisfying the equation will be denoted by 1Η  and the 

family of all negative expectation dependent distributions will be denoted by 1Ι .  
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Lemma 4.4 

( )
( ) ( ) ( )

( ) ( )
∞

−∞= − +∫ 



12 2

1

,
.

,
y

cd

ED y u w y F y dy
k k O k

Eu w y
π

 

If ( ) = 0ED y  for all y, ( ) ( )π = 2
cd k O k . 

If =12 0u  for all w,y, ( ) ( )π = 2
cd k O k . 
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Proposition 4.5 

(i) If ε  is positive expectation dependent on y  and <12 0u , then the 

agent’s attitude towards risk is first-order conditional dependent risk 

aversion and ( ) ( ) ( )− =cd ck k O kπ π ; 

(ii) If ε  is negative expectation dependent on y  and >12 0u , then the 

agent’s attitude towards risk is first-order conditional dependent risk 

aversion and ( ) ( ) ( )− =cd ck k O kπ π ; 

(iii) If ε  is positive expectation dependent on y  and >12 0u , then the 

agent’s attitude towards risk is first-order conditional dependent risk 

aversion and ( ) ( ) ( )− = −cd ck k O kπ π ; 

(iv) If ε  is negative expectation dependent on y  and <12 0u , then the 

agent’s attitude towards risk is first-order conditional dependent risk 

aversion and ( ) ( ) ( )− = −cd ck k O kπ π .  
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Example 1 
Consider the additive background risk case: 

( ) ( )= +,u x y U x y . 

Example 2 
Consider the multiplicative background risk case: 

( ) ( )=,u x y U xy . 

In both cases, we need ≠11 0U  instead of ≠12 0u . 
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FFFiiirrrsssttt---ooorrrdddeeerrr   cccooonnndddiiitttiiiooonnnaaalll   dddeeepppeeennndddeeennnttt   rrriiissskkk   
aaavvveeerrrsssiiiooonnn   aaannnddd   NNNttthhh---ooorrrdddeeerrr   eeexxxpppeeeccctttaaatttiiiooonnn   
dddeeepppeeennndddeeennnttt   bbbaaaccckkkgggrrrooouuunnnddd   rrriiissskkk   
Proposition 5.3 

(i) If ( )∈ , Nyε Η  and ( ) ( )−− ≤112
1 0m

m
u  for = +1,2,..., 1m N , then the agent’s 

attitude towards risk is first-order conditional dependent risk aversion 

and ( ) ( ) ( )− =cd ck k O kπ π ; 

(ii) If ( )∈ , Nyε Ι  and ( ) ( )−− ≥112
1 0m

m
u  for = +1,2,..., 1m N , then the agent’s 

attitude towards risk is first-order conditional dependent risk aversion 

and ( ) ( ) ( )− =cd ck k O kπ π ; 
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(iii) If ( )∈ , Nyε Η  and ( ) ( )−− ≥112
1 0m

m
u  for = +1,2,..., 1m N , then the agent’s 

attitude towards risk is first-order conditional dependent risk aversion 

and ( ) ( ) ( )− = −cd ck k O kπ π ; 

(iv) If ( )∈ , Nyε Ι  and ( ) ( )−− ≤112
1 0m

m
u  for = +1,2,..., 1m N , then the agent’s 

attitude towards risk is first-order conditional dependent risk aversion 

and ( ) ( ) ( )− = −cd ck k O kπ π .  
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AAAppppppllliiicccaaatttiiiooonnnsss:::   TTThhheee   iiimmmpppooorrrtttaaannnccceee   ooofff   
bbbaaaccckkkgggrrrooouuunnnddd   rrriiissskkk   iiinnn   rrriiissskkk   dddiiivvveeerrrsssiiifffiiicccaaatttiiiooonnn   aaannnddd   
pppooorrrtttfffooollliiiooo   ccchhhoooiiiccceee   
TTThhheee   eeeffffffeeecccttt   ooofff   iiinnntttrrroooddduuuccciiinnnggg   aaa   bbbaaaccckkkgggrrrooouuunnnddd   rrriiissskkk   ooonnn   eeeqqquuuiiillliiibbbrrriiiuuummm   aaasssssseeettt   
ppprrriiiccceee   

Let P represent the price of the risky asset and β  denote the demand for 
additional units of x . We assume the agent faces the following optimization 
program: 

( )( )
β

β β∈ + + − * arg max Eu w x x P . 

Gollier and Schlesinger (2002) show that the equilibrium asset price (at 
β =* 0) is 

( )
( )

 + =
+

 



/

/*
E xu w x

P
Eu w x

.      



 

21 
 

 

 

One way to explain the equity premium puzzle in the theoretical model is 
to recognize that there are other sources of risk on final wealth than the 
riskiness of assets returns. 

To capture the effects of these types of risks, we introduce a labor income 
risk, y , which cannot be fully insured. This yields the following organization 

program: 

( )( )
β

β β∈ + + − +  * arg max Eu w x x P y  

and the modified equilibrium asset price: 

( )
( )

 + + =
+ +

  

 

/

/**
E xu w x y

P
Eu w x y
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We want to compare P** with P*. 

Proposition 5.4 

Define ε= +  x x k  with ε = 0.E  Suppose > 0x  and > 0y  almost surely. 

(i) If ε  and y  are independent, then ( )− = 2** *P P O k .
 

This is the result of Constantinides and Duffie (JPE, 1996) and Krueger 
and Lusing (JET, 2010). 

(ii) If ε  is positive expectation dependent on y  and relative prudence 

coefficient is larger than 
( )
( )

 
− ≥ ∀ 
 

///

//2 2  x
u x

x for
u x

, then 

( )− =** * .P P O k       
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BBBaaaccckkkgggrrrooouuunnnddd   rrriiissskkk   aaannnddd   rrriiissskkk   ccclllaaassssssiiifffiiicccaaatttiiiooonnn   

Common wisdom suggests that diversification is a good way to reduce risk. 

Consider a set of n lotteries whose net gains are characterized by 
  1 2, ,..., nε ε ε  which are assumed to be independent and identically 

distributed. Define the sample mean 
=

= ∑ 

1
1

n

ii
nε ε  then, when w is not 

random, 

( )( ) ( )+ − = +   1 , ,cEu w E n y Eu w yε π ε , 

where ε  and y  are independent, and 

( )( ) ( )+ − = +   1 , ,cdEu w E n y Eu w yε π ε , 

where ε  and y  are not necessary independent.  
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From 

( ) ( ) ( ) ( ) ( )= + + =/ 2 20 0 ,c c ck k O k O kπ π π  

we know that 

( ) ( )= 21 1c n O nπ . 

When 

( )→∞ →, 1 0cn nπ  

because diversification is an efficient way to reduce risk.  
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Proposition 6.1 

(i) If ( )∈ , Nyε Η  and ( ) ( )−− ≤112
1 0m

m
u  for = +1,2,..., 1m N , then 

( ) ( )=1 1cd n O nπ ; 

(ii) If ( )∈ , Nyε Ι  and ( ) ( )−− ≥112
1 0m

m
u  for = +1,2,..., 1m N , then 

( ) ( )=1 1cd n O nπ ; 

(iii) If ( )∈ , Nyε Η  and ( ) ( )−− ≥112
1 0m

m
u  for = +1,2,..., 1m N , then 

( ) ( )= −1 1cd n O nπ ; 

(iv) If ( )∈ , Nyε Ι  and ( ) ( )−− ≤112
1 0m

m
u  for = +1,2,..., 1m N , then 

( ) ( )= −1 1cd n O nπ .  
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Suppose that the government undertakes an investment with returns 
represented by B, which are independent of A . Let = B EB and = − X B B .  

Consider a specific taxpayer and denote his fraction of this investment by s 
with ≤ ≤0 1s . Suppose that each taxpayer has the same tax rate and that 
there are n taxpayers, then =1s n. 

Arrow and Lind (1970) show that: 

( )  + + + = +   
   



 

B B X
EU A r n EU A

n n
 

where ( )r n  is the risk premium of the representative individual. 
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Proposition 6.1 allows us to investigate the case where A  and B are 
dependent Since the previous equation can be rewritten as: 

( )   + + = +   
   



 

B B
EU A r n EU A

n n
, 

from Proposition 6.1, we obtain: 

Proposition 6.2 

(i) If ( )∈ , NB A Η  and ( ) ( )− ≤1 0
m mU  for = +1,2,..., 1m N , then 

( ) ( )= − 1r n O n ; 

(ii) If ( )∈ , NB A Ι  and ( ) ( )− ≤1 0
m mU  for = +1,2,..., 1m N , then 

( ) ( )= 1 .r n O n     
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SSStttoooccckkk   mmmaaarrrkkkeeettt   pppaaarrrtttiiiccciiipppaaatttiiiooonnn   pppuuuzzzzzzllleee   

Our results can offer a new explanation for the stock market participation 
puzzle by adding first-order risk aversion to the standard expected utility 
framework and by proposing expectation dependence, which is a more 
general definition of dependence than covariance. 

 

OOOttthhheeerrr   eeexxxaaammmpppllleeesss   

♦ Naïve diversified portfolio model 

♦ Insurance supply 

♦ Lottery supply    
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CCCooonnncccllluuusssiiiooonnn   
In this study, we have extended the concept of first-order conditional risk 
aversion to first-order conditional dependent risk aversion. We have 
shown that first-order conditional dependent risk aversion can appear in 
the framework of the expected utility function hypothesis and may explain 
the equity premium puzzle. 

Recent studies show that background risk is significant to explain portfolio 
choices. The decision of a household to participate in the stock market is a 
function of many random factors such as labour income, housing risk, 
private business income, and health. 

Our results can be used to explain these empirical results in this literature. 


