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Abstract

We develop a GMM estimator for stationary heavy tailed data by trimming an
asymptotically vanishing sample portion of the estimating equations. Trimming en-
sures the estimator is asymptotically normal, and self-normalization implies we do
not need to know the rate of convergence. Tail -trimming, however, ensures asym-
metric models are covered under rudimentary assumptions about the thresholds;
it implies super-

p
n-consistency is achievable depending on regressor and error tail

thickness and dependence; and it implies possibly heterogeneous convergence rates
below, at or above

p
n. Models covered include linear or nonlinear autoregressions

with linear or nonlinear GARCH innovations. Simulation evidence shows the new
estimator dominates GMM and QML when these estimators are not or have not
been shown to be asymptotically normal.

1. INTRODUCTION We develop a Generalized Method of Tail-Trimmed Mo-
ments estimator for possibly very heavy tailed time series. Heavy tails could be the result
of the underlying shocks (e.g. ARX) and/or the parametric structure (e.g. GARCH),
depending on the model. There now exists an abundance of stylized evidence in favor of
asymmetry and heavy tails in �nancial, macroeconomic and actuarial data like exchange
rate and asset price �uctuations and insurance claims (Mandelbrot 1963, Campbell and
Hentschel 1992, Engle and Ng 1993, Embrechts et al 1997, Finkenstadt and Rootzén
2003); microeconomic data like auction bids and birth weight (Chernozhukov 2005, Hill
and Shneyerov 2009); and network tra¢ c (Resnick 1997). Coupled with the necessity
for over-identifying restrictions in economic models, a robust GMM methodology will be
useful to the analyst unwilling to impose ad hoc error and parameter restrictions. See
Hansen (1982), Renault (1997) and Hall (2005).
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Let mt(�) denote estimating equations, a stochastic mapping

mt : �! Rq; compact � � Rk;

induced from some moment condition. The strong global identi�cation condition is

E [mt(�)] = 0 if and only if � = �0 for unique �0 2 �:

As an example consider a strong-ARCH(1) process fytg,

yt = ht�t, h2t = �0 + �0y
2
t�1, �0 = [�0; �0]

0; �t
iid� (0; 1) and =t := �(y� : � � t) (1)

with equations

mt(�) =
�
y2t � �� �y2t�1

	
zt�1, zt�1 =

�
1; y2t�1; :::

�
2 Rq; q � 2:

The GMM estimator solves

�̂g = argmin
�2�

( 
1

n

nX
t=1

mt(�)

!0
�̂n

 
1

n

nX
t=1

mt(�)

!)

for some stochastic positive semi-de�nite matrix �̂n 2 Rq�q, and n � 1 is the sample size.
Under mild conditions �̂g is asymptotically linear (e.g. Newey and McFadden 1994)

p
n
�
�̂ � �0

�
= An �

1p
n

nX
t=1

mt(�0) + op (1) for some An 2 Rk�q,

so asymptotics are grounded on
Pn

t=1mt(�0).
Clearly each E[m2

i;t(�0)] < 1 which requires �t and yt to have �nite 4th and 8th

moments, respectively, along with few additional assumptions, ensures Gaussian asymp-
totics. This rules out mildly heavy-tailed shocks, and integrated random volatility (e.g.
IGARCH) and much more. If over-identifying restrictions exist q � 3 with say z3;t�1 =
jyt�1j2+�=2 and � > 0 then yt must have a �nite (8 + �)th moment, a very tall order for
�nancial time series. Models with heterogeneous estimating equations include the mul-
tifactor factor Capital Asset Pricing Model with high risk (e.g. oil futures), composite
market (e.g. NYMEX) and low risk (e.g. U.S. Treasury Bill) asset returns, and factor
premia (e.g. market capitalization and book-to-price ratio); VARX for causality model-
ing of �nancial and macroeconomic returns; and random volatility with over identifying
conditions. See French and Fama (1996), Ding and Granger (1996), Mikosch and St¼aric¼a
(2000), and Embrechts et al (2003).
Although GMM with a non-Gaussian limit is certainly achievable in the manner of

least squares (e.g. Hannan and Kanter 1977, Knight 1987, Chan and Tran 1989, Cline
1989), we seek an estimator that permits standard inference and is therefore simple to
use. We propose asymptotically negligibly trimming k1;i;n left-tailed and k2;i;n right-tailed
observations from each equation sample fmi;t (�)gnt=1, where kj;i;n ! 1 and kj;i;n=n !
0
De�ne tail speci�c observations of mi;t(�) and sample order statistics:

m
(�)
i;t (�) := mi;t(�)� I (mi;t(�) < 0) and m

(�)
i;(1)(�) � � � � � m

(�)
i;(n)(�) � 0

m
(+)
i;t (�) := mi;t(�)� I (mi;t(�) > 0) and m

(+)
i;(1)(�) � � � � � m

(+)
i;(n)(�) � 0

m
(a)
i;t (�) := jmi;t (�)j and m

(a)
i;(1)(�) � � � � � m

(a)
i;(n)(�) � 0:
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Any equation mi;t(�0) which may have an in�nite variance, mi;t(�) is trimmed between
its lower k1;i;n=nth and upper k2;i;n=nth sample quantiles:

m̂�
i;t (�) := mi;t (�)� I

�
m
(�)
i;(k1;i;n)

(�) � mi;t (�) � m
(+)
i;(k2;i;n)

(�)
�
= mi;t (�)� Îi;t (�)(2)

m̂�
t (�) =

h
mi;t (�)� Îi;t (�)

iq
i=1

where Îj;t (�) = 1 if equation j is not trimmed,

and I(A) = 1 is A is true, and 0 otherwise1 . If the data generating process is symmetric
and mi;t(�0) is heavy-tailed (e.g. IGARCH) then symmetric trimming is appropriate: for
ki;n ! 1 and ki;n=n ! 0

m̂�
i;t (�) := mi;t (�)� I

�
jmi;t (�)j � m

(a)
i;(ki;n)

(�)
�
: (3)

The Generalized Method of Tail-Trimmed Moments [GMTTM] estimator solves

�̂n = argmin
�2�

( 
1

n

nX
t=1

m̂�
t (�)

!0
� �̂n �

 
1

n

nX
t=1

m̂�
t (�)

!)
:

As long as fmt(�0);=tg forms an adapted martingale di¤erence sequence for some sequence
of �-�elds f=tg, and Ejmi;t(�0)jp < 1 for some p > 0, standard smoothness conditions
ensure

V 1=2n

�
�̂n � �0

�
d! N (0; Ik)

for some sequence of positive de�nite matrices fVng. The Gaussian limit holds for a host
of arbitrarily heavy tailed, stationary linear and nonlinear time series, and simple rules of
thumb can be applied to the selection of the trimming fractiles ki;n.
Inference does not require knowledge of the rate of convergence since we self normal-

ize, and tail-trimming equations with �nite variance has no impact on asymptotics. In
particular, �̂n is

p
n-consistent if all equations have a �nite variance (e.g. �nite kurto-

sis GARCH), while sub-, exact- or super-
p
n-consistency may arise in heavy tailed cases

depending on the relative tail thickness of error and regressor, and whether the error is
iid (e.g. AR with iid shocks) or depends on the regressor through some form of feedback
(e.g. AR with ARCH shocks). There is also a trade-o¤: the feasible rate of convergence
is dampened precisely due to trimming. See Section 3 for convergence rate derivation
for dynamic linear regression, IV, ARCH and AR-ARCH models. See also Antoine and
Renault (2008a) for broad GMM theory under variable coe¢ cient estimator rates that
are no greater than

p
n.

In Section 4 we verify the major assumptions for linear-in-parameters models, and
show consistency and asymptotic normality are nearly primitive properties. We then
perform a monte carlo study in Section 5 to demonstrate super-

p
n-consistency for an

autoregression, and the superiority of GMTTM over GMM and QML for linear and non-
linear models including AR, GARCH, IGARCH, Quadratic-ARCH, and Threshold-ARCH
with Gaussian or Paretian innovations.
Fixed quantile or central order trimming, by comparison, imposes kj;i;n=n ! �j;i 2

(0; 1) for each equation i and tail j. This is the standard in the robust M-estimation and
Method of Moments literatures where symmetry is imposed �1;i = �2;i (see below). In this

1Other criteria for trimming exist, including trimming according to the Euclidean norm m
(N)
t (�) :=

jjmt (�) jj. In this case m̂n;t(�) = mt(�)I(jjmt(�)jj � m
(N)
(kn)

(�)) where kn !1 and kn=n! 0 Simulation
work reveals the latter is massively dominated by component-wise trimming when q > 1, irrespective of
model symmetries.
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case without further information the data generating process must be symmetric to ensure
identi�cation of �0. Since key asymptotic arguments in this paper exploit negligility and
degeneracy properties under tail trimming, a direct extension to �xed quantile trimming
is not evident.
Finally, we do not tackle the problem of fractile fk1;n; k2;ng selection in practice since

that deviates from the central theme of Gaussian asymptotics under tail-trimming. Nev-
ertheless, we provide substantial detail on reasonable rates k1;n ! 1 and k2;n ! 1 for
augmenting e¢ ciency (Sections 3-5).

1.2 EXTANT METHODS

The best extant theory of Minimum Distance Estimation for time series covers M-
estimators, in particular QML for GARCH models and Least Trimmed Squares in the
robust estimation literature. Francq and Zakoïan (2004) prove the QMLE is asymptoti-
cally normal for strong GARCH and ARMA-GARCH under E(�4t ) < 1. Extant results
cover stationary and therefore IGARCH models under Ej�tjp <1 for at least p � 4. See,
also, Hansen and Lee (1994), Lumsdaine (1996) and Jensen and Rahbek (2004) for results
covering stationary and non-stationary cases.
Linton et al (2008) prove asymptotic normality of the log-transformed LAD estimator

for non-stationary GARCH provided E(�2t ) < 1 for martingale di¤erence �t, and Ej�tjp
< 1 for some p > 0 for iid �t. See also Peng and Yao (2003).
Although robust estimation has a substantial history (Huber 1964, Stigler 1973), only a

few results permit fully nonlinear models with heavy tails. Most focus on thin tailed envi-
ronments with outliers under data contamination; most concern M-estimator frameworks;
and when trimming, truncation or weighting are employed only non-tail data quantiles
are considered. Evidently tail-trimming appears only in the robust location literature and
has not been applied to extremum estimation.
Let st(�) � 0 denote criterion equations, for example st (�) = jyt � �0xtj for LAD.

Ling (2005, 2007) symmetrically weighs LAD and QML equations
Pn

t=1 wt(c)st(�) where
wt (c) is a smooth stochastic function based on some threshold c. Since wt(c) is not a
function of � the threshold c is not with respect to the criterion st(�), but instead the
data yt. Linear autoregressive and GARCH models are separately covered allowing E[�2t ]
< 1 and Ejytjp < 1 for some p > 0.
Hadi and Luceno (1997) characterize the Maximum Trimmed Likelihood [MTL] esti-

mator but do not provide a formal theory. µCiµzek (2005, 2008) improves the breakdown
point of M-estimators by trimming the kn � �n largest st(�). Nonlinear models and mod-
els with limited dependent variables are covered, the errors are assumed to be iid with
a �nite variance, and asymptotic covariance estimation is neglected. Kan and Lewbel
(2007) use trimming to solve bias problems in semiparametric least squares estimation for
linear truncated regression models. The data are iid with thin tails, but trimming is based
on a set distance of regressor observations to their sample maximum. See also Ruppert
and Carroll (1980), Rousseeuw (1985), Stromberg (1993), and Agulló et al (2008) for LTS;
Neykov and Neytchev (1990) for MTL; and Basset (1991) and Tableman (1994) for Least
Trimmed Absolute Deviations; and see Chen et al (2001) for robust regression based on
Winsorizing observations.
Fundamental short-comings of trimming criterion equations st(�) by a �xed quantile

of st(�) are super-
p
n-consistency is impossible for stationary data; asymptotic normality

cannot be achieved when regressors are heavy tailed; and asymmetric models are not
covered. See Section 2.6 for direct comparisons of the LTS and MTL estimators with
GMTTM.
A few results are couched in method of moments. µCiµzek (2009) trims a �xed quantile of

mt(�) for thin-tailed cross-sections under data contamination, covering limited dependent

4



and instrumental variables. Since the quantile is �xed identi�cation must be assumed and
an e¢ cient criterion weight does not exist. Powell (1986) and Honoré (1992) construct
least squares estimator couched in GMTM for censored linear regressions models of iid
data. Ronchetti and Trojani (2001) symmetrically truncate mt(�) and propose a method
of simulated moments to overcome bias in asymmetric models. The error distribution
must therefore be known and heavy-tailed cases are ignored.

Throughout jjxjjp := (
P

i;j jxi;j jp)1=p and jj � jj = jj � jj2 the Euclidean matrix norm.
(z)+ := maxf0; zg. The Lp-norm is then (Ejjxtjjpp)1=p = (

P
i;j Ejxi;j jp)1=p. K > 0 is

a �nite constant whose value may change from line to line; �; � > 0 are arbitrarily tiny
constants whose values may change; and N is an arbitrary positive integer. Denote by
p! and d! convergence in probability and in distribution, and ! denotes convergence in
jj � jj. Id is a d-dimensional identity matrix and A1=2 denotes the square-root matrix for
positive de�nite A. U0(�) denotes a �-neighborhood of �0. LLN = law of large numbers.
Throughout sup� = sup�2� and inf� = inf�2�.

2. TAIL-TRIMMED GMM In this section we develop a model-free theory of
GMTTM based on primitive properties of mt(�). See Sections 3 and 4 applications con-
cerning speci�c models.

2.1 TAIL-TRIMMING

There is no impact on asymptotics if an equation mi;t(�0) has a �nite variance but
is trimmed, due to the asymptotic negligibility of tail trimming. Thus, in order not to
repeat ourselves and to reduce notation, we simply tail-trim all equations. The reader can
feel safe to leave any equation mi;t(�0) untrimmed if it is known to have a �nite variance.
Let positive integer sequences fk1;i;n; k2;i;ng and positive sequences of threshold func-

tions fli;n(�); ui;n(�)gqi=1 satisfy

kj;i;n !1, kj;i;n=n! 0, 1 � k1;i;n + k2;i;n < n

li;n(�)!1 and ui;n(�)!1 uniformly on compact � � Rk,

and uniformly on � (e.g. Leadbetter et al 1983: Theorem 1.7.13)

n

k1;i;n
P (mi;t(�) < �li;n(�))! 1 and

n

k2;i;n
P (mi;t (�) > ui;n(�))! 1. (4)

Thus, li;n(�) and ui;n(�) are asymptotically the equation speci�c lower k1;i;n=nth ! 0
and upper k2;i;n=nth ! 0 tail quantiles. The threshold sequences fli;n(�); ui;n(�)g are not
unique for given fractiles fk1;i;n; k2;i;ng since fli;n(�) � Kl;n; ui;n(�) � Ku;ng satisfy (4)
for any sequences Kl;n = o(li;n(�)) and Ku;n = o(ui;n(�)) uniformly on �.
The practice of GMTTM involves m̂�

t (�) in (2) or (3), but theory centers around
deterministically trimmed equations:

m�
t (�) := [mi;t (�)� I (�li;n(�) � mi;t (�) � ui;n(�))]

q
i=1 (5)

= [mi;t (�)� Ii;t (�)]qi=1 :

Although mt(�) identi�es �0, we can only assume m�
t (�) identi�es some sample-size de-

pendent �n;0:
E[m�

t (�)] = 0 if and only if � = �n;0 2 �:
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Identi�cation of �0 by the trimmed equations m�
t (�),

E [m�
t (�0)]! 0;

however, is easily guaranteed for arbitrarily many threshold sequences fli;n(�0); ui;n(�0)g
that satisfy (4) since tail trimming is asymptotically negligible. This runs contrary to
weak and nearly weak identi�cation where information vanishes at some rate (e.g. Stock
and Wright 2000, Antoine and Renault 2008b). Here, information amasses at some rate
to be made precise below, ensuring eventual identi�cation of �0. If the DGP of fmt(�0)g
is symmetric then �n;0 = �0 for any thresholds li;n(�) = ui;n(�) and fractile k1;i;n =
k2;i;n under (4). This holds for linear-in-parameters models with symmetric shocks like
autoregressions, GARCH, and so on.
Write compactly throughout

ci;n (�) := max fli;n (�) ; ui;n (�)g and cn (�) = max
1�i�q

fci;n (�)g

ki;n = max fk1;i;n; k2;i;ng and kn = max
1�i�q

fki;ng

fli;n; ui;n; ci;ng = fli;n (�n;0) ; ui;n (�n;0) ; ci;n (�n;0)g :

2.2 ASSUMPTIONS

Let f�ng be a sequence of positive semi-de�nite matrices �n 2 Rq�q. The population
GMTTM criterion function is

Qn (�) = E [m�
t (�)]

0 ��n � E [m�
t (�)]

with sample version

Q̂n (�) := m̂�
n (�)

0 � �̂n � m̂�
n (�) , m̂

�
n (�) :=

1

n

nX
t=1

m̂�
t (�) and �̂n 2 Rq�q:

The GMTTME solves
�̂n = arginf

�2�
fQ̂n (�)g:

Under the identi�cation and smoothness conditions detailed below, �̂n exists and is unique.
Asymptotic arguments require the following constructions. The trimmed equation

covariance matrix and moment envelope are

�n (�) := E
�
m�
t (�)m

�
t (�)

0� and �n := �n(�0)

mn = sup
�
E [km�

t (�)k] ;

the population and sample Jacobia are

Jn(�) :=
@

@�
E [m�

t (�)] 2 Rq�k and Jn = Jn(�0)

J�t (�) :=

�
@

@�
mi;t(�)� Ii;t (�)

�q
i=1

and J�n(�) :=
1

n

nX
t=1

J�t (�)

Ĵ�t (�) :=

�
@

@�
mi;t(�)� Îi;t (�)

�q
i=1

and Ĵ�n(�) :=
1

n

nX
t=1

Ĵ�t (�);
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and the Hessian and scale are

Hn(�) := Jn(�)
0�nJn(�) 2 Rk�k and Hn := Hn(�0)

Vn (�) := n�Hn (�) [J
0
n (�)�n�n (�)�nJn (�)]

�1
Hn (�) and Vn := Vn(�0):

Three sets of assumptions ensure identi�cation for �0; �̂n can be expressed as a linear
function of

Pn
t=1 m̂

�
t (�0);

Pn
t=1 m̂

�
t (�) is su¢ ciently close to

Pn
t=1m

�
t (�) uniformly on �;Pn

t=1m
�
t (�0) is asymptotically normal; and Ĵ

�
n(�) is consistent for Jn for some plug-in for

�0. Most are versions of standard regulatory conditions contoured to heavy tailed data
under tail trimming. The remaining are easily veri�ed for linear-in-parameters models.
See Section 4.
Let f=tg be any sequence of increasing �-�elds adapted to fmt(�)g, � 2 �, where f=tg

itself does not depend on �. The �rst set characterizes matrix norms, weight limits and
covariance de�niteness. Denote by [�n;i(�)]

q
i=1 the eigenvalues of �n(�) for each n and �.

M1 (weight). �n is positive semi-de�nite for each n � N ; infn�Nfjj�njjg > 0;
supn�1fjj�njjg � K; and jj�̂n � �njj

p! 0 and jj�n � �0jj ! 0 for some positive
semi-de�nite �0, 0 < jj�0jj < 1.

M2 (scale). Kn1=2jjJnjj � jj��1n jj1=2 � jjV 1=2n jj ! 1.
M3 (covariance). There exists N > 0 such that �n is positive de�nite for each n �
N . Moreover lim infn�N inf�f�n;i(�)g > 0:

Remark 3: Weight property M1 is standard. Norm property M2 is used solely to
simplify bounding arguments and holds in the e¢ cient weight case (see Section 2.3). Posi-
tive de�niteness M3 is imposed for su¢ ciently large n � N since trimming can technically
render �n;i(�) = 0 for some i and �nite n, and possibly all i (e.g. �n = 0 a zero matrix
for some �nite n).

The second set promotes local identi�cation of �0.

I1 (identi�cation for �n;0). fmt(�);=tg forms a adapted martingale di¤erence se-
quence if and only if � = �0, a unique interior point of compact � � Rk; fm�

t (�n;0);=tg
forms for each n an adapted martingale di¤erence array; E[m�

t (�)] = 0 if and only if � =
�n;0:

I2 (identi�cation for �0). E[m�
t (�0)] = o(jj��1=2n jj�1=n1=2).

I3 (smoothness). infn�N infk���0k>�fm�1n jjE[m�
t (�)]jjg > 0 for tiny � > 0 and some N

� 1.

Remark 1: The martingale di¤erence component of I1 is a convenience for present-
ing central limit theory. In cross-sections far weaker conditions can be imposed.
Remark 2: If the DGP is symmetric then E[m�

i;t(�0)] = 0 for any thresholds
li;n(�0) = ui;n(�0). Otherwise, as long as the trimmed equation covariance satis�es
jj��1=2n jj�1=n1=2 = o(1) we are assured m�

t (�) eventually identi�es �0 su¢ ciently fast.
In turn jj��1=2n jj�1=n1=2 = o(1) holds trivially in thin-tailed cases, and heavy-tailed cases
when the thresholds re bounded cn(�0) = o(n1=2) as in D5 below. The latter is easily
guaranteed by trimming su¢ ciently many tail observations: see Section 4.
Remark 3: Versions of smoothness I3 are standard (Huber 1967, Pakes and Pol-

lard 1989, Newey and McFadden 1994). The envelope scale mn is required since mt(�)
need not be integrable on �-a:e: in heavy-tailed cases. Thus, while E[m�

t (�)] need not
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be well de�ned on �-a:e: asymptotically, E[m�
t (�)]=mn is always well de�ned. This

matters for a proof of consistency �̂n
p! �0 since consistency requires a uniform LLN

sup� jj1=n
Pn

t=1fm�
t (�) � E[m�

t (�)]gjj = op(mn). Consider an AR(1) yt = �0yt�1 + �t
with j�0j < 1, =t = �(y� : � � t); martingale di¤erence innovations E[�tj=t�1] = 0
with in�nite variance E[�2t ] = 1 and one equation mt(�) = (yt � �yt�1)yt�1. Then
E[mt(�0)j=t�1] = 0 a:s: hence E[mt(�0] = 0, but in general mt(�) = �(� � �0) � y2t�1is
non-integrable for any coe¢ cient � 6= �0.
Remark 4: If mt(�) is uniformly integrable on �-a.e. then I3 reduces to

infn�N infk���0k>�fjjE[m�
t (�)]jjg > 0. An interesting case where mt(�) is both uniformly

integrable on �-a:e: and not uniformly square integrable at �0 is a stationary AR(1) yt =

�0yt�1 + �t with ARCH(1) error �t = (� + ��2t�1)
1=2ut, ut

iid� N(0; 1) and one equation
mt(�) = (yt � �yt�1)yt�1. If �t has a �nite variance and in�nite kurtosis then mt(�) =
�(� � �0) � y2t�1 is integrable on �-a:e: but E[m

2
t (�0)] does not exist.

The last set concerns properties of the equations mt(�) and the random Jacobian ma-
trices J�t and Ĵ

�
t .

D1 (distribution continuity). The marginal distributions of mt(�) have support
(�1;1) and are absolutely continuous with respect to Lebesgue measure on �.

D2 (di¤ erentiability). mt(�) is continuous and di¤erentiable on �-a.e:

D3 (mixing). fmt(�)g is strictly stationary, geometrically �-mixing: �l : =
supA�=+1t ;B�=t�l�1

jP (A \B) � P (A)P (B)j = o(�l) for some � 2 (0; 1).

D4 (envelope bounds). sup� jjmt(�)jj and sup� jj(@=@�)mt(�)jjg are L�-bounded :

D5 (thresholds and fractiles). ki;n =O(n�) for some � 2 (0; 1); sup� j(n=k1;i;n)P (mi;t(�)

< �li;n(�)) � 1j = O(1=k
1=2
1;i;n) and sup� j(n=k2;i;n)P (mi;t(�) > ui;n(�)) � 1j = O(1=k

1=2
2;i;n);

inf�fcn(�)g ! 1 and sup�fcn(�)g = o(n1=2).

D6 (Jacobia).

i: sup� jjJn(�)jj < 1 for each n; fJn(�); J�n(�); E[J�t (�)]; Ĵ�n(�); E[J�t (�)]g have full col-
umn rank for each n � N .

ii: supn�N inf�2U0(�n)fJ�n(�)g > 0 and sup�2U0(�n)fjjJ
�
n(�)�J�njjg = op(jjJnjj) for any �n

! 0.

D7 (Indicator Class). fIi;t(�) : � 2 �g form Vapnik�Chervonenkis [VC ] classes of
functions.

Remark 1: Distribution continuity D1 and equation di¤erentiability D2 reduce
generality, but simplify key arguments showing consistency Qn(�̂n)

p! 0 and m̂�
t (�) ap-

proximates m�
t (�) su¢ ciently fast.

Remark 2: Mixing D3 promotes uniform laws for m�
t (�) and m̂

�
t (�) � m�

t (�). Geo-
metric decay keeps notation simple, covering nonlinear AR-nonlinear GARCH (An and
Huan 1996, Carrasco and Chen 2002, Meitz and Saikonnen 2008), and can be relaxed to
absolute regularity with long memory (Arcones and Yu 1994).
Remark 3: The D5 fractile bound ki;n = O(n�) is used throughout the extreme

value and tail-trimming literatures (Leadbetter et al 1983, µCiµzek 2008, Hill 2010a,b in-
ter alia). It does not reduce generality for a large variety of tails that belong to the
subexponential class, including at least Paretian, Weibull, log-logistic, and Fréchet (Hill
2010b). Since (n=k1;i;n)P (jmi;t(�) < �li;n(�)) ! 1 and (n=k2;i;n)P (jmi;t(�) > ui;n(�))
! 1 by construction, the D5 probability convergence orders merely sharpen the rates of
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approximation. This is required for uniform asympotitcs concerning the trimming indi-
cators Ii;t(�) dervied from uniform laws for the tail arrays f1 � Ii;t(�)g. The rates hold
for a large array of probability tails that satisfy second order regular variation or slow
variation with remainder (e.g. Smith 1982, Leadbetter et al 1983, Haeusler and Teugels
1985, Goldie and Smith 1987, Hill 2009).
Remark 4: The D5 threshold bound sup�fcn(�)g = o(n1=2) ensures su¢ ciently

many equations are trimmed for asymptotic normality of
Pn

t=1m
�
t (�0), and uniform laws

for
Pn

t=1fm�
t (�) � E[m�

t (�)]g and
Pn

t=1fm̂�
t (�g � m�

t (�g). Notice max1�t�nfjjm�
t (�0)jjg

= op(n
1=2) intuitively imiates the relative stability property of maxima of uniformly square

integrable weakly dependent sequences, cf. Leadbetter et al (1983) and Naveau (2003).
Remark 5: The D4 moment bounds, D6 Jacobia properties and D7 indicator class

help prove 1=n
Pn

t=1fm̂�
t (�) � m�

t (�)g = op(1) uniformly on �, required for consistency.
See Vapnik and Chervonenkis (1971), Pollard (1984), Pakes and Pollard (1989), and van
der Vaart and Wellner (1994) for a de�nition of the VC function class2 . It su¢ ces for
fmi;t(�) : � 2 �g and fci;n(�) : � 2 �g to form VC classes (van der Vaart and Wellner
1994: Lemma 2.6.18) which holds, for example, for �nite dimensional functions (e.g. Pakes
and Pollard 1989: Lemma 2.4), covering at least mt(�) polynomial in �, hence dynamic
linear regressions and ARCH.

2.3 MAIN RESULTS

The main results follow: �̂n is consistent for �0 and asymptotically normal.

THEOREM 2.1 Under D1-D7, I1-I3 and M1-M3 �̂n
p! �0.

Remark : The proof reveals jj�̂n � �n;0jj = op(1) for the sequence f�n;0g identi�ed
by E[m�

t (�)] = 0 is an implication of D1-D7, I1, I3, and M1-M3. Identi�cation I2 then
crucially ensures correct identi�cation of �0: jj�n;0 � �0jj = o(1).

The rate V 1=2n (�̂n � �0) = Op(Ik) can similarly be shown from �rst principles. We
present the result here for reference, but it is interesting to note that we do not actually
require it for plug-in arguments. For example, the Jacobian Ĵ�n(~�n) in Lemma 2.5 and in
the proof of normality Theorem 2.3 only requires some ~�n to satisfy jj~�n � �0jj = op(1)).

THEOREM 2.2 Under D1-D7, I1-I3 and M1-M3 V
1=2
n (�̂n � �0) = Op(Ik).

The most important result of this paper follows: the GMTTME is asymptotically
normal with rate characterized by V 1=2n .

THEOREM 2.3 Under D1-D7, I1-I3 and M1-M3 V
1=2
n (�̂n � �0)

d! N (0; Ik) :

Remark 1: The scale V 1=2n implies the rate of convergence of element �̂i;n is V
1=2
i;i;n

which need not be homogeneous over i. If the Jacobian and covariance as asymptoti-
cally bounded Jn ! J and �n ! � then the GMTTME rate is exactly

p
n since V 1=2n

� n1=2V 1=2 for some positive de�nite, bounded V 2 Rk�k. This holds for any station-
ary DGP for which the cconventional GMM estimator is asymptotically normal, so tail-
trimming is always a safe practice. See Section 3 for rate derivation for heavy-tailed
cases.

2The VC class F of functions f 2 F satis�es a uniform entropy or bracketing number bound required
for F to be P -Donsker (i.e. for empirical measures to satisfy a uniform central limit theorem on F). The
entropy of a class F quanti�es smoothness. We refer the reader to Pollard (1984) and van der Vaart and
Wellner (1994).
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Remark 2: An "optimal" GMTTM weight sequence f�ng in the sense of asymp-
totic e¢ ciency is f��1n =jj��1n jjg due to the quadratic form Vn = nHn(J

0
n�n�n�nJn)

�1Hn

(Hansen 1982; Newey and MacFadden 1994: p. 2164). In this case

Vn = n
�
J 0n�

�1
n Jn

�
hence scale bound M2 holds automatically. It is nevertheless not obvious that the trim-
ming fractiles fk1;i;n; k2;i;ng cannot be set to augment e¢ ciency. We will see for linear-in-
parameters models, below, that in fact minimal trimming is always optimal for the sake
of e¢ ciency when �n = ��1n =jj��1n jj.
Remark 3: The existence of an e¢ cient weight �n = ��1n =jj��1n jj is non-trivial

since a symmetric variance form does not arise under �xed quantile trimming. In this case
Jn has two components that enter Vn asymmetrically as n ! 1, so an optimal weight
does not exist (µCiµzek 2009). Under tail trimming, however, each Ji;j;n also decomposes
into two components E[(@=@�j)mi;t(�)j�0 � Ii;t(�0)] + (@=@�j)E[mi;t(�0) � Ii;t(�)]j�0 .
The latter is asymptotically dominated by the former due to negligibility Ii;t(�) ! 1 a:s:
so Ji;j;n = E[(@=@�j)mi;t(�)j�0 � Ii;t(�0)] � (1 + o(1)). See Lemma C.1 in Appendix C.

2.4 COVARIANCE AND JACOBIAN MATRIX ESTIMATION

A natural estimator of the trimmed equation covariance �n is

�̂n(~�n) =
1

n

nX
t=1

m̂�
t (
~�n)m̂

�
t (
~�n)

0

for some consistent plug-in ~�n. Since �̂n(~�n) may itself be used for GMTTM estimation
as in the asymptotically e¢ cient weight �̂n = �̂�1n (~�n)=jj�̂�1n (~�n)jj, in practice ~�n need
not be the �nal GMTTM estimator �̂n. Candidate plug-ins include any consistent MDE
including a single-step GMTTME (e.g. �̂n = Iq), the LSE, GMME and QMLE provided
they are consistent for �0.

LEMMA 2.4 Let jj~�n � �0jj = op(minf1; jj��1n jj�1=2jjJnjj�1g). Under D1-D6.i, D7 and
I1 jj��1n �̂n(~�n) � Iqjj = op(1)).

Remark : In thin-tailed cases �n � � and Jn � J the plug-in condition reduces to
jj~�n � �0jj = op(1): ~�n need only be consistent. Otherwise, m̂�

t (
~�n)m̂

�
t (
~�n)

0 is su¢ ciently
close to m̂�

t (�0)m̂
�
t (�0)

0 as n!1 only when jj~�n � �0jj
p! 0 su¢ ciently fast. Nevertheless,

since jj��1n jj�1=2jjJnjj�1 � n1=2=jjVnjj1=2 under the e¢ cient weight �n = ��1n =jj��1n jj, ~�n
need not be n1=2- nor jjVnjj1=2-consistent due to the negligibility of tail-trimming.
Tail trimming implies the Jacobian Jn is proportional to E[J�t ], cf. Lemma C.1 in

Appendix C. Due to its simple form consistency Ĵ�n(~�n) = E[J�t ] � (1 + op(1)) follows for
any jj~�n � �0jj

p! 0.

LEMMA 2.5 Under D1-D7, I1-I3 and M1-M3 J�n(~�n) = Jn � (1 + op(1)) and Ĵ�n(~�n)
= Jn � (1 + op(1)) for any ~�n that satis�es jj~�n � �0jj

p! 0:

The covariance matrix V �1n in general is estimated by

V̂ �1n (�) = n� Ĥn (�)
n
Ĵ�n(�)

0�̂n�̂n (�) �̂nĴ
�
n(�)

o�1
Ĥn (�)

where Ĥn(�) = Ĵ�n(�)
0�̂�1n (�)Ĵ�n(�). The GMTTME satis�es jj�̂n � �0jj = Op(jjVnjj�1=2) �

op(minf1; jj��1n jj�1=2jjJnjj�1g) by Theorem 2.3 whenever jjJnjj=jjVnjj1=2 = o(jj��1n jj1=2).
Since the latter bound holds under M2, Lemmas 2.4 and 2.5 imply V̂n(�̂n) is consistent
for Vn.
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THEOREM 2.6 Under D1-D7, I1-I3 and M1-M3 V̂n(�̂n) = Vn � (1 + op(1)).

2.5 ROBUST M-ESTIMATORS

We now brie�y demonstrate why trimming M-estimator criterion equations may fail
to promote asymptotic normality.

Least Trimmed Squares: Consider a linear model with least squares criterion equa-
tions

yt = �00xt + �t with st(�) :=
�
yt � �0xt

�2
:

Assume �t is zero-mean with distribution function F�(�) := P (�t � �), and inverse F�1�2 (�)
:= inff� � 0 : P (�2t � �) � �g. The �xed quantile LTSE is (Ruppert and Carrol 1980,
Rousseeuw 1985, µCiµzek 2008)

~�n = arginf
�2�

(
1

n

nX
t=1

st(�)� I
�
st(�) � s([n�])(�)

�)
, � 2 (0; 1) :

If the distribution governing st(�) is absolutely continuous on �-a:e:, fxt; �tg have �-
nite variance marginal distributions, f�t; xtg are geometrically �-mixing, and ~J (�) :=
�E[xtx0tI(�2t � F�1�2 (�))] is non-singular, then for the given linear DGP

p
n
�
~�n � �0

�
= ~J (�)

�1 1p
n

X
�txtI

�
�2t � F�1�2 (�)

�
+ op (1)

d! N
�
0; ~V �1(�)

�
,

where ~V (�) = ~J(�)0 ~��1 ~J(�) and ~�(�) := E[�2txtx
0
tI(�

2
t � F�1�2 (�))]. See µCiµzek (2005,

2008). Clearly if the error �t is independent of xt and any stochastic element of xt has
an in�nite variance then 1=

p
n
P
�txtI(�

2
t � �2([n�])) does not have a Gaussian limit even

under �xed quantile trimming, and ~�(�) and ~J(�) are unbounded. The same conclusion
applies to Least Absolute Trimmed Deviations. Since the object that governs asymptotics
is the gradient (@=@�)st(�); its components �txt must be trimmed to ensure asymptotic
normality, not simply �2t .

Quasi-Maximum Trimmed Likelihood: Consider an ARCH(1) yt = ht�t, �t
iid�

(0; 1), h2t (�) = � + �y2t�1, (�; �) � 0 with QML criterion equations st(�) = lnh2t (�) +

y2t =h
2
t (�). See Neykov and Neytchev (1990) and µCiµzek (2008) for Maximum Trimmed

Likelihood of models of the conditional mean.
Since a standard question is whether a conditional heteroscedastic e¤ect exists, suppose

not for simplicity: �0 = 0. If the distribution governing �t is absolutely continuous then by
Lemma 2.1 of µCiµzek (2008) gn;t (�) := (@=@�)sn;t(�) = (@=@�)st(�) � I(st(�) � F�1s(�) (�))

a:s. on �-a:e: By direct computation it follows under �0 = 0

gn;t (�0) = �
�
�2t � 1

� �
1; y2t�1

�0 � I ��2t � F�1�2 (�)
�
:

Now exploit independence to deduce

E
�
g22;n;t (�0)

�
= E

h�
�2t � 1

�2
I
�
�2t � F�1�2 (�)

�i
� E

�
y4t�1

�
:

Since �0 = 0 we know yt has an unbounded fourth moment E[y4t ] = 1 if and only if
E[�4t ] = 1. In this case the QMTL Jacobian is unbounded and by asymptotic linearity
and independence between �t and yt�1; and the QMTLE is not asymptotically normal.

Adaptive M-Estimations: Ling�s (2005, 2007) symmetrically weighed LAD and
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QML criteria work like smoothed trimming. But theory is only delivered for symmetric
DGP�s and only �xed quantiles of the data yt are considered for the weight function.
Although heavy-tails are allowed the DGP must bee symmetric and super-

p
n-consistency

cannot be achieved.

3. CONVERGENCE RATE FOR HEAVY-TAILED DATA Consider the
e¢ cient weight �n = ��1n =jj��1n jj for brevity. By positive de�niteness and the Cauchy-
Schwartz inequality we can de�ne diagonal matrices �n 2 Rq�q with

�i;i;n = �
�1=2
i;i;n =

�
E[
�
m�
i;t (�0)

�2
]
��1=2

: ��1n �n�
�1
n ! � a positive de�nite matrix.

Now write

Vn = n�
�
��1n Jn

�0 � ��1 � ���1n Jn
�
� (1 + o (1)) and ��1 = [�i;j ]qi;j=1:

We simplify exposition by assuming �i;j 6= 0 8i; j, although essential results carry over to
the diagonal case �i;j 6= 0 8i 6= j. The component-wise rates n�i are

n�i = V
1=2
i;i;n = Kn1=2 �

24 qX
l1;l2=1

�l1;l2��1l1;l1;n�
�1
l2;l2;n

Jl1;i;nJl2;i;n

351=2 :
Textbook intuition explains n�i . If the trimmed equation standard deviation �l;l;n =
(E[m2

l;n;t (�0)])
1=2 ! 1 due to heavy-tailed errors then n�i is small, ceteris paribus:

sharp estimates are more di¢ cult to obtain from models with disproportionately dispersive
idiosyncratic shocks. If, however, the Jacobian jJl;i;nj = jE[(@=@�i)ml;t(�)j�0Il;n;t(�0)]j !
1 due to heavy tailed regressors then n�i is large, ceteris parabus: sharpness improves
with regressor dispersion and association. If both error and regressor are heavy-tailed and
exhibit feedback then the Jacobian Jl;i;n may be overwhelmed by the standard deviation
�l;l;n.
We must therefore specify dependence and distribution tails in order to characterize

�n and Jn. Consider dynamic linear regression and ARCH models under symmetric
trimming, with the same fractiles for all equations for simplicity: ki;n = kn.
Even then the cross-Jacobian Ji;j;n can be di¢ cult to formalize without more infor-

mation. So, express n�i as

n�i = Kn1=2
Ji;i;n
�i;i;n

�
"
K +K

maxj 6=i
�
��2j;j;nJ

2
j;i;n

	
��2i;i;nJ

2
i;i;n

� (1 +O (1))
#1=2

:

By convention maxj 6=if�g = 0 if there is only one equation q = 1.
Let f�tg be an Lr-bounded, r > 0, iid innovations process with an absolutely continuous

distribution on R-a:e., symmetric about 0.

3.1 DYNAMIC REGRESSION WITH IID ERRORS

Consider a stationary dynamic linear regression with an intercept

yt = �00xt + �t, x1;t = 1, xt 2 Rk with mt(�) = (yt � �x0t)xt;

where �t and xt are mutually independent, symmetrically distrubuted and strictly sta-
tionary, and

E [mt(�)j=t�1] = 0 if and only if � = �0, where =t = � (fy� ; x�+1g : � � t) :
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In general xt may contain lags of yt or other random variables. Assume stochastic xi;t
are measurable with R-a:e: continuous distributions. Independence rules out random
volatility errors: see Sections 3.2 and 3.3 for this case.
Assume each zt 2 f�t; xi;tg has tail

P (jztj > z) = dzz
��z (1 + o (1)) with indices �z 2 f��; �ig, �� > 0 and �i 2 (1; 2]; (6)

and de�ne

��;i := min f��; �ig and ���;(i) := max
j 6=i

�
�j
��;j

�
� 1:

By convention ��;1 = �� since x1;t = 1, and ���;(i) = 1 if there is only one regressor k = 1.
Characterizing the Jacobian Jn is simpli�ed by E[xi;t] = 03 .

LEMMA 3.1 Let stochastic xi;t be mean-zero.

i: Each �i;i;n = (n=kn)
1=��;i�1=2 and Ji;j;n = �E[xi;txj;tI(j�txj;tj � cj;n)] � (1 +

o (1)). In particular for stochastic fxi;t; xj;tg the Jacobian Ji;i;n � K(n=kn)
��1�;i (2��i),

Ji;j;n = O((n=kn)
��1�;j (�j=�i+1��j)) 8i 6= j in general and Ji;j;n = 0 if xi;t is inde-

pendent of xj;t. Hence for each i = 2; :::; k

n�i � Kn1=2 (n=kn)
1=2��i=��;i+1=��;i

h
K +O

�
(n=kn)

�2(1�1=�i)���;(i)�2(1��i)=��;i
�i1=2

:

ii: Each J1;1;n = �1+o(1) and Ji;1;n; J1;i;n = O(1) � (1 + o(1)), hence the intercept
rate is

n�1 = Kn1=2 �K(kn=n)1=���1=2 (1 +O(1)) :

Remark 1: The intercept rate is n�1 = o(n1=2) when �� < 2. Irrespective of the
other regressors, as long as the error �t is heavy tailed the rate is sub-

p
n-consistent due

to kn=n ! 0 under tail-trimming.
Remark 2: Although we do not formally treat the generic cases �i R 2 and �� R 2

for the sake of brevity, the same qualitative relationships apply.

Exact slope rates are complicated by cross-Jacobia Ji;j;n since their bounds are not
sharp and depend on regressor dependence. A lower bound on the rate, however, is avail-
able.

EXAMPLE 1 (Slope Rate Lower Bound): In general lim infn!1 n�i=[n
1=2

(n=kn)
1=2��i=��;i+1=��;i ] � K depends soley on the dispersion of �t and xi;t. As long

as 1=2 � �i=��;i + 1=��;i > 0 then �̂i;n is super-
p
n-consistent. There are two cases.

Case 1 ( �i � ��): If xi;t is relatively heavy-tailed �i � �� then the bound n�i
� Kn1=2 (n=kn)

1=�i�1=2 only re�ects the tails of xi;t. Hence, super-
p
n-consistency is

assured if xi;t has an in�nite variance �i < 2.

Case 2 ( �i > ��): If �t is more heavy-tailed �� < �i then super-
p
n-consistency

still arises as long as the dispersion of �t is not too great: �� > 2(�i � 1). If �i = 1:5, for
example, then any �� � 1 applies.

If all regressors are independent, or errors and regressors are tail-homogenous �� = �i
= � (e.g. autoregressions), then simple solutions exist.

3 If we set a convention 1 � 1 = 0 then �i � 1 for xi;t symmetric about 0 is allowed if we agree
E[xi;t] = 0.
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EXAMPLE 2 (Independent Regressors): If stochastic xi;t are independent mean-
zero random variables then n�i � Kn1=2 (n=kn)

1=2��i=��;i+1=��;i . In this case the inequal-
ity in Example 1 becomes equality asymptotically.

EXAMPLE 3 (Tail Homogeneity): If �� = �i = � for all i then ��;i = � and ���;(i)
= 1 hence

n�i � Kn1=2 (n=kn)
1=��1=2

h
K +O

�
(n=kn)

�2(1�1=�)�2(1=��1)
�i1=2

� Kn1=2 (n=kn)
1=��1=2

:

Super-
p
n-consistency arises if and only if variance is in�nite � < 2. In the hairline

in�nite variance case � = 2 exact
p
n-convergence applies.

The following examples provide more intuition as to why super-
p
n-consistency may

or may not arise.

EXAMPLE 4 (Location): Consider estimating location

yt = �0 + �t, �t
iid� (6), � 2 (1; 2];

with one equation mt(�) = yt � �. The Jacobian is Jn = �1 + o(1) and the covariance
scale �n = �

1=2
n = n1=2(n=kn)

1=��1=2. Therefore n� = Kn1=2(kn=n)
1=��1=2 = o(n1=2)

under tail-trimming, so the GMTTME is sub-
p
n-consistent when � < 2.

Remark 1: The reason for the sluggish rate is given above: a model without sto-
chastic regressors cannot provide explanatory leverage against a heavy tailed shock. In
the hairline in�nite variance case � = 2, however, n� = Kn1=2.
Remark 2: It is straightforward to show over identifying restrictions involving lags

of yt have no impact on the sub-
p
n rate since the added regressors yt�i are independent.

Remark 3: If kn = [n�] for � 2 (0; 1) then n�=n1=2 = Kn�(1��)(1=��1=2). Con-
versely, under very slight trimming kn = [� ln(n)] it follows n�=n1=2 � Kn1=2�1=��� for
any � > 0 and tiny � > 0.

EXAMPLE 5 (AR with iid error): Consider a stationary in�nite variance autore-
gression

yt =

kX
i=1

�0;iyt�i + �t, �t
iid� (6), � 2 (1; 2].

The AR process fytg satis�es (6) with the same index � (Cline 1989, Brockwell and Cline
1985). In this case �� = �i = ��;i = �, so Example 3 applies: n�i=n

1=2 � K (n=kn)
1=��1=2

! 1.

Remark 1: Exact
p
n-consistency applies in the hairline in�nite variance case � =

2.
Remark 2: If kn = [n�] then n�i=n

1=2 � Kn(1��)(1=��1=2), and under slight trim-
ming kn = [� ln(n)] then n�i > Kn1=��� for any � > 0 and tiny � > 0.
Remark 3: The AR(1) case is particularly revealing:

n� = Kn1=2
jJnj
�n

� Kn1=2
E
�
y2t�1I (j�tyt�1j � c1;n)

��
E
�
�2ty

2
t�1I (j�tyt�1j � c1;n)

��1=2 � Kn1=2
(n=kn)

2=��1h
(n=kn)

2=��1
i1=2 :

The numerator Jacobian term E[y2t�1I(j�tyt�1j � c1;n)] � K (n=kn)
2=��1 works like a

tail-trimmed variance. If sequences fcy;n; kng satisfy (n=kn)P (jytj > cy;n) ! 1 then
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arguments in the proof of Lemma 3.1 reveal E[y2t�1I(jyt�1j � cy;n)] � c2y;nP (jyt�1j >
cy;n) = K(n=kn)

2=��1. Trimming by �tyt�1 delivers the same rate because �t is indepen-
dent of yt�1 and each have tail index � � 2, hence �tyt�1 has index � (Cline 1986). By
comparison the denominator (E[�2ty

2
t�1]I(j�tyt�1j � c1;n))

1=2 = (n=kn)
1=��1=2 is a tail-

trimmed standard deviation of an object with the same tail index �. Therefore n� �
Kn1=2(n=kn)

1=��1=2 dominates
p
n when �t has an in�nite variance. If �t is not indepen-

dent of yt�1 then the above arguments fails, and feedback can cause �n ! 1 very fast
such that sub-

p
n-consistency arises. See Sections 3.2 and 3.3

Remark 4: The straight least squares estimator is asymptotically non-Gaussian
with convergence rate n1=� � n1=2 (e.g. Hannan and Kanter 1977, Knight 1987, Chan
and Tran 1989, Cline 1989). By trimming we have ensured asymptotic normality, but at
a cost of speed since

n�i=n
1=� = n1=2�1=� (n=kn)

1=��1=2
= k1=2�1=�n ! 0 8� < 2:

The rate spread n�i=n
1=� vanishes monotonically as the number of trimmed observations

kn decreases per sample n. In fact

kn � � ln(n) implies n�i=n
1=��� !1 for any � > 0 and tiny � > 0;

so the GMTTME rate can be made arbitrarily close to the maximum rate n1=�.

EXAMPLE 6 (Instrumental Variables): There are many variations on the above
theme since mt (�) is quite general. It is, therefore, tempting to use heavy-tailed instru-
ments zt to induce super-

p
n-consistency. Consider a simple scalar model for reference

yt = �0xt + �t, where fxt; �tg
iid� (0; 1) and mt (�) = (yt � �xt) zt 2 R:

Assume the instrument zt 2 R has tail (6) and index �z < 2, and is valid: it is independent
of �t and infn�N jE[xtztI(j�tztj � cn)]j > 0 for large N . For example, we might use zt
= x2t if xt has a �nite variance and in�nite kurtosis. Since �tzt has tail index �z (Cline
1986), the Cauchy-Schwartz inequality and arguments in the proof of Lemma 3.1 reveal

n�i = Kn1=2
E [xtztI (j�tztj � c1;n)]

(E [�2t z
2
t I (j�tztj � c1;n)])

1=2
� Kn1=2

 
E
�
z2t I (j�tztj � c1;n)

�
E [�2t z

2
t I (j�tztj � c1;n)]

!1=2
= Kn1=2:

A thin-tailed regressor xt handicaps the Jacobian rate irrespective of the instrument zt.

3.2 ARCH

Consider an ARCH(p) model

yt = ht�t, �t is iid, h2t = �0 +

pX
i=1

�0;iy
2
t�i = �00xt; �0 > 0; �0 � 0; � = [�; �0]0

�0;i > 0 for at least one i 2 f1; :::; pg

mt (�) =
�
y2t � �0xt

�
� xt, xt =

�
1; y2t�1; :::; y

2
t�p
�0
:

We assume at least one �0;i > 0 since otherwise the cross-Jacobia Ji;1;n do not exist when
�t has an in�nite variance: by �0 = 0 and independence Ji;1;n � � E[y2t�iI(Kj�2t � 1j �
c1;n)] � �E[y2t ] = �K � E[�2t ].

15



Assume jytj � 1 a:s: to simplify arguments, Ej�tjp <1 for some p > 0, E[maxf0; ln j�tjg]
<1, and the Lyapunov exponent associated with the stochastic recurrence equation form
is negative4 .

LEMMA 3.2 In general Ji;j;n = �Exi;txj;tI(j(�2t � 1)h2txj;tj � cj;n)] � (1 + o (1)). If
�y � 4 then n� = n�i = Kn1=2 for each i = 1:::p, and if �y 2 (2; 4] then n� =

n�i = Kn1=2 (kn=n)
2=�y�1=2 � (1 + O(1)).

Remark 1: If yt has a �nite fourth moment E[y4t ] < 1 or exhibits the hairline
in�nite kurtosis case � = 4, than n� = n� = Kn1=2. Otherwise, both GMTTME�s �̂n
and �̂n are sub-

p
n-consistent. Notice the tails of �t do not play any role per se when

there are ARCH a¤ects. Thicker tailed �t and/or larger slopes �0 imply yt is heavier
tailed: why yt is heavy tailed is irrelevant.
Remark 2: Strong-ARCH are AR in squares y2t = �0xt + vt, where E[vtj=t�1] =

0. But stationary AR equations all have the same tail index � when �t is iid with tail (6).
See the proof of Lemma 3.1, and Brockwell and Cline (1986). In the ARCH case, however,
the error y2t � h2t = (�2t � 1)�00xt depends on xt. Speci�cally m1;t(�0) = (�2t � 1)h2t has
tail index �=2 and all other mi;t(�0) = (�

2
t � 1)h2ty2t�i+1 for i � 2 have index �=4 due to

feedback. This implies the slope-components of the covariance �n diverge faster relative
to the regressor Jacobian Jn, compared to AR models with iid errors. The same intuition
from Section 3.1 su¢ ces: models with disproportionately heavy-tailed errors render less
sharp estimates.
Remark 3: All results of this section follow intimately from properties of tail-

trimmed variances. See especially the proof of Lemma 3.1. Thus, the above formula
need not hold under central order trimming kn = [�n], � 2 (0; 1). This implies, for ex-
ample, we cannot conclude n� = n�i = Kn1=2 (kn=n)

2=�y�1=2 � Kn1=2 is feasible when
�y < 4.

3.3 AUTOREGRESSIONS WITH ARCH-ERRORS

Consider an AR(1) with ARCH(1) error

yt = �0yt�1 + ut; j�0j < 1; ut = ht�t, �t
iid� N(0; 1)

h2t = �0 + �0u
2
t�1; �0 > 0; �0 > 0; � = [�; �; �]

0

E
h
ln
����0 + �1=20 �t

���i < 0
and three equations used to estimate each � = [�0; �0; �0]

0,

mt (�) =

264 (yt � �yt�1) yt�1
(yt � �yt�1)2 � �� � (yt�1 � �yt�2)2�
(yt � �yt�1)2 � �� � (yt�1 � �yt�2)2

�
� (yt�1 � �yt�2)2

375 :
The Jacobian Jn is block diagonal asymptotically. But with ARCH a¤ects the AR equa-
tion m1;t(�0) = �thtyt�1 is more heavy tailed then in a pure AR model, hence sub-

p
n-

consistency arises.

LEMMA 3.3 n� and n� are characterized by Lemma 3.2, and n� = n�.

4See Basrak et al (2002: Theorem 3.1): in this setting the SRE form obtains a unique stationary
solution and yt has regularly varying tails.
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Remark 1: The results of Sections 3.1 and 3.2 crucially rely on the properties of
regularly varying tails. Gaussian iid errors and the Lyapunov condition E[ln j�0 + �

1=2
0 �tj]

< 0 ensure fytg is stationary geometrically �-mixing with regular varying tails, although
more general environments are possible (Borkovec and Klüppelberg 2001: Theorems 1
and 3).

EXAMPLE 7 (AR with ARCH error): The impact a non-iid error has on the
convergence rate can be seen by simply estimating the AR slope �0 with one equation
mt(�) = (yt � �yt�1)yt�1. Notice mt(�0) = �thtyt�1 has a tail index �y=2 due to feeed-
back, half that from the iid case Example 5. Arguments in the proofs of Lemmas 3.1 and
3.3 can be used to deduce n� � Kn1=2 if �y � 4, and

n� � Kn1=2
1

(n=kn)
2=�y�1=2

= o(n1=2) if �y 2 [2; 4)

� Kn1=2
(n=kn)

2=�y�1

(n=kn)
2=�y�1=2

= k1=2n = o(n1=2) if �y < 2:

Feedback between error ut and regressor yt�1 substantially elevates estimating equation
tail thickness relative to the Jacobian, hence the convergence rate n� falls below n1=2.

EXAMPLE 8 (Optimal Trimming and E¢ ciency): The AR cases Examples 5
and 7 present diametrically opposing relationships between trimming kn and e¢ ciency n�.
In the iid in�nite variance case since large values of error and regressor are unassociated
minimal trimming optimizes e¢ ciency for the textbook reason given above: n� increases as
kn decreases. Conversely, error and regressor feedback in the ARCH case greatly increases
equation tails and therefore diminishes e¢ ciency. Since large regressors are therefore
associated with large errors the optimal strategy is maximal trimming: n� increases as
kn increases. Optimal selection of the sequence fkng, however, is beyond the scope of the
present paper.

3.4 TAIL TRIMMED QML FOR ARCH

Consider an ARCH(1) with QML equations

yt = ht�t; h
2
t = �0 + �0y

2
t�1 = �00xt; �0 > 0; �0 � 0

mt(�) =
�
y2t � �0xt

�
f�0xtg�2xt:

Since scaling mt(�0) = (yt � ht�t)h
�4
t xt = (�2t � 1)h�2t xt implies only the tails of �t

matter, we assume �t has regularly varying tails. Nevertheless the Jacobian is unbounded
if there are no ARCH a¤ects and �t has an in�nite variance. Further, QML equations do
not improve on the rate of convergence for the reasons above: feedback between error y2t
�h2t and regressor h�4t xt implies the covariance dominates the Jacobian.

LEMMA 3.4 Assume �0 > 0 and �t
iid� (6) with index �� > 0. If �� � 4 then n� = n�

= Kn1=2, and if �� 2 (2; 4] then n� = n� = Kn1=2 (kn=n)
2=���1=2 � (1 + O(1)):

4. AUTOREGRESSIONS AND ARCH We now verify the major assumptions
for heavy-tailed stationary autoregression and ARCH under symmetric trimming m�

i;t(�)
= mi;t(�)I(jmi;t(�)j � ci;n(�)) where (n=kn)P (jmi;t(�)j > ci;n(�)) ! 1, the same fractile
kn for each equation, and weight �n = ��1n =jj��1n jj.

4.1 Autoregression
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Consider a stationary AR(k) process with iid, heavy-tailed errors

yt = �00xt + �t, xt = [yt�1; :::; yt�k]
0 , �t

iid� (6) with � 2 (1; 2) , E[�t] = 0 (7)

mt(�) =
�
yt � �0xt

�
xt:

Assume �t has an absolutely continuous marginal distribution, symmetric at zero and
positive R-a:e: Then yt is uniformly L1+�-bounded geometrically �-mixing (An and Huang
1996: Theorem 3.1), and yt and mi;t(�0) = �tyt�i have tail (6) with the same index �
(Cline 1986, 1989).
Stationarity, linearity, distribution continuity, and mixing ensure D1, D2, D3, I1 and

M3 are satis�ed. The envelope bounds D4 are trivial given the linear form of mt(�),
compactness of �, and Lp-boundedness.
Further I2 is trivial since E[m�

t (�0)] = 0 under symmetry and integrability; M1 holds
under I1 and D1-D7 given �n = ��1n =jj��1n jj and Lemma 2.4; and M2 holds since �n =
��1n =jj��1n jj trivially implies Kn2jjJnjj2jj��1n jj � jjVnjj ! 1 given Lemma 3.1. Finally,
D5 merely de�nes the threshold sequence. What remains is envelope moment bounds D4,
Jacobia property D6, indicator property D7, and smoothness I3.
Although I2 is trivial under symmetry, note in asymmetric cases E[m�

t (�0)] = o(jj�
�1=2
n jj�1=n1=2)

= o(1) under the D5 implication cn(�0) = o(n1=2). We therefore also discuss what cn(�0)
= o(n1=2) entails for tail-trimming.

D5 (threshold bound). Since mi;t(�0) has tail (6) it is easy to show each ci;n(�0) =
K(n=kn)

1=�. Thus ci;n(�0) = o(n1=2) requires su¢ ciently many tail observations to be
trimmed: kn=n1��=2 ! 1. This only matters in the heavy-tailed case � < 2, since oth-
erwise we are free to choose an intermediate order sequence fkng.
D6 (Jacobia).

D6.i. Each part is trivial given the linear data generating process and iid innovations
with absolutely continuous marginal distribution.

D6.ii. The lower bound is trivial. Consider the upper bound and note � 2 (1; 2)
implies jjJnjj ! 1 by Lemma 3.1. Then stationarity, Lp-boundedness of yt and the
construction J�i;j;t(�) = �yt�iyt�jI�j;t(�) imply E[(sup�2U0(�n)fjjJ

�
n(�) � J�njjjg)r] � K for

any r 2 (0; p=2). Therefore sup�2U0(�n)fjjJ
�
n(�) � J�njjg = op(jjJnjj) follows by Markov�s

inequality and jjJnjj ! 1.
D7 (Indicator Class). Since mi;t(�) is a linear function of �, we can without loss of
generality asssume ci;n(�) is also linear in �. Therefore fmi;t(�) : � 2 �g and fci;n(�) : �
2 �g form VC classes (Pakes and Pollard 1989: Lemma 2.4), hence fI(jmi;t(�)j � ci;n(�))
: � 2 �g forms a VC class (van der Vaart and Wellner 1994: Lemma 2.6.18).
I3 (smoothness). Identi�cation and the de�nition of a derivative imply E[m�

t (�)] =
Jn(� � �0) + o(jjJnjj � jj� � �0jj), hence mn := sup� jjE[m�

t (�)]jj � KjjJnjj � (1 + o(1))
given compactness of �. Therefore since �n is bounded

inf
k���0k>�

�
m�2n Qn(�)

	
� inf

k���0k>�

�
(� � �0)0

J 0n
kJnk

�n
Jn
kJnk

(� � �0)
�
� (1 + o (1)) + o (1) :

But boundedness and positive de�niteness of �n imply J 0n�nJn=jjJnjj2 is positive de�nite
for su¢ ciently large n, so I3 follows.

Thus, the GMTTME of the slope �0 in a stationary AR with errors governed by
regularly varying tails is consistent and asymptotically normal under only regulatory
conditions D5 and M1 for the thresholds and weight. The above veri�cation above and
Lemma 3.1 su¢ ce to prove the following claim by invoking Theorems 2.2, 2.3 and 2.6.
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COROLLARY 4.1 Consider (7), let �n = ��1n =jj��1n jj, and assume D5 and M1 hold.
Then �̂n = �0 + Op(jjV 1=2n jj�1), V 1=2n (�̂n � �0)

d! N(0; Ik) and V̂n = Vn(1 + op(1)).

In particular, n1=2(n=kn)1=��1=2(�̂i;n � �i;0)
d! N(0; Vi) for each i and some Vi <

1:

Remark : Asymptotic normality easily generalizes to autoregressive distributed lags.
This reveals a very useful result: in linear models with iid errors as long as the data are
stationary and geometrically �-mixing then standard inference is available under heavy
tails.

4.2 ARCH

Recall the ARCH model of Section 3.2 with �nite variance and in�nite kurtosis, as-

sume at least one �i > 0 and assume the distribution of �t
iid� (0; 1) does not have an atom

at zero. Then fytg is stationary, Lp-bounded, geometrically �-mixing, symmetrically dis-
tributed with tail (6) (e.g. Basrak et al 2002: Theorem 3.1). Further, the estimating
equations mt(�) = (y

2
t � �0xt)xt are di¤erentiable and linear in � with absolutely contin-

uous marginal distributions, and integrable at �0 for all �y > 2. Thus D1-D4, D6, D7,
I1-I3 and M2 and M3 are either trivial or are veri�able exactly as in Section 4.1.

5. SIMULATION STUDY In this section we compare one-step and two-step

GMTTME�s, denoted �̂
(1)

n and �̂
(2)

n , to conventional GMM and QML estimators �̂g and
�̂q. Write �̂ to denote any estimator. The models are LOCATION, AR(1), ARCH(1),
GARCH(1,1), Threshold ARCH(1) and Quadratic ARCH(1), covering symmetric and
asymmetric DGP�s.
Let N0;1 denote a standard normal law and P
 a symmetric Pareto law with index 


> 0 : if �t is governed by P
 then P (�t > �) = P (�t < � �) = (1=2) � (1 + �)�
 . De�ne �
= supf� > 0 : Ejytj� < 1g. For each data generating process described in Table 1, 1000
samples of size n = 1000 are generated.

TABLE 1 - Data Generating Processes
Type Subtype Model �k iid errors �t �

LOCATION yt = 1 + �t 1 P1:5, P2:5 1:5; 2:5
AR(1) yt = :9� yt�1 + �t; :9 P1:5, P2:5 1:5; 2:5

ARCH(1) yt = ht�t
ARCH h2t = :3 + :6y2t�1 :6 N0;1 3:815

GARCH(1,1) yt = ht�t
GARCH h2t = :3 + :3y2t�1 + :6h

2
t�1 :6 N0;1 2:67

GARCH h2t = :3 + :3y2t�1 + :6h
2
t�1 :6 P2:5 0:81

IGARCH h2t = :3 + :4y2t�1 + :6h
2
t�1 :6 N0;1 2:00

TARCH(1) yt = ht�t
TARCH h2t = :3 + :6y2t�1 � I(yt�1 < 0) :6 N0;1 5:246

TARCH h2t = :3 + :6y2t�1 � I(yt�1 < 0) :6 P2:5 2:59
TIARCH h2t = :3 + y2t�1 � I(yt�1 < 0) 1 N0;1 3:37

QARCH(1) yt = ht�t
QARCH h2t = (:3 + :8yt�1)

2
:8 N0;1 3:517

QIARCH h2t = (:3 + yt�1)
2

1 N0;1 2:00

5Basrak et al (2002: eq. 2.10) show E[(��2t + 
)�=2] = 1 for GARCH(1,1) yt = ht�t with iid �t and
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The GMM estimating equations are mt (�) = ut (�) � zt for some ut (�) 2 R and zt 2
Rq described in Table 2.

TABLE 2 - Estimating Equations mt (�) = ut (�) � zt

Model ut (�) 2 R � 2 Rk zt 2 Rq

LOCATION yt � � � [1; yt�1]
0

AR(1) yt � �yt�1 � [yt�i]
2
i=1

ARCH(1) y2t � �� �y2t�1 [�; �] [1; fy2t�ig2i=1]0
GARCH(1,1) y2t � �� �y2t�1 � 
h2t�1 [�; �; 
] [1; fy2t�i; h2t�ig2i=1]0
TARCH(1) y2t � �� �y2t�1It�1 [�; �] [1; y2t�1; y

2
t�2]

0

QARCH(1) y2t � (�+ �yt�1)
2

[�; �] [1; fyt�i; y2t�ig2i=1]0:

Tail thickness for iid and AR(1) data with iid innovations is gauged by the Pareto
innovation�s index � (Hannan and Kanter 1977, Cline 1986, 1989).

The collective GARCH group have heavy tails due to the innovations �t
iid� P2:5 or to

the parametric structure under �t
iid� N0;1. The kurtosis of yt is in�nite in all cases except

TARCH with Gaussian shocks, variance is in�nite for IGARCH and GARCH with Pareto
errors, and the absolute �rst moment is in�nite for GARCH with Pareto P2:5 errors. Thus,
in all save one random volatility model the GMME is not asymptotically normal, and the
QMLE has not been shown to be asymptotically normal when E[�4t ] = 1. Nevertheless,
the QMLE is consistent in all cases since8 .

5.1 Tail Fractile

In symmetric data cases (iid, AR, GARCH) symmetric trimming is used with the same
fractile for all equations

kn = [n
�� ];

where maxf�; :01g � �� � maxf�; :99g for each � in the set �n := f1=n; 2=n; :::; (n �
1)=ng. Thus �� 2 [:01; :99]. Asymmetric processes (TARCH, QARCH) demand asym-
metric trimming with left- and right-tailed k1;n and k2;n, where kj;n = [n�

�
j ] for each

maxf�j ; :01g � �� � maxf�j ; :99g and �j 2 �n.

5.2 Evaluation

We analyze kth parameter estimates �̂k for brevity. Consult the fourth column of Table
1. Estimator performance is gauged by simulation means, standard deviations, tests of
the null hypothesis �k = �0;k, and Kolmogorov-Smirnov tests of standard normality. Let
f�̂j;kg1000j=1 be the independently drawn sequence of estimates of �0;k. In a �rst experiment

h2t = � + �y2t�1 + 
h2t�1, provided the Lyapunov index is negative. The index � is computed as �̂ =

argmin�2Kfj1=N
PN
t=1(��

2
t + 
)�=2 � 1jg over K 2 f:01; :02; :::; 10g based on N = 100; 000 iid random

draws �t from N0;1 or P2:5, with resulting 1% bands less than .001 in all cases.
6An ARCH a¤ect exists only for the left-tail, so � solves ��=2E[j�tj�I(�t < 0)] = 1 (Cline 2007: Lemma

2.1 and Example 3). But �t is symmetrically distributed about 0, hence ��=2E[j�tj�] = 2.
7Since yt = j� + �yt�1j�t use Lemma 2.1 of Cline (2007) to deduce ��E[j�tj�] = 1.
8Let Q̂q(�) denote the QML criterion. It can be easily veri�ed for all models above (@=@�)Q̂q(�) =Pn
t=1 gt(�) for some L1+�-bounded martingale di¤erence fgt(�0);=tg. Since an L1+�-bounded martingale

di¤erence trivially forms a uniformly integrable L1-mixingale (McLeish 1975), Andrews�(1988: Theorem

1) law of large numbers shows 1=n
Pn
t=1 gt(�0)

p! 0. Further, each gt(�) satis�es Andrew�s (1992: W-
LIP) Lipschitz condition given di¤erentiability and the QML criterion form, so sup� j1=n

Pn
t=1fgt(�) �

E[gt(�)]gj
p! 0 by Theorem 3 of Andrews (1992). Consistency of the QMLE is now a standard exercise

(e.g. Pakes and Pollard 1989: Corollary 3.4).
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we �x the sample size n = 1000 and use the simulation variance ŝ2n;k = (1=999)
P1000

j=1 (�̂j;k

� �0;k)
2 to generate a sequence of ratios fT̂j;kg1000j=1 ,

T̂j;k =
�̂j;k � �0;k

ŝ2n;k
:

Both the rejection frequencies of t-tests of the hypothesis �k = �0;k and the KS test
of standard normality based on the iid sample fT̂j;kg1000j=1 are reported. In the case of
GMTTM only the KS minimizing � or pair (�1; �2) is used. See Tables 3 and 4.

5.3 GMTTM Weight

In simulations not reported here the one-step GMTTME �̂
(1)

n based on the naïve weight

�̂n = Iq dominated across evaluation criteria the two-step �̂
(2)

n with e¢ cient weight �̂n =

�̂�1n (~�n)=jj�̂�1n jj and plug-in ~�n = �̂
(1)

n . The likely reason is the computational complexity
of a multi-step algorithm under nonlinearity associated with trimming. We therefore

compute the one-step GMTTME �̂
(1)

n , and two-step GMTTME �̂
(2)

n with a second-step
QMLE plug-in ~�n = �̂q since QML is in general more robust to heavy tails than GMM,
and consistent for the DGP�s in this study.
In all cases the GMME is computed in two steps using the QMLE as a second-step

plug-in.

5.4 Rate of Convergence

In a second experiment we analyze the rate of convergence for location yt = �0 +
�t, AR(1) yt = �0yt�1 + �t and ARCH(1) yt = (�0 + �0y

2
t�1)

1=2�t. We estimate each
model by exactly identi�ed one- and two-step GMTTM based on the Table 2 equations,
fractiles kn = [n�] and kn = [� ln(n)], and over sample sizes n 2 N = f1000:::10000g with
increments of 20 observations. In the ARCH case we focus on �0. This produces R = 450
estimates of the simulation standard deviation fŝn;kgn2N .
Since ŝn;k � n�1�k K, according to Examples 4 and 5 if variance is in�nite � < 2 then

for location

Location : ŝ�1n;k=n
1=2 � Kn�(1��)(1=��1=2) if kn =

�
n�
�

2 K
�
n�(1=��1=2)��; n�(1=��1=2)

�
if kn = [� ln(n)] ;

and

AR : ŝ�1n;k=n
1=2 � Kn(1��)(1=��1=2) if kn =

�
n�
�

2 K
�
n1=��1=2��; n1=��1=2

�
if kn = [� ln(n)] :

According to Lemma 3.2 if variance is �nite and kurtosis is in�nite then

ARCH : ŝ�1n;k=n
1=2 � Kn�(1��)(2=��1=2) if kn =

�
n�
�

2 K
�
n�(2=��1=2)��; n�(2=��1=2)

�
if kn = [� ln(n)] :

In all cases we may write ln(ŝ�1n;k=n
1=2) as a log-linear trend in n:

ln
�
ŝ�1n;k=n

1=2
�
= a+ b(�) ln (n) + vn for some vn.
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In the AR model, for example, b(�) = (1 � �)(1=� � 1=2) if the fractile is kn = [n�], and
b(�) � 1=� � 1=2 when kn = [� ln(n)] for any � > 0.
Notice b(�) < 0, = 0 and > 0 imply sub-, exact-, and super-

p
n-consistency. We can

in principle select a KS minimizing � for each sample size n, but this adds complexity
since then b(�) depends on n. We therefore use the KS minimizing � for kn = [n�] and n
= 1000 based on Section 5.1�s results, and the KS minimizing � 2 f:1; :2; :::; 10g for kn =
[� ln(n)] and n = 1000 based on experiments not reported here under n = 1000. Since the
samples are independently drawn; and assuming E[vnjn] = 0, the least squares estimator
b̂(�) is asymptotically normal and consistent for b(�).

5.5 Summary of Results

Refer to Tables 3 and 4. Tail-trimming always delivers an approximately normal esti-
mator. The GMTTME is roughly normal even for the profoundly heavy-tailed linear and
nonlinear GARCH models. By comparison the standard GMME fails tests of normality
in every heavy tailed case as expected, and the QMLE is non-normal in all cases where
it is not asymptotically normal (in�nite variance iid, AR), and in most cases where it
has not been shown to be (GARCH with in�nite skew errors; heavy-tailed QARCH). The
most notable �ndings are summarized below.

i: In the cases of substantially heavy tails the GMME and QMLE strongly fail the KS
normality test, while the GMTTME passes roughly as well as in any other case.

ii: The asymptotically e¢ cient two-step GMTTME �̂
(2)

n slightly dominates the one-step

naïve �̂
(1)

n across criteria.

iiii: Asymmetric trimming for asymmetrically distributed equations is always optimal,
where more observations are trimmed from the heavier tail. Consider the TIARCH model:
left-tailed yt have an in�nite variance and right-tailed yt are Gaussian. The optimal trim-
ming pair f�1; �2g = f:40; :25g translates to trimming k1;n = 16 left-tailed and k2;n = 6
right-tailed observations.

iv: Typically only a few tail observations need to be trimmed to ensure approximate nor-
mality. Examples include symmetric GARCH with Pareto errors: kn = [1000:35] = 11;
and TIARCH with a heavier left-tail: k1;n + k2;n = 16 + 6 = 22.

v: QMLE fails normality tests in all GARCH cases where the errors have an in�nite third
moment. Further, even though the QMLE for IGARCH with Gaussian innovations is
asymptotically normal (e.g. Lumsdaine 1996), for small samples it is demonstrably non-
normal as shown elsewhere (e.g. Lumsdaine 1995).

5.6 Rate of Convergence

See Table 3 for the simulation 95% con�dence bands of b = b(�). Consider the fractile
case kn = [n�]. We only highlight results for two-step GMTTM. In each case simulation
results closely match theory. The �nite variance location and AR b = 0 and the respective
bands are :031 � :051 and :027 � :039.
In the in�nite variance cases Examples 4 and 5 reveal b for location is �(1 � �)(1=�

� 1=2) = �(1 � :22)(1=1:5 � 1=2) = �0:112 and in the AR case b = (1 � �)(1=� � 1=2)
= (1 � :32)(1=1:5 � 1=2) = :113. The 95% band for location is �:130 � :024, and for AR
is :116 � :012, both quite sharp and containing the true b. Finally, for an ARCH(1) with
�nite variance and in�nite kurtosis use Lemma 3.2 to deduce b = �(1 � �)(2=� � 1=2)
= �(1 � :22)(2=3:81 � 1=2) = �:019. The 95% band �:022 � :011.
Finally, when kn = [� ln(n)] the AR case is particularly interesting since the GMTTME

should obtain a rate arbitrarily close to n1=�: n�=n1=2 2 K(n1=��1=2��; n1=��1=2) when
� < 2. Thus, for any � the true b � 1=� � 1=2 = 1=5 � 1=2 � :167 and the 95% band

22



is :189 � :043. The GMTTME can indeed deliver a massive e¢ ciency gain over extant
asymptotically normal MDE�s for stationary data.

6. CONCLUSION This paper develops a robust GMM estimator for possibly very
heavy tailed data commonly encountered in �nancial and macroeconomic applications.
This is accomplished by trimming an asymptotically vanishing portion of the sample
estimating equations. Our approach applies equally to asymmetric or symmetric data
generating processes with thin or thick tails.
We prove trimming estimating equations themselves ensures asymptotic normality,

while tail -trimming can promotes super-
p
n-consistency even for stationary data. Indeed,

tail-trimming provides a potentially massive lift in the convergence rate for heavy tailed
linear models with more regressors than simply a constant term.
Simulation work demonstrates the new estimator is approximately normal for a variety

of linear and nonlinear data generating processes with heavy tails; symmetric trimming
leads to profoundly poor estimates for asymmetric data; and GMTTM dominates GMM
and QML in heavy tailed cases where the latter estimators are not, or have not been
shown to be, asymptotically normal. Perhaps the most important lessons to be drawn
are: very few observations need to be trimmed to induce unbiasedness and approximate
normality; and very slight trimming can lead to masssive e¢ ciency gains.
Future work should involve details on the convergence rate for broader classes of linear

and nonlinear processes, adaptive methods for selecting the trimming fractiles fk1;n; k2;ng,
and other criteria for trimming rather than simply large values of the equations (e.g.
smooth trimming functions; or trimming by errors and regressors separately).

APPENDIX A: Proofs of Main Results

We repeatedly use the following properties under I1, I2, D2, D5, M1,and M2:

1: E [m�
t (�)] = 0 if and only if � = �n;0 (8)

2: Qn(�) = 0 and (@=@�)Qn(�) = 0 if and only if � = �n;0

3: Qn(�0) = o

�


��1=2n




�2 =n� = o
�
kJnk2 � kVnk�1

�
4: sup

�
fk�n (�)kg � K sup

�

�
c2n (�)

	
= o(n) and sup

�

n


��1=2n (�)



o = O(1) for n � N

5: sup
�

n


�1=2n (�)



o =n1=2 = o(1) and sup

�

�


��1=2n




�1� =n1=2 = o(1):

(8.1) follows from identi�cation I1; (8.2) from (8.1), weight boundedness M1 and di¤eren-
tiability D2; (8.3) by notingQn(�0)�KjjE[m�

t (�0)]jj2 = ojj�
�1=2
n jj�1=n) = o(jjJnjj2=jjVnjj)

under identi�cation property I2, and M1 and M2; (8.4) from I1, threshold bound D5 and
covariance non-degeneracy M3; and (8.5) from (8.4), I1, D5 and standard matrix norm
inequalities: jj��1=2n (�)jj�1=n1=2 � jj�1=2n (�)jj=n1=2 = Kcn(�)=n

1=2 = o(1) uniformly on
�.

The following proofs exploit criterion properties Lemmas B1-B2 and limit theory Lem-
mas C.1-C.9. See Appendices B and C respectively. It is understood n is su¢ ciently large
so degeneracy under trimming is avoided.

Proof of Theorem 2.1. m̂�
n(�) = 1=n

Pn
t=1 m̂

�
t (�) and m

�
n(�) = 1=n

Pn
t=1m

�
t (�). The

following is similar to Pakes and Pollard�s (1989: p. 1039) argument. Use smoothness I3
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and weight boundedness M1 to de�ne �(�) := infn�N infk���0k>�fm�2n � Qn(�)g > 0 for
arbitrarily large N and tiny � > 0. Since P (jj�̂n � �0jj > �) � P (m�2n Qn(�̂n) > �(�)) it
su¢ ces to show Qn(�̂n) = op(m

2
n) to prove jj�̂n � �0jj

p! 0.
First note by Lemma B.1

sup
�

8<:m
�2
n �

���Q̂n(�)�Qn(�)���
1 +m�2n �Qn(�)

9=; = op (1) :

Therefore

Qn(�̂n) � Q̂n(�̂n) +
���Q̂n(�̂n)�Qn(�̂n)��� � Q̂n(�̂n) +

�
m2n +Qn(�̂n)

�
� op (1) ;

hence Qn(�̂n)(1 � op(1)) � Q̂n(�̂n) + op(m
2
n). By construction Q̂n(�̂n) � Q̂n(�n;0), where

Q̂n(�0) � Kjjm̂�
n(�0)jj2 � Kjjm�

n(�0)jj2 + op(jj��1=2n jj�1=n1=2) = Kjjm�
n(�0)jj2 + op(1)

by weight bound M1, the Lemma C.2 asymptotic approximation and covariance bound
(8.5). Finally Kjjm�

n(�0)jj � Kjjm�
n(�n;0)jj + op(jj��1=2n jj�1=n1=2) = op(1) by the Lemma

C.1.b equation expansion between �n;0 and �0, the Lemma C.3 LLN, and (8.5).

Proof of Theorem 2.2. The proof follows arguments summarized in Pakes and Pollard
(1989), Newey and McFadden (1994) and others, updated to allow for degeneracy under
tail-trimming, and arbitrary rates of convergence. See Hill and Renault (2010).

Proof of Theorem 2.3. The claim follows from asymptotic linearity Lemma C.4:

V 1=2n

�
�̂n � �0

�
= �V 1=2n

�
H�1
n J 0n�n

� 1
n

nX
t=1

m̂�
t (�0)� (1 + op (1)) ;

asymptotic approximation Lemma C.2 coupled with covariance property (8.5) and the
construction of Vn:

V 1=2n

�
�̂n � �0

�
= �V 1=2n

�
H�1
n J 0n�n

� 1
n

nX
t=1

m�
t (�0)� (1 + op (1)) + op (1) ;

and therefore by central limit theorem Lemma C.6

V 1=2n

�
�̂n � �0

�
= �V 1=2n

�
1

n1=2
H�1
n J 0n�n�

1=2
n

�
�
�1=2
n

n1=2

nX
t=1

m�
t (�0)� (1 + op (1)) + op (1)

d! N (0; Ik) :

Proof of Lemma 2.4. The triangular inequality and the de�nitions of �̂n(~�n) and �n
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imply jj��1n �̂n(~�n) � Iqjj � jj��1n jj � jj�̂n(~�n) � �njj is bounded by



��1n 

�





 1n

nX
t=1

n
m̂�
t (
~�n)m̂

�
t (
~�n)

0 �m�
t (
~�n)m

�
t (
~�n)

0
o






+


��1n 

�






 1n
nX
t=1

n
m�
t (
~�n)m

�
t (
~�n)

0 �m�
t (�0)m

�
t (�0)

0
o






+


��1n 

�






 1n
nX
t=1

fm�
t (�0)m

�
t (�0)

0 �m�
t (�n;0)m

�
t (�n;0)

0g







+


��1n 

�






 1n
nX
t=1

fm�
t (�n;0)m

�
t (�n;0)

0 � �n (�n;0)g







+


��1n 

� k�n (�n;0)� �nk = 5X

i=1

Ei;n:

The �rst term E1;n = op(1) by an argument identifcal to the proof of uniform asymptotic
approximation Lemma C.2. The second term E2;n = op(1) by cross-product expansion
Lemma C.1.c since

1

n

nX
t=1

m�
t (�)m

�
t (�)

0 =
1

n

nX
t=1

m�
t (
~�n)m

�
t (
~�n)

0+op

 �


��1=2n




�1 =n1=2 +K kJnk�2 � 


� � ~�


2! :
Thus, properties of the covariance �n and scale Vn in (8.4), (8.5) and M2, and the plug-in
supposition ~�n = �0 + op(minf1; jj��1=2n jj�1=jjJnjjg) result in

E2;n = Op

�

��1n 

� kJnk2 � 


~�n � �0


2�
+Op

�

��1n 

� o�


��1=2n




�2 =n�� 


~�n � �0


2�
+Op

�

��1n 

� kJnk � o�


��1=2n (�n;0)



�1 =n1=2�� 


~�n � �0


2�

= op (1) :

Similarly, the third term E3;n = op(1) by the equation expansion Lemma C.1.b and
covariane bound (8.5). The fourth term E4;n = op(1) by the martingale di¤erence de-
composition and LLN Lemmas C.7 and C.8. Finally, E5;n = o(1) follows from equation
expansions Lemma C.1.b,c and dominated convergence.

Proof of Lemma 2.5. Recall Jn = Jn(�0) = (@=@�)E[m�
t (�)]j�0 and m̂�

n(�) =
1=n

Pn
t=1 m̂

�
t (�). We only prove Ĵ

�
n(
~�n) = Jn � (1 + op(1)) since J�n(~�n) = Jn � (1

+ op(1)) is similar.
Denote by ei 2 Rk the unit vector (e.g. e2 = [0; 1; 0; :::; 0]0), de�ne a sequence of

positive numbers f"ng that satis�es "n ! 0, "njjV 1=2n jj ! 1 and jj~�n � �0jj="n
p! 0, and

de�ne

�J�i;j;n(�; "n) :=
1

2"n
� 1

n

nX
t=1

�
m̂�
j;t(� + ei"n)� m̂�

j;t(� � ei"n)
	
:

Minkowski�s inequality implies for arbitrary �


Ĵ�n(~�n)� Jn


 � 


Ĵ�n(~�n)� �J�n(�; "n)



+ 

 �J�n(�; "n)� Jn
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Asymptotic expansion Lemma C.1.a implies for some ~�n;� 2 f~�n � ei"n; ~�n + ei"ng

Ĵ�n(
~�n) = �J�i;j;n(

~�n;�; "n)+op

�


��1=2n




�1 =n1=2�+op (kJnk) = �J�i;j;n(
~�n;�; "n)+op (kJnk) ;

where jj��1=2n jj�1=n1=2 = op(1) = o(jjJnjj) by scale bound M2 and Jacobian non-degeneracy
D6.i.
It remains to show jj �J�n(~�n; "n) � Jnjj = op(jjJnjj) for any jj~�n � �0jj

p! 0. Stochastic
di¤erentiability Lemma C.9 and the properties of "n imply for any constant a 2 Rk


nm̂n(~�n + a"n)� m̂n (�0)

o
�
n
E
h
m�
t

�
~�n + a"n

�i
� E [m�

t (�0)]
o




�
�
1 +




V 1=2n




� 


~�n + a"n � �0


�� op�kJnk � 


V 1=2n




�1�

�
�


V 1=2n




�1 + 


~�n � �0


+ kak "n�� op (kJnk) = op (kJnk "n) :

Similarly, by di¤erentiability of E[m�
t (�)],







E
h
m�
t (
~�n + a"n)

i
� E [m�

t (�0)]

"n
� aJn








=



Jn"�1n �

~�n + a"n � �0
�
� aJn + op

�
kJnk "�1n

�
~�n + "n � �0

��



=



Jn"�1n �

~�n � �0
�


+ op (kJnk) = op (kJnk) :

Replace ~�n + a"n with ~�n � a"n to deduce the sample bounds. Therefore


 �J�n(~�n; "n)� Jn


 =





m̂�

n(
~�n + "n)� m̂�

n(
~�n � "n)

2"n
� Jn






 = op (kJnk) :

Proof of Lemma 3.1. We require some properties of regularly varying tails. Since �t
and stochastic xi;t are mutually independent and have tail (6) with indices �� and �i, the
convolutions �txi;t satisfy (Cline 1986)

mi;t(�0) = �txi;t � (6) with index ��;i := min f��; �ig : (9)

If x1;t = 1 then (9) holds with ��;i = ��. Therefore by the construction of ci;n and kn,
and tail (6),

ci;n = K

�
n

kn

�1=��;i
: (10)

Finally, processes zt with regularly varying tails (6) and index � 2 (0; 2] satisfy (see Feller
1971):

E
�
z2t I (jztj � c)

�
� Kc2 � P (jztj > c) as c!1: (11)

Step 1 (�n;�n): Properties (9)-(1) imply

�i;i;n = E
�
m2
i:n;t(�0)

�
� c2i;nP (jmi;t(�0)j > ci;n) � c2i;n

kn
n
= K

�
n

kn

�2=��;i�1
:

26



Hence �i;i;n = (n=kn)1=��;i�1=2, and by the Cauchy-Schwartz inequality �i;j;n =O((n=kn)1=��;i+1=��;j�1)
8i 6= j.

Step 2 (Jn): The Lemma C.1.d Jacobian approximation implies by the linear equa-
tion form Ji;j;n = �E[xi;txj;tI(j�txi;tj � ci;n)] � (1 + o(1)). Assume initially all regressors
are stochastic. Since �i; �� � 2 it follows �i < �� + 2. Thus, by independence, (9) and
(11)

E
�
x2i;tI (j�txi;tj � ci;n)

�
= K

Z "
c2i;n
�2
P

�
jxi;tj >

ci;n
j�j

�#
f� (d�)

� K

Z
E

"
c2i;n
�2

�
ci;n
j�j

���i#
f� (d�)

= Kc2��ii;n E
h
j�tj�i�2

i
= Kc2��ii;n =

�
n

kn

�(2��i)=��;i
:

The cross-products E[xi;txj;tI(j�txj;tj � cj;n)] are bounded by case. If xi;t and xj;t are
independent then E[xi;txj;tI(j�txi;tj � ci;n)] = 0 given E[xt] = 0. If they are perfectly
positively dependent with marginal tail (6) and �i; �j � 2 it can only be the case that
xi;t = sign(xj;t) � jxj;tjp where p = �j=�i. Therefore, since �j � p � 1 < �� is easy to
verify,

E [xi;txj;tI (j�txj;tj � cj;n)] =

Z
E

"
jxj;tjp+1 I

 
jxj;tj(p+1)=2 �

�
cj;n
j�j

�(p+1)=2!#
f� (d�)

= K

Z "�
cj;n
j�j

�p+1
P

�
jxj;tj >

cj;n
j�j

�#
f� (d�)

� K

Z
E

"�
cj;n
j�j

�p+1�
cj;n
j�j

���j#
f� (d�)

= Kc
p+1��j
j;n

Z
E
h
j�j�j�p�1

i
f� (d�)

= Kc
p+1��j
j;n = K

�
n

kn

�(�j=�i+1��j)=��;j
:

The perfect negative dependence case is similar. Hence Ji;j;n = O((n=kn)
��1�;j (�j=�i+1��j)).

Finally, if x1;t = 1 then E[x21;tI(j�txi;tj � ci;n)] = P (j�tj � ci;n) = 1 � kn=n, and
E[xi;tx1;tI(j�tx1;tj � ci;n)] = E[xj;tI(j�tj � ci;n)] = O(1) and E[x1;txi;tI(j�txi;tj � ci;n)]
= E(E[xi;tI(jxi;tj � ci;n=j�tj]j�t) = O(1) given xi;t has a zero mean. Therefore J1;1;n =
�1 + o(1) and Ji;1;n; J1;i;n = O(1) � (1 + o(1)).

Step 3 (n�i): Consider the slope rates, the intercept rate being similar. The claim
follows by noting

��1i;i;nJi;i;n = (n=kn)
1=2�1=��;i (n=kn)

(2��i)=��;i = (n=kn)
1=2+(1��i)=��;i

and

max
j 6=i

�
��1j;j;nJj;i;n

	
= O

�
max
j 6=i

n
(n=kn)

1=2�1=��;j � (n=kn)(�j=�i+1��j)=��;j
o�

= O
�
(n=kn)

1=2�(1�1=�i)���;(i)
�
:
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Proof of Lemmas 3.2 - 3.4. See Hill and Renault (2010).

APPENDIX B : GMTTM Criterion Properties

LEMMA B.1 (uniform criterion law) Recall mn := sup� E[jjm�
t (�)jj]. Under D1-

D5 and D7

sup
�

8<:m
�2
n �

���Q̂n(�)�Qn(�)���
1 +m�2n �Qn(�)

9=; = op (1) :

LEMMA B.2 (moment expansion) Under D6.i and I1 E[m�
t (�)]� E[m�

t (�
0)] = Jn(�

0)(�
� �0) + o(jjJn(�0)jj � jj� � �0jj) for any �; �0 2 �.

Proof of Lemma B.1. Recall m̂�
n(�) := 1=n

Pn
t=1 m̂

�
t (�) andm

�
n(�) := 1=n

Pn
t=1m

�
t (�).

By weight property M1

m�2n

���Q̂n(�)�Qn(�)��� � m�2n km̂�
n(�)k

2 �



�̂n ��n


+m�2n jm̂�

n(�)
0�nm̂

�
n(�)�Qn(�)j

� km̂�
n(�)k

2 � op
�
m�2n

�
+K km̂�

n(�)�m�
n(�)k

2

+Km�2n km�
n(�)k � km̂�

n(�)�m�
n(�)k+m�2n jm�

n(�)
0�nm

�
n(�)�Qn(�)j

= A1;n(�) +A2;n(�) +A3;n(�) +A4;n(�):

Uniform approximation Lemma C.2, smoothness I3 and threshold bound D5 imply A1;n(�)
satis�es

sup
�
fA1;n(�)g1=2 = sup

�

�
km̂�

n(�)k
sup� kE [m�

t (�)]k

�
� op (1)

� sup� km�
n(�)k

sup� kE [m�
t (�)]k

� op (1) + op (1)

� sup� km�
n(�)� E [m�

t (�)]k
sup� kE [m�

t (�)]k
� op (1) + op (1) :

Now apply the uniform LLN Lemma C.3 to deduce sup� fA1;n(�)g = op(1). Similar
arguments based on approximation Lemma C.2 reveal sup� fA2;n(�)g and sup� fA3;n(�)g
are op(1).
Finally, under M1

A4;n(�) = m�2n
��m�

n(�)
0�nm

�
n(�)� E [m�

t (�)]
0
�nE [m

�
t (�)

0]
��

� Km�2n km�
n(�)� E [m�

t (�)]k
2
+Km�2n kE [m�

t (�)]k � km�
n(�)� E [m�

t (�)]k ;

where Lemma C.3 implies each term is uniformly op(1).

Proof of Lemma B.2. The claim follows Jacobian existence D6.i and the de�nition of
a derivative.
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APPENDIX C: Limit Theory for Trimmed Sums

The following appendix contains limit theory for tail and tail trimmed arrays. The
�rst two results characterize di¤erentiability and expansions of the trimmed equations,
and the rate of approximation for m̂�

t (�).

LEMMA C.1 (expansions) Assume D1-D7, I1-I2 and M2-M3 hold. Write m�
t (�) =

mt(�) � It(�) and m̂�
t (�) = mt(�) � Ît(�). Choose �; �

0; ~� 2 � where jj� � ~�jj � �
for tiny � > 0, and de�ne

Rn(�; �
0; ~�) =

�


��1=2n

�
�0
�


�1 =n1=2 +K kJnk�� 


� � ~�


 2 Rq:

Notice �0 is otherwise unrestricted. In the following op(1) terms are not functions
of �. For some sequence f�n;�; ~�n;�g satisfying jj�n;� � ~�jj � jj� � ~�jj and jj~�n;� �
~�jj � jj� � ~�jj, as n ! 1 and/or as � ! 0:

a. (equation expansions): i: m�
n(�) = m�

n(
~�) + J�n(�n;�)(� � ~�) + Rn(�; �

0; ~�) �
op(1); and ii. m̂�

n(�) = m̂�
n(
~�) + Ĵ�n(

~�n;�)(� � ~�) + Rn(�; �
0; ~�) � op(1);

b. (expansion between �n;0 and �0): jj�n;0 � �0jj = o(jj��1=2n jj�1=[njjJnjj2]) =
o(jjV 1=2n jj�1) and jjm�

n(�0) � m�
n(�n;0)jj = fjj�

�1=2
n (�)jj�1=n1=2g � op(1) for any �

2 �;

c. (cross-product expansion): m�
t (�)m

�
t (�)

0 � m�
t (
~�)m�

t (
~�)0 = Rn(�; �

0; ~�)2 � op(1)
for each 1 � t � n;

d. (Jacobian): Jn = E[J�t ] � (1 + o(1)).

LEMMA C.2 (approximation) Under D1-D5 and D7 jj
Pn

t=1fm̂�
t (�) � m�

t (�)gjj =
op(n

1=2) for any � 2 �, and sup�fjj1=n
Pn

t=1fm̂�
t (�) � m�

t (�)gjjg = op(1).

Next, a uniform law for m�
t (�) and rates for the trimming components mi;(ki;n)(�) and

I(jmi;t(�)j > ci;n). Recall mn := sup� jE[jm�
t (�)jj].

LEMMA C.3 (uniform LLN) Under D2-D5 and I1 1=n
Pn

t=1m
�
t (�n;0) = op(1); un-

der D2-D5 sup�fjj1=n
Pn

t=1(m
�
t (�) � E [m�

t (�)])jjg = op(mn).

LEMMA C.4 (asymptotic linearity) Under D1-D7, I1-I3 and M1-M3

V 1=2n

�
�̂n � �0

�
= An

nX
t=1

m̂�
t (�0)� (1 + op (1)) + op (1) a:s:

where An = �V 1=2n (H�1
n J 0n�n)n

�1 2 Rk�q.

LEMMA C.5 (uniform indicator bounds) Let D1-D5 and D7 hold and let i 2 f1; :::; qg
be arbitrary.

a: P (sup� sup~�:jj��~�jj�� jIi;t(�) � Ii;t(~�)j = 1) ! 0 as n ! 1 and/or � ! 0.

b: De�ne X�
t (�) := ((n=kn)

1=2��)fIi;t(�) � E[Ii;t (�)]g for tiny � > 0, and X�
t (�;

~�)

:= X�
t (�) � X�

t (
~�). Then E[(sup�fjn�1=2

Pn
t=1X

�
t (�)jg)2] = O(1) and

E[(n�1=2
Pn

t=1X
�
t (�;

~�))2] = O(1) � jj� � ~�jj where O(1) is not a function of �.
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The next three ensure a multivariate asymptotic Gaussian law for
Pn

t=1m
�
t (�0) based

theory developed in Hill (2010b) for mixingale tail-trimmed arrays .We present them here
for completeness and ease of reference. Let fAn(�)g be any Rq�qn -valued, non-stochastic
sequences that satisfy An(�)f�n(�)ngA0n(�) ! Iq, and de�ne for any r 2 Rq, r0r = 1,

z�t (r; �) := r0An(�)m
�
t (�) 2 R:

LEMMA C.6 (CLT) Under D4, D5, I1 and I2
Pn

t=1 z
�
t (r; �0)

d! N(0; 1) 8r0r = 1.

The proof of Lemma C.6 shows
Pn

t=1 z
�
t (r; �n;0)

d! N(0; 1) and
Pn

t=1fz�t (r; �0) �
z�t (r; �n;0)g = op(1) since only fz�t (r; �n;0);=tg is guaranteed to form a martingale di¤er-
ence array under I1. Nevertheless, if m�

t (�n;0) is su¢ ciently heavy-tailed as n!1 extant
martingale di¤erence limit theory fails to apply (e.g. McLeish 1974), so we exploit a tele-
scoping sum arguments. De�ne positive integer sequences fjn; rn; hng satisfying hn; jn !
1, 1 � hn; jn; rn � n,

hn = o(c�n) for tiny � > 0, (12)

rn = [n=hn], and jn = o(hn), and de�ne zn;i := � ([��ihn=t),

Zn;i =

ihnX
t=(i�1)hn+jn

z�t (r; �n;0) and Wn;i = E[Zn;ijzn;i]� E[Zn;ijzn;i�1] :

LEMMA C.7 (decomposition) Under D4 and D5
Pn

t=1 z
�
t (r; �n;0) =

Prn
i=1Wn;i +

op(1).

LEMMA C.8 (asymptotic variance) Under D4, D5, I1 and I2
Prn

i=1W
2
n;i

p! 1.

Lastly, stochastic di¤erentiability aids proving Jacobian estimator consistency.

LEMMA C.9 (stochastic di¤erentiability) Under D1-DD7, I1 and M2-M3, for all
f�ng, �n ! 0, and all � 2 �,

sup
�2U0(�n)

8<:
�


V 1=2n




 = kJnk� kfm̂�
n(�)� m̂�

n(�0)g � fE [m�
t (�)]� E [m�

t (�0)]gk

1 +



V 1=2n




� k� � �0k
9=; p! 0:

Proof of Lemma C.1.

Claim (a): We prove (i) since (ii) is similar. Assume � andmt(�) are scalar andmt(�)
is symmetrically trimmed to simplify notation. Write m�

t (�) = mt(�) � It(�) where It(�)
= I(jmt(�)j � cn(�)), and choose jj� � ~�jj � �. Use D2 to deduce by Taylor�s theorem

m�
t (�) =

n
mt(~�) + J

�
t (�n;�) (� � �n;0)

o
� It (�)

where jj�n;� � �n;0jj � jj� � ~�jj, and J�t (�) := (@=@�)mt(�). Therefore

m�
n(�)�m�

n(
~�) = J�n(�n;�)� (� � ~�) +

1

n

nX
t=1

mt(�)�
n
It (�)� It(~�)

o
(13)

+
1

n

nX
t=1

J�t (�n;�)�
n
It (�)� It(~�)

o
� (� � �n;0) :
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Consider the second term in (13). Since It (�) � It(~�) 2 f�1; 0; 1g we can write����� 1n
nX
t=1

mt(�)
n
It (�)� It(~�)

o����� � 1

n1=2

nX
t=1

���mt(�)
n
It (�)� It(~�)

o���
� 1

n1=2

nX
t=1

���It (�)� It(~�)��� = An(�; ~�)�Bn(�; ~�):

Step 1 (An(�; ~�)): Threshold property D5 implies EjIt (�) � It(~�)j = O(k
1=2
n =n)

where O(�) is not a function of �. Now use stationarity D3, envelope bound D4, the
Cauchy-Schwartz inequality and sup� jj�

�1=2
n (�)jj = O(1) by D5, I1 and M3 given covari-

ance bound (8.4) to deduce for tiny � > 0 and any �0 2 ��
E
h
An(�; ~�)

�
i�1=�

� n1=2
h
E
���mt(�)

n
It (�)� It(~�)

o����i1=�
= O

�
n1=2




��1=2n (�0)



�1 � �k1=2n =n

�1=��
:

Since � > 0 is arbitrarily small use D5 to deduce [(k1=2n =n)1=� � 1=(nk�n). Hence by
Markov�s inequality for op(�) not a function of �

An(�; ~�) = op

�
n1=2




��1=2n (�0)



�1 �k1=2n =n

�1=��
= op

�


��1=2n (�0)



�1 � hn1=2k�ni�1� :

Step 2 (Bn(�; ~�)): Subadditivity and jIt (�) � It(~�)j 2 f0; 1g imply for any � >
0, tiny � > 0, and su¢ ciently large n and/or as jj� � ~�jj � � ! 0

P

 
1

k�n

����� 1n1=2Bn(�; ~�)� 1

n

nX
i=1

���I(i) (�)� I(i)(~�)���
����� > 2�

!

�
nX
t=1

P
����It (�)� It(~�)��� > k�n�

�
+

nX
i=1

P
����I(i) (�)� I(i)(~�)��� > k�n�

�
= 0:

In order to bound 1=n
Pn

i=1 jI(i) (�) � I(i)(~�)j de�ne k�n(�) :=
Pn

t=1f1 � It(�)g. By
construction

1

n

nX
i=1

���I(i) (�)� I(i)(~�)��� =
1

n

k�n(�)X
i=k�n(

~�)+1

I(i)(~�) +
1

n

k�n(
~�)X

i=k�n(�)+1

�
1� I(i)(~�)

�

� 2
kn
n

1

kn

���k�n (�)� k�n(~�)��� � 2k1=2n

n

n���Xn(�; ~�)
���+ ���Pn(�; ~�)���o

where

Xn(�; ~�) :=
1

k
1=2
n

nX
t=1

n
�It(�; ~�)� E

h
�It(�; ~�)

io
and �It(�; ~�) := It (�)� It(~�)

Pn(�; ~�) :=
n

k
1=2
n

fP (jmt(�)j > cn(�))� 1g �
n

k
1=2
n

n
P
����mt(~�)

��� > cn(~�)
�
� 1
o
:

Apply uniform indicator bound Lemma C.5.b to deduce jXn(�; ~�)j = Op((n=kn)
�) � jj�

� ~�jj where Op(�) is not functions of �. Further, absolute continuity D1 ensures Pn(�; �)
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is �-a:e: di¤erentiable (Royden 1968), so threshold property D5 and Pn(�; �) = 0 imply
Pn(�; ~�) = O(1) � jj� � ~�jj. Coupled with covariance bound (8.5) we deduce as n ! 1
and/or jj� � ~�jj � � ! 0

Bn(�; ~�) = Op

 
k�nn

1=2 k
1=2
n

n

�
n

kn

�� 


� � ~�


! = Op

�
k�n (kn=n)

1=2��
�
�



� � ~�


 :

Step 3: Steps 1 and 2 with kn=n ! 1 deliver as n ! 1 and/or jj� � ~�jj � � !
0

1

n

nX
t=1

mt(�)
n
It (�)� It(~�)

o
= op

��


��1=2n (�0)



�1 =n1=2��� 


� � ~�


 :

Repeat the argument for the third term in (13) by invoking envelope bound D4 for
J�t (�).

Claim (b): Moment expansion Lemma B.2 and E[m�
t (�n;0)] = 0 given I1 and (8.1) im-

ply E[m�
t (�0)] = Jn(�0 � �n;0) + o(jjJnjj�jj�0 � �n;0jj), but E[m�

t (�0)] = o(jj�
�1=2
n jj�1=n1=2)

by I2. Therefore jj�n;0 � �0jj = o(jj��1=2n jj�1=[njjJnjj2]) which is o(jjV 1=2n jj�1) under scale
bound M2.
Now invoke Claim (a) and Jacobian cconsistency Lemma 2.5 to deduce for any � 2 �

jmn(�0)�mn(�n;0)j � kJnk � o
�


��1=2n (�)




�1 = hn1=2 kJnki�
+

�


��1=2n (�)



�1 =n1=2 +K kJnk�� op�


��1=2n




�1 = hn1=2 kJnki�
= op (1)�




��1=2n (�)



�1 =n1=2

where op(1) is not a function of �.

Claim (c): The proof simply imiates the Claim (a) argument.

Claim (d): Claim (a) and bounded convergence imply as n ! 1 and/or jj� � �n;�jj
� jj� � �0jj � � ! 0

E [m�
t (�)]� E [m�

t (�0)]

k� � �0k
= E [J�t (�n;�)]�(1 + o (k� � �0k))+o

�


��1=2n




�1 =n1=2 + kJnk� :
Further, moment expansion Lemma B.2 asserts

E [m�
t (�)]� E [m�

t (�0)]

k� � �0k
= Jn � (1 + o (k� � �0k)) + o (kJnk) :

Invoke covariance bound (8.5) and take � ! 0 to complete the proof.

Proof of Lemma C.2. Assume � and mt(�) are scalar and mt(�) is symmetrically
trimmed for notational convenience, and write �It(�) := 1 � It(�).

Claim 1: Let � 2 � be arbitrary, and write mt = mt(�); cn = cn(�), m̂�
t = m̂�

t (�),
m�
t = m�

t (�), �It = 1 � It(�), and Ît = Ît(�). First bound




 1n
nX
t=1

fm̂�
t �m�

t g





 � max

1�t�n

n


mt

n
Ît � It

o


o� 1

n

nX
t=1




Ît � It


 :
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By construction jjmtfÎt � Itgjj � 2jjm(a)
(kn)

� cnjj. Now, the intermediate order statistic is
consistent m(a)

(kn)
=cn = 1 + Op(k

�1=2
n ) by Lemma C.2.1 below. Now use threshold bound

D5 to deduce

max
1�t�n

n


mt

n
Ît � It

o


o � 2


m(a)
(kn)

� cn



 = 2cn 


m(a)

(kn)
=cn � 1




 = op

�
(n=kn)

1=2
�
:

Next, by construction and the triangular inequality

1

n

nX
t=1




Ît � It


 � k
1=2
n

n






 1

k
1=2
n

nX
t=1

�
�It � E

�
�It
�	




+ k

1=2
n

n





k1=2n

�
n

kn
E
�
�It
�
� 1
�





which is Op(k
1=2
n =n) by D5 and an application of Lemma C.5.b. Together with covariance

bound (8.5)
Pn

t=1fm̂�
t � m�

t g = op((n=kn)
1=2k

1=2
n ) = op(n

1=2).

Claim 2: De�ne M�
n := max1�t�nfsup� jjmt (�) fÎt (�) � It (�)gjjg and repeat the

above argument to reach

sup
�






 1n
nX
t=1

fm̂�
t (�)�m�

t (�)g





 � M�

n �
k
1=2
n

n
sup
�






 1

k
1=2
n

nX
t=1

�
�It (�)� E

�
�It (�)

�	





+M�

n �
k
1=2
n

n
sup
�





k1=2n

�
n

kn
E
�
�It (�)

�
� 1
�



 :

Uniform indicator bound Lemma C.5.b and uniform threshold property D5 imply the
right-hand-side is Op(M�

nk
1=2
n =n).

It remains to showM�
n = op(n=k

1=2
n ). First, since jmt (�) fÎt (�)� It (�)gj � 2jjm(a)

(kn)
(�)

� cn (�) jj for any t use D5 to deduce Mn is bounded by

2 sup
�

n


m(a)
(kn)

(�)� cn (�)



o = op

 �
n

kn

�1=2

sup
�

n
k1=2n




m(a)
(kn)

(�) =cn (�)� 1



o! :

Property D5 and uniform bound Lemma C.5.b su¢ ce to conclude sup� jj1=n
Pn

t=1fm̂�
t

� m�
t gjj = op(M

�
nk

1=2
n =n). Second, uniform L�-boundedness D4 and Markov�s inequality

imply for some � > 0 su¢ ciently small

P (jmt (�)j > z) = K � z�� �O(1) as z !1

P (jmt (�)j > z) = K � z�� �O (1)� (1 +O(g (z))) as z !1

where O(�) is a contraction mapping, O(z) 2 [0; z], z > 0, and g : R+ ! R+ is any
measurable mapping that satis�es k1=2n g(cn) ! 0. Now apply Lemma C.5.b and Hsing�s
(1991: p. 1553) argument to reach sup�fk

1=2
n jjm(a)

(kn)
(�) =cn (�) � 1jjg = Op(1)

9 . Therefore

M�
n � 2 sup�fjjm

(a)
(kn)

(�) � cn(�)jjg = op((n=kn)
1=2

) = op(n=k
1=2

n ) as required.

LEMMA C.2.1 Under D1, D3 and D4 m(a)
(kn)

(�)=cn(�) = 1 + Op(k
�1=2
n ) for every � 2

�.
9See especially the proof of Theorem 2.4 of Hsing (1991). Hsing exploits regular variation and does

not deliver uniform results. His argument, however, trivially extends to the uniform case and to tails
bounded by a regularly varying function. See also Lemma 3.1.1 of Hill (2010b).
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Proof. See Lemma 3.1.1 of Hill (2010b) for a nearly identical result. In brief, mar-
ginal distribution support R under D1, geometric �-mixing D3 and measurability en-
sure the tail array f�Ii;t(�)g := f1 � Ii;t(�)g satis�es a pointwise central limit theorem
(Hill 2009: Theorem 2.1, Lemma 3.1): 1=k1=2n

P
f�Ii;t(�) � E[ �Ii;t(�)]g

d! N(0; w21(�))
for some w21(�) < 1. It is then straightforward to prove an asymptotic identity between
k
1=2
n ln(m

(a)
(kn)

(�)=cn(�)) and 1=k
1=2
n
P
f�Ii;t(�)� E[ �Ii;t(�)]g based solely on Lp-boundedness

D4 so that k1=2n ln(m
(a)
(kn)

(�)=cn(�))
d! N(0; w22(�)) for some w

2
2(�) < 1. The claim then

follows from the mean-value-theorem.

Proof of Lemma C.3. The �rst claim follows from I1 and covariance bound (8.5):




E
" 

1

n

nX
t=1

m�
t (�n;0)

! 
1

n

nX
t=1

m�
t (�n;0)

!0#




 = k�n (�n;0)k =n = o(1):

Now invoke Chebyshev�s inequality.
Consider the second claim, recallmn := sup� E[jjm�

t (�)jj] and de�neM�
t (�) :=m

�1
n m�

i;t(�)

andX�
t (�) :=M

�
t (�)� E[M�

t (�)]g for arbitrary i 2 f1; ::; qg, and writeX�
n(�) := 1=n

Pn
t=1X

�
t (�).

Step 1: X�
t (�) is for any � geometrically �-mixing under D3. Therefore stationarity,

Ibragimov�s (1962) bound, and jm�
i;t (�) j � cn imply for some � 2 (0; 1) and tiny � > 0

E (X�
n(�))

2 � 1

n
E
h
(X�

t (�))
2
i
+
1

n

1X
t=2

jE [X�
1 (�)X

�
t (�)]j

� K
1

n
c2n(�) +

1

n

1X
t=2

��
�
E jX�

t (�)j
2+�
�1��

� K

�
1

n
c2n(�) +

1

n
c2+�n (�)

�
:

The right-hand-side is o(1) by threshold bound D5 and a continuity argument, hence
point-wise convergence follows by Chebyshev�s inequality.

Step 2: Compactness of � and pointwise convergence imply uniform convergence
follows by Theorem 1 of Andrews (1992) if we demonstrate stochastic equicontinuity: 8�
> 0 there exists � > 0 such that limn!1 P (sup� sup~�:jj~���jj�� jXn(�) � Xn(~�)j > �) < �.

lim
n!1

P

 
sup
�

sup
~�:jj~���jj��

���X�
n(�)�X�

n(
~�)
��� > �

!
< �

Consider two possibly over-lapping cases, and write sup~�(�) for sup~�:jj~���jj��. First, if
limn!1E[sup� jjm�

t (�)jj]<1 then limn!1E[sup� jM�
t (�)j�I(sup� jM�

t (�)j> �)]�K(�)
for all � > 0 and some mapping K(�) & 0 as � !1. Further, Andrews�(1992) Assump-
tion TSE [termwise stochastic equicontinuity ] holds by Lemma C.3.1, below. Therefore
stochastic equicontinuity follows from Lemma 3 of Andrews (1992).
Second, if mn := sup� E[jjm�

t (�)jj] ! 1 then we need only verify conditions (16) and
(17) of Lemma C.3.2. De�ne for arbitrary � > 0

�n := P

 
sup
�
sup
~�(�)

���M�
t (�)�M�

t (
~�)
��� > �

!�1+�
:

We can always �nd su¢ ciently small � > 0 such that �n ! 1 since by subadditivity,
envelope bound D4 and Markov�s inequality

P

 
sup
�
sup
~�(�)

���M�
t (�)�M�

t (
~�)
��� > �

!
� K

E
�
sup�

��m�
i;t (�)

����
m�n

� Km��n = o(1):
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Condition (16) is trivial since since E[sup� jM�
t (�)j] � 1 and �n ! 1. Condition (17)

follows by the construction of Mn:

lim
�!0

lim
n!1

(
�n � P

 
sup
�
sup
~�(�)

���X�
t (�)�X�

t (
~�)
��� > �

!)

= lim
�!0

lim
n!1

(
P

 
sup
�
sup
~�(�)

���X�
t (�)�X�

t (
~�)
��� > �

!�)
= 0:

LEMMA C.3.1 If limn!1E[sup� jjm�
t (�)jj] < 1 then TSE holds.

Proof. An argument similar to µCiµzek�s (2008: eq. (20)) proof of TSE su¢ ces: we need
only prove for arbitrary � > 0 and �1 > 0 it follows 8� < �1 and some � > 0

P

 
sup
�
sup
~�(�)

���mi;t(�)�
n
Ii;t(�)� Ii;t(~�)

o��� > �

!
� �; (14)

P

 
sup
�
sup
~�(�)

���mi;t(�)�mi;t(~�)
���� Ii;t(~�) > �

!
� �. (15)

Since

sup
�
sup
~�(�)

���mi;t(�)
n
Ii;t(�)� Ii;t(~�)

o��� � sup
�
jmi;t(�)Ii;t(�)j � sup

�
sup
~�(�)

���Ii;t(�)� Ii;t(~�)���
use limn!1E[sup� jjm�

t (�)jj] < 1 and indicator bound Lemma C.5.a to deduce (14).
Next, di¤erentiability D2 and moment bounds D4 imply for given � > 0 and su¢ ciently
tiny � > 0

P

 
sup
�
sup
~�(�)

���mi;t(�)�mi;t(~�)
���� ���Ii;t(~�)��� > �

!
� 1

��
E

�
sup
�





 @@�mi;t(�)





��� 


� � ~�


�
� K � �� ! 0

as � ! 0, hence (15) holds.

LEMMA C.3.2 If for arbitrary � > 0 and some sequence of positive real numbers f�ng,
�n ! 1,

lim
n!1

E

�
sup
�
jM�

t (�)j � I
�
sup
�
jM�

t (�)j > �n

��
= 0 (16)

and

lim
�!0

lim
n!1

(
�n � P

 
sup
�
sup
~�(�)

���M�
t (�)�M�

t (
~�)
��� > �

!)
= 0 (17)

then 8� > 0 there exists � > 0 such that Xn(�) is stochastically equicontinuous.

Proof. The proof is similar to Andrews (1992: Lemma 3) except we bypass uniform
integrability with the weaker (16). De�ne s�t := sup� jM�

t (�)j and �M�
t (�) := sup~�(�) jM�

t (�)

� M�
t (
~�)j. For given � > 0 by supposition there exists � > 0 such that, uniformly in
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n, E[2s�t I(2s
�
t > �n)] � �2=6 and P ( �M�

t (�) > �2=6) � �2=[6�n]. Then by stationarity,
Marvok�s inequality and term-wise stochastic equicontinuity for su¢ ciently large n

P

 
sup
�
sup
~�(�)

���X�
n(�)�X�

n(
~�)
��� > �

!

� P
�
�M�
t (�) + E

�
�M�
t (�)

�
> �
�
� 2

�
� E

�
�M�
t (�)

�
� 2

�
E

�
�M�
t (�)I

�
�M�
t (�) �

�2

6

��
+
2

�
� E

�
�M�
t (�)I

�
�2

6
< �M�

t (�) � �n

��
+
2

�
� E

�
�M�
t (�)I

�
�n < �M�

t (�)
��

� 2

�
�
�
�2

6
+ �n � P

�
�M�
t (�) >

�2

6

�
+ 2� E [s�t I (2s�t > �n)]

�
� �:

Proof of Lemma C.4. Under D1 and D2 Q̂n(�) is continuous on �, and twice
di¤erentiable at �̂n by µCiµzek�s (2008: Lemma 2.1) argument. Therefore Q̂n(�̂n) � Q̂n(�)
8� 2 � implies

Ĵ�n(�̂n)
0�̂n

1

n

nX
t=1

m̂�
t (�̂n) = 0 a:s:

Consistency jj�̂n � �0jj = op(1) by Theorem 2.1 and the Lemma C.1.a asymptotic expan-
sion for 1=n

Pn
t=1 m̂

�
t (�̂n) imply we may write

Ĵ�n(�̂n)
0�̂n

(
Ĵ�n(�n;�)

0
�
�̂n � �0

�
+
1

n

nX
t=1

m̂�
t (�0)

)

+ Ĵ�n(�̂n)
0�̂n � op

��


��1=2n




�1 =n1=2 +K kJnk�� 


�̂n � �0


� = 0 a:s:
where jj�n;� � �0jj � jj�̂n � �0jj.
Since jj�̂n � �0jj

p! 0 the Jacobian limit Lemma 2.5 implies both Ĵ�n(�̂n) = Jn(1 +
op(1)) and Ĵ�n(�n;�) = Jn(1 + op(1)). Further, weight and Jacobian properties M1 and
D6.i imply H�1

n := (J 0n�nJn)
�1 exists. Now re-arrange terms and exploit the construction

of Vn and property M2 to deduce

�̂n � �0 = �H�1
n Jn

0�n
1

n

nX
t=1

m̂�
t (�0) + op

�


�̂n � �0


� :
We may therefore write

V 1=2n

�
�̂n � �0

�
= �

n
V 1=2n H�1

n J 0n�n

o 1
n

nX
t=1

m̂�
t (�0)� (1 + op (1)) + op (1)

= An

nX
t=1

m̂�
t (�0)� (1 + op (1)) + op (1) :
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Proof of Lemma C.5. Assume for clarity � and mt(�) are scalars (q = k = 1) and
mt(�) is symmetrically distributed, hence (n=kn)P (jmt(�)j > cn(�)) ! 1.

Claim (a): Distribution and equation continuity D1 and D2 and threshold property
D5 imply we may assume cn(�) is continuous on � without loss of generality: for any �
> 0 such that jcn(�)=cn(~�) � 1j � � we can �nd � > 0 such that jj~� � �jj � �. Further,
by D2 and envelope bound D4 there exists � > 0 such that for any � > 0 and su¢ ciently
tiny � > 0

P

 
sup
�

sup
~�:jj��~�jj��

���mt(�)�mt(~�)
��� > �

!
� K � E

�
sup
�

���� @@�mt(�)

������� �� � �:

Therefore, by sub-additivity for arbitrary � > 0 and �1 > 0 and each � < �1

Pn (�) = P

 
sup
�

sup
~�:jj��~�jj��

���I(jmt (�)j � cn (�))� I
����mt(~�)

��� � cn(~�)
���� = 1!

� P
�
9�; ~� 2 �, jj� � ~�jj � � : jmt (�)j � cn (�) and cn(~�) <

���mt(~�)
����

+P
�
9�; ~� 2 �, jj� � ~�jj � � :

���mt(~�)
��� � cn(~�) and cn(�) < jmt(�)j

�
� 2� P

�
9� 2 � : jmt (�)j > cn(�)

�
[1� �]� K�

inf� fcn(�)g

��
� 2� P

�
9� 2 � : jmt (�)j � cn(�)

�
[1 + �] +

K�

sup� fcn(�)g

��
:

But this implies Pn (�) = O(k
1=2
n =n) = o(1) � � for su¢ ciently large n by D5 and the

non-uniqueness of the thresholds fcn(�)g. Since � is arbitrary this completes the proof.
Claim (b): fX�

t (�) : � 2 �g forms a VC class under D7, and D3 and D5 ensure
by measurability X�

t (�) is geometrically �-mixing and L2+�-bounded uniformly on 1
� t � n, n � 1 and � 2 �. It is now straightforward to extend Arcones and Yu�s
(1994: Theorem 2.1) uniform central limit theorem for stationary �-mixing sequences
to geometrically �-mixing triangular arrays fX�

t (�) : 1 � t � ngn�1 stationary over t:
fn�1=2

Pn
t=1X

�
t (�) : � 2 �g converges to a Gaussian process fX(�) : � 2 �g with uni-

formly bounded and uniformly continuous sample paths with respect to L2-norm. There-
fore E[(sup�fjn�1=2

Pn
t=1X

�
t (�)jg)2]g = O(1).

Finally, since X�
t (�;

~�) is geometrically �-mixing under D3, use Ibragimov�s bound and
the Cauchy-Schwartz inequality to deduce

E

24 1

n1=2

nX
t=1

X�
t (�;

~�)

!235 �
nX
q=1

E
h�
X�
1 (�)�X�

1 (
~�)
��

X�
q (�)�X�

q (
~�)
�i

� K � E
�
X�
t (�)�X�

t (
~�)
�2

�
�
kn
n

�2�
n

kn

�h
�P �i;t(�)

1=2 � �P �i;t(
~�)1=2

i2
�
h
�P �i;t (�)� �P �i;t

�
~�
�i2�

=

�
kn
n

�2�
n

kn
�P�i;t(�; ~�)

where �P �i;t(�) := 1 � E[Ii;t(�)]. Absolute continuity D1 ensures �P�i;t(�; ~�) is �-a:e: di¤eren-
tiable (Royden 1968), �P�i;t(�; �) = 0 by construction, and threshold property D5 implies by
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a simple continuity argument (n=kn)1�2� �P�i;t(�; ~�) = o(1). Therefore (n=kn)1�2� �P�i;t(�; ~�)
= O(1) � jj� � ~�jj where O(1) does not depend on �. This completes the proof.

Proof of Lemma C.6. De�ne

~�2n = n�



��1=2n




�2 .
The Lemma C.7 decomposition

Pn
t=1 z

�
t (r; �n;0) =

Prn
i=1Wn;i + op(1) implies we need only

prove
Prn

i=1Wn;i
d! N(0; 1). Since fWn;i;zn;ig forms a martingale di¤erence array the

required limit follows from Corollary 2.8 of McLeish (1974) provided
Prn

i=1W
2
n;i

p! 1 andPrn
i=1E[W

2
n;iI(jWn;ij > �)]! 0 8� > 0 (cf. McLeish 1974: eq. 2.4). The former is Lemma

C.8. The latter Lindeberg condition follows from Lemma C.6.1, below, stationarity, rnhn
� n, and covariance property (8.4):

rnX
i=1

E
�
W 2
n;iI (jWn;ij > �)

�
� K

rn

~�2n
h�+1n

Z Kc2+�n

�~�2n

u��=2du � Kh�n

Z Kc2+�n

�~�2n

u��=2du:

Since (8.4) and D5 together imply ~�2n=c
2+�
n !1 for su¢ ciently tiny � > 0 the right-hand-

side is 0 for large n.
It is now a simple exercize to prove

Pn
t=1fz�t (r; �0) � z�t (r; �n;0)g = op(1) by invoking

equation expansions Lemma C.1.b,c.

LEMMA C.6.1 Under D4, D5 and I1 E[W 2
n;i~�

2
nI(W

2
n;i~�

2
n >M)] � Kh�+1n

RKc2+�n

M
u��=2du

for any M > 0, tiny � > 0 and some � 2 (0; 2].

Proof. Use subadditivity and the triangular inequality to deduce

E
�
W 2
n;i~�

2
nI
�
W 2
n;i~�

2
n > M

��
=

Z 1

M

P
�
W 2
n;i~�

2
n > u

�
du

�
Z c2+�n

M

P
�
jZn;ij ~�n > (u=2)1=2

�
du

+

Z 1

c2+�n

P
�
jWn;i � Zn;ij ~�n > (u=2)1=2

�
du = An;i +Bn;i;

say. Moment bound D4, Markov�s inequality, the construction of z�t , and subadditivity
imply for some � 2 (0; 2]

An;i �
ihnX

t=(i�1)hn+jn

Z c2+�n

M

P

�
jz�t j ~�n >

1

hn
(u=2)

1=2

�
du

�
ihnX

t=(i�1)hn+jn

Z c2+�n

M

P

�
K kmt (�n;0)k >

1

hn
(u=2)

1=2

�
du � h�+1n

Z c2+�n

M

u��=2du:

Consider Bn;i and note trimming implies jWn;i � Zn;ij~�n � Khncn. By Markov�s in-
equalityZ 1

c2+�n

P
�
jWn;i � Zn;ij ~�n > (u=2)1=2

�
du =

Z Kh2nc
2
n

c2+�n

P
�
jWn;i � Zn;ij ~�n > (u=2)1=2

�
du

� K � E jWn;i � Zn;ij ~�n
Z Kh2nc

2
n

c2+�n

u�1=2du:
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Since hn = o(c�n) from (12) the right-hand-side is 0 for large n:

Proof of Lemma C.7. De�ne z�t = z�t (r; �n;0) and decompose

nX
t=1

z�t =

rnX
i=1

Wn;i +

rnX
i=1

(Zn;i � E[Zn;ijzn;i]) +
rnX
i=1

E[Zn;ijzn;i�1]

+

rnX
i=1

(i�1)hn+jnX
t=(i�1)hn+1

z�t +
nX

t=rnhn+1

z�t =

rnX
i=1

Wn;i + En:

We need only show En = op(1). fz�t ;=tg forms an adapted martingale di¤erence array
under I1, hence an L2-mixingale array with trivial constant en;t = 0 and coe¢ cients  q
= o(q��) for any size � > 0 and integer q 2 N since (e.g. McLeish 1975, Davidson 1994)

z�t � E �z�t j=t+q�1

�


2
= kz�t � z�t k2 = 0 = en;t � o((q + 1)��)



E [z�t ]� E �z�t j=t�q�1
�


2
=



0� E hE hz�t j=1�q�1

i
j=t�q�1

i



2
= 0 � en;t � o(q��):

Apply Lemmas C.7.1 and C.7.2 and the fact that the mixingale constants are trivial, to
deduce E[(

Pn
t=rnhn+1

z�t )
2] = o(1), E[(

Prn
i=1

P(i�1)hn+jn
t=(i�1)hn+1 z

�
t )
2] = o (1), E[(

Prn
i=1(Zn;i �

E[Zn;ijzn;i]))2] = o(1) and E[(
Prn

i=1E[Zn;ijzn;i�1])2] = o(1). Therefore En = op(1) by
Chebyshev�s inequality.

We require a generalization of McLeish�s (1975) seminal maximal inequality to mixin-
gale arrays, and to displacement sequences fqng for use in the sequel. See Hall and Heyde
(1980) and Andrews (1988) for related concepts, and see Hill (2010: Theorem 2.1) for a
proof.

LEMMA C.7.1 Let a uniformly L2-bounded triangular array fyn;tg and �-�elds f=tg
satisfy jjE[yn;t] � E[yn;tj=t�qn�1 ]jj2 � en;t � o(q

�1=2
n ) and jjyn;t � E[yn;tj=t+qn�1 ]jj2

� en;t � o((qn + 1)�1=2) for some positive deterministic array fen;tg and some
sequence of positive integers fqng. If qn = q � g(n) for q 2 N and some mapping g
: N ! N, g(n)! 1 or g(n) ! 1 as n ! 1, then E[(

Pn
t=1 yn;t)

2] = O(
Pn

r=1 e
2
n;t).

LEMMA C.7.2 De�ne the index set Bn;t = ft : t 2 [rni=1[(i � 1)hn + jn + 1; :::; ihn]g.
Under I1 fZn;i � E[Zn;ijzn;i];=tgt2Bn;t and fE[Zn;ijzn;i�1];=tgt2Bn;t form an
L2-mixingale arrays with trivial constants and arbitrary size.

Proof. We prove the claim for fE[Zn;ijzn;i�1];=tgt2Bn;t
, the second claim being similar.

Since fz�t ;=tg forms an adapted martingale di¤erence array under I1, by the construction
zn;i := � ([��ihn=t) it follows E [Zn;ijzn;i�1] =

Pihn
t=(i�1)hn+jn E [z

�
t jzn;i�1] = 0. There-

fore jjE[E[Zn;ijzn;i�1]j=t�q�1]jj2 = 0 and jjE[Zn;ijzn;i�1] � E[E[Zn;ijzn;i�1]j=t+q�1]jj2 =
0.

Proof of Lemma C.8. De�ne

~�2n := n�



��1=2n




�2 , u2n;i := ~�2nW 2
n;i, and Kn � Kc2+�n ;

and a truncation function

~u2n;i (K) := u2n;iI
�
u2n;i � K

�
= ~�2nW

2
n;iI

�
~�2nW

2
n;i � K

�
and ~u2n;i = ~u

2
n;i(Kn):
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By the triangular inequality j
Prn

i=1W
2
n;i � 1j �

P5
i=1En;i where

En;1 =

����� 1~�2n
rnX
i=1

�
~u2n;i � u2n;i

������ and En;2 =

����� 1~�2n
rnX
i=1

�
~u2n;i � E

�
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�������

En;3 =
1

~�2n
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i=1

��E �~u2n;i�� E �u2n;i��� and En;4 =

�����
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i=1

�
E
�
W 2
n;i

�
� E

�
Z2n;i

�������
En;5 =

�����
rnX
i=1

E
�
Z2n;i

�
� 1
����� :

Lemmas C.8.1 and C.8.2 imply En;1, En;2 and En;3 are op(1), and Lemma C.8.3 and
Lyapunov�s inequality imply En;4 � jj

Prn
i=1(W

2
n;i � Z2n;i)jj2 = o(1). Finally, Lemma

C.8.4 asserts En;5 = op(1).

LEMMA C.8.1 Under D5 and I1 ~��2n
Prn

i=1Ej~u2n;i � u2n;ij = o(1) and ~��2n
Prn

i=1(~u
2
n;i

� u2n;i) = op(1).

Proof. By construction ~�2nW
2
n;i � Kh2nc

2
n. Now use rnhn � n, hn = O(c�n), n=~�

2
n =

O(1), Kn � Kc2+�n for su¢ ciently large K and stationarity to deduce

1

~�2n

rnX
i=1

E
��~u2n;i � u2n;i�� = 1

~�2n

rnX
i=1

E
�
u2n;iI

�
u2n;i > Kn

��
� rn

~�2n

Z Kc2+�n

Kc2+�n

P
�
~�2nW

2
n;i > u

�
du = o (1) :

The second claim now follows by the Markov and triangular inequalities.

LEMMA C.8.2 Under D3, D5 and I1 ~��2n
Prn

i=1(~u
2
n;i � E[~u2n;i]) = op(1).

Proof. Geometric �-mixing D3 and measurability of ~u2n;i imply f~u2n;i=~�2n;zn;ig forms an
L2-mixingale array with size 1/2 and constants K~��1n (e.g. McLeish 1975: Theorem 2.1):
for any sequence of positive integers fqng and some � 2 (0; 1) and � > 00@E ~u2n;i

~�2n
� E

"
~u2n;i

~�2n
jzn;i+qn

#!21A1=2

� K
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~�2n

�
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�
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~�n
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E
�
~u4n;i
��1=2 1

~�nq�n

�
� o

�
(qn + 1)

�1=2
�
:

Simply choose qn ! 1 as n ! 1 and su¢ ciently large � > 0 to ensure0@E ~u2n;i
~�2n

� E
"
~u2n;i

~�2n
jzn;i+qn

#!21A1=2

� K
1

~�n
� o

�
(qn + 1)

�1=2
�
:

An identical argument reveals0@E E " ~u2n;i
~�2n

#
� E

"
~u2n;i

~�2n
jzn;i�qn

#!21A1=2

� K
1

~�n
� o

�
q�1=2n

�
:

But this implies by Lemma C.7.1 E(~��2n
Prn

i=1f~u2n;i � E[~u2n;i]g)2 = O(
Prn

i=1 ~�
�2
n ) =

O(rn=~�
2
n) = o(1) since rn = o(n) and n=~�2n = O(1).

The last two follow directly the trivial mixingale property. See Hill and Renault (2010).
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LEMMA C.8.3 Under D5 and I1 jj
Prn

i=1(W
2
n;i � Z2n;i)jj2 = o(1).

LEMMA C.8.4 Under D5 and I1
Prn

i=1E[Z
2
n;i]

p! 1.

Proof of Lemma C.9. Minkowski�s inequality, the M2 bound jjV 1=2n jj � Kn1=2jjJnjj �
jj��1n jj1=2, the matrix norm bound jj��1n jj1=2 � Kjj��1=2n jj, jj��1=2n jj�1=n1=2 = o(1) under
(8.5), and the Lemma C.2 uniform approximation imply

sup
�2U0(�n)

8<:
�


V 1=2n




 = kJnk� kfm̂�
n(�)� m̂�

n(�0)g � fE [m�
t (�)]� E [m�

t (�0)]gk

1 +



V 1=2n




� k� � �0k
9=;

� sup
�2U0(�n)

8<:
�


V 1=2n




 = kJnk� kfm�
n(�)�m�

n(�0)g � fE [m�
t (�)]� E [m�

t (�0)]gk

1 +



V 1=2n




� k� � �0k
9=;+ op(1):

Now apply moment expansion Lemma B.2, equation expansion Lemma C.1.a, covariance
bound (8.5) and scale bound M2, to deduce

sup
�2U0(�n)

8<:
�


V 1=2n




 = kJnk� kfm�
n(�)�m�

n(�0)g � fE [m�
t (�)]� E [m�

t (�0)]gk

1 +



V 1=2n




� k� � �0k
9=;

� sup
�2U0(�n)

�
kJ�n(�)� Jnk

kJnk

�
+ op (1)

� sup
�2U0(�n)

�
kJ�n(�)� J�nk

kJnk

�
+

�
kJ�n � Jnk
kJnk

�
+ op (1) :

The �rst term is op(1) by supposition D6.ii and the second term is op(1) by Lemma 2.5.
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TABLE 3 : Location, AR, ARCH
LOCATION, �t � P1:5, � = 1:0a

Mean StDev t-testb KSc �d b (�)
e

b̂ (�)
f

bg b̂

GMTTM(1)h .992 .139 .02,.06,.10 .052 .23 -.129 -.131�.026 -.167 -.211�.065
GMTTM(2) .994 .126 .02,.05,.11 .051 .22 -.129 -.130�.024 -.167 -.203�.059
GMM .939 .212 .01,.08,.13 .172 - - - - -
QML 1.01 .151 .02,.07,.15 .272 - - - - -

LOCATION, �t � P2:5, � = 1:0

Mean StDev t-test KS � b (�) b̂ b b̂

GMTTM(1) .994 .038 .01,.06,.11 .108 .49 .000 .047�.059 .000 .064�.044
GMTTM(2) .994 .033 .01,.05,.11 .101 .47 .000 .031�.051 .000 .058�.039
GMM 1.00 .075 .01,.03,.10 .076 - - - - -
QML .999 .037 .01,.04,.10 .121 - - - - -

AR, �t � P1:5, � = :90

Mean StDev t-test KS � b (�) b̂ (�) b b̂

GMTTM(1) .900 .007 .01,.04,.12 .075 .33 .112 .119�.015 .167 .194�.039
GMTTM(2) .900 .005 .01,.05,.12 .069 .32 .112 .116�.012 .167 .189�.033
GMM .900 .012 .02,.07,.15 .187 - - - - -
QML .889 .013 .02,.04,.08 .253 - - - - -

AR, �t � P2:5, � = :90

Mean StDev t-test KS � b (�) b̂ (�) b b̂

GMTTM(1) .899 .011 .02,.05,.10 .052 .49 .000 .032�.044 .000 .042�.077
GMTTM(2) .901 .010 .01,.05,.10 .051 .48 .000 .027�.039 .000 .048�.081
GMM .898 .013 .01,.06,.09 .086 - - -
QML .899 .014 .02,.04,.09 .132 - - -

ARCH, �t � N0;1, � = :60

Mean StDev t-test KS � b (�) b̂ (�) b b̂

GMTTM(1) .602 .152 .01,.06,.11 .065 .24 -.019 -.032�.022 -.024 -.048�.037
GMTTM(2) .601 .139 .01,.05,.11 .063 .22 -.019 -.030�.021 -.024 -.050�.037
GMM .600 .176 .01,.06,.10 .162 - - -
QML .599 .067 .01,.05,.11 .091 - - -

a. N0;1 = N(0,1); P� = Pareto with index �.
b. t-test rejection frequency based on standard normal 1%, 5%, and 10% critical values. t-tests and KS

tests are based on T̂j;k = (�̂j;k � �0)=ŝ2n;k where ŝ2n;k is the simulation standard deviation of �̂j;k.
c. Kolmogorov-Smirnov test p-value. Norm trimming and symmetric trimming uses one fractile kn = [n�].
In the case of GMTTM, KS p-values are evaluated at that � which minimizes KS. The 1%, 5%, 10%
KS critical values are .136, .122, .107.

d. The KS minimizing two-tailed GMTTME symmetric trimming parameter, kn = [n�]:
e. The slope parameter b(�) in the rate of convergence regression ln(ŝ�1n;k=n

1=2) � a + b (�) ln (n) ; where
ŝ2n;k is computed by GMTTM with the KS minimizing � when kn = [n�] and n = 1000.
See Sections 3 and 5.6 for veri�cation of the true b, and Table 1 for �. In all cases b = 0 if � � 2.
Location: b = �(1� �)(1=�� 1=2); AR: b = (1� �)(1=�� 1=2); ARCH: b = �(1� �)(2=�� 1=2).

f. The least squares asymptotic 95% band when kn = [n�] and n = 1000.
g. The same regression parameter and band, when kn = [� ln(n)] with the KS minimizing � for n = 1000.
Location: b � 1=2� 1=�; AR: b � (1=�� 1=2); ARCH: b � 1=2� 2=�.

h. GMTTM(1) is the one-step GMTTME; GMTTM(2) is the two-step GMTTME with a QMLE plug-in.
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TABLE 4 : GARCH, TARCH, QARCH
GARCH, �t � N0;1, � = :60 TARCH, �t � N0;1, � = :60

Mean StDev Z-test KSa �b Mean StDev Z-test KS �

GMTTM(1) .594 .174 .02,.05,.09 .067 .27 .625 .165 .01,.06,.11 .084 .29,.17
GMTTM(2) .595 .168 .02,.05,.10 .064 .26 .617 .163 .02,.06,.10 .083 .29,.16
GMM .577 .195 .02,.04,.09 .177 - .536 .147 .00,.05,.10 .269 -
QML .597 .076 .02,.02,.05 .098 - .595 .094 .01,.04,.10 .073 -

GARCH, �t � P2:5, � = :60 TARCH, �t � P2:5, � = :50

Mean StDev Z-test KS � Mean StDev Z-test KS �

GMTTM(1) .593 .231 .00,.06,.11 .096 .09 .622 .297 .00,.02,.08 .106 .68,.09
GMTTM(2) .594 .228 .01,.06,.11 .094 .09 .619 .289 .00,.02,.09 .104 .67,.09
GMM .264 .346 .00,.00,.08 .448 - .270 .202 .00,.00,.00 .532 -
QML .605 .184 .00,.00,.00 .569 - .516 .381 .00,.00,.00 .323 -

IGARCH, �t � N0;1, � = :60 TIARCH, �t � N0;1, � = 1:0

Mean StDev Z-test KS � Mean StDev Z-test KS �

GMTTM(1) .602 .177 .01,.06,.11 .083 .32 1.01 .242 .01,.06,.10 .066 .40,.25
GMTTM(2) .599 .171 .01,.05,.11 .078 .31 .998 .238 .01,.06,.10 .064 .41,.24
GMM .628 .225 .01,.02,.05 .273 - .839 .393 .00,.03,.06 .284 -
QML .586 .198 .03,.14,.17 .262 - 1.00 .132 .02,.05,.09 .082 -

QARCH, �t � N0;1, � = :80 QIARCH, �t � N0;1, � = 1:0

Mean StDev Z-test KS � Mean StDev Z-test KS �

GMTTM(1) .807 .094 .02,.06,.09 .068 .34,.11 1.00 .088 .01,.05,.10 .051 .58,.39
GMTTM(2) .798 .092 .02,.06,.10 .066 .32,.10 1.01 .085 .01,.06,.10 .050 .57,.37
GMM .673 .093 .00,.05,.08 .454 - .721 .092 .00,.00,.03 .643 -
QML .896 .659 .00,.00,.15 .389 - .997 .638 .00,.00,.01 .287 -

a. KS critical values for test size 1%, 5%, 10% are .136, .122, .107.
b. The KS minimizing � for the GMTTME for symmetric data generating processes (GARCH), or the KS
minimizing pair f�1; �2g for asymmetric processes (TARCH, QARCH).

c. GMTTM(1) is the one-step GMTTME; GMTTM(2) is the two-step GMTTME with a QMLE plug-in.
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