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Microinformation, Nonlinear Filtering and Granularity

Abstract

The recursive prediction and filtering formulas of the Kalman filter are difficult to imple-

ment in nonlinear state space models. For Gaussian linear state space models, or for models

with qualitative state variables, the recursive formulas of the filter require the updating of a

finite number of summary statistics. However, in the general framework a functional has to

be updated, which makes the approach computationally cumbersome. The aim of this paper

is to consider the situation of a large number n of individual measurements, the so-called

microinformation, and to take advantage of the large cross-sectional size to get prediction

and filtering formulas at order 1/n. The state variables have a macro-factor interpretation.

The results are applied to the maximum likelihood estimation of a macro-parameter, and to

the computation of a granularity adjusted Value-at-Risk.

Keywords: Kalman Filter, Nonlinear State Space, Granularity, Repeated Observations,

Value-at-Risk, Basel 2.



1 Introduction

Let us consider a nonlinear state space model with observations yt, t = 1, · · · , T , and un-

derlying latent state variables ft. We denote by Yt (resp. Ft) the information included in

the current and past values of variable y (resp. f). The model is defined by (i) the state

equation, which specifies the conditional distribution ft given Ft−1, Yt−1 as g(ft|ft−1), say;

(ii) the measurement equation, which specifies the conditional distribution of yt given Ft,

Yt−1 as h(yt|ft), say. Thus, the state variable is assumed to follow an autonomous Markov

process of order 1, and the distribution of the observed variable depends on the information

through the current factor value only 1. In such a nonlinear state space model, the joint

probability distribution function (pdf) of the observations (given some initial condition) is:

∫ T∏
t=1

[h(yt|ft)g(ft|ft−1)]
T∏

t=1

dft, (1.1)

and involves a multiple integral with dimension equal to sample size T times the dimension

of the underlying factor.

The nonlinear Kalman filter proposes a recursive computation of well-chosen conditional

distributions. The filtering density provides the conditional pdf p(f̃t|Yt) of factor ft given

Yt, where the tilde notation is used to indicate the generic argument of a function. The

1This model is extended in Section 2 to allow for the effect of exogenous regressors and lagged observations

in the measurement equation.
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predictive density provides the conditional pdf of yt+1 given Yt, denoted p(ỹt+1|Yt). Then

the joint pdf of the observations is deduced by multiplying the successive predictive densities,

evaluated at the observed values ỹt+1 = yt+1.

Let us recall some recursions involved in the nonlinear Kalman filter. We have for in-

stance:

p(ỹt+1|Yt) = E [p(ỹt+1|Ft,Yt)|Yt]

= E

[∫
h(ỹt+1|f̃t+1)g(f̃t+1|ft)df̃t+1|Yt

]

= E [Ψ(ỹt+1, ft)|Yt] ,

where:

Ψ(ỹt+1, ft) =

∫
h(ỹt+1|f̃t+1)g(f̃t+1|ft)df̃t+1. (1.2)

Thus, we get the updating of the predictive distribution from the filtering distribution:

p(ỹt+1|Yt) =

∫
Ψ(ỹt+1, ft)p(ft|Yt)dft. (1.3)

The integrals in (1.2) and (1.3) often have a small dimension and could be easily computed

numerically. However, this type of updating formula is difficult to implement in the general

framework, since it requires as input the set of function values p(f̃t|Yt), for any value of

argument f̃t. Hence, it is necessary to temporarily store the entire function at each recursion

2. Three special cases are known, in which the nonlinear Kalman filter is simplified, because

2This is usually considered as an issue of numerical approximation. However, it may not be easy to
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only a finite number of scalars have to be updated. These are the Gaussian linear state

space model, initially considered by Kalman [Kalman (1960), Kalman and Bucy (1961)], the

model with qualitative factor, at the core of the Kitagawa filter [Kitagawa (1987), (1996),

Hamilton (1989)], and state space models with finite-dimensional dependence [Gouriéroux,

Jasiak (2002)].

This paper introduces another framework in which the nonlinear Kalman filter can be

(approximately) solved in closed-form. Specifically, we consider a large number n of in-

dividual measurements yt = (y1,t, · · · , yn,t)
′, and exploit the cross-sectional dimension to

approximate the nonlinear Kalman filter at order 1/n.

The model and the approximate prediction and filtering formulas are given in Section

2. The special case of measurement model in an exponential family is discussed in Section

3. In Section 4, we consider the estimation of a macro-parameter in a model with Gaussian

factor. For this estimation problem, we show that the approximate nonlinear Kalman filter

to compute the joint distribution of the observations is equivalent to a standard Kalman

filter applied to an approximate linear state space model. An application to the computa-

tion of a Value-at-Risk (VaR) for a large homogeneous portfolio is discussed in Section 5.

Section 6 concludes. Proofs are gathered in appendices. For simplicity, we focus on the most

impose the appropriate shape restrictions to ensure that the approximate function is indeed a legitimate pdf,

and to control the associated approximation error.
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common case of a single factor. Generalizing the results to multiple factors is theoretically

straightforward, but notationally cumbersome.

2 Approximate Prediction and Filtering

2.1 The Nonlinear State Space Model

The observations are endogenous individual variables yi,t, for i = 1, · · · , n, t = 1, · · · , T , and

exogenous variables xi, for i = 1, · · · , n. The latter variables are indexed by individual i

only and correspond to time invariant individual characteristics 3. The state variables ft are

indexed by time t only. They are unobservable and can be interpreted as macro-factors. We

denote by yt = (y1,t, · · · , yn,t)
′ [resp. X = (x′1, · · · , x′n)′] the set of cross-sectional observations

on y (resp. on x).

As usual, the nonlinear state space model is defined by measurement and state equations.

State equation: The conditional distribution of ft given Ft−1, Yt−1, X depends on ft−1

3The approximate filtering and predictive distributions at horizon 1 derived in the paper are also valid

when observable macro-variables zt, say, are introduced in the state equation, and possibly time dependent

individual exogenous variables zi,t, zt, say, in the measurement equations. However, as usual in state space

models, the filtering and predictive distributions at horizon larger than 1 require the specification of the

dynamics of the variables zi,t and zt.
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only, is time-invariant, and admits a pdf g(ft|ft−1), t = 1, · · · , T .

Measurement equations: Conditionally on the information set Ft, Yt−1, X, the individ-

ual endogenous variables yi,t, i = 1, · · · , n, are independent. The distribution of yi,t given

Ft, Yt−1, X depends on ft, yi,t−1 and xi only, is time-invariant and admits the pdf:

h(yi,t|ft, yi,t−1, xi) ≡ hi,t(yi,t|ft), i = 1, · · · , n, t = 1, · · · , T.

This nonlinear state space model allows for exogenous variables in the measurement

equations, introducing observable heterogeneity across individuals. It also allows for both a

micro-dynamics by means of the individual lags in the measurement equations, and a macro-

dynamics by means of the unobservable factors. The model includes as a special case models

with repeated observations when hi,t(yi,t|ft) = h(yi,t|ft).

The unobservable factor ft can be approximated by the cross-sectional maximum likeli-

hood (CSML) estimator defined by:

f̂n,t = arg max
ft

n∑
i=1

log hi,t(yi,t|ft). (2.1)

The terminology CSML is convenient but a bit abusive since, if the micro-density hi,t(yi,t|ft; β)

depends on an unknown micro-parameter β, the CSML estimator f̂n,t(β) also depends on

β. In some sense we are concentrating the micro log-likelihood function with respect to ft

considered as a “nuisance” parameter. If parameter β is known, f̂n,t(β) provides an approxi-

mation of factor ft, which is consistent if the cross-sectional size n tends to infinity. However,
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it is not the most accurate one, since it does not take into account the lagged observations

of y and the factor dynamics. We will see later on that the cross-sectional approximation of

the factor plays a crucial role in the derivation of the prediction and filtering formulas.

Other cross-sectional summary statistics will also be useful. Let us introduce the notation:

K
(p)
n,t =

1

n

n∑
i=1

∂p log hi,t(yi,t|f̂n,t)

∂f p
t

, p = 2, 3, 4. (2.2)

The quantity:

In,t = −K
(2)
n,t , (2.3)

measures the accuracy of f̂n,t as an approximation of ft (with known β); the quantity K
(3)
n,t is

involved in the bias at order 1/n of estimator f̂n,t. Under appropriate stationarity assump-

tions, the quantities K
(p)
n,t are OP (1), when n tends to infinity.

2.2 Approximate Filtering Formula

An approximation of the filtering distribution for factor ft is derived by means of the Laplace

method [see e.g. Jensen (1995)]. The form of the approximation is given in the next Proposi-

iton 1 (see Appendix 1 for the proof). This result extends the approximate filtering distri-

bution derived in Gagliardini and Gouriéroux (2009b) to a model with micro-dynamics and

exogeneous variables.

PROPOSITION 1: At order 1/n, the conditional distribution of ft given Yt, Ft−1, X is
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equal to the conditional distribution of ft given Yt, X only, i.e. the filtering distribution.

This distribution is Gaussian:

N

(
f̂n,t +

1

n

[
I−1
n,t

∂ log g

∂ft

(f̂n,t|f̂n,t−1) +
1

2
I−2
n,t K

(3)
n,t

]
,
1

n
I−1
n,t

)
.

At order 1/n, the filtering distribution of ft differs from a point mass at the CSML estimate

f̂n,t. More precisely, the variance of the filtering distribution shrinks to zero at rate 1/n and

the mean of the filtering distribution differs from f̂n,t by a term of order 1/n. The adjustment

involves the four summary statistics f̂n,t, f̂n,t−1, In,t, K
(3)
n,t , and no longer the lagged factor

values. Conditionally on Yt and X, ft and Ft−1 are independent at order 1/n. The dynamics

of the latent factor impacts the filtering distribution through the partial derivative of the log

transition pdf
∂ log g

∂ft

(f̂n,t|f̂n,t−1).

The Gaussian approximate filtering distribution in Proposition 1 shares some common

features with the approximations considered in the literature on robust Kalman filtering

[see e.g. Masreliez (1975)]. However, it differs in several respects. First, in robust filtering

the conditional distribution of ft+1 given Yt is assumed to be close to a Gaussian distri-

bution, whereas in our framework it is the conditional distribution of ft given Yt which is

almost Gaussian 4. Second, in robust filtering the errors of the analytical approximations

4See Bates (2009), p. 25, for approximations written on the same conditional distribution as ours. These
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are typically unknown 5, while in our approch the Gaussian approximation has been de-

rived theoretically together with its approximation error due to the information contained

in the cross-sectional observations. Third, the robust filtering literature mostly focuses on

linear measurement and state equations with non-Gaussian innovations 6, while our model

fully allows for nonlinearities in both the measurement and state equations. Finally, the

approximation in Proposition 1 is not recursive, but in closed form.

2.3 Approximate Prediction Formula

The approximate filtering formula in Proposition 1 can be used to derive the prediction

formula at order 1/n, that is, the conditional distribution of yt+1 given Yt, X. More precisely,

we have by the law of iterated expectation:

p (ỹt+1|Yt, X) = E [p (ỹt+1|Yt,Ft, X) |Yt, X]

= E [Ψ(ỹt+1|ft, yt, X)|Yt, X] ,

where Ψ(ỹt+1|ft, yt, X) = p (ỹt+1|Yt,Ft, X) depends on the past through ft, yt only because

of the assumptions on the state and measurement equations. Thus, the derivation of the

approximations are used in the numerical implementation of an algorithm that updates the Laplace transform

of the filtering distribution when the joint dynamics of observations and latent states is affine.
5Except in the special model of contamination considered in Schick, Mitter (1994).
6Except for instance Cipra and Rubio (1991), who take into account a nonlinear measurement equation

with additive non-Gaussian innovations.
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predictive distribution can be performed in two steps. We first derive an approximation at

order 1/n of the conditional distribution of yt+1 given ft, yt and X; then, ft is integrated

out using its conditional distribution given Yt and X in Proposition 1.

The conditional pdf of yt+1 given ft, yt, X is:

Ψ(ỹt+1|ft, yt, X) =

∫ n∏
i=1

hi,t+1(ỹi,t+1|f̃t+1)g(f̃t+1|ft)df̃t+1,

where ỹi,t+1 and f̃t+1 denote the arguments of the density functions, whereas ft, yt and X

correspond to the variables in the information set. This density can be written as:

Ψ(ỹt+1|ft, yt, X) =

∫
exp

[
n∑

i=1

log hi,t+1(ỹi,t+1|f̃t+1) + log g(f̃t+1|ft)

]
df̃t+1. (2.4)

The integrand can be expanded around the cross-sectional approximation f̃n,t+1 to get the

result below (see Appendix 2), where f̃n,t+1 is the CSML estimator of ft+1 based on ỹt+1, yt,

X. Similarly, we denote by K̃
(p)
n,t+1, Ĩn,t+1 the summary statistics with yt+1 replaced by the

generic argument ỹt+1.

PROPOSITION 2: At order 1/n we have:

Ψ(ỹt+1|ft, yt, X) =

√
2π

nĨn,t+1

n∏
i=1

hi,t+1(ỹi,t+1|f̃n,t+1)g(f̃n,t+1|ft)

· exp





1

n


1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

1

2
Ĩ−1
n,t+1


∂2 log g(f̃n,t+1|ft)

∂f 2
t+1

+

(
∂ log g(f̃n,t+1|ft)

∂ft+1

)2



+
1

2
Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g(f̃n,t+1|ft)

∂ft+1

+
5

24

[
K̃

(3)
n,t+1

]2

Ĩ−3
n,t+1

]
+ o(1/n)

}
.
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The normalization factor
√

2π/n ensures that the integral of Ψ(ỹt+1|ft, yt, X) w.r.t. ỹt+1 is

equal to 1 at order o(1/n). Alternatively, we could impose the exact validity of the unit

mass restriction by normalizing the approximate density by its numerical integral.

Finally, the expression of Proposition 2 can be integrated w.r.t. the approximate Gaussian

filtering distribution of ft given in Proposition 1. We get the following result:

PROPOSITION 3: At order 1/n, the predictive distribution of yt+1 given Yt, X is equal

to:

p(ỹt+1|Yt, X) =

√
2π

nĨn,t+1

n∏
i=1

hi,t+1

(
ỹi,t+1|f̃n,t+1

)
g

(
f̃n,t+1|f̂n,t

)

· exp

{
1

n

[
1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

5

24

[
K̃

(3)
n,t+1

]2

Ĩ−3
n,t+1

+
1

2
Ĩ−1
n,t+1




∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t+1

+


∂ log g

(
f̃n,t+1|f̂n,t

)

∂ft+1




2



+
1

2
I−1
n,t




∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t

+


∂ log g

(
f̃n,t+1|f̂n,t

)

∂ft




2



+I−1
n,t

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft

∂ log g
(
f̂n,t|f̂n,t−1

)

∂ft

+
1

2
Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft+1

+
1

2
I−2
n,t K

(3)
n,t

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft


 + o(1/n)



 .
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We get a closed form expression for the predictive distribution. It depends on summary

statistics f̃n,t+1, Ĩn,t+1, K̃
(3)
n,t+1, K̃

(4)
n,t+1, f̂n,t, f̂n,t−1, In,t, K

(3)
n,t , some of them being functions of

the selected argument ỹt+1. The formula in Proposition 3 is simplified when the argument

of interest ỹt+1 = yt+1 corresponds to the observations, as for deriving the joint density

function of the sample. Indeed, in this case, we have f̃n,t+1 = f̂n,t+1, Ĩn,t+1 = In,t+1 and

K̃
(p)
n,t+1 = K

(p)
n,t+1. In particular, we see that process (yt) is a Markov process of order 2, up

to o(1/n).

3 Exponential Micro-model

The expressions for the filtering and prediction distributions in Section 2 capture the non-

Gaussianity of both the micro- and macro-dynamics. This effect is illustrated in this section

for a model with exponential micro-density.

3.1 The Model

Let us assume that the conditional micro-density can be written as:

hi,t(yi,t|ft) = exp [a(yi,t)ft + b(yi,t) + c(ft)] . (3.1)

This is an exponential family in which the factor value is the canonical parameter. We have

the following property (see Appendix 4 for the proof):
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PROPOSITION 4: For an exponential micro-model with canonical factor ft, we have:

K
(p)
n,t =

dpc(f̂n,t)

dfp
t

, p ≥ 2.

Moreover:

d2c(ft)

df 2
t

= −V [a(yi,t)|ft],

[
−d2c(ft)

df2
t

]−3/2
d3c(ft)

df 3
t

= −Skewness[a(yi,t)|ft],

[
−d2c(ft)

df 2
t

]−2
d4c(ft)

df 4
t

= −Excess Kurtosis[a(yi,t)|ft].

Therefore, the adjustment at order 1/n in the filtering distribution (Proposition 1) involving

the third-order derivative of the micro-density corresponds to a measure of conditional skew-

ness through statistic I
−3/2
n,t K

(3)
n,t . Similarly, the adjustments in the predictive distribution

(Proposition 3) involve both conditional skewness and excess kurtosis measures, through

statistics I
−3/2
n,t K

(3)
n,t , Ĩ

−3/2
n,t K̃

(3)
n,t and Ĩ−2

n,t K̃
(4)
n,t . Skewness and excess kurtosis summarize the

properties of the conditional distribution of the transform a(yi,t) of the individual observa-

tion given the factor value, that are involved in the adjustments at order 1/n.

3.2 Examples

We provide in Table 1 the canonical parameterization and the main summary statistics for

standard exponential families. For some of them (e.g., the Bernoulli family), the canonical
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parameterization does not coincide with the usual parameterization. From the function c(f)

and the cross-sectional ML estimator of the factor value f̂n,t, we can deduce the expressions

of the statistics K
(p)
n,t .

Example 1: Gaussian family with factor in mean

For a linear Gaussian state space model, the measurements are such that y1,t, · · · , yn,t ∼

IIN(ft, 1) conditional on ft, where the canonical factor ft is the conditional mean, and the

conditional variance is constant, equal to 1, say. The CSML estimator of the factor value

is f̂n,t = 1
n

∑n
i=1 yi,t, that is the cross-sectional average of the observations at date t. The

statistics K
(p)
n,t are such that In,t = −K

(2)
n,t = 1 and K

(p)
n,t = 0 for p > 2.

Example 2: Bernoulli family with stochastic probability

For qualitative observations in the Bernoulli family, we have y1,t, · · · , yn,t ∼ i.i.B(1, pt)

conditionally on ft, where the canonical factor ft is related with the conditional probability pt

by ft = log [pt/(1− pt)]. The CSML estimator of the factor value is f̂n,t = log [ȳn,t/(1− ȳn,t)],

where ȳn,t = 1
n

∑n
i=1 yi,t is the cross-sectional frequency. The statistics K

(p)
n,t are such that

In,t = −K
(2)
n,t = ȳn,t(1− ȳn,t), K

(3)
n,t = −ȳn,t(1− ȳn,t)(1− 2ȳn,t) and K

(4)
n,t = −ȳn,t(1− ȳn,t)(1−

6ȳn,t + 2ȳ2
n,t).
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4 Gaussian Factor and Macro-parameters

In a nonlinear state space model, the unobservable factor is defined up to a one-to-one

(nonlinear) transformation. We have seen in Section 3, that the choice of a canonical factor is

useful to interpret some asymptotic adjustments in the filtering and prediction distributions.

In practice, however, it is also useful to select factors with Gaussian autoregressive dynamics;

this requires factors which can take real negative and positive values.

In Example 2 with the Bernoulli family the canonical factor f = log [p/(1− p)] admits

real values, but in other cases the canonical factor is constrained. For instance, in the

exponential family in Table 1, the canonical factor f = λ is positive, as well as in the

Gaussian model with volatility factor.

In this Section we consider a model with Gaussian autoregressive factor:

g(ft|ft−1; θ) =
1√

2πσ2
exp

[
− 1

2σ2
(ft − µ− ρft−1)

2

]
, (4.1)

where the macro-parameter θ = (µ, ρ, σ2)′ is unknown. We also assume that the micro-

density h(yi,t|ft), say, is completely known, and we consider maximum likelihood estimation

of parameter θ.
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4.1 Approximate Log-likelihood Function

The exact log-likelihood function (conditional on the initial observation) can be written as:

LnT (θ) = LGA
nT (θ) + op(1/n), (4.2)

where the granularity adjusted (GA) likelihood function is given by:

LGA
nT (θ) =

1

T

T∑
t=1

log p(yt|Yt−1, X; θ),

and p(yt|Yt−1, X; θ) is the approximate predictive distribution at order 1/n given in Propo-

sition 3 and evaluated at the sample observations ỹt = yt. Therefore, instead of considering

the unfeasible maximum likelihood estimator:

θ̂nT = arg max
θ
LnT (θ),

we can consider the approximation obtained by maximizing the GA log-likelihood function:

θ̂GA
nT = arg max

θ
LGA

nT (θ). (4.3)

The granularity adjusted estimator differs from the unfeasible maximum likelihood estimator

by a term negligible at order 1/n [see Gagliardini, Gouriéroux (2009a)]:

θ̂GA
nT − θ̂nT = op(1/n).

Let us now focus on the granularity adjusted log-likelihood function. We can write:

LGA
nT (θ) = L0,nT +

1

T

T∑
t=1

log p1(yt|Yt−1, X; θ), (4.4)
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where L0,nT is independent of θ and:

log p1(yt|Yt−1, X; θ) = log g
(
f̂n,t|f̂n,t−1; θ

)

+
1

2n
I−1
n,t




∂2 log g
(
f̂n,t|f̂n,t−1; θ

)

∂f 2
t

+


∂ log g

(
f̂n,t|f̂n,t−1; θ

)

∂ft




2



+
1

2n
I−1
n,t−1




∂2 log g
(
f̂n,t|f̂n,t−1; θ

)

∂f 2
t−1

+


∂ log g

(
f̂n,t|f̂n,t−1; θ

)

∂ft−1




2



+
1

n
I−1
n,t−1

∂ log g
(
f̂n,t|f̂n,t−1; θ

)

∂ft−1

∂ log g
(
f̂n,t−1|f̂n,t−2; θ

)

∂ft−1

+
1

2n
I−2
n,t K

(3)
n,t

∂ log g
(
f̂n,t|f̂n,t−1; θ

)

∂ft

+
1

2
I−2
n,t−1K

(3)
n,t−1

∂ log g
(
f̂n,t|f̂n,t−1; θ

)

∂ft−1

.

(4.5)

When the transition p.d.f. of the factor corresponds to the Gaussian autoregressive model

(4.1), the log density log g
(
f̂n,t|f̂n,t−1; θ

)
and its partial derivatives in the RHS of (4.5) are

polynomials in f̂n,t − µ − ρf̂n,t−1 and f̂n,t−1 − µ − ρf̂n,t−2 of degree less or equal to 2. This

explains why the GA log-likelihood function is equivalent to the logarithm of a Gaussian

pdf for f̂n,t − µ − ρf̂n,t−1, t = 1, · · · , T , with granularity adjustments for the mean and the

variance-covariance structure at order 1/n (see Appendix 5). We get the next result.

PROPOSITION 5: In a model with Gaussian autoregressive factor and macro-parameter θ

only, a granularity adjusted maximum likelihood estimator of θ can be obtained by maximizing
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the likelihood function of the (time-inhomogeneous) Gaussian ARMA(1,1) model:

ξn,t = µ + ρξn,t−1 + σεt +
1√
n

I
−1/2
n,t ut − ρ

1√
n

I
−1/2
n,t−1ut−1, t = 1, · · · , T, (4.6)

where the observations are ξn,t = f̂n,t + 1
2n

I−1
n,t K

(3)
n,t , and the shocks (εt), (ut) are mutually

independent IIN(0, 1) processes.

The computation of the log-likelihood function of the ARMA(1,1) process (4.6) does not

require the numerical inversion of a matrix of large dimension. Indeed, the (T, T ) conditional

variance-covariance matrix of ξn,t, t = 1, · · · , T , is Ωn = σ2IdT + 1
n
Bn, where Bn is the

symmetric (T, T ) matrix with elements equal to I−1
n,t + ρ2I−1

n,t−1 in position (t, t), −ρI−1
n,t−1 in

positions (t− 1, t) and (t, t− 1), and zeros otherwise. At order 1/n, we have:

Ω−1
n =

1

σ2
IdT − 1

nσ4
Bn. (4.7)

4.2 Approximate Linear Kalman Filter

We give below an equivalent statement of Propostion 5 in terms of an approximate linear

Kalman filter.

PROPOSITION 6: In a model with Gaussian autoregressive factor and macro-parameter

θ only, a granularity adjusted maximum likelihood estimator of θ can be obtained by applying
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the standard Kalman filter to the linear Gaussian state space model with state equation:

ft = µ + ρft−1 + σεt, εt ∼ IIN(0, 1), (4.8)

and measurement equation:

ξn,t = ft +
1√
n

I
−1/2
n,t ut, ut ∼ IIN(0, 1), (4.9)

where ξn,t = f̂n,t + 1
2n

I−1
n,t K

(3)
n,t .

By replacing ft in (4.8) by its expression derived from (4.9), we recover the recursive

equation (4.6) in Proposition 5. Equivalently, (4.8)-(4.9) is the linear state space repre-

sentation of the ARMA(1,1) process of Proposition 5. The granularity adjustment in the

measurement equation (4.9) concerns both the mean and the variance. Whereas the GA for

variance corresponds to the usual asymptotic variance of f̂n,t, the GA for the mean is not

correcting for the bias of f̂n,t at order 1/n. The reason is that the GA maximum likelihood

estimator differs from the unfeasible maximum likelihood estimator of θ by less than 1/n.

The GA for mean is introduced to recover the bias at order 1/n of the unfeasible ML, which

is not equal to zero. The estimator of macro-parameter θ in Proposition 6 computed with

the linear Kalman filter differs numerically from the estimator in Proposition 5, when the

latter is computed by using the approximate inverse variance-covariance matrix (4.7).
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5 Granularity Adjustment for Value-at-Risk (VaR)

5.1 The Problem

The need for tractable approximation formulas in factor models with large cross-sectional

size appeared first in Basel 2 regulation for credit risk [BCBS (2001)]. Let us consider a

large homogenous portfolio of n financial assets. Its future value can be written as:

Wn,t+1 =
n∑

i=1

yi,t+1, (5.1)

where the individual asset values yi,t+1, i = 1, · · · , n, are assumed to satisfy the assumptions

of the nonlinear state space model in Section 2.1, with underlying factor value ft+1. For

expository purpose, we include neither exogeneous variables nor lagged observations in the

measurement equations. The VaR at risk level α, with α ∈ (0, 1), is the (opposite of the)

quantile of level α of the predictive distribution of Wn,t+1, called Profit and Loss (P&L)

distribution. It is usual in this framework to “standardize” the VaR by considering the VaR

by individual asset, which corresponds to the (opposite of the) quantile at level α of Wn,t+1/n.

This quantity VaRn,t(α), say, depends on the portfolio size and on the information available

at time t. The VaR can be easily computed from the associated cumulative distribution

function of Wn,t+1/n. Hence, we first focus on this function.
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5.2 Approximation of the Predictive cdf of the Standardized Port-

folio Value

(i) By applying the Central Limit Theorem conditional on the factor value ft+1, we can write

for large n:

Wn,t+1/n ∼ m(ft+1) +
σ(ft+1)√

n
Z, (5.2)

where m(ft+1) = E[yi,t+1|ft+1], σ2(ft+1) = V [yi,t+1|ft+1] and Z is a standard Gaussian

variable independent of Ft+1,Yt. The relation (5.2) provides an approximation of Wn,t+1/n

at order o(1/n) for both the variance of Wn,t+1/n and the bias (since Wn,t+1/n is an unbiased

estimator of m(ft+1) conditional on ft+1). The approximate cdf of Wn,t+1/n given ft+1 is

such that 7 P [Wn,t+1/n ≤ w|ft+1] = Φ

(
w −m(ft+1)

σ(ft+1)/
√

n

)
+ o(1/n).

(ii) Let us now consider the cdf of Wn,t+1/n given Ft,Yt, Z. We have:

P [Wn,t+1/n ≤ w|Ft,Yt, Z] =

∫
1I

m(ft+1)+
σ(ft+1)√

n
Z≤w

g(ft+1|ft)dft+1 + o(1/n)

= a(w, ft, Z/
√

n) + o(1/n), say. (5.3)

Under mild regularity conditions, function a(w, f, ε) is continuously differentiable w.r.t. the

7The approximation error o(1/n) is derived by writing the cdf of the conditional distribution of Wn,t+1/n

given ft+1 as an integral of the associated complex Laplace transform by means of the Fourier Inversion

formula [Duffie, Pan, Singleton (2000)]. This Laplace transform corresponds to a Gaussian distribution at

order o(1/n) by the CLT.
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arguments f and ε at ε = 0 (see below).

(iii) We deduce that the predictive cdf Fn,t(w) := P [Wn,t+1/n ≤ w|Yt] of the standard-

ized portfolio value given Yt is:

Fn,t(w) = E
[
a(w, ft, Z/

√
n)|Yt

]
+ o(1/n)

= E

[
a

(
w, f̂n,t +

1

n
µn,t +

1√
n

I
−1/2
n,t Z∗,

1√
n

Z

)]
+ o(1/n), (5.4)

where Z∗ is a standard Gaussian variable, µn,t = I−1
n,t

∂ log g

∂ft

(f̂n,t|f̂n,t−1) +
1

2
I−2
n,t K

(3)
n,t is the

mean GA for the filtering distribution, and I−1
n,t /n the variance GA (see Proposition 1).

Since the numerical Laplace approximation does not account for the stochastic feature of

the observations, variables Z∗ and Z are independent.

Then, we can expand equation (5.4) at order 1/n. Since E[Z] = E[Z∗] =0, E[ZZ∗] = 0,

E[Z2] = E[(Z∗)2] = 1, we get:

Fn,t(w) = a(w, f̂n,t, 0) +
1

n

∂a

∂f
(w, f̂n,t, 0)µn,t

+
1

2n

[
I−1
n,t

∂2a

∂f 2
(w, f̂n,t, 0) +

∂2a

∂ε2
(w, f̂n,t, 0)

]
+ o(1/n). (5.5)

In the above expression we distinguish three components:

a(w, f̂n,t, 0) =: F∞,t(w) is the cdf of Wn,t+1/n evaluated at w and computed for a portfolio

of infinite size, with perfect knowledge of the current factor value, identified with f̂n,t;

a first GA
1

2n

∂2a

∂ε2
(w, f̂n,t, 0) is introduced to account for the finite size of the portfolio, but
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still assuming a perfect knowledge of the current factor value;

the second GA, that is
1

n

∂a

∂f
(w, f̂n,t, 0)µn,t +

1

2n
I−1
n,t

∂2a

∂f 2
(w, f̂n,t, 0), takes into account the

difference between the information sets (Ft,Yt) and Yt.

Due to the independence between Z and Z∗, there is no need for cross GA. Moreover, the

predictive cdf F∞,t corresponds to the conditional distribution of m(ft+1) given ft = f̂n,t

[see e.g. Vasicek (1987, 1991) and Schoenbucher (2002) in a static framework, and Lamb,

Perraudin, Van Landschoot (2008) in a dynamic framework].

5.3 Granularity Adjustment of the standardized VaR

Finally, the GA of the VaR is directly deduced from (5.5) by applying the Bahadur’s ex-

pansion. Let us denote Qn,t (resp. Q∞,t) the quantile function corresponding to Fn,t (resp.

F∞,t), and assume that the cross-sectional asymptotic density f∞,t(w) = dF∞,t(w)/dw exists

and is strictly positive. We have [Bahadur (1966)]:

Qn,t(α)−Q∞,t(α) = −Fn,t [Q∞,t(α)]− α

f∞,t [Q∞,t(α)]
+ o(1/n). (5.6)

The GA for the quantile and for the standardized VaR are obtained by replacing Fn,t, F∞,t,

... by their expressions using (5.5). In particular, the GA for the VaR is still at order 1/n

and accounts for both the portfolio size and information effects discussed for the cdf.
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Under suitable invertibility conditions, the derivatives of function a(w, f, ε) w.r.t. to ε at

0 can also be expressed in terms of the conditional distributions defining the measurement

and state equations. First, let us assume that function m(.) is one-to-one. Then, up to a

(nonlinear) transformation of the factor we can assume that m(f) = f , that is, the factor

ft is identified with the conditional mean of the individual observations. Moreover, let the

factor ft admit values in set F ⊂ R, and define the function:

Ψ(f, ε) = f + εσ(f),

for f ∈ F and ε ∈ R.

Assumption 1: For any ε in a neighbourhood of 0, the inverse of function f → Ψ(f, ε),

denoted by Ψ−1(·, ε), is well defined on F and is such that

Ψ(f, ε) ≤ w ⇔ f ≤ Ψ−1(w, ε),

for any w, f ∈ F .

Intuitively, Assumption 1 is satisfied when the effect of the volatility function σ(f) is

bounded. We illustrate the (non) validity of Assumption 1 in some examples in Section 5.4.

Under Assumption 1 the function a becomes:

a(w, ft, ε) =

∫ Ψ−1(w,ε)

−∞
g(ft+1|ft)dft+1. (5.7)
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Then, function a is differentiable w.r.t. ε at ε = 0 and we get the following Proposition (see

Appendix 6 for the proof):

PROPOSITION 7: If m(f) = f and Assumption 1 is satisfied, the GA for the finite

portfolio size is:

− 1

2n
σ2(Q∞,t(α))

(
∂ log g

∂ft+1

(
Q∞,t(α)|f̂n,t

)
+

d log σ2

df
(Q∞,t(α))

)
,

and the GA for filtering the current factor value is:

− 1

n
g

(
Q∞,t(α)|f̂n,t

)−1
[
µn,t

∂a

∂f
(Q∞,t(α), f̂n,t, 0) +

1

2
I−1
n,t

∂2a

∂f 2
(Q∞,t(α), f̂n,t, 0)

]
.

For a static factor model, the GA for filtering the current factor value is equal to zero,

and the GA for finite portfolio size becomes:

− 1

2n
σ2(Q∞,t(α))

∂ log (g · σ2)

∂f
(Q∞,t(α)) .

This formula corresponds to the GA derived in Martin, Wilde (2001), Gordy (2004) following

the local analysis of VaR in Gouriéroux, Laurent, Scaillet (2000). Proposition 7 shows how

the GA formula is extended and decomposed in models with a dynamic systematic factor.
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5.4 Examples

Let us now derive the GA in two examples with exponential micro-density (see Section 3.2)

and Gaussian transformed factor.

i) Linear Gaussian state space model

Let the variables yi,t follow the linear Gaussian state space model with measurement

equations:

yi,t = µ + η
√

ρFt + η
√

1− ρui,t, i = 1, ..., n, (5.8)

and state equation:

Ft = γFt−1 +
√

1− γ2vt, (5.9)

where (ui,t), i = 1, ..., n, and (vt) are independent IIN(0, 1) processes. The factor Ft is

normalized to have N(0, 1) stationary distribution, with autoregressive parameter γ such that

|γ| < 1. The unconditional distribution of the variables yi,t is N(µ, η2), and the parameter

ρ > 0 is the unconditional correlation between any pair (yi,t, yj,t), for i 6= j. The conditional

distribution of yi,t given Ft is Gaussian N(ft, σ
2), with conditional mean corresponding to

the transformed factor ft = µ+η
√

ρFt, and idiosyncratic conditional variance σ2 = (1−ρ)η2

independent of the factor value. By using that the distribution of ft+1 conditional on ft is

N (µ + γ(ft − µ), ρη2(1− γ2)), we deduce:

a(w, f, 0) = Φ

(
w − µ− γ(f − µ)

η
√

ρ
√

1− γ2

)
.
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By inversion w.r.t. w, we get the quantile per individual asset computed on a portfolio of

infinite size:

Q∞,t(α) = µ + γ(f̂n,t − µ) + η
√

ρ
√

1− γ2Φ−1(α).

Let us now derive the GA. We have m(f) = f and σ(f) = σ for f ∈ F = R, and Assumption

1 is satisfied with Ψ−1(w, ε) = w− εσ. Then, from Proposition 7 the GA the finite portfolio

size is:

1

2n

σ2

η
√

ρ
√

1− γ2
Φ−1(α),

and the GA for the filtering of the factor value is given by:

ηγ

n
√

ρ
√

1− γ2

[
1

2
γΦ−1(α)− v̂n,t

]
,

where v̂n,t =
f̂n,t − µ− γ(f̂n,t−1 − µ)

η
√

ρ
√

1− γ2
is the filtered residual of the state equation.

ii) Nonlinear state space model for qualitative variables

Let us consider a portfolio of (zero-coupon) corporate bonds with maturity at t + 1 and

unit nominal value, and denote by yi,t+1 the issuer default indicators. Under the assumption

of zero recovery rate, Wn,t+1/n is the portfolio loss per individual loan at t+1. Let us assume

that the dichotomous variables yi,t+1 are such that yi,t+1 = 1 if y∗i,t+1 < 0, and yi,t+1 = 0

otherwise, where the latent variables y∗i,t+1 correspond to the log of the asset-to-liability ratio

of the issuers at date t+1. The variables y∗i,t are assumed to follow the linear Gaussian state
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space model (5.8)-(5.9). This defines a nonlinear state space model for dichotomous variables

yi,t. The measurement equation is such that the default indicator yi,t is Bernoulli distributed

B(1, ft) conditional on the factor, with conditional default probability:

ft = P [yi,t = 1|Ft] = P
[
µ + η

√
ρFt + η

√
1− ρui,t < 0|Ft

]
= Φ

(
−µ + η

√
ρFt

η
√

1− ρ

)
.

The state equation is such that the transition pdf of transformed factor ft is deduced from

the Gaussian transition pdf of Ft in (5.9).

Let us first compute the function a(w, f, 0). Since Ft+1 = −µ + η
√

1− ρΦ−1(ft+1)

η
√

ρ
, we

have:

a(w, ft, 0) = P [ft+1 ≤ w|ft] = P

[
Ft+1 ≥ −µ + η

√
1− ρΦ−1(w)

η
√

ρ
|ft

]

= Φ

(
µ + η

√
1− ρΦ−1(w)− γ(µ + η

√
1− ρΦ−1(ft))

η
√

ρ
√

1− γ2

)
.

By inverting this function w.r.t. w, we get the predictive individual quantile at level α

computed on a portfolio of infinite size:

Q∞,t(α) = Φ

(
−µ + η

√
ρ
√

1− γ2Φ−1(1− α)− γ(µ + η
√

1− ρΦ−1(f̂n,t))

η
√

1− ρ

)
.

Let us now derive the GA of the quantile. We have m(f) = f and σ(f) =
√

f(1− f) for

f ∈ F = [0, 1]. For any ε ∈ R and w ∈ [0, 1], the equation f + ε
√

f(1− f) = w, for

f ∈ [0, 1], admits the unique solution

f = Ψ−1(w, ε) =
2w + ε2 − ε

√
4w(1− w) + ε2

2(1 + ε2)
.
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Assumption 1 is satisfied since function w → Ψ−1(w, ε) is monotone on [0, 1]. From Propo-

sition 7, the GA for finite portfolio size is:

1

2n

{[ √
1− ρ

√
ρ
√

1− γ2
Φ−1(α)− Φ−1(Q∞,t(α))

]
Q∞,t(α)[1−Q∞,t(α)]

φ [Φ−1(Q∞,t(α))]
− 1

}
,

and the GA for filtering the current factor value is:

γ

n
φ

[
Φ−1(Q∞,t(α))

]

µn,tΦ

−1(f̂n,t) +
1

2

I−1
n,t

φ
[
Φ−1(f̂n,t)

] +
γ

2

√
1− ρ

√
ρ
√

1− γ2
I−1
n,t Φ

−1(α)
[
Φ−1(f̂n,t)

]2


 .

iii) Gaussian model with volatility factor

Let us assume that the observations yi,t, i = 1, · · · , n, are IIN(0, f 2
t ) distributed con-

ditional on the volatility factor ft > 0. For this model the conditional mean function

m(f) = 0 is independent of the factor value. Moreover, the invertibility condition corre-

sponding to Assumption 1 is not satisfied, since for instance for any w < 0 and ε > 0 we

have Ψ(f, ε) = εf ≤ w for no f ≥ 0. From (5.3) we have for w < 0:

a(w, ft, ε) =





0, if ε ≥ 0

S
(w

ε
|ft

)
, if ε < 0

,

where S(ft+1|ft) denotes the transition survivor function of the factor. The right second-

order derivative of function a(w, f, ε) at ε = 0 is:

lim
ε→0−

∂2a

∂ε2
(w, ft, ε) = lim

ε→0−

(
−∂g(w/ε|ft)

∂ft+1

(w/ε2)2 − 2g(w/ε|ft)w/ε3

)

=
1

w2
lim
z→∞

(
−∂g(z|ft)

∂ft+1

z4 − 2g(z|ft)z
3

)
.
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Thus, if the tails of the transition distribution of the factor are sufficiently thin such that

lim
z→∞

(
−∂g(z|ft)

∂ft+1

z4 − 2g(z|ft)z
3

)
= 0, then function a(w, ft, ε) is twice-differentiable at

ε = 0, with zero second-order derivative. Otherwise, if the tails are not thin, the func-

tion a(w, ft, ε) is not twice-differentiable at ε = 0.

As an example, let us assume that the transition density of the factor is exponential, with

survivor function S(z|ft) = exp(−λ(ft)z), λ(ft) > 0 8. Then, from (5.3) the conditional cdf

of Wn,t+1/n given ft at order 1/n is:

E
[
a(w, ft, Z/

√
n)

]
= E

[
exp

(
−wλ(ft)√

n
Z

)
1IZ<0

]
= Φ

(
λ(ft)w√

n

)
exp

(
1

2n
λ(ft)

2w2

)
.

This formula can be expanded at order 1/n to get:

E
[
a(w, ft, Z/

√
n)

]
=

1

2
+

wλ(ft)√
2πn

+
λ(ft)

2w2

4n
+ o(1/n).

By integrating out the factor ft using the approximate filtering distribution in Proposition

1, we get:

Fn,t(w) =
1

2
+

wλ(f̂n,t)√
2πn

+
λ(f̂n,t)

2w2

4n
+ o(1/n).

Equivalently:

Fn,t(w) = Φ

(
λ(f̂n,t)w√

n

)
exp

(
1

2n
λ(f̂n,t)

2w2

)
+ o(1/n).

8In this example, the derivatives at any order of function a(w, ft, ε) w.r.t. ε in ε = 0 are zero. Since the

function is not equal to zero for ε < 0, the convergence radius of the Taylor series around ε = 0 is zero.

Thus, we cannot apply the argument in (5.5) based on a Taylor expansion.
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6 Concluding Remarks

Recently there have been several developments in the literature on nonlinear factor models

with individual observations and macro-factors. These developments are especially relevant

in Finance and Insurance when large homogenous portfolios of individual contracts, such as

loans, mortgages, revolving credits, Credit Default Swaps, life insurance contracts, are in-

volved. This paper shows how the difficulties encountered with nonlinear Kalman recursions

can be solved by an appropriate use of the micro-information. The granularity principle fol-

lowed in this paper consists in performing expansions of the quantity of interest with respect

to 1/n, where n is the cross-sectional dimension. The term of order 0 in 1/n corresponds to

the virtual case of an infinite cross-sectional size; the next term of order 1/n provides the

granularity adjustment. We have seen that this principle works for rather different quantities

of interest such as a filtering distribution, a predictive distribution, the maximum likelihood

estimator of a macro-parameter, or the VaR of a large homogenous portfolio.
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Appendix 1: Proof of Proposition 1

(i) Let us first derive the conditional distribution of ft given Yt,Ft−1, X. Its density is:

p(ft|Yt,Ft−1, X) =

n∏
i=1

hi,t(yi,t|ft)g(ft|ft−1)

∫ n∏
i=1

hi,t(yi,t|ft)g(ft|ft−1)dft

.

To approximate this distribution at order 1/n, we consider its Laplace transform:

E [exp(uft)|Yt,Ft−1, X] =

∫
euft

n∏
i=1

hi,t(yi,t|ft)g(ft|ft−1)dft

∫ n∏
i=1

hi,t(yi,t|ft)g(ft|ft−1)dft

=

∫
exp

(
uft +

n∑
i=1

log hi,t(yi,t|ft) + log g(ft|ft−1)

)
dft

∫
exp

(
n∑

i=1

log hi,t(yi,t|ft) + log g(ft|ft−1)

)
dft

, u ∈ R,

and perform a Laplace approximation of the integrals in the numerator and denominator for

large n. By the same arguments as in the proof of Theorem 1 in Gagliardini, Gouriéroux

(2009b), we get:

E [exp(uft)|Yt,Ft−1, X] = exp

[
u

(
f̂n,t +

1

n

[
I−1
n,t

∂ log g

∂ft

(f̂n,t|ft−1) +
1

2
I−2
n,t K

(3)
n,t

])

+
u2

2n
I−1
n,t + o(1/n)

]
. (A.1)
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Since at order 1/n the log of E [exp(uft)|Yt,Ft−1, X] involves terms in u and u2 only, the

distribution of ft given Yt,Ft−1, X is Gaussian at order 1/n:

N

(
f̂n,t +

1

n

[
I−1
n,t

∂ log g

∂ft

(f̂n,t|ft−1) +
1

2
I−2
n,t K

(3)
n,t

]
,
1

n
I−1
n,t

)
. (A.2)

(ii) Since f̂n,t−1 converges to ft−1 as n → ∞, at order 1/n we can replace ft−1 by f̂n,t−1

in the RHS of (A.1) and in (A.2). Thus, the distribution in (A.2) becomes independent of

Ft−1 up to o(1/n), and coincides with the conditional distribution of ft given Yt, X at order

1/n. The conclusion follows.
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Appendix 2: Proof of Proposition 2

Let us expand the integrand in (2.4) around f̃t+1 = f̃n,t+1. We have:

Ψ (ỹt+1|ft, yt, X) =

∫
exp

[
n∑

i=1

log hi,t+1

(
ỹi,t+1|f̃n,t+1

)
− n

2
Ĩn,t+1

(
f̃t+1 − f̃n,t+1

)2

+
n

6
K̃

(3)
n,t+1

(
f̃t+1 − f̃n,t+1

)3

+
n

24
K̃

(4)
n,t+1

(
f̃t+1 − f̃n,t+1

)4

+ · · ·

+ log g
(
f̃n,t+1|ft

)
+

∂ log g

∂ft+1

(
f̃n,t+1|ft

) (
f̃t+1 − f̃n,t+1

)

+
1

2

∂2 log g

∂f 2
t+1

(
f̃n,t+1|ft

)(
f̃t+1 − f̃n,t+1

)2

+ · · ·
]

df̃t+1.

Let us introduce the change of variable:

Z =
√

nĨ
1/2
n,t+1

(
f̃t+1 − f̃n,t+1

)
⇔ f̃t+1 = f̃n,t+1 +

1√
n

Ĩ
−1/2
n,t+1Z.

Then, we get:

Ψ (ỹt+1|ft, yt,X) =
n∏

i=1

hi,t+1

(
ỹi,t+1|f̃n,t+1

)
g

(
f̃n,t+1|ft

) √
2π

nĨn,t+1

·E
{

exp

[
1√
n

(
1

6
K̃

(3)
n,t+1Ĩ

−3/2
n,t+1Z

3 + Ĩ
−1/2
n,t+1

∂ log g

∂ft+1

(
f̃n,t+1|ft

)
Z

)

+
1

n

(
1

24
K̃

(4)
n,t+1Ĩ

−2
n,t+1Z

4 +
1

2
Ĩ−1
n,t+1

∂2 log g

∂f 2
t+1

(
f̃n,t+1|ft

)
Z2

)
+ o(1/n)

]}

=:
n∏

i=1

hi,t+1

(
ỹi,t+1|f̃n,t+1

)
g

(
f̃n,t+1|ft

) √
2π

nĨn,t+1

Jn, say,
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where the expectation in term Jn is w.r.t. the standard Gaussian variable Z. By expanding

the exponential function, we get:

Jn = exp

{
1

n
E

[
1

24
K̃

(4)
n,t+1Ĩ

−2
n,t+1Z

4 +
1

2
Ĩ−1
n,t+1

∂2 log g

∂f 2
t+1

(
f̃n,t+1|ft

)
Z2

]

+
1

2n
E

[(
1

6
K̃

(3)
n,t+1Ĩ

−3/2
n,t+1Z

3 + Ĩ
−1/2
n,t+1

∂ log g

∂ft+1

(
f̃n,t+1|ft

)
Z

)2
]

+ o(1/n)

}

= exp

{
1

n

[
1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

1

2
Ĩ−1
n,t+1

∂2 log g

∂f 2
t+1

(
f̃n,t+1|ft

)
+

5

24

[
K̃

(3)
n,t+1

]2

Ĩ−3
n,t+1

+
1

2
Ĩ−1
n,t+1

(
∂ log g

∂ft+1

(
f̃n,t+1|ft

))2

+
1

2
K̃

(3)
n,t+1Ĩ

−2
n,t+1

∂ log g

∂ft+1

(
f̃n,t+1|ft

)]
+ o(1/n)

}
,

where we used E [Z2] = 1, E [Z4] = 3, E [Z6] = 15 and that odd-order moments of Z vanish.

The conclusion follows.
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Appendix 3: Proof of Proposition 3

The conditional density of yt+1 given Yt and X is given by:

Ψ (ỹt+1|Yt, X) =

∫
Ψ (ỹt+1|ft, yt, X) Ψ (ft|Yt, X) dft,

where Ψ (ỹt+1|ft, yt, X) is given in Proposition 2 and Ψ (ft|Yt, X) is the Gaussian pdf given

in Proposition 1 at order 1/n. Thus, we get:

Ψ (ỹt+1|Yt, X) =

√
2π

nĨn,t+1

n∏
i=1

hi,t+1

(
ỹi,t+1|f̃n,t+1

)

· exp

{
1

n

[
1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

5

24

[
K̃

(3)
n,t+1

]2

Ĩ−3
n,t+1

]
+ o(1/n)

}

·
∫

g
(
f̃n,t+1|ft

)
exp





1

2n


Ĩ−1

n,t+1




∂2 log g
(
f̃n,t+1|ft

)

∂f 2
t+1

+


∂ log g

(
f̃n,t+1|ft

)

∂ft+1




2



+Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(
f̃n,t+1|ft

)

∂ft+1





1√
2πI−1

n,t /n
exp

{
−nIn,t

2

(
ft − f̂n,t − 1

n
ξn,t

)2
}

dft,

where:

ξn,t = I−1
n,t

∂ log g
(
f̂n,t|f̂n,t−1

)

∂ft

+
1

2
I−2
n,t K

(3)
n,t .

The integral:

A :=

∫
g

(
f̃n,t+1|ft

)
exp





1

2n


Ĩ−1

n,t+1




∂2 log g
(
f̃n,t+1|ft

)

∂f 2
t+1

+


∂ log g

(
f̃n,t+1|ft

)

∂ft+1




2



+Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(
f̃n,t+1|ft

)

∂ft+1





1√
2πI−1

n,t /n
exp

{
−nIn,t

2

(
ft − f̂n,t − 1

n
ξn,t

)2
}

dft,
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is approximated at order 1/n by a Laplace approximation. We expand the integrand around

ft = f̂n,t such that:

g
(
f̃n,t+1|ft

)
exp

{
−nIn,t

2

(
ft − f̂n,t − 1

n
ξn,t

)2
}

= exp



log g

(
f̃n,t+1|f̂n,t

)
+

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft

(
ft − f̂n,t

)

+
1

2

∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t

(
ft − f̂n,t

)2

+ · · ·

−nIn,t

2

(
ft − f̂n,t

)2

+ In,tξn,t

(
ft − f̂n,t

)
− In,t

2n
ξ2
n,t

}
.

Then, we introduce the change of variables:

Z =
√

nI
1/2
n,t

(
ft − f̂n,t

)
⇔ ft = f̂n,t +

1√
n

I
−1/2
n,t Z.

We get:

A = g
(
f̃n,t+1|f̂n,t

)
exp





1

2n


Ĩ−1

n,t+1




∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t+1

+


∂ log g

(
f̃n,t+1|f̂n,t

)

∂ft+1




2



+Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft+1

− In,tξ
2
n,t


 + o(1/n)





·E

exp


 1√

n


I

−1/2
n,t

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft

+ I
1/2
n,t ξn,t


 Z +

I−1
n,t

2n

∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t

Z2





 ,
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where Z is a standard Gaussian variable. By developing the exponential function, we have:

E


exp


 1√

n


I

−1/2
n,t

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft

+ I
1/2
n,t ξn,t


 Z +

I−1
n,t

2n

∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t

Z2







= exp





1

2n


I−1

n,t

∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t

+


I

−1/2
n,t

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft

+ I
1/2
n,t ξn,t




2

 + o(1/n)





.

Thus:

Ψ (ỹt+1|Yt, X) =

√
2π

nĨn,t+1

n∏
i=1

hi,t+1

(
ỹi,t+1|f̃n,t+1

)
g

(
f̃n,t+1|f̂n,t

)

· exp

{
1

n

[
1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

5

24

[
K̃

(3)
n,t+1

]2

Ĩ−3
n,t+1

+
1

2
Ĩ−1
n,t+1




∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t+1

+


∂ log g

(
f̃n,t+1|f̂n,t

)

∂ft+1




2



+
1

2
Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft+1

− 1

2
In,tξ

2
n,t

+
1

2
I−1
n,t

∂2 log g
(
f̃n,t+1|f̂n,t

)

∂f 2
t

+
1

2


I

−1/2
n,t

∂ log g
(
f̃n,t+1|f̂n,t

)

∂ft

+ I
1/2
n,t ξn,t




2







.

By replacing ξn,t by its definition, and rearranging terms, the conclusion follows.
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Appendix 4: Proof of Proposition 4

(i) The first-order derivative of the log-density w.r.t. the factor value is:

∂ log hi,t (yi,t|ft)

∂ft

=
1

hi,t (yi,t|ft)

∂hi,t (yi,t|ft)

∂ft

= a(yi,t) +
dc (ft)

df
.

By using E

[
1

hi,t (yi,t|ft)

∂hi,t (yi,t|ft)

∂ft

|ft

]
= 0, we get:

dc (ft)

df
= −E [a(yi,t)|ft] ,

and:

∂ log hi,t (yi,t|ft)

∂ft

= a(yi,t)− E [a(yi,t)|ft] .

(ii) The second-order derivative is:

∂2 log hi,t (yi,t|ft)

∂f 2
t

=
1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f 2
t

−
(

∂ log hi,t (yi,t|ft)

∂ft

)2

=
d2c (ft)

df 2
.

By using E

[
1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f 2
t

|ft

]
= 0, we get:

d2c (ft)

df2
= E

[
∂2 log hi,t (yi,t|ft)

∂f 2
t

|ft

]
= −E

[(
∂ log hi,t (yi,t|ft)

∂ft

)2

|ft

]
= −V [a(yi,t)|ft] .

(iii) The third-order derivative is:

∂3 log hi,t (yi,t|ft)

∂f 3
t

=
d3c (ft)

df 3
.
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Now, we have:

∂3 log hi,t (yi,t|ft)

∂f 3
t

=
1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f 3
t

− 1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f 2
t

(
∂ log hi,t (yi,t|ft)

∂ft

)

−2

(
∂ log hi,t (yi,t|ft)

∂ft

)(
∂2 log hi,t (yi,t|ft)

∂f 2
t

)
.

By substituting:

1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f 2
t

=
∂2 log hi,t (yi,t|ft)

∂f 2
t

+

(
∂ log hi,t (yi,t|ft)

∂ft

)2

,

we get:

∂3 log hi,t (yi,t|ft)

∂f 3
t

=
1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f 3
t

− 3

(
∂ log hi,t (yi,t|ft)

∂ft

)(
∂2 log hi,t (yi,t|ft)

∂f 2
t

)

−
(

∂ log hi,t (yi,t|ft)

∂ft

)3

.

By using E

[
1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f 3
t

|ft

]
= 0, E

[
∂ log hi,t (yi,t|ft)

∂ft

|ft

]
= 0 and

∂2 log hi,t (yi,t|ft)

∂f 2
t

=

d2c (ft)

df 2
, we get:

d3c (ft)

df 3
= E

[
∂3 log hi,t (yi,t|ft)

∂f 3
t

|ft

]
= −E

[(
∂ log hi,t (yi,t|ft)

∂ft

)3

|ft

]

= −E
[
(a(yi,t)− E [a(yi,t)|ft])

3 |ft

]
.

(iv) The fourth-order derivative is:

∂4 log hi,t (yi,t|ft)

∂f 4
t

=
d4c (ft)

df 4
.
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Now, we have:

∂4 log hi,t (yi,t|ft)

∂f 4
t

=
1

hi,t (yi,t|ft)

∂4hi,t (yi,t|ft)

∂f 4
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we get:
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By using that E
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1

hi,t (yi,t|ft)

∂4hi,t (yi,t|ft)

∂f 4
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]
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]
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t

=
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df 3
, we get:
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df 4
= E
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]
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E
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4 |ft

]− 3V [a(yi,t)|ft]
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Appendix 5: Proof of Proposition 5

Let us first rewrite the RHS of (4.5). By using log g(f̂n,t|f̂n,t−1; θ) = −1

2
log(2πσ2) −

η̂n,t(θ)
2

2σ2
,
∂ log g(f̂n,t|f̂n,t−1; θ)

∂ft

= − η̂n,t(θ)

σ2
,
∂2 log g(f̂n,t|f̂n,t−1; θ)

∂f 2
t

= − 1

σ2
,
∂ log g(f̂n,t|f̂n,t−1; θ)

∂ft−1

=

ρη̂n,t(θ)

σ2
and

∂2 log g(f̂n,t|f̂n,t−1; θ)

∂f 2
t−1

= −ρ2

σ2
, where η̂n,t(θ) = f̂n,t − µ− ρf̂n,t−1, we get:

log p(yt|Yt−1, X; θ) = −1

2
log(2πσ2)− 1

2nσ2
(I−1

n,t + ρ2I−1
n,t−1)

− 1

2σ2

[
1− 1

nσ2
(I−1

n,t + ρ2I−1
n,t−1)

]
η̂n,t(θ)

2

− 1

2nσ2

(
I−1
n,t K

(3)
n,t − ρI−1

n,t−1K
(3)
n,t−1

)
η̂n,t(θ)− ρ

nσ4
I−1
n,t−1η̂n,t(θ)η̂n,t−1(θ).

Thus from (4.4), the GA log-likelihood function can be written as:

LGA
nT (θ) = −1

2
ωn(θ)− 1

2Tσ2
Un(θ)′

(
IdT − 1

nσ2
Bn(θ)

)
Un(θ) + o(1/n), (A.3)

up to a constant term in θ, where Un(θ) is a (T, 1) vector with elements:

Un,t(θ) = η̂n,t−1(θ) +
1

2n

(
I−1
n,t K

(3)
n,t − ρI−1

n,t−1K
(3)
n,t−1

)
= ξn,t − µ− ρξn,t−1,

the symmetric (T, T ) matrix Bn(θ) has elements equal to I−1
n,t + ρ2I−1

n,t−1 in position (t, t),

−ρI−1
n,t−1 in positions (t − 1, t) and (t, t − 1), and zeros otherwise, and the scalar ωn(θ) is

given by ωn(θ) = log(2πσ2) +
1

σ2nT

T∑
t=1

(I−1
n,t + ρ2I−1

n,t−1).

Now, we have:

1

σ2

(
IdT − 1

nσ2
Bn(θ)

)
= Ωn(θ)−1 + o(1/n), (A.4)
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where Ωn(θ) = σ2IdT +
1

n
Bn(θ). Moreover:

1

T
log det Ωn(θ) = log σ2 +

1

T
log det

(
IdT +

1

nσ2
Bn(θ)

)

= log σ2 +
1

T
log

(
1 +

1

nσ2
trBn(θ) + o(T/n)

)

= log σ2 +
1

σ2nT
trBn(θ) + o(1/n) = ωn(θ) + o(1/n). (A.5)

By replacing (A.4) and (A.5) into (A.3), we get:

LGA
nT (θ) = − 1

2T
log det Ωn(θ)− 1

2Tσ2
Un(θ)′Ωn(θ)−1Un(θ) + o(1/n).

By noting that Ωn(θ) is the variance-covariance matrix of the errors σεt + 1√
n
I
−1/2
n,t ut −

ρ 1√
n
I
−1/2
n,t−1ut−1, where (εt) and (ut) are independent Gaussian white noise processes, the con-

clusion follows.
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Appendix 6: Proof of Proposition 7

From (5.7), the second-order derivative w.r.t. ε at ε = 0 is given by:

∂2a

∂ε2
(w, ft, 0) = g (w|ft)

[
∂ log g (w|ft)

∂ft+1

(
∂Ψ−1(w, 0)

∂ε

)2

+
∂2Ψ−1(w, 0)

∂ε2

]
,

where we have used that Ψ−1(w, 0) = w. To compute the partial derivatives of Ψ−1(w, ε)

w.r.t. ε at 0, we differentiate twice w.r.t. ε the identity Ψ (Ψ−1(w, ε), ε) = w, and evaluate

the result at ε = 0. We get

∂Ψ−1(w, 0)

∂ε
= −∂Ψ(w, 0)

∂ε
/
∂Ψ(w, 0)

∂f
= −σ(w),

and:

∂2Ψ−1(w, 0)

∂ε2
= −

(
∂Ψ(w, 0)

∂f

)−1
[

∂2Ψ(w, 0)

∂f 2

(
∂Ψ−1(w, 0)

∂ε

)2

+ 2
∂2Ψ(w, 0)

∂f∂ε

∂Ψ−1(w, 0)

∂ε
+

∂2Ψ(w, 0)

∂ε2

]

=
dσ2(w)

df
.

We deduce:

∂2a

∂ε2
(w, ft, 0) = g (w|ft) σ2(w)

(
∂ log g (w|ft)

∂ft+1

+
d log σ2(w)

df

)
.

By using equations (5.5) and (5.6), the conclusion follows.
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Table 1: Canonical parameters and summary statistics in the main exponential families.

Family
Canonical

parameter

Cross-sectional

ML

Function c(f) Transform a(y)

Bernoulli

B(1, p)

f = log
(

p
1−p

)
f̂n,t = log

(
ȳn,t

1− ȳn,t

)
c(f) = − log (1 + exp f) a(y) = y

Poisson

P(λ)

f = log λ f̂n,t = log ȳn,t c(f) = − exp f a(y) = y

Exponential

γ(1, λ)

f = λ f̂n,t = 1/ȳn,t c(f) = log f a(y) = −y

Gaussian

N(m, 1)

f = m f̂n,t = ȳn,t c(f) = −f 2/2 a(y) = y

Gaussian

N(0, σ2)

f = 1/σ2 f̂n,t = 1/σ̂2
n,t c(f) = log f/2 a(y) = −y2/2

In the third column, ȳn,t =
1
n

n∑

i=1

yi,t and σ̂2
n,t =

1
n

n∑

i=1

y2
i,t denote the cross-sectional mean and second-

order moment, respectively, at date t.
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