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Abstract

We consider an Arrow-Debreu economy in which expected-utility-maximizing

agents are sensitive to regret. According to regret theory, the marginal utility

of their consumption is increasing in the maximum payoff that they could

have obtained if they would have made another choice ex ante. We show that

regret biases the optimal portfolio allocation towards assets that perform

particularly well in low probability states. The competitive asset pricing

kernel is convexified by regret if the distribution of the macroeconomic risk

is logconcave. Regret also reduces the equity premium when the macro risk

is positively skewed. We characterize the competitive allocation of risk when

consumers have heterogenous preferences, and we show how to aggregate

individual intensities of regret.

Keywords: regret theory, portfolio choice, complete markets, long odds

bias.



1 Introduction

The pleasure extracted from a favorable event is often mitigated by the feeling

that this event could have been even more favorable if other choices had

been made. For example, I am happy to have bet on a horse which won

its race, but my pleasure is limited by the feeling that I could have earned

a larger payoff by betting more on that horse. This feeling is particularly

acute for winning horses with large odds. Similarly, investors who invested

50% of their financial wealth in stocks are hopeful in a bullish market, but

they anticipate that they will regret not having invested more in stocks if

stock prices surge. Quoting Bell (1985), regret is a psychological reaction

to making a wrong decision, where the quality of decision is predicated on

the basis of actual outcomes rather than on the information available at

the time of the decision. Bell (1982, 1983) and Loomes and Sugden (1982),

have convincingly argued that many people are likely to feel regret, and

that the expectation of such future regret should have an impact on the

optimal behavior in the face of risk. Regret theory may explain some of the

puzzles coming from the confrontation of the expected utility theory with

the market and experimental data. For example, Bell (1982) has shown that

regret theory can explain why it may be optimal to purchase insurance at

an actuarially unfair price and, at the same time, gambling on a zero-mean

risk: the former appeals to risk-averse agents and the latter to agents who

fear that they will regret missing the chance of a big win.

In this paper, we assume that agents are subject to regret, and we ex-

amine the consequences of this assumption on the optimal decisions under

risk, the allocation of risk in the economy, and asset prices. To do this, we

consider a static model with complete markets for Arrow-Debreu securities.

Following the authors mentioned above, we assume that agents maximize

their expected utility, where each individual’s ex-post utility is a function of

two variables: the actual level of consumption , and the largest level of con-

sumption  that would have been attainable if another decision would have

been made ex ante. This second variable will hereafter be called the ”forgone

best alternative”. Two alternative properties of this utility function can be

considered to define regret. The first candidate for a definition of regret is

that the utility function is decreasing in . In this paper, we use a more be-

havioral approach in defining regret. We start from the intuitive notion that

consumption  should be a substitute for regret: the latter should be per-
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ceived less acutely if the consumption level actually achieved is larger. This

translates into the positiveness of the cross-derivative of the utility function.

Said in other words, the marginal utility of actual consumption is increas-

ing in the forgone best alternative. As explained by Eeckhoudt, Rey and

Schlesinger (2005) in a different context, this definition of regret is equiva-

lent to a preference for a positive correlation between the actual payoff and

the forgone best alternative. A more restrictive specification of the utility

function that satisfies this assumption has been proposed by Bell, Loomes

and Sugden.

This definition of regret has intuitive consequences, as the so-called long

odds bias that is observed in racetrack betting and national lotteries.1 When

the budget available for gambling is fixed, the forgone best alternative ex post

is of course to bet the player’s entire budget on the winning horse, yielding a

best payoff that is proportional to its odds. When prices are actuarially fair,

this means that the forgone best alternative is inversely proportional to the

corresponding state probability. Thus, the feeling of regret is relatively more

pronounced for long-shots than for favorites. The preference for a positive

correlation between the actual payoff and the forgone best alternative im-

plies that the player biases his betting strategy towards longshots. Similarly,

consumers who are sensitive to regret bias their insurance demand towards

low probability events, and they bias their portfolio allocation towards assets

that perform particularly well in low probability states, i.e., highly skewed

assets.

More generally, we characterize the competitive price of any contingent

claim. In a regret-free economy, the competitive state price per unit of prob-

ability is a decreasing function of the aggregate consumption in that state.

This function is usually referred to as the pricing kernel. The equity premium

is proportional to the absolute value of its derivative, which is the absolute

risk aversion of the representative agent in the classical model. The char-

acterization of the pricing kernel is more complex when the representative

agent is sensitive to regret. Indeed, the competitive state price per unit of

probability also is a function of the state probability in that case. The in-

creased demand for contingent claims associated to unlikely states that is

generated by regret tends to raise their competitive price. Therefore, state

prices will be abnormally large in the tails of the distribution of aggregate

1Where it is often called the favourite-longshot-bias
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consumption. In other words, regret convexifies the pricing kernel. This is

compatible with the observation made by Rosenberg and Engle (2002) who

showed that the empirical pricing kernel at the lower tail is much steeper

than what would be obtained in the classical model with a regret-free model.

However, Rosenberg and Engle (2002) do not observe a similar pattern at

the upper tail of the distribution.

We also describe the preferences of the representative agent when con-

sumers have heterogenous preferences. Wilson (1968) already showed that

the representative agent has an absolute risk tolerance which is the mean

absolute risk tolerance in the population. In a similar fashion, we show that

the representative agent has an intensity of regret that is the mean of the

intensities of regret in the population.

Muerman, Mitchell and Volkman (2005) and Michenaud and Solnik (2005)

have examined a portfolio choice problem when the investor anticipates re-

gret. Our work differs much from their analyses in at least three essential

dimensions. First, we derive our results by just assuming that the cross-

derivative of the bivariate utility function ( ) is nonnegative, whereas

they assume that ( ) = ()+ (()− ()) Second, we go beyond the

portfolio choice problem to derive an asset pricing model and a preference

aggregation formula. Last but not least, these authors consider a two-asset

model, whereas we assume the existence of a complete set of markets for

Arrow-Debreu securities. Because regret theory is very sensitive to the def-

inition of the investment opportunity set, this alternative assumption has a

deep impact on the characterization of the optimal portfolio. For example,

both Muerman et al. (2005) and Michenaud et al. (2005) obtain as a central

result that the demand for the risky asset is positive when the price of the

risky asset is fair. Our finding is radically different under complete markets,

since we show that, under actuarially fair prices, the risk free position is still

optimal when all states are equally likely. More generally, we show that the

sign of the demand for the risky asset depends upon the skewness of the

distribution of its returns.

2 Regret and binary lottery choices

As initially suggested by Bell (1982), we assume that agents are sensitive

to regret in the sense that their utility  in any state is a function of two
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variables: (1) the actual consumption  achieved in that state, and (2)

the maximal consumption  that could have been attained in that state if

another feasible choice had been made at the beginning of the period. Of

course, by definition, we always have that  is larger or equal to . We

make the following assumption on this utility function  First, it is assumed

to be increasing and concave in . Agents always prefer to consume more

to less (  0), and are averse to risk on actual consumption ( ≤ 0).
Second, we assume that agents are sensitive to regret.2 As explained in

the introduction, we take this to mean that the marginal utility of actual

consumption is increasing in the forgone alternative  :  ≥ 0
Contrary to the existing literature on regret initiated by Bell (1982) and

Loomes and Sugden (1982), we do not advocate any particular specification

of our bivariate utility function  . In the remaining of this section, we justify

why the cross-derivative of this function characterizes the agent’s attitude to

regret. Following Bell (1982), consider the possibility to bet an amount  on

a horse whose objective probability of winning the race is   0. Suppose

moreover that the bets are fair, i.e., for a bet of size  euros, the bookmaker

pays  euros if the horse wins and zero otherwise. In this section, the only

alternative to bet  is not to bet at all. Confronted with this binary choice,

it is optimal to bet if and only if



µ

1− 


 
1− 



¶
+ (1− )(− 0) ≥ 

µ
0 
1− 



¶
+ (1− )(0 0)

(1)

There are two situations in which the agent feels regret: (1) he bets, and

the horse looses, and (2) he does not bet and the horse wins. These are

the two terms in (1) in which the two variables in  differ. When   0

and   0, we see two contradictory effects in (1). First, risk aversion

discourages taking this fair bet, since  is riskier in the left-hand side of (1)

than in its right-hand side. Second, anticipated regret encourages risk taking,

since it is equivalent to correlation loving between  and . Indeed,  and

 are positively correlated when the lottery is accepted, whereas they are

independent when no risk is taken. These contradictory effects can be made

more explicit for small risks. When the size of the bet  is small enough, it

2The feeling of regret corresponds to   0. However, we don’t use this assumption

in this paper.
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is indeed easy to check that the above inequality holds if and only if

(0 0) + 2(1− )(0 0) ≥ 0 (2)

Thus, betting may be optimal if the anticipation of regret is strong enough

to overcome risk aversion.

We see from (2) that the willingness to accept the fair lottery due to the

anticipation of regret depends upon the probability  of winning. When  is

close to unity, the covariance between  and , which is equal to 2(1−)2
when the lottery is accepted, tends to zero. The effect of regret — or -

correlation loving — is almost inexistent in that case. When  is reduced, the

covariance increases, and the effect of regret increases. The effect of regret is

maximum for very low-probability events. This could explain the long-odds

bias. This bias is well-documented in the literature. For example, Kahneman

and Tversky (1979) showed that 72% of their subjects in a laboratory ex-

periment preferred the lottery (5000 11000; 0 9991000) over the sure gain

of 5, which can be interpreted equivalently as accepting a fair bet of 5 on a

horse that has a probability of winning of 11000 Jullien and Salanié (2000)

provide information on the unfavorable equilibrium prices observed for long

shots in horse races in the U.K.. The tendency of air travellers to buy plane

crash insurance at prices that are large multiples of the actuarially fair pre-

mium is also well documented.(...)

Bell (1982) and Loomes and Sugden (1982) suggested the following spec-

ification:

( ) = () + (()− ()) (3)

where functions  and  are increasing and concave. This is clearly a special

case of our model. Another possible specification for  exhibits ”multiplica-

tive” regret:

( ) =
1−

1− 
 (4)

where  and  are two positive scalars. Whereas we consider these partic-

ular specifications as quite intuitive, we claim that they are unnecessarily

restrictive. We will derive most of our results for the general bivariate utility

model.
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3 Optimal portfolio for regret-sensitive agents

Contrary to the classical expected utility model, the evaluation of a specific

decision is not independent of the set of possible alternative decisions when

the decision maker is sensitive to regret. Contrary to the binary decision

model that we considered in the previous section, we assume here that the

agent has a continuum of choice. This is typical of a portfolio choice problem.

The uncertainty prevailing at the end of the period is described by the 

possible states of nature, indexed  = 1  . There is an agreed-upon

objective probability distribution of the states given by a vector (1  ) 

0. We assume that markets are complete. For each state , there is a tradable

Arrow-Debreu security that yields one unit of the single consumption good

to its owner if state  occurs, and that yields nothing otherwise. The price of

this asset at the beginning of the period is denoted Π  0. When Π = 
for all , we say that state prices are actuarially fair.

The investor’s endowment in the consumption good is state-contingent,

with  denoting the endowment in state . Let  denote the actual con-

sumption in state . It is financed by the state endowment  plus the

purchased amount  −  of the Arrow-Debreu security associated to that

state. This consumption plan must satisfy the budget constraint, which is

written as:
X
=1

Π =  =

X
=1

Π (5)

where  is the market value of agent ’s state-contingent endowment. We

prohibit personal bankruptcy by imposing constraint  ≥ 0 for all . The
preferences of the decision maker are characterized by the bivariate utility

function ( ) as defined in the previous section.

It is obvious that, given the no-bankruptcy constraint, the maximal level

of consumption in state  is  = Π. This would be the level of consump-

tion attained by that agent in that state if her entire wealth  would have

been invested in the Arrow-Debreu security associated to that state. Given

this observation, the portfolio decision problem can be written as

(1  ) ∈ arg max
1≥0

X
=1

(


Π

)  (5) (6)

As  is concave in its first argument, the objective function is concave in the
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vector of decision variables, whereas the budget constraint is linear in it. This

implies that the solution to this program is unique. We assume that the utility

function satisfies the Inada condition that states that the marginal utility of

actual consumption tends to infinity when actual consumption tends to zero;

then no-bankruptcy constraint is never binding. The necessary and sufficient

condition characterizing the optimal portfolio of Arrow-Debreu securities is

therefore written as

(


Π

) = 
Π


 (7)

where  is the Lagrange multiplier associated to the budget constraint. Let

 = Π denote the state price per unit of probability. For any given pair

(Π) let  denote the unique solution of the following equation:

(


Π
) =  (8)

For a given marginal utility of (expected) wealth , this equation character-

izes a function (Π). Comparing equation (7) and (8) implies that the

optimal portfolio is such that  = (Π) The optimal risk exposure is

measured by the size of the differences in state consumption. By equation

(8), these differences in states consumption may be due either to differences

in  or differences in Π across states. We now compute them by examining

the variation of  across states. Totally differentiating equation (8) yields

 − 



Π2
Π = 

where the derivatives of  are evaluated at ((Π) Π). Replacing  by

, we obtain the following result.

Proposition 1 The demand  for the claim contingent to state  is a func-

tion  of the state price per unit of probability  = Π and of the state

price Π. This function satisfies the following property:

 = − (Π)



− Γ(Π)

Π

Π
 (9)

where  ( ) = −( )( ) is the Arrow-Pratt index of absolute

tolerance towards actual consumption, and Γ( ) = −( )( )

measures the intensity of regret.
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No regret. In the absence of regret (Γ = 0), we know from (7) that

the optimal demand for the Arrow-Debreu security associated to state 

depends upon the state only through the corresponding state price per unit

of probability =Π. This property of the classical model is essential, as it

means that all risks that can be diversified at an actuarially fair price will

be fully diversified away in individual portfolios. This property is central

to derive the CAPM and APT pricing formulas. At the limit, when all

assets are actuarially priced (Π =  for all ), full insurance is optimal,

i.e., agents purchase a risk free portfolio ( ≡ ). When state prices are

not actuarially fair, the optimal risk exposure in the absence of regret is

such that − =  . In words, the demand for Arrow-Debreu securities

is larger for states with a smaller state price per unit of probability. This

sensitivity is proportional to the investor’s tolerance to risk. Seen from ex

ante, this sensitivity is a measurement of the riskiness of the portfolio selected

by investor , which is optimally proportional to the agent’s risk tolerance.

Regret with fair prices and equally likely states. Proposition 1 character-

izes the optimal portfolio of agent  in the more general case with regret. The

index Γ of regret measures the increase in actual consumption that preserves

the marginal utility of actual consumption when the forgone alternative is

increased by one percent. Because Γ is positive under regret aversion, equa-

tion (9) states that the demand for state consumption is decreasing in the

corresponding state price, since regret is inversely related to it. The simplest

case with regret arises when all states are equally likely and state prices are

actuarially fair, i.e., Π =  = 1 for all . In that case, the riskless portfo-

lio is still optimal, with  = (1 1) =  for all . This is a case where risk

aversion is the driving force behind this full insurance result. Because the

forgone best alternative is the same in all states, regret affects the marginal

utility of consumption in the same way in all states. Therefore, it does not

affect the willingness to fully insure risk.

Regret with fair prices and heterogeneous state probabilities. The next

step is to maintain the assumption of actuarially fair prices, but to relax

the assumption that states are all equally likely: Π =  for all  but

∃( 0) : Π =   0 = Π0 . In that case, equation (9) tells us that, in spite

of the fairness of asset prices, the demand for the contingent claim associated

to the more likely state  is smaller than the contingent claim associated to

the less likely state 0. As explained above, the reason is the larger forgone
best alternative in state 0. The difference in demand is proportional to the
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intensity of regret measured by Γ and to the relative increase in probability

. This is the mechanism at work in the observation by Bell (1982) that

an agent can at the same time have a positive demand for gambling and for

insurance, when prices are actuarially fair.3 Risk-averse agents are willing to

insure a 50-50 risk of accident, and, at the same time, they want to bet on

low probability events, both at unfair prices. We summarize these findings

in the following proposition.

Proposition 2 Suppose that state prices are actuarially fair:  = 0 for

all ( 0). Then, the risk free position is optimal only if all states are equally
likely ( =  for all ), or if the agent is insensitive to regret ( ≡ 0).
More generally, under actuarially fair prices, the demand for Arrow-Debreu

securities is decreasing in the corresponding state probability (long odds bias).

This implies for example that, when insurance prices are fair, regret-averse

agents will purchase partial insurance — or no insurance at all — against a

binary risk of loss when the loss probability is larger than 12. Observe that

the long odds bias would be reversed if we would have assumed that  be

negative. Moreover, observe that the notion of regret (  0) is irrelevant

to this problem. This confirms that the key notion for the behavioural effects

of regret-sensitiveness is regret-aversion, not regret.

Regret with unfair prices. We have just shown that regret tends to induce

investors to accept risk in a situation where the risk free position would

have been optimal in the absence of regret. However, when prices are not

fair, it is not true in general that the expectation of regret ex post induces

people to take more risk ex ante. To illustrate this point, suppose that

vectors (1  ) and (Π1 Π) are anti-comonotone in the sense that for

all ( 0), (−0)(Π−Π0) is nonpositive. This is a situation in which the

two terms in the right-hand side of equation (9) have opposite signs. The

effect of regret works against the effect of risk tolerance. From the point of

view of her risk tolerance, the agent would like to purchase less contingent

claims associated to states with a larger state price per unit of probability.

But these are the states where the effect of regret is stronger, thereby yielding

an increase in demand for these claims. Thus, in that case, regret reduces

the differences of the demands for Arrow-Debreu securities, i.e., it reduces

3However, Bell (1982) does not consider explicitly the joint insurance and gambling

decision.
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the optimal portfolio risk. We can formalize this result by defining a function

 such that Π = () for all . We can then rewrite equation (9) as

 = −
∙
 () +

0()
()

Γ(


()
)

¸



 (10)

When vectors (1  ) and (Π1 Π) are (anti-)comonotonic, 
0 is pos-

itive (negative). Assuming that the bracketed term in (10) is positive, the

optimal risk exposure is increasing (decreasing) in the intensity Γ of regret.

To illustrate, let us consider a simple insurance problem. There are two

states of nature, a no-loss state  = 1 and a loss state  = 2 in which the

agent loses a fraction  of his wealth. The endowment of the agent is 1 = 1

in state  = 1, whereas it is only 2 = 1−  in state  = 2 The probability

of loss is denoted . For each euro of indemnity paid in case of loss, the

policyholder must pay a premium (1+) where   0 is the loading factor

of the insurance premium This is compatible with the following state prices:

Π1 = 1− (1 + ); 1 = 1−  

1−
Π2 = (1 + ); 2 = 1 + 

Because obviously 1 is less than 2 under the assumption that  is positive,

the vectors of the  and the Π are comonotonic when Π1 ≤ Π2 i.e., when 

is larger than b = 05(1 + )−1  05 In our calibration exercise, we assume
that  = 05 and  = 03, so that the threshold probability b equals 038
We also assume that the utility function is ( ) = 1−(1− ). Note

that because Γ( ) =  parameter  is a measure of the intensity of

regret aversion. In this context, the optimal indemnity equals

 =
1− (1− )

(1 + )(1− )+ 
with  =

"
1−  

1−
(1 + )1+

#− 1
 ∙
1− (1 + )



¸−




(11)

In Figure 1, we depicted the optimal indemnity as a function of the prob-

ability of loss, for  = 2 and  = 0, 01,...,05. We see that when the

probability of loss is larger than b = 038 the optimal indemnity is decreas-
ing in regret aversion. The expectation of future regret raises the optimal

risk exposure because  and Π are comonotone for these values of the loss

probability. This figure and this argument may explain why we do not ob-

serve active insurance markets for high-frequency risks. Note that when the
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Figure 1: Optimal indemnity as a function of the probability of loss for a

regret factor  = 0 01 02 03 04 and 05.

intensity of regret is large, it may be optimal to overinsure the risk, i.e. to

select an insurance contract promising an indemnity larger than the loss.4

4 Asset prices

From our analysis of the characteristics of the optimal individual portfo-

lios, we can easily derive an asset pricing formula by assuming that all con-

sumers in the economy have the same utility function  and the same state-

dependent endowment (1  ). In that case, autarcy must be a compet-

itive equilibrium. Plugging the market-clearing conditions  =  for all 

4There is no asymmetric information in our model. This implies that we do not restrict

the indemnity to be nonnegative and smaller than the loss. If we imposed this constraint,

the maximum consumption in the no-loss state would be the initial wealth, whereas it

would be the initial wealth minus the full insurance premium in the loss state. Because

the second is larger than the first, regret would always work in favor of partial insurance

under this constraint, as shown by Braun and Muermann (2004).
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in the first-order condition (7) yields

(



) =  (12)

The competitive price per unit of probability of of the Arrow-Debreu security

associated to state  is given by  = ( ) where function  solves the

following equation

(


( )
) = ( ) (13)

for all ( ). The left-hand side of this equation is decreasing in  whereas its

right-hand side is increasing in . Thus the solution of this equation is unique.

Function  is usually referred to as the pricing kernel, as it allows to price any

asset in the economy. Notice also that 1 measures the expected return of

the investment in the Arrow-Debreu security , whereas 1Π measures the

return of the Arrow-Debreu security conditional to the occurrence of state .

Without regret ( ≡ 0), it is well-known that diversifiable risks are

actuarially priced at equilibrium, a property of asset prices that induces

investors to eliminate diversifiable risks from their portfolio. Technically, this

means that, without regret, if there are two states ( 0) such that  = 0 ,

then  = 0 . Thus, without regret, the price kernel is independent of the

state probability. This property does not hold in general when investors are

sensitive to regret. Indeed, totally differentiating equation (13) yields

 − 








− 








= 

Eliminating  from this equation by using (13) and dividing by  yields

the following result.

Proposition 3 The equilibrium price per unit of probability  of the Arrow-

Debreu security associated to state  equals ( ), where the function  is

defined by equation (13). It satisfies the following property:

−

= [ + Γ]

−1
µ
 + Γ





¶
 (14)

where  and Γ are respectively the absolute risk tolerance and the intensity

of regret, evaluated at (( )). As a consequence, we obtain that
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1. the price kernel  is independent of the state probability only if the

representative agent is insensitive to regret;

2. the price kernel  is decreasing in the state probability when the repre-

sentative agent is sensitive to regret: regret increases the price of assets

whose returns are skewed towards low-probability states.

When the representative agent feels regret, diversifiable risks are actu-

arially priced only if the involved states of nature are equally likely. States

that are more likely to occur have a smaller state price per unit of probabil-

ity. Because the forgone alternative  is larger in less likely states, the

increased demand for consumption in these states must be compensated at

equilibrium by an increase in the corresponding state prices. Longshots get

a negative risk premium. By equation (14), an increase in the state proba-

bility by 1% has an effect on  that is equivalent to an increase in the state

wealth by 001Γ In the special case with ( ) = 1−(1− ), yielding

Γ( ) =  an increase in the state probability by 1% has an effect on

 equivalent to an increase in wealth  by %.

4.1 The equity premium when the macroeconomic risk

is small

Let us now compute the equity premium in such an economy. Equity is a

right on the wealth per capita. By a standard arbitrage argument, the price

of equity must equal  . Similarly, the gross risk-free rate must equal

()−1 The equity premium is thus equal to  = () − 1.
Let () denote the probability that the wealth per capita be equal to .

Suppose that  = 1 + , where  is a zero-mean small risk whose support

is in a small neighborhood of 0. Using a first-order approximation for , we

obtain the following standard approximation of the equity premium  '
−−1() () where  and its derivative is evaluated at the expected
final wealth  = 1. Using (14), the derivative of the log state price with

respect to wealth equals −(1 + Γ0)( + Γ), which implies in turn that

 =
1 + Γ

0()
()

 + Γ
 () (15)
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where  and Γ are evaluated at (1 ()). In the classical case where

the representative agent is insensitive to regret (Γ = 0), the equity premium

is proportional to the absolute risk aversion 1 When the representative

agent is sensitive to regret, the right-hand side of equality (15) is decreasing

in the intensity of regret Γ when 0 is smaller than the index of absolute
risk aversion 1 .

Proposition 4 Consider two economies with the same distribution  of wealth

per capita, one of which has a representative agent who is insensitive to re-

gret. Consider a state  for which the degrees of risk tolerance  are the

same in the two economies. If 0()() is smaller (larger) than absolute
risk aversion 1 , then

1. the log state price per unit of probability is less (more) sensitive to

differences in state wealth in the economy with regret .

2. if the macroeconomic risk is small, the equity premium is smaller (larger)

in the economy with regret.

This implies in particular that the equity premium is reduced by regret

if state probabilities are monotonically decreasing in state wealth. The in-

tuition of this result is simple. When wealthy states are relatively unlikely,

their state prices Π must be low. This raises the forgone best alternative

in these states, thereby raising the demand for these contingent claims. As

a consequence, the corresponding state prices do not need to be reduced as

much as they must be in a regret-free economy to induce people to consume

more in these states. This reduces the equity premium. This is in fact an-

other illustration of the long odds bias. It thus appears that the skewness of

the distribution of  is important to determine the equity premium. When

the distribution of wealth is positively skewed, then its mode is smaller than

its expectation. Therefore () decreases at the expected wealth level, and

the result above applied directly: regret reduces the equity premium.

This intuition on the role of skewness is confirmed in the special case of

the multiplicatively CRRA separable utility function when the state wealth

per capita is lognormally distributed. An analytical solution for the equity

premium is obtained in this case.
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Figure 2: The pricing kernel when the log consumption is normally distrib-

uted with  =  = 2%, and ( ) = −−1 for  = 0 01 02 03 04
and 05.

Proposition 5 Suppose that the representative agent has a multiplicatively

separable CRRA utility function ( ) = 1−(1 − ), and that the

aggregate wealth in the economy is lognormally distributed: log ∼ ( 2).

The equity premium in such an economy is such that ln(1 +  ) = ( −
15)2

Proof: See the Appendix.

This extends the well-known result that in such an economy, the equity

premium equals the product of relative risk aversion  by the variance of

log consumption 2 when there is no feeling of regret. The increase in the

measure of regret  by ∆ has the same effect on the equity premium than

a reduction in relative risk aversion by 3∆2. This reduction in the equity

premium is not due to a uniform reduction in the derivative of − log . As
seen in Figure 2 where the pricing kernel is drawn for different values of .

In this figure, we assumed that  =  = 2%, and  = 2

Note that positive skewness is not necessary for regret to reduce the

equity premium, since the same mechanism is still at play when states are

equally likely. Because of risk aversion, state prices Π remain decreasing in
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the state wealth in that case. Regret then raises the demand for wealthier

states, thereby reducing the equity premium. The state probabilities must be

sufficiently increasing in the state wealth to compensate this effect in order

to reverse the result. Because log  decreases at rate 1 without regret, it

must be that log  increases at least at that rate to guarantee that Π = 

be increasing in state wealth.

4.2 The equity premium with a logconcave macro risk

In Figure 2, we see that regret convexifies the pricing kernel. This will always

be the case when the distribution of growth is logconcave, and absolute risk

aversion is non-decreasing. This is stated in the following proposition.

Proposition 6 Suppose that the consumption per capita is logconcave dis-

tributed. Suppose also that the index of absolute risk tolerance is independent

of the forgone alternative and is non-increasing. Then, regret convexifies the

price kernel in the sense that there exists a critical consumption  such that

−−1 is increased by regret if   , and it is reduced by regret if

  .

Proof: In the absnce of regret, the slope of the price kernel is given by

− 


=

1

 ()

Consider an economy with regret, but with the same regret-independent

absolte risk tolerance function  (). By equation (14), the price kernel in

such an economy is such that

− 


= [ () + Γ]

−1
µ
1 + Γ

0()
()

¶


where Γ is evaluated at (( )). When comparing these two equa-

tions, we see that regret raises the absolute value of the slope −−1 if
0()() is larger than 1 () Because 0 is assumed to be decreasing
in  and 1 is assumed to be nondecreasing in , there exists a critical

 such that 0()() ≥ 1 () for all  ≤ , and 0()() ≤ 1 ()
otherwise. ¥
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When the distribution of state consumption is not logconcave, when the

utility function  is not multiplicatively separable, or when absolute risk

aversion is decreasing (as is usually assumed), more complex transforma-

tions of the pricing kernel due regret are possible. Rosenberg and Engle

(2002) empirically estimated the pricing kernel by using financial date from

options markets. They observed that the slope of the empirical price kernel

at the lower tail is much steeper than what would be obtained in the classi-

cal model with a CRRA regret-free model. This is compatible with the idea

that investors feel much regret in these low-wealth small-probability states.

However, the oscillation of the price kernel observed by these authors is com-

patible with our model only if absolute risk aversion is sufficiently decreasing,

a condition that would require an unrealistically large .

5 Efficient risk sharing and aggregation of het-

erogenous preferences

In this section, we characterize the equilibrium price kernel when agents have

heterogenous preferences. This raises the questions of the preferences of the

representative agent and of the allocation of risks in the economy. Wilson

(1968) and Constantinides (1982) performed such task in the classical case of

expected utility. The problem is made more complex in our model because

preferences are affected by prices.

There are  agents in the economy. Agent ,  = 1   , is charac-

terized by a bivariate utility function   and a state-dependent endowment

(
1  


). The competitive equilibrium is characterized by a pricing kernel

( ) and  portfolio choice functions (1  ) such that  = ( )

for all , and  = ( ). It is defined by the standard optimality condi-

tions of the price-taker investors, together with the following market-clearing

conditions:

1



X
=1

 =  =

1



X
=1


 (16)

for  = 1  . Totally differentiating equation (7) and eliminating  yields

 = − ¡  + Γ
¢ 

− Γ




 (17)
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where   = − 



 and Γ

 = − 



 are evaluated at (

( ) ( ))

Totally differentiating the market-clearing condition (16) yields

1



X
=1

 = 

Combining these two condition directly proves the following proposition.

Proposition 7 The competitive equilibrium is characterized by functions

( 1  ) such that  = ( ) and 

 = ( ) for all  = 1  

and all  = 1   . These functions satisfy the following conditions:

−

=
£
 + Γ

¤−1µ
 + Γ





¶
(18)

and

 =
  + Γ

 + Γ
 +

 Γ− Γ

 + Γ




 (19)

where   and Γ are evaluated at (( ) ( )) and

 ( ) =
1



X
=1

 

µ
( )



( )

¶
(20)

Γ( ) =
1



X
=1

Γ
µ
( )



( )

¶
 (21)

Equation (18) generalizes the asset pricing formula (14) to heterogenous

preferences. This generalization is particularly straightforward since we just

need to replace the absolute risk tolerance  and the intensity of regret Γ by

their means  and Γ defined by equations (20) and (21). In other words, the

asset prices of this heterogenous economy can be duplicated in an economy

with identical agents endowed with absolute risk tolerance  and intensity of

regret Γ. Wilson (1968) already observed that the absolute risk tolerance of

a group equals the mean absolute risk tolerance of its members. The above

proposition also states that the intensity of regret of a group equals the mean

intensity of regret of its members.
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Equation (19) characterizes the competitive sharing of risks in the econ-

omy. When all states are equally likely, the share of the macroeconomic risk

that is borne by agent  is proportional to   + Γ, the sum of this agent

’s risk tolerance and intensity of regret. Because state prices are decreasing

with  (equation (18)), regret is increasing with . Therefore, consumers

that are relatively more sensitive to regret are more willing to accept the

macroeconomic risk.

The second term in the right-hand side of equation (19) tells us who in

the population will bet on long shots. The demand  for contingent claim

 is decreasing in  if  Γ− Γ is negative, i.e., if Γ  is larger than Γ .

The bettors on long shots are those whose intensity of regret Γ expressed as

a percentage of their risk tolerance   is larger than the mean intensity of

regret expressed as a percentage of the mean risk tolerance in the economy.

Seen from a different angle, equation (19) tells us that regret-free insurers

will supply insurance coverage for low-probability event, and they will get a

premium for that.

Notice that in general   Γ  and Γ are state-dependent, which means

that the above analysis must be interpreted locally. The only case where

they are state-independent is when  ( ) = − exp(−) implying

  =  Γ =   =
1



X
=1

 and Γ =
1



X
=1



In that case, the share of the macroeconomic risk borne by agent  is pro-

portional to (1 + ). Agents with an  larger than Σ
Σ

 bets on

longshots, whereas the others bet on favorites.

6 Conclusion

The starting point of our analysis is that most decision makers find it difficult

to evaluate the benefit of an outcome ex post without taking into account

what they could have obtained if another decision would have been made

ex ante. This is taken into account in our model by assuming that the

von Neumann-Morgenstern utility is a function of the forgone best alterna-

tive. We say that an agent is sensitive to regret if the marginal utility of

his consumption is increasing in the forgone best alternative. We showed
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that regret-sensitive investors tend to bias their portfolio towards assets that

perform particularly well in low-probability states. In terms of asset prices,

this implies that these assets yield risk premia that are smaller than in the

classical asset pricing formula.

The effect of regret on the equity premium depends upon the distribu-

tion of the macroeconomic risk. If the density function is decreasing with

aggregate wealth, the equity premium is unambiguously decreasing with the

intensity of regret of the representative agent. When the distribution of the

macroeconomic risk is logconcave, the price kernel is convexified by regret.

We get an explicit formula for the equity premium when it is lognormally

distributed and the bivariate utility is a power multiplicatively separable

function. The equity premium is also decreasing withy the intensity of regret

in that case, thereby suggesting that positively skewed risks have a smaller

risk premium at equilibrium.
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Jullien, B., and B. Salanié, (2000), Estimating preferences un-

der risk: The case of racetrack bettors, Journal of Political

Economy, 108, 503-530.

Kahneman, D., and A. Tversky, (1979), Prospect theory: An

analysis of decision under risk, Econometrica, 47, 263-291.

Loomes, G., (1988), Further evidence of the impact of regret and

disappointment in choice under uncertainty, Economica, 55.

21



Loomes, G., and R. Sugden, (1982), Regret theory: An alter-

native theory of rational choice under uncertainty, Economic

Journal, 92, 805-824.

Loomes, G., and R. Sugden, (1987), Testing for regret and dis-

appointment in choice under uncertainty, Economic Journal,

97, 118-129.

Loomes, G. and R. Sugden, (1987), Some implications of a general

form of regret theory, Journal of Economic Theory, 41, 270-

287.

Michenaud, S., and B. Solnik, (2005), Hedging currency risk: A

regret-theoretic approach, mimeo, HEC Paris.

Muermann, A., O.S. Mitchell and J.L. Volkman, (2005), Re-

gret, portfolio choice and guarantees in defined contribution

schemes, mimeo, Wharton School.

Quiggin, J., (1994), Regret theory with general choices, Journal

of Risk and Uncertainty, 8, 153-165.

Mehra, R. and E. Prescott, (1985), The Equity Premium: A

Puzzle, Journal of Monetary Economics, 10, 335-339.

Rosenberg, J.V., and R.F. Engle, (2002), Empirical pricing ker-

nel, Journal of Financial Economics, 64, 341-372.

Sugden, R., (1993), An axiomatic foundation of regret, Journal

of Economic Theory, 60, 159-180.

Wilson, R. (1968). “The theory of syndicates”, Econometrica 36,

113-132.

22



Appendix: Proof of Proposition 5

We first prove the following Lemma.

Lemma 1 Suppose that  is lognormally distributed: log ∼ ( 2). It

implies thatZ
0

() =
(2)05(1−)1−√


exp

∙
(+ 1− ) +

(+ 1− )22

2

¸
 (22)

where () =
¡

√
2
¢−1

exp [−(log − )222] is the density function of

.

Proof: We have thatZ
0

() =
³

√
2
´− Z

0

+1− exp

∙
−(log − )2

22

¸





If  = log and b2 = 2 this is equivalent toZ
0

() =
³

√
2
´− Z

0

exp

∙
(+ 1− ) − ( − )2

2b2
¸


or, equivalently, Z
0

() =
³

√
2
´−

×Z
0

exp

∙
−( − − b2(+ 1− ))2

2b2 + (− 1 + )− 05b2(+ 1− )2
¸


Now, observe thatZ
0

exp

∙
−( − − b2(+ 1− ))2

2b2
¸
 = b√2 (23)

Combining the last two equations yields (22). ¥
This Lemma implies thatZ

0

() = exp

∙
+

2

2

¸


23



Z
0


−
1+()

1
1+ = (

√
2)


(1+)

√
1 +  exp

∙

− 

1 + 
+
(− )22

2(1 + )

¸


andZ
0

1−


1+()
1

1+ = (
√
2)


(1+)

√
1 +  exp

∙

1 + 2− 

1 + 
+
(1 + 2− )22

2(1 + )

¸


The equity premium equals

 =

£R
0
()

¤ hR
0

−
1+()

1
1+

i
R
0
1−


1+()

1
1+

− 1

Combining the last 4 equations yields

ln(+1) = +
2

2
+

− 

1 + 
+
(− )22

2(1 + )
−1 + 2− 

1 + 
− (1 + 2− )22

2(1 + )


After some tedious simplifications, we obtain that

ln( + 1) = 2
∙
 − 3

2


¸


This concludes the proof of Proposition 5. ¥
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