The Cake-Eating problem: Non-linear sharing rules

Eugenio Peluso¹ and Alain Trannoy²

Conference In Honor of Louis Eeckhoudt

June 2012

¹Department of Economics, University of Verona (Italy)

²Aix-Marseille Schoolf of Economics, EHESS

Outline of the talk

The model

Outline of the talk

- The model
- The stories

Outline of the talk

- The model
- 2 The stories
- The results

The Model

A program P with identical utility

$$\max_{\mathbf{x}} \sum_{i=1}^{n} a_{i} v(x_{i})$$
s.t. $\mathbf{p}' \mathbf{x} = y$. (1)

- $v: \mathbb{R}_+ \to \mathbb{R}$ strictly increasing and concave, satisfies "Inada conditions" and is the same for each attribute;
- The goods are ranked such that the "kernel prices" $\frac{p_i}{a_i}$ are decreasing with i

The aim of the paper

$$\frac{v'(x_i^*)}{v'(x_j^*)} = \frac{p_i a_j}{p_j a_i} = \pi_{ij} \ \forall i, j$$

$$x_i^* < x_j^* \text{ iff } \pi_{ij} > 1 \Leftrightarrow i < j \tag{2}$$

- Exploring integrability conditions
- How is the shape of the demand of the least demanded good related to the properties of the utility function?

• Individual wealth sharing:

Arrow Debreu securities, Standard Portofolio (tax evasion n=2)

- Individual wealth sharing:
- Investor who allocates wealth over assets carrying different risk Arrow Debreu securities, Standard Portofolio (tax evasion n=2)

- Individual wealth sharing:
- Investor who allocates wealth over assets carrying different risk
 Arrow Debreu securities, Standard Portofolio (tax evasion n=2)
- Consumer choosing a consumption plan over n periods

- Individual wealth sharing:
- Investor who allocates wealth over assets carrying different risk
 Arrow Debreu securities, Standard Portofolio (tax evasion n=2)
- Consumer choosing a consumption plan over n periods
- Individual deciding her optimal insurance coverage (n=2)

- Individual wealth sharing:
- Consumer choosing a consumption plan over n periods
- Individual deciding her optimal insurance coverage (n=2)
- Group sharing problem(same utility but unequal weights)

- Individual wealth sharing:
- Consumer choosing a consumption plan over n periods
- Individual deciding her optimal insurance coverage (n=2)
- Group sharing problem(same utility but unequal weights)
- Household sharing a given wealth among its members

- Individual wealth sharing:
- Investor who allocates wealth over assets carrying different risk
 Arrow Debreu securities, Standard Portofolio (tax evasion n=2)
- Consumer choosing a consumption plan over n periods
- Individual deciding her optimal insurance coverage (n=2)
- Group sharing problem(same utility but unequal weights)
- Household sharing a given wealth among its members
- Group sharing risks

• 1- Arrow Debreu contingency claims

• 1- Arrow Debreu contingency claims

	states	prob	demand.	price
•	1	а	<i>x</i> ₁	p_1
	2	1 - a	<i>x</i> ₂	p_2

• 1- Arrow Debreu contingency claims

	states	prob	demand.	price
•	1	а	<i>x</i> ₁	p_1
	2	1 — a	<i>x</i> ₂	p ₂

• y = initial wealth, v = state independent utility

• 1- Arrow Debreu contingency claims

	states	prob	demand.	price
•	1	а	<i>x</i> ₁	p_1
	2	1 — a	<i>X</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand of the contingent claim with "kernel price"} \frac{p_1}{a}$.

• 1- Arrow Debreu contingency claims

	states	prob	demand.	price
•	1	а	<i>x</i> ₁	p_1
	2	1 — a	<i>X</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand of the contingent claim with "kernel price"} \frac{p_1}{a}$.

2- Intertemporal consumption choice

• 1- Arrow Debreu contingency claims

	states	prob	demand.	price
•	1	а	<i>x</i> ₁	p_1
	2	1 — a	<i>x</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand of the contingent claim with "kernel price"} \frac{p_1}{a}$.
- 2- Intertemporal consumption choice
- Ingredients: Initial wealth y, interest rate r, intertemporal separable utility $v(x_1) + \beta v(x_2)$ with discount factor $\beta \leq 1$. Then

• 1- Arrow Debreu contingency claims

	states	prob	demand.	price
•	1	а	<i>x</i> ₁	p_1
	2	1 — a	<i>x</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand of the contingent claim with "kernel price"} \frac{p_1}{a}$.
- 2- Intertemporal consumption choice
- Ingredients: Initial wealth y, interest rate r, intertemporal separable utility $v(x_1) + \beta v(x_2)$ with discount factor $\beta \leq 1$. Then

	time	weights	prices	
•	1	$a=rac{1}{1+eta}$	1	١.
	2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$	

• Intra-household allocation: No prices, Samuelson's household welfare function.

$$\max_{x_1,x_2} av(x_1) + (1-a)v(x_2) \ ext{s.t.} \quad p_1x_1 + p_2x_2 = y$$

 Intra-household allocation: No prices, Samuelson's household welfare function.

$$\max_{x_1,x_2} \mathit{av}(x_1) + (1-\mathit{a})\mathit{v}(x_2) \ ext{s.t.} \quad \mathit{p}_1\mathit{x}_1 + \mathit{p}_2\mathit{x}_2 = \mathit{y}$$

• **Risk-sharing:** $\theta \in \Theta$ states of the world, risk: $F: \Theta \to [0,1]$, while v(x) are the identical vNM utility of the two individuals.

$$\max_{x_1, x_2} a \int_{\Theta} v(x_1(\theta)) dF(\theta) + (1 - a) \int_{\Theta} v(x_2(\theta)) dF(\theta), \text{ with } a \in (0, \frac{1}{2}]$$
 s.t. $z_1(\theta) + z_2(\theta) = y(\theta) = x_1(\theta) + x_2(\theta), \ \forall \theta \in \Theta; \ x_1 \geq 0; \ x_2 \geq 0.$

• Intra-household allocation: No prices, Samuelson's household welfare function.

$$\max_{x_1,x_2} \ av(x_1) + (1-a)v(x_2)$$
 s.t. $p_1x_1 + p_2x_2 = y$

• **Risk-sharing:** $\theta \in \Theta$ states of the world, risk: $F: \Theta \to [0,1]$, while v(x) are the identical vNM utility of the two individuals.

$$\max_{x_1, x_2} a \int_{\Theta} v(x_1(\theta)) dF(\theta) + (1 - a) \int_{\Theta} v(x_2(\theta)) dF(\theta), \text{ with } a \in (0, \frac{1}{2}]$$

s.t. $z_1(\theta) + z_2(\theta) = y(\theta) = x_1(\theta) + x_2(\theta), \forall \theta \in \Theta; x_1 \ge 0; x_2 \ge 0.$

• Borch (1960): the consumption in each state of the world only depends on the total wealth in that state. Wealth is not transferable from one state to another.

• Intra-household allocation: No prices, Samuelson's household welfare function.

$$\max_{x_1,x_2} av(x_1) + (1-a)v(x_2) \ ext{s.t.} \quad p_1x_1 + p_2x_2 = y$$

• **Risk-sharing:** $\theta \in \Theta$ states of the world, risk: $F: \Theta \to [0,1]$, while v(x) are the identical vNM utility of the two individuals.

$$\max_{x_1, x_2} a \int_{\Theta} v(x_1(\theta)) dF(\theta) + (1 - a) \int_{\Theta} v(x_2(\theta)) dF(\theta), \text{ with } a \in (0, \frac{1}{2}]$$

s.t. $z_1(\theta) + z_2(\theta) = y(\theta) = x_1(\theta) + x_2(\theta), \forall \theta \in \Theta; x_1 \ge 0; x_2 \ge 0.$

- Borch (1960): the consumption in each state of the world only depends on the total wealth in that state. Wealth is not transferable from one state to another.
- Solving the risk-sharing problem then reduces to solve the intra-household allocation for any feasible *y*.

Integrability conditions for any n (exposition for n=2)

• We normalize a=1/2, $p_1=p>1$ and $p_2=1$. Then $x_1^*(y,\mathbf{p},a)\equiv x(y,p)$.

Integrability conditions for any n (exposition for n=2)

- We normalize a=1/2, $p_1=p>1$ and $p_2=1$. Then $x_1^*(y,\mathbf{p},a)\equiv x(y,p)$.
- Let h(x, p) be the demand of good 2 as a function of good 1 and p.

Integrability conditions for any n (exposition for n=2)

- We normalize a=1/2, $p_1=p>1$ and $p_2=1$. Then $x_1^*(y,\mathbf{p},a)\equiv x(y,p)$.
- Let h(x, p) be the demand of good 2 as a function of good 1 and p.
- h(x, p) = g(x, p) px, where g(x, p) is the inverse function of x(y, p) wrt y using the fact that the two goods are normal.

Integrability conditions

Proposition

A function $x(y,\pi)$, strictly increasing with y and decreasing with p is a solution of program \mathbf{P} for all $y \in \mathbb{R}_+$ and for all p > 1, iff there exist a positive function A(x) such that:

$$\frac{h_{x}(x,p)}{h_{p}(x,p)} = A(x)p \tag{3}$$

Then A represents the Arrow-Pratt absolute risk aversion coefficient, that is $v'(x)=\exp\int\limits_{-\infty}^x A(s)ds$.

Integrability conditions: examples

- $x_1^*(y,p) = \frac{1}{2p}y^{\gamma}$, for $\gamma < 1$ does not satisfy the integrability conditions.
- If $h(x,p)=(1+x)^p-1$, we get $\frac{h_x}{h_p}=\frac{p}{(1+x)\ln(1+x)}$. Then h is the solution of ${\bf P}$ with the log-integral utility function $v(x)=\int\limits_{-\ln(1+s)}^x ds$
- If $h(x,p) = \ln(1+e^x-p) \ln p$, we get $\frac{h_x}{h_p} = \frac{e^x}{1+e^x}p$, solution of **P** under the linex utility function $v(x) = x e^{-x}$.

The "group" case

• Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by **P** beyond $x_1 < x_2$ for all y?

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by **P** beyond $x_1 < x_2$ for all y?
- Answer: No for n = 2,

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by **P** beyond $x_1 < x_2$ for all y?
- Answer: No for n = 2,
- Answer: Yes for n > 2 but ? .

Integrability without prices

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by **P** beyond $x_1 < x_2$ for all y?
- Answer: No for n = 2,
- Answer: Yes for n > 2 but ? .

Proposition

Integrability without prices

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by **P** beyond $x_1 < x_2$ for all y?
- Answer: No for n = 2,
- Answer: Yes for n > 2 but ? .

Proposition

• For all f(y) and $a \in (0, 1/2)$, there exists a continuous differentiable utility function v such that, for all $y \in \mathbb{R}_+$, from Program (1) we get $x_1^*(y;a)) = f(y)$.

The sharing function

• A sharing function f maps wealth y into the quantity consumed or invested in one good $x_1 = f(y)$

The sharing function

- A sharing function f maps wealth y into the quantity consumed or invested in one good $x_1 = f(y)$
- From $p_1x_1 + p_2x_2 = y$ we know $x_1 = x_2 \implies x_1 = \frac{y}{p_1 + p_2}$

Three classes of diverging sharing functions

Type 1: Class \mathcal{M} , or "Moving Away" sharing functions

Type 2: Class \mathcal{P} , or "progressive" sharing functions

Type 3: Class C, or "concave"

2.d Remark

The classes are nested

$$\mathcal{C} \subset \mathcal{P} \subset \mathcal{M}$$

Proposition

- Suppose that $x_1^*(y;\cdot)$ is twice continuously differentiable. Then:
- i) $v \in DARA \iff x_1^*(y;\cdot) \in M$ for all $\pi \ge 1$
- ii) $v \in DRRA \iff x_1^*(y;\cdot) \in P$ for all $\pi \geq 1$.
- iii) $v \in CT \iff x_1^*(y; \cdot) \in C$ for all $\pi \geq 1$.

Where

Proposition

- Suppose that $x_1^*(y;\cdot)$ is twice continuously differentiable. Then:
- i) $v \in DARA \iff x_1^*(y;\cdot) \in M$ for all $\pi \ge 1$
- ii) $v \in DRRA \iff x_1^*(y;\cdot) \in P$ for all $\pi \geq 1$.
- iii) $v \in CT \iff x_1^*(y; \cdot) \in C$ for all $\pi \ge 1$.

Where

DARA = Decreasing Absolute Risk Aversion

Proposition

- Suppose that $x_1^*(y;\cdot)$ is twice continuously differentiable. Then:
- i) $v \in DARA \iff x_1^*(y; \cdot) \in M$ for all $\pi \ge 1$
- ii) $v \in DRRA \iff x_1^*(y; \cdot) \in P$ for all $\pi \ge 1$.
- iii) $v \in CT \iff x_1^*(y; \cdot) \in C$ for all $\pi \ge 1$.

Where

- DARA = Decreasing Absolute Risk Aversion
- DRRA = Decreasing Relative Risk Aversion

Proposition

- Suppose that $x_1^*(y;\cdot)$ is twice continuously differentiable. Then:
- i) $v \in DARA \iff x_1^*(y;\cdot) \in M$ for all $\pi \ge 1$
- ii) $v \in DRRA \iff x_1^*(y; \cdot) \in P$ for all $\pi \ge 1$.
- iii) $v \in CT \iff x_1^*(y; \cdot) \in C$ for all $\pi \geq 1$.

Where

- DARA = Decreasing Absolute Risk Aversion
- DRRA = Decreasing Relative Risk Aversion
- CT = Convex Tolerance

An extension to a "sequential" setting

Proposition (3bis)

Let **P** represent an intertemporal consumption choice, with n=T periods and initial wealth y. Let us consider the associated dynamic programming problem where at time t the consumer chooses the optimal consumption pattern c_t , c_{t+1} , ..., c_T of the remaining T-t periods as a function of the current wealth y_t . Then the conditions of the previous proposition apply to the sharing function linking the current consumption c_t to the current wealth y_t for each period t=1...T-1.

 Among CT utility functions, an interesting and general family: linHARA utility functions, obtained by adding a linear term to HARA utility functions.

- Among CT utility functions, an interesting and general family: linHARA utility functions, obtained by adding a linear term to HARA utility functions.
 - The linex $v(x) = \alpha x e^{-\beta x}$ is well known in the risk literature

- Among CT utility functions, an interesting and general family: linHARA utility functions, obtained by adding a linear term to HARA utility functions.
 - The linex $v(x) = \alpha x e^{-\beta x}$ is well known in the risk literature
 - linpower $v(x)=\frac{k}{1-a}x^{1-a}+bx$, with parameters a>1, b and k>0 (the corresponding $h(x,p)=x\left[\frac{pk}{k-(\lambda-1)bx^a}\right]^{\frac{1}{a}}$ is bounded $x<\left(\frac{k}{(p-1)b}\right)^{\frac{1}{a}}$)

- Among CT utility functions, an interesting and general family: linHARA utility functions, obtained by adding a linear term to HARA utility functions.
 - The linex $v(x) = \alpha x e^{-\beta x}$ is well known in the risk literature
 - linpower $v(x)=\frac{k}{1-a}x^{1-a}+bx$, with parameters a>1, b and k>0 (the corresponding $h(x,p)=x\left[\frac{pk}{k-(\lambda-1)bx^a}\right]^{\frac{1}{a}}$ is bounded $x<\left(\frac{k}{(p-1)b}\right)^{\frac{1}{a}}$)
 - *linlog* utility function $v(x) = \alpha x + \beta \log x$.

1- Arrow Debreu contingency claims

states	prob	demand.	price
1	а	<i>x</i> ₁	p_1
2	1 — a	<i>x</i> ₂	p ₂

ullet y= initial wealth, v= state independent utility

states	prob	demand.	price
1	а	<i>x</i> ₁	p_1
2	1 – a	<i>x</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand for the contingent claim with the highest "kernel price" <math>\frac{p_1}{a}$.

states	prob	demand.	price
1	а	<i>x</i> ₁	p_1
2	1 — a	<i>x</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand for the contingent claim with the highest "kernel price" <math>\frac{p_1}{a}$.
- Results:

states	prob	demand.	price
1	а	<i>x</i> ₁	p_1
2	1 – a	<i>X</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand for the contingent claim with the highest "kernel price" <math>\frac{p_1}{a}$.
- Results:
 - $v \in DARA \iff x_2^* x_1^*$ is increasing with y

states	prob	demand.	price
1	а	<i>x</i> ₁	p_1
2	1 – a	<i>x</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand for the contingent claim with the highest "kernel price" <math>\frac{p_1}{a}$.
- Results:
 - $v \in DARA \iff x_2^* x_1^*$ is increasing with y
 - $v \in DRRA \iff \frac{p_1 x_1^*}{y}$ is decreasing with y

states	prob	demand.	price
1	а	<i>x</i> ₁	p_1
2	1 – a	<i>X</i> ₂	p ₂

- y = initial wealth, v = state independent utility
- $x_1^*(y, \mathbf{p}; a) = \text{demand for the contingent claim with the highest "kernel price" <math>\frac{p_1}{a}$.
- Results:
 - $v \in DARA \iff x_2^* x_1^*$ is increasing with y
 - $v \in DRRA \iff \frac{p_1 x_1^*}{y}$ is decreasing with y
 - $v \in CT \iff x_1^*$ is concave in y (the marginal share of the less demanded attribute decreases with wealth)

Insurance

• Initial wealth Y; risk of a loss -X in state 1 with probability a.

- ullet Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium eta C is proportional to the coverage, with eta < 1

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium $eta {\it C}$ is proportional to the coverage, with eta < 1

	states	prob.	final wealth
•	1	а	$x_1 = Y - X + (1 - \beta)C$
	2	1 — a	$x_2 = Y - \beta C$

Insurance

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium $eta {\it C}$ is proportional to the coverage, with eta < 1

	states	prob.	final wealth
•	1	а	$x_1 = Y - X + (1 - \beta)C$
	2	1 — a	$x_2 = Y - \beta C$

• Uninsured loss $z_1 = x_2 - x_1$

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium $eta {\it C}$ is proportional to the coverage, with eta < 1

	states	prob.	final wealth
•	1	а	$x_1 = Y - X + (1 - \beta)C$
	2	1 — a	$x_2 = Y - \beta C$

- Uninsured loss $z_1 = x_2 x_1$
- Results:

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium $eta {\it C}$ is proportional to the coverage, with eta < 1

	states	prob.	final wealth
•	1	а	$x_1 = Y - X + (1 - \beta)C$
	2	1 — a	$x_2 = Y - \beta C$

- Uninsured loss $z_1 = x_2 x_1$
- Results:
 - $v \in DARA \iff z_1^*$ is increasing with y

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium $eta {\cal C}$ is proportional to the coverage, with eta < 1

	states	prob.	final wealth
•	1	а	$x_1 = Y - X + (1 - \beta)C$
	2	1 — a	$x_2 = Y - \beta C$

- Uninsured loss $z_1 = x_2 x_1$
- Results:
 - $v \in DARA \iff z_1^*$ is increasing with y
 - $v \in DRRA \iff$ proportion of uninsured wealth is increasing with y

- Initial wealth Y; risk of a loss -X in state 1 with probability a.
- Insurance contract where $0 \le C \le X$.
- ullet The premium $eta {\it C}$ is proportional to the coverage, with eta < 1

	states	prob.	final wealth
•	1	а	$x_1 = Y - X + (1 - \beta)C$
	2	1 — a	$x_2 = Y - \beta C$

- Uninsured loss $z_1 = x_2 x_1$
- Results:
 - $v \in DARA \iff z_1^*$ is increasing with y
 - $v \in DRRA \iff$ proportion of uninsured wealth is increasing with y
 - $v \in CT \iff$ uinsured wealth is concave with y

4- Intertemporal Consumption

time	wheights	prices
1	$a=rac{1}{1+eta}$	1
2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$

4- Intertemporal Consumption

Given the model

time	wheights	prices
1	$a=rac{1}{1+eta}$	1
2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$

• The initial condition $\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \Longrightarrow lower consumption in the first period.

4- Intertemporal Consumption

time	wheights	prices
1	$a=rac{1}{1+eta}$	1
2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$

- The initial condition $\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \Longrightarrow lower consumption in the first period.
- Results:

4- Intertemporal Consumption

time	wheights	prices
1	$a=rac{1}{1+eta}$	1
2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$

- The initial condition $\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \Longrightarrow lower consumption in the first period.
- Results:
 - $v \in DARA \iff$ saving increasing with y

4- Intertemporal Consumption

time	wheights	prices
1	$a=rac{1}{1+eta}$	1
2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$

- The initial condition $\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \Longrightarrow lower consumption in the first period.
- Results:
 - $v \in DARA \iff$ saving increasing with y
 - $v \in DRRA \iff$ decreasing average propensity to consume with wealth (Keynes)

4- Intertemporal Consumption

time	wheights	prices
1	$a=rac{1}{1+eta}$	1
2	$1-a=rac{eta}{1+eta}$	$\frac{1}{1+r}$

- The initial condition $\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \Longrightarrow lower consumption in the first period.
- Results:
 - $v \in DARA \iff$ saving increasing with y
 - $v \in DRRA \iff$ decreasing average propensity to consume with wealth (Keynes)
 - $v \in CT \iff x_1^*$ is concave with y

Group choice

Intra-household allocation

• Samuelson's household welfare function, with balance of power among the members given by a .

Group choice

Intra-household allocation

- Samuelson's household welfare function, with balance of power among the members given by a.
- If individual 1 is the "weaker" individual $(a \le \frac{1}{2})$ then $x_1^*(y, a) \le \frac{1}{2}y$.

- Samuelson's household welfare function, with balance of power among the members given by a.
- ullet If individual 1 is the "weaker" individual $(a \leq \frac{1}{2})$ then $x_1^*(y,a) \leq \frac{1}{2}y$.
- Immediate interpretation of the Proposition 1, for the risk-sharing too.