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1 Introduction

The goal of this paper is to fill a void in the literature. There are, to our knowledge, no

head-to-head comparisons of asset pricing models from macro/finance that adhere to the

principles of statistical science. This paper fills the void.

The reasons for this void are twofold: The first is the attack on the use of statistics

in macro/finance by Edward Prescott and his followers; see Kydland and Prescott (1996)

and the references therein. That attack has deterred inquiries that adhere to statistical

principles. Contemporary macro economics, particularly the real business cycle literature, is

a vast statistical wasteland. The second is that practicable statistical methods to compare

non-nested models whose likelihood is not directly available on sparse data have only recently

become available.

It is a matter of current debate as to whether or not the principles of statistics are relevant

to economic research; see Hansen and Heckman (1996) and the references therein. We have

nothing to say about that debate here. We do maintain, however, that the existence of a

debate is no reason to suppress facts. An informed debate is better than a debate based

on surmise. In this paper, we provide facts that relate to consumption-based asset pricing

models. The methodology that we introduce is generally applicable and can be applied to

other macro/finance models.

The asset pricing models considered are the habit persistence model of Campbell and

Cochrane (1999), the long run risks model of Bansal and Yaron (2004), and the prospect

theory model of Barberis, Huang, and Santos (2001). There are two reason for this choice:

These three models are arguably the leading contenders; And the authors have provided

descriptions of their computational methods that are sufficiently detailed to allow replication

of their simulations.

We know of only one other study that attempts a head-to-head statistical comparison of

asset pricing models: Bansal, Gallant, and Tauchen (2007). It compared the habit model to

the long run risks model using frequentist methods. The statistical methods employed could

not distinguish between these two models because frequentist non-nested model comparison

methods require abundant data. Abundant data are not available in macro/finance. The
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typical sampling frequency used to calibrate and assess macro/finance models is annual and

there are only about 80 annual observations available on the U.S. economy. The three papers

cited above use annual data. Barberis, Huang, and Santos (2001) insist that annual is the

only frequency that is appropriate to their model. Using higher frequency data to compare

these three models is not an option. They were not designed to explain high frequency data.

Failing to achieve a definitive statistical result, Bansal, Gallant, and Tauchen (2007)

proceeded to compare the models using the more traditional methods of macro/finance which

consist of enumerating some moment conditions and checking model simulations against

them either formally by means of GMM or informally by means of calibration (Kydland

and Prescott, 1996). On the basis of a battery of such tests, Bansal, Gallant, and Tauchen

conclude that the long run risks model is preferred.

In addition to the fact that their comparison, in the end, was not statistical, there

are other concerns. Bansal, Gallant, and Tauchen did not actually compare the models

proposed by Campbell and Cochrane (1999) and Bansal and Yaron (2004). They modified

them to impose cointegration on macro variables that ought not diverge. They also used a

general purpose method to solve them; specifically, a Bubnov-Galerkin method (Miranda and

Fackler, 2002, p 152–3). In our experience, simulations from models of the sort considered

here are sensitive to the method used to solve them. Our view is that fairness dictates that

one use both the same model that was proposed and the same solution method. To state our

view succinctly, the structural model is the simulation algorithm proposed by the originator;

it is not the mathematical equations that suggested the algorithm.

Lastly, Bansal, Gallant, and Tauchen used a dividend series and we do not. Although

both the frequentist methods that they used and the Bayesian methods used here allow

dividends to be latent in principle, the sparseness of the data compelled Bansal, Gallant,

and Tauchen to use dividends. We do not use dividend data because, aside from the fact that

it is difficult to properly adjust dividend payouts for stock repurchases and other distortions

caused by tax policy, we want to focus solely on asset prices and consumption. Whether or

not the models we consider can explain dividend payouts is of little interest. In fact, the

long run risks model, which would seem to have the best chance of explaining dividends,

apparently cannot (Gallant and Hong, 2007).
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The data we use are annual, per capita, real, U.S., consumption growth and stock returns

from 1925–2008. The comparisons are for the period 1930–2008 and 1950–2008. The data

from 1925–1929 are only used to prime recursions because they are of lower quality than

the data from 1930 onwards. The data are plotted in Figure 1. Note in the figure that

consumption growth is far more volatile in the 1930–1949 period than in the period from

1950–2008. The volatility of stock returns is not much different. It turns out that the

difference in consumption growth volatility dramatically influences results.

Figure 1 about here

Gallant and McCulloch (2009) introduced a Bayesian method for fitting a structural

model for which a likelihood is not readily available to sparse data such as that shown in

Figure 1. They synthesize a likelihood by means of an auxiliary model and simulation from

the structural model along lines that are similar to indirect inference (Smith, 1993; Gourier-

oux, Monfort, and Renault, 1993) and efficient method of moments (Gallant and Tauchen,

1996). Dejong, Ingram, and Whiteman (2000) and Del Negro and Schorfheide (2004) are

closely related to Gallant and McCulloch (2009) and use similar ideas. What is new in

Gallant and McCulloch are the computational methods that allow extension of the ideas to

highly nonlinear structural and auxiliary models. If Gallant and McCulloch’s assumptions

are satisfied, the synthesized likelihood is identical to the likelihood of the structural model,

were it available. The Bayesian paradigm allows one to use prior information to compensate

for data sparseness. Model comparison is by means of posterior probabilities. In short, the

methodology used here is classical Bayesian statistics. It is only the computational methods

that are not standard.

In the Gallant and McCulloch framework, the auxiliary model must encompass the struc-

tural model for the methodology to be logically correct. This is a departure from the indirect

inference and efficient method of moments literatures where this requirement is not logically

necessary. It may or may not be desirable. That is a subject of debate (see Gallant and

Tauchen (2009) and the references therein). In this debate the auxiliary model that encom-

passes the structural model is presumed to be simpler and easier to fit to simulations from

the structural model than is an auxiliary model that fits the data. That is not true here.
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An auxiliary model that can encompasses the habit persistence, long run risks, and prospect

theory models is far more complex than time series models customarily fit to the data in

Figure 1. Bizarre might be a better word than complex. In view of the fact that theory flies

in the face of common sense, we conduct a sensitivity analysis employing six auxiliary models

of differing complexity to determine if the choice of auxiliary model makes a difference to

our results. The six models are shown in Table 1. Model f1 is closest to that used by Gallant

and McCulloch; f5 is the encompassing model.

Table 1 about here

Auxiliary models f2 through f5 are more complex than the models considered by Gallant

and McCulloch (2009). We find that the computational methods that they proposed are

not sufficiently accurate for models of this complexity. A contribution of this paper is a

refinement of their methods that increases accuracy to the point that auxiliary models as

complex as f2 through f5 can be used in applications.

Fairness requires that one use the model that was proposed together with the proposed

solution method, as noted above. Fairness also requires evenhandedness with regard to

the prior. Our prior for each model is that the real, risk-free, interest rate be within 1%

of 0.896 with probability 0.95 together with a preference for model parameters that are

near their published values. Campbell (2003) notes that any reasonable asset pricing model

must incorporate the indirect evidence that the risk-free rate is very low with low volatility.

Campbell’s evidence suggests that the mean risk-free rate for the U.S. is 0.896 percent per

annum. Bansal, Gallant, and Tauchen (2007) argue that imposing the risk free rate a priori

is likely to produce better estimates than using an ex ante risk free rate series that is mostly

noise due to the difficulty of determining ex ante inflation (Mishkin, 1981). This prior

appears to strike the right balance. It is tight enough to achieve MCMC chains that mix

well despite the use of sparse data but loose enough to allow the data to be influential with

regard to the equity premium, the standard deviation of equity returns, and the conditional

dynamics of consumption growth and equity returns.
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2 Models Considered

In this section we describe the habit persistence model, the long run risks model, and the

prospect theory model with a focus on the algorithms used to solve them. The algorithms

for the habit persistence model are described in Campbell and Cochrane (1999) and in

supplemental materials on John Cochrane’s website, particularly an online appendix and

Gauss code. The algorithms for the long run risks model are described in Bansal and

Yaron (2004); useful supplements are Kiku (2006) and Bansal, Kiku, and Yaron (2006).

The algorithms for the prospect theory model are described in Barberis, Huang, and Santos

(2001).

2.1 The Habit Persistence Model

The driving processes for the habit persistence model are

Consumption: ct − ct−1 = g + vt

Dividends: dt − dt−1 = g + wt

Random shocks:
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 ∼ NID
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The time increment is one month. Lower case denotes the logarithm of an upper case

quantity; i.e. ct = log(Ct), dt = log(Dt). The utility function is

E0

(

∞
∑

t=0

δt
(StCt)

1−γ − 1

1 − γ

)

, (1)

where habit persistence is implemented by two equations:

Surplus ratio: st − s̄ = φ (st−1 − s̄) + λ(st−1)vt−1 (2)

Sensitivity function: λ(s) =











1
S̄

√

1 − 2(s− s̄) − 1 s ≤ smax

0 s > smax

(3)

Et is conditional expectation with respect to St, which is the state variable; st = log(St).

The quantities S̄ and smax can be computed from model parameters θ = (g, σ, ρ, σw, φ, δ, γ)
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as S̄ = σ
√

γ/(1 − φ) and smax = s̄ + (1 − S̄2)/2. If one substitutes StCt = Ct − Xt in (1),

where Xt is external habit, one obtains the habit persistence utility function as it is usually

written. The form above is more convenient for computations.

Let V be the map from the state S to the price-dividend ratio P/D of the equity asset.

It is determined by the Euler equation

V (St) = Et

{

δ
(

St+1Ct+1

StCt

)−γ(Dt+1

Dt

)

[1 + V (St+1)]

}

. (4)

The logarithmic return on the equity asset, rdt = log(Pdt+Dt)− log(Pd,t−1), is obtained from

V (S) using

rdt = log

[

1 + V (St)

V (St−1)

(

Dt

Dt−1

)]

. (5)

In (4), the dividend shock can be integrated out analytically leaving an expression in

the consumption shock. The consumption shock can be integrated numerically using Gauss-

Hermite quadrature. We used a five point rule, which integrates polynomials up to degree

nine exactly.

Having a means to compute the integral, one can solve (4) by approximating the log

policy function

v(st) = log V (est) (6)

by a piecewise linear function v̂(s). Campbell and Cochrane set the join points {si}
I
i=1 of

v̂(s) at s̄, smax, smax − 0.01, smax − 0.02, smax − 0.03, smax − 0.04, and log(kSmax/11) for

k = 1, . . . , 10. We added the abscissae of the Gauss-Hermite quadrature formula at the

maximum and minimum of the above join points then deleted all points less than 0.001

apart.

To solve (4) for V (S) = exp[v(logS)], start at guesses {v̂
(0)
i }Ii=1 for the ordinates v̂i = v̂(si)

at each of the join points si, e.g, scale v̂
(0)
i off Figure 3 of Campbell and Cochrane (1999).

Substitute the piecewise linear approximation v̂(0)(s) determined by {v̂
(0)
i , si}

I
i=1 into the

right hand side of (4) and compute new ordinates {v̂
(1)
i }Ii=1. Repeat until the v̂

(j)
i converge.

Substitute v̂
(J)
i (s) determined by the converged values {v̂

(J)
i , si} in (5) to compute returns.

The logarithmic return rft on an asset that pays one dollar one month hence with certainty

is given by

rft = − log

{

Et

[

δ
(

St+1Ct+1

StCt

)−γ
]}
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The integral involves only the consumption shock and may be computed by Gauss-Hermite

quadrature.

Given the habit model’s parameters

θ = (g, σ, ρ, σw, φ, δ, γ), (7)

{Ct, rdt, rft}
12N
t=1 are simulated at the monthly frequency and aggregated to the annual fre-

quency

Ca
t =

11
∑

k=0

C12t−k, (8)

cat = log(Ca
t ), (9)

radt =
11
∑

k=0

rd,12t−k, (10)

raft =
11
∑

k=0

rf,12t−k, (11)

where N is the annual simulation size.

Our prior is

π(θ) = N

[

rf | 0.896,
(

1

1.96

)2
] p
∏

i=1

N



θi | θ
∗
i ,

(

0.1θ∗i
1.96

)2


 (12)

where the θ∗i are the calibrated values from Campbell and Cochrane (1999). The scale

factor actually used for φ and δ is 0.001 rather than the 0.1 shown in (12) to overcome an

identification problem. The MCMC chain will not mix when the scale factor for φ and δ

in (12) is 0.1 because a move in φ can be nearly exactly offset by a move in δ. The value

0.001 is the largest value for which the MCMC chain that draws from the prior only will

mix. This is not an independence prior as seen from the correlations in Table 2. Measures

of location and scale for the prior and posterior distributions are shown in Table 3. The

prior and posterior densities of the risk free rate, equity premium, equity returns, and the

standard deviation of equity returns are shown in Figure 2. Overall, Table 3 and Figure 2

suggest that the prior is sufficiently informative to fill in where data are sparse but it allows

the data to move the posterior where data are informative. The information content of the

data is most apparent in Figure 2.

Table 2 about here
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Table 3 about here

Figure 2 about here

Where differences in the three models are the most obvious visually is in their out-of-sample

forecasts for the next five years. The mean posterior forecast for the habit persistence model,

computed as described in Subsection 3.6, is shown in in Figure 3. The habit model predicts

an end to the current recession in 2009 and return to steady-state growth by 2010. Stock

returns are predicted to be high in 2009 with a return to steady-state returns by 2013.

Figure 3 about here

2.2 The Long Run Risks Model

The driving processes for the long run risks model are

Consumption: ct+1 − ct = µc + xt + σtηt+1

Long Run Risks: xt+1 = ρxt + φeσtet+1

Stochastic Volatility: σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1

Dividends: dt+1 − dt = µd + φdxt + πdσtηt+1 + φuσtut+1

Random Shocks:
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The time increment is one month. Lower case denotes the logarithm of an upper case

quantity; e.g. ct = log(Ct), dt = log(Dt). The notational conventions are from Bansal, Kiku,

and Yaron (2007), which differ slightly from Bansal and Yaron (2004). The conventions

above are more convenient for computation.

The long run risks model derives its name from the random shifts in the location of

consumption and dividends due to xt. It also incorporates stochastic volatility which should

9



help with respect to tracking the conditional dynamics that our relative comparisons and

absolute assessments take into account.

The long run risks model uses the Epstein-Zin (1989) utility function

Ut =

[

(1 − δ)C
ψ−1
ψ

t + δ
(

Et U
1−γ
t+1

)
ψ−1

ψ(1−γ)

]
ψ
ψ−1

. (13)

γ is the coefficient of risk aversion and ψ is the elasticity of inter temporal substitution.

Et is the conditional expectation with respect to xt and σt, which are the state variables.

Precursors of (13) are Kreps and Porteus (1978) and Weil (1989).

The long run risks model is richly parametrized

θ = (δ, γ, ψ, µc, ρ, φe, σ̄
2, ν, σw, µd, φd, πd, φu). (14)

It is so richly parametrized that identification would have to come from the prior even were

data abundant because most of the auxiliary models that we use have fewer parameters

than θ. The two autoregressive parameters ρ and η cause additional problems. The solu-

tion method proposed by Bansal and Yaron (2004) degrades as ρ and η deviate from their

published values. (The published values are approximately the same as the first column of

Table 5.) As the degradation is continuous in ρ and η there is no logical threshold that one

can impose on ρ and η to completely prevent degradation. In our prior, described below, we

try to strike a reasonable balance that prevents likelihoods computed in our MCMC chains

from having occasional absurdly small values but does permit some occasional extremely

small values. In a sense, Bansal and Yaron are being punished for their choice of solution

method, which is based on log-linear approximations. A log-linear approximation is, in the

end, a Taylor’s expansion. As is well known, Taylor’s expansions have a limited radius of

validity and that shows up in our work.

The marginal rate of substitution,

mrst+1 = δ
1−γ

1−1/ψ exp

[

−

(

1 − γ

ψ − 1

)

(ct+1 − ct) +

(

1 − γ

1 − 1/ψ
− 1

)

rc,t+1

]

, (15)

depends on the return rct = log(Pct + Ct) − log(Pc,t−1), where Pct is the price of the asset

that pays the consumption stream. Let VC be the map from the state (x, σ) to the price-

consumption ratio Pc/C . It is determined by the Euler equation

VC(xt, σt) = Et

{

mrst+1

(

Ct+1

Ct

)

[1 + VC(xt+1, σt+1)]
}

. (16)
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rct is defined by

rct = log

[

1 + VC(xt, σt)

VC(xt−1, σt−1)

(

Ct
Ct−1

)]

.

To compute rct, Bansal and Yaron (2004) use the log linear approximation

rc,t+1
.
= κ0 + κ1zt+1 + ct+1 − ct − zt

κ1 = [exp(z̄)]/[1 + exp(z̄)]

k0 = log[1 + exp(z̄)] − κ1z̄

where zt = log(Pc,t/Ct) and z̄ is its endogenous mean. To compute zt, use the approximation

zt
.
= A0(z̄) + A1(z̄)xt + A2(z̄)σ

2
t , (17)

where the Ai(z̄) are tedious expressions in model parameters and z̄ given in the Appendix to

Bansal and Yaron (2004). (See also Bansal, Kiku, and Yaron (2006).) To compute z̄, solve

the fixed point problem

z̄ = A0(z̄) + A2(z̄) σ̄
2
t .

The return to equities, rdt = log(Pdt + Dt) − log(Pd,t−1), is computed similarly. The Euler

equation is

VD(xt, σt) = Et

{

mrst+1

(

Dt+1

Dt

)

[1 + VD(xt+1, σt+1)]
}

and the logarithmic return is

rdt = log

[

1 + VD(xt, σt)

VD(xt−1, σt−1)

(

Dt

Dt−1

)]

.

Again similarly, one can compute the logarithmic risk free rate rft = − log Et (mrst+1) using

expressions given in Bansal and Yaron.

As with the habit model, the long run risks model is simulated at the monthly frequency

and aggregated to the annual using expressions (8) through (11).

Our prior distribution is

π(θ) = N

[

rf | 0.896,
(

1

1.96

)2
] p
∏

i=1

N



θi | θ
∗
i ,

(

0.1θ∗i
1.96

)2


 (18)

where the θ∗i are the calibrated values from Kiku (2006). For the reasons discussed above,

the scale factor for ρ and ν actually used is 0.01 rather than 0.1.
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Prior correlations are shown in Table 4. Measures of location and scale for the prior and

posterior distributions are shown in Table 5. The prior and posterior densities of the risk

free rate, equity premium, equity returns, and the standard deviation of equity returns are

shown in Figure 4. As for the habit model, Table 5 and Figure 4 suggest that the prior is

sufficiently informative to fill in where data are sparse but it allows the data to move the

posterior where data are informative.

Table 4 about here

Table 5 about here

Figure 4 about here

The mean posterior forecast for the long run risks model is shown in in Figure 5. The the

long run risks model predicts an end to the current recession in 2010 and slow increase in the

growth rate thereafter. Stock returns are predicted to be approximately at their steady-state

values over the entire forecast period.

Figure 5 about here

2.3 The Prospect Theory Model

The driving processes for the prospect theory model are

Aggregate Consumption: c̄t+1 − c̄t = gC + σCηt+1

Dividends: dt+1 − dt = gD + σDǫt+1

Random Shocks:







ηt

ǫt





 ∼ NID













0

0





,







1 ω

ω 1













The time increment is one year. C̄t is aggregate, per-capita, consumption which is exogenous

to the agent. Lower case denotes logarithms of upper case quantities; e.g., c̄t = log(C̄t),

dt = log(Dt). All variables are real.
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In addition to these variables, let Rt denote the gross stock return; let Rf denote the

gross risk free rate; let St denote the share of wealth allocated to the risky asset; let

Xt+1 = St(Rt+1 −Rf ) (19)

denote the relative gain or loss on the risky asset; let

zt+1 = η

(

zt
R̄

Rt+1

)

+ (1 − η) (20)

denote the benchmark level, where R̄ is chosen to make median {zt} = 1; and let Ct denote

the agent’s consumption.

The prospect theory utility function is

E0

[

∞
∑

t=0

(

ρt
C1−γ
t − 1

1 − γ
+ b0C̄

−γ
t ρt+1St v̂(Rt+1, zt)

)]

, (21)

where

v̂(Rt+1, zt) =







































Rt+1 −Rf zt ≤ 1, Rt+1 ≥ ztRf

(ztRf −Rf ) + λ(Rt+1 − ztRf ) zt ≤ 1, Rt+1 < ztRf

Rt+1 −Rf zt > 1, Rt+1 ≥ Rf

λ(zt)(Rt+1 −Rf ) zt > 1, Rt+1 < Rf

(22)

and

λ(zt) = λ+ k(zt − 1). (23)

Et is the conditional expectation with respect to the benchmark level zt, which is the state

variable.

The first term of the prospect theory utility function is standard CRRA utility which

involves the agent’s consumption Ct, the discount factor ρ, and the risk aversion parameter γ.

The second term is the utility from gains or losses. It is v(Rt+1, zt) weighted by b0C̄
−γ
t ρt+1St,

where b0 is a scale factor, C̄t is aggregate consumption, and St is the share of wealth allocated

to the risky asset. To understand v(Rt+1, zt), consider Figure 6. As seen in the figure, when

there are no prior gains and losses (z = 1), agents dislike losses more than they appreciate

gains. When there are prior losses (z > 1) the dislike intensifies. When there are prior gains

(z < 1), an agent is “playing on the house’s money” and does not begin to feel pain until

the “house’s money has been lost”.
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Figure 6 about here

Note that the parameter η in (20) controls sensitivity to past gains and losses. When η

is zero, its lower bound, the benchmark does not depend at all on past gains and losses.

The dependence increases as η approaches its upper bound of one. Agents always dislike

losses more than they appreciate gains; η just determines the extent to which this dislike

is delayed. See Barberis, Huang, and Santos (2001) for a more detailed motivation of the

prospect theory utility function and its relation to the psychology literature.

Let V be the map from the state z to the price-dividend ratio P/D of the equity asset.

It is determined by the Euler equation

1 = ρ exp
(

gD − γgC + γ2σ2
C(1 − ω2)/2

)

× Et

[

1 + V (zt+1)

V (zt)
exp[(σD − γωσC)ǫt+1]

]

+ b0ρ Et

[

v̂

(

1 + V (zt+1)

V (zt)
exp(gD + σDǫt+1), zt

)]

. (24)

The logarithmic return on the equity asset, rdt = log(Pdt+Dt)− log(Pd,t−1), is obtained from

V (z) using

rdt = log

[

1 + V (zt)

V (zt−1)
exp(gD + σDǫt)

]

. (25)

The Euler equation (24) depends on three self-referential equations

zt+1 = η

(

zt
R̄

Rt+1

)

+ (1 − η), (26)

Rt+1 =
1 + V (zt+1)

V (zt)
exp(gD + σDǫt+1), (27)

1 = median{zt}. (28)

The solution proceeds as follows. Approximate V by a piecewise linear function V (0)(z) in

(27). (We use twenty-five join points equally spaced between 0 and 4, inclusive.) Put zt to

the first join point of V (0)(z). Approximate R̄ in (26) by (1 + V (1)) exp(gD)/V (1), which

is a departure from Barberis, Huang, and Santos (2001). We find that this departure has a

negligible effect on results but does save considerable computational time. Define h(0) such

that zt+1 = h(0)(zt, ǫt+1) solves (26) and (27). This is a root finding problem. We use Brent’s

method. Substitute V (0)(h(0)(zt, ǫt+1)) for V (zt+1) in (24). Use Gauss-Hermite quadrature
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to integrate out ǫt+1 in (24). (We use a nine point rule which integrates polynomials up

to degree seventeen exactly.) One is left with an expression that involves V (zt). Solve for

V (zt) and let V (1)(zt) be the solution. Solving for V (zt) is a root finding problem. Repeat

for the remaining join points. Let V (1)(z) be the linear function that interpolates the points

(zt, V
(1)(zt)). Repeat h(i) → V (i+1) until convergence.

Oddly enough, despite its complexity, the algorithm for solving the prospect theory model

appears to be more stable then the algorithms for solving the habit persistence and long run

risks models above.

The risk free rate has an explicit formula

rf = log
[

ρ−1 exp
(

γgC − γ2σ2
C/2

)]

. (29)

rft is the logarithmic return on an asset that pays one dollar one year hence with certainty.

Given model parameters

θ = (gC , gD, σC , σD, ω, γ, ρ, λ, k, b0, η) (30)

simulate annually and set

cat = log(Ct),

radt = rdt,

raft = rf .

As with the long run risks model, the prospect theory model is richly parametrized and,

even were data abundant, identification would have to come from the prior for most of the

auxiliary models considered.

Our prior is

π(θ) = N

[

rf | 0.896,
(

1

1.96

)2
] p
∏

i=1

N



θi | θ
∗
i ,

(

0.1θ∗i
1.96

)2


 (31)

where the θ∗i are calibrated values from Barberis, Huang, and Santos (2001). They present

several sets of parameter values. We selected the set with the most reasonable risk free rate

and equity premium.
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Prior correlations are shown in Table 6. Measures of location and scale for the prior and

posterior distributions are shown in Table 7. The prior and posterior densities of the risk

free rate, equity premium, equity returns, and the standard deviation of equity returns are

shown in Figure 7. As previously, Table 7 and Figure 7 suggest that the prior is sufficiently

informative to fill in where data are sparse but it allows the data to move the posterior where

data are informative.

Table 6 about here

Table 7 about here

Figure 7 about here

The mean posterior forecast for the prospect theory model is shown in in Figure 8. The the

prospect theory model predicts steady-state growth throughout the forecast period. Stock

returns are predicted to be double their steady-state value in 2009, reach steady-state by

2011, and remain at steady-state thereafter.

Figure 8 about here

3 Inference for General Scientific Models

We briefly describe the Bayesian methods proposed by Gallant and McCulloch (2009) and

the modifications that we found necessary. They used statistical terms in their discussion.

Here we are writing for a audience that is likely to be familiar with the indirect inference

and efficient method of moments literature so we shall use the terminology of that literature

instead. Public domain code implementing the methods discussed in this section and a User’s

Guide are available at http://econ.duke.edu/webfiles/arg/gsm.

3.1 Estimation of Structural Model Parameters

Let the transition density of the structural model (called the scientific model by Gallant and

McCulloch) be denoted by

p(yt|xt−1, θ), θ ∈ Θ, (32)
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where xt−1 = (yt−1, . . . , yt−L) if Markovian and xt−1 = (yt−1, . . . , y1) if not. We presume

that there is no straightforward algorithm for computing the likelihood. All that we can do

is simulate data from p(·|·, θ) for given θ. We presume that simulations from the structural

model are ergodic.

We assume that there is a transition density

f(yt|xt−1, η), η ∈ H (33)

and a map

g : θ 7→ η (34)

such that

p(yt|xt−1, θ) = f(yt|xt−1, g(θ)) θ ∈ Θ. (35)

We assume that f(y|x, η) and its gradient (∂/∂η)f(y|x, η) are easy to evaluate. f is called

the auxiliary model here and g is called the binding function. (Gallant and McCulloch call

these the statistical model and implied map, respectively.) Whenever we need the likelihood
∏n
t=1 p(yt|xt−1, θ), we use

L(θ) =
n
∏

t=1

f(yt|xt−1, g(θ)) (36)

instead, where {yt, xt−1}
n
t=1 are the data and n is the sample size. In theory xt−1 is the same

for both the structural and auxiliary models. In practice they might not be the same. We

actually only need to know what lags are in the xt−1 for the auxiliary model.

After substituting L(θ) for
∏n
t=1 p(yt|xt−1, θ), standard Bayesian MCMC methods become

applicable. The difficulty is computing the binding function g accurately enough that the

accept/reject decision in an MCMC chain (step 5 in the algorithm below) is correct when f

is a complex nonlinear model, as it is in our application.

Given θ, the corresponding η = g(θ) is computed by minimizing Kullback-Leibler diver-

gence

d(f, p) =
∫ ∫

[log p(y|x, θ) − log f(y|x, η)] p(y|x, θ) dy p(x|θ) dx

with respect to η. The advantage of Kullback-Leibler divergence over other distance measures

is that the part that depends on the unknown p(·|·, θ),
∫∫

log p(y|x, θ) p(y|x, θ) dy p(x|θ) dx,
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does not have to be computed to solve this minimization problem. We approximate the

integral that does have to be computed by

∫ ∫

log f(y|x, η) p(y|x, θ) dy p(x|θ) dx ≈
1

N

N
∑

t=1

log f(ŷt|x̂t−1, η),

where {ŷt, x̂t−1}
N
t=1 is a simulation of length N from p(·|·, θ). Upon dropping the division by

N , the binding function is computed as

g : θ 7→
η

argmax
N
∑

t=1

log f(ŷt | x̂t−1, η). (37)

That is, one computes the maximum likelihood estimator of η for the “data” {ŷt, x̂t−1}
N
t=1.

We use N = 5000, which requires 60000 monthly simulations in the case of the habit and

long run risks models. Results (posterior mean, posterior standard deviation, etc.) are not

sensitive to N ; doubling N makes no difference other than doubling computational time. By

accident we once set N = 60000 in the prospect theory model; this also made no difference.

It is essential that the same seed be used to start these simulations so that the same θ always

produces the same simulation.

Gallant and McCulloch (2009) run a Markov chain {ηt}
K
t=1 of length K to compute η.

There are two other Markov chains discussed below so, to help distinguish among them, this

chain is called the η-subchain. While the η-subchain must be run to provide the scaling for

the model assessment method that Gallant and McCulloch propose, the η̂ that corresponds

to the maximum of
∑N
t=1 log f(ŷt | x̂t−1, η) over the η-subchain is not a sufficiently accurate

evaluation of g(θ) for our auxiliary models. This is mainly because our auxiliary models use

the BEKK multivariate generalization of GARCH (Engle and Kroner, 1995). Likelihoods

incorporating BEKK are notoriously difficult to optimize. We use η̂ as a starting value

and maximize (37) using the BFGS algorithm (Fletcher, 1987, 26–40). This too is not

a sufficiently accurate evaluation of g(θ). A second refinement is necessary. The second

refinement is embedded within the MCMC chain {θt}
R
t−1 of length R that is used to compute

the posterior distribution of θ. We use R = 25000. It is called the θ-chain. Its computation

proceeds as follows.

The θ-chain is generated using the Metropolis algorithm. The Metropolis algorithm is an

iterative scheme that generates a Markov chain whose stationary distribution is the posterior
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of θ. To implement it, we require a likelihood, a prior, and transition density in θ called the

proposal density. The likelihood is (36).

The prior may require quantities computed from the simulation {ŷt, x̂t−1}
N
t−1 used to

compute (36). Our prior requires raf . When {ŷt, x̂t−1}
N
t−1 is computed {r̂aft}

N
t−1 is available

from (11) in the case of the habit model, a similar expression in the case of the long run

risks model, or (29) in the case of the prospect theory model. The risk free rate for the prior

is the average raf = 1
N

∑N
t−1 r̂

a
ft. (For the habit and prospect models, raft is constant over the

simulation.) Quantities computed in this fashion can be interpreted as the evaluation of a

functional of the structural model of the form Ψ : p(·|·, θ) 7→ ψ. Thus, our prior is a function

of the form π(θ, ψ). However, the functional ψ is a composite function, θ 7→ p(·|·, θ) 7→ ψ,

so that π(θ, ψ) is ultimately a function of θ only. Therefore, we will only write π(θ, ψ) when

it is necessary to call attention to the subsidiary computation p(·|·, θ) 7→ ψ.

Let q denote the proposal density. For a given θ, q(θ, θ∗) defines a distribution of potential

new values θ∗. We use a move-one-at-a-time, random-walk, proposal density that puts its

mass on discrete, separated points. The details are not required to understand our results;

they are in Gallant and McCulloch (2009). However, two of these details are worth noting.

The first is that the wider the separation between the points in the support of q the less

accurately g(θ) needs to be computed. As an example, the long run risks model is not

sensitive to the risk aversion parameter so that values of the risk aversion parameter could

be separated as much as 1/4 without making any difference to the usefulness of the θ-chain.

A constraint is that the separation usually cannot be more than a standard deviation of the

proposal density. In the work reported here, we typically used 1/8 of a standard deviation.

As a rough guide, proposal standard deviations are usually no more than the same order of

magnitude as the posterior standard deviations that we report and no less than one order of

magnitude smaller. The second detail worth noting is that the prior is putting mass on these

discrete points in proportion to π(θ). Because we never need to normalize π(θ) this fact is

irrelevant. Similarly for the joint distribution f(y|x, g(θ))π(θ) considered as a function of θ;

f(y|x, η) must be properly normalized as a function of y, at least to the extent that (37) is

computed correctly.

The algorithm for the θ-chain is as follows. Given a current θo and the corresponding
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ηo = g(θo), we obtain the next pair (θ ′, η ′) as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Draw {ŷt, x̂t−1}
N
t=1 according to p(yt|xt−1, θ

∗).

3. Compute η∗ = g(θ∗) and the functional ψ∗ from the simulation {ŷt, x̂t−1}
N
t=1.

4. Compute α = min
(

1, L(θ∗)π(θ∗,ψ∗) q(θ∗, θo)
L(θo)π(θo,ψo) q(θo,θ∗)

)

.

5. With probability α, set (θ ′, η ′) = (θ∗, η∗), otherwise set (θ′, η ′) = (θo, ηo).

It is at step 3 that we make our second modification. At that point we have putative

pairs (θ∗, η∗) and (θo, ηo) and corresponding simulations {ŷ∗t , x̂
∗
t−1}

N
t=1 and {ŷot , x̂

o
t−1}

N
t=1. We

use η∗ as a start and recompute ηo using the BFGS algorithm, obtaining η̂o. If

N
∑

t=1

log f(ŷot | x̂
o
t−1, η̂

o) >
N
∑

t=1

log f(ŷot | x̂
o
t−1, η

o),

then η̂o replaces ηo. In the same fashion, η∗ is recomputed using ηo as a start. As described

in Gallant and McCulloch, once computed, a (θ, η) pair is never discarded. Neither are the

corresponding L(θ) and π(θ, ψ). Because the support of the proposal density is discrete,

points in the θ-chain will often recur, in which case g(θ), L(θ), and π(θ, ψ) are retrieved

from storage rather than computed afresh. If the modification just described results in an

improved (θo, ηo), that pair and corresponding L(θo) and π(θo, ψo) replace the values in

storage; similarly for (θ∗, η∗). The upshot is that the values for g(θ) used at step 4 will be a

optimum computed from many different random starts after the chain has run awhile.

To provide the scaling for the prior used in absolute model assessment, there is a sub-

sidiary computation that needs to be carried out at step 3. It is as follows. Initialize

Sη and L to zero. Each time the η-subchain {ηt}
K
t=1 is run, increment L, replace Sη by

Sη + (ηK/2 − ηK)(ηK/2 − ηK)′ and set

Ση =
1

L
Sη. (38)

We use K = 200. All that is important is that transients have died out by the time the mid-

point K/2 of the η-subchain has been reached and that ηK/2 and ηK are nearly uncorrelated.
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If the proposed θ in step 1 violates a support condition that can be checked without

running step 2, one skips step 2 because α in step 4 will be zero. One interprets simulation

failure at step 2 as violation of a support condition and puts α = 0 in step 4. The typical

cause of failure in the sort of algorithms used to simulate asset pricing models is lack of

convergence of a fixed point computation. Simulation failure appears never to have happened

in the results reported here.

We compute posterior probabilities for relative model comparisons reported using method

f5 of Gamerman and Lopes (2006, section 7.2.1). That method requires one to save the

values θ′, L(θ′), π(θ′, ψ′) available at step 5. It also requires that these same values for a

chain that draws from the prior for θ be saved. To draw from the prior, replace α at step 4

by α = min
(

1, π(θ∗,ψ∗) q(θ∗, θo)
π(θo,ψo) q(θo,θ∗)

)

.

There are now two scaling matrices Ση available: the one that comes from the θ-chain

for the posterior and the one that comes from the θ-chain for the prior. The Ση that comes

from the θ-chain for the prior is the one that should be used in the prior for absolute model

assessment because the other has been tainted by the data.

The algorithm for the η-subchain is as follows. We use a move-one-at-a-time, random

walk proposal density with continuous support. Given the current ηo, obtain the next value

η′ in the chain as follows;

1. Draw η∗ according to q(ηo, η∗).

2. Compute α = min
(

1,
[
∏N

t=1
f(ŷt|x̂t−1,η∗)] q(η∗, ηo)

[
∏N

t=1
f(ŷt|x̂t−1,ηo)] q(ηo,η∗)

)

.

3. With probability α, set η ′ = η∗, otherwise set η ′ = ηo.

In Subsection 3.3 we shall require another chain, called the η-chain, that is computed from

the data and a prior πκ. The algorithm for that chain replaces α with

α = min

(

1,
[
∏n
t=1 f(yt|xt−1, η

∗)] πκ(η
∗) q(η∗, ηo)

[
∏n
t=1 f(yt|xt−1, ηo)] πκ(ηo) q(ηo, η∗)

)

.

Draws from the prior are also required. This is done by putting α = min
(

1, πκ(η∗) q(η∗, ηo)
πκ(ηo) q(ηo,η∗)

)

.
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3.2 Relative Model Comparison

Relative model comparison is standard Bayesian inference although there are a few details

that need to be discussed in order to connect it to Subsection 3.1.

One computes the predictive density,
∫
∏n
t=1 f(yt|xt−1, g(θ))π(θ) dθ, for the three struc-

tural models p1(y|x, θ1), p2(y|x, θ2), p3(y|x, θ3) with respective priors π1(θ1), π2(θ2), π3(θ3)

using method f5 of Gamerman and Lopes (2006, section 7.2.1). The advantage of that

method is that knowledge of the normalizing constants of f(·|·, η) and π(θ) are not required

and it appears to be accurate in tests that we conducted. The computation is straight-

forward because the relevant information from the θ-chains for the prior and posterior are

available after completion of the computations discussed in Subsection 3.1. It is important,

however, that the auxiliary model be the same for all three models when the computations in

Subsection 3.1 are carried out. Otherwise the normalizing constant of f would be required.

One divides the predictive density for each model by the sum for the three models to get the

probabilities for relative model assessment.

Note that what one is actually doing is comparing the three models f(y|x, g1(θ1)),

f(y|x, g2(θ2)), f(y|x, g3(θ3)), with respective priors π1(θ1), π2(θ2), π3(θ3). This is an impor-

tant observation. Inference is actually being conducted with likelihoods
∏n
t=1 f(yt|xt−1, g1(θ1)),

∏n
t=1 f(yt|xt−1, g2(θ2)),

∏n
t=1 f(yt|xt−1, g3(θ3)), not

∏n
t=1 p1(yt|xt−1, θ1),

∏n
t=1 p2(yt|xt−1, θ2),

∏n
t=1 p3(yt|xt−1, θ3).

If f encompasses all pi, i.e., if (35) holds, then the former and the latter are the same.

If not, the matter needs consideration. In Gallant and McCulloch’s (2009) application they

give two examples. In the first, the presence or absence of GARCH in the auxiliary model

makes a dramatic difference to habit model parameter estimates. In the second, changing the

thickness of the tails of the auxiliary model makes no difference. They argue on the basis of

common sense and their examples that what is actually required is that the auxiliary model

fit the observed data, not that it encompass p. That is why they use the term statistical

model for f . However, their argument is not a proof. We examine this issue more closely in

Section 5.
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3.3 Absolute Model Assessment

We now shift our focus. The model of interest is the auxiliary model f(·|·, η) and its param-

eter η. The role of the structural model p(·|·, θ) is to define the binding function g(θ) and

the manifold

M = {η ∈ H : η = g(θ), θ ∈ Θ} . (39)

The structural model can be viewed as a sharp prior on f that restricts the posterior

distribution of η to lie on the manifold M. As this prior is relaxed the posterior for η will

move along a path toward the likelihood of the data under f . One can select waypoints

κi along this path, view them as the discrete values of a parameter, assign them equal

prior probability, and compute their posterior probability. If waypoints near M receive high

posterior probability, then the data support the structural model. If waypoints far from M

receive high posterior probability, then the data do not support the structural model. The

ideas proceed as follows.

We add the additional assumption that the auxiliary model is identified (without a prior

and in the frequentist sense) and has more parameters than the structural model. This

assumption implies that g−1(η) exists on M. If the structural model is identified (without

a prior and in the frequentist sense), g−1(η) will map to a single point; if not, g−1(η) will

be a set. With respect to the habit model, due to the discrete support of the proposal

density q particular to the habit model, g−1(η) maps to a single point even though identifi-

cation is problematic. In general, however, evaluating π(g−1(η)) may involve computing the

probability of a set rather than evaluating π at a single point.

We impose closeness to M by means of the prior

πκ(η) ∝ π
(

g−1(ηo)
)

exp
(

−
1

2
(η − ηo)′ (κΣη)

−1 (η − ηo)
)

(40)

where

ηo =
ηo∈M

argmin (η − ηo)′ (Ση)
−1 (η − ηo) , (41)

π(θ) is the prior for the structural model, and Ση is given by (38). It is easy and cheap

to evaluate (41) once the computations described in Subsection 3.1 have been carried out

because the binding function g is represented by pairs (θ, η) stored together with π(θ) at the
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conclusion of Subsection 3.1. Store is traversed to find the pair (θo, ηo) such that ηo solves

(41). Then π(g−1(ηo)) = π(θo). The modifications are obvious if g−1(ηo) maps to a set. The

pairs (θ, η) and scale Ση used to compute (41) and (40) are those for the θ-chain that draws

from the prior because they are not tainted by data.

Choose three (for specificity) values κ1, κ2, and κ3, ordered from small to large. Consider

f under priors πκ1 , πκ2 , and πκ3 to be three different models and compute the posterior

probability for the three models with each having prior probability 1/3. That is, the pair

(f(·|·, η), πκ(η)) is considered to be a model and the posterior probability of each κ choice

is proportional to
∫
∏n
t=1 f(yt|xt−1, η)πκ(η) dη. We use method f5 of Gamerman and Lopes

(2006, section 7.2.1) to compute
∫
∏n
t=1 f(yt|xt−1, η)πκ(η) dη for κ1, κ2, κ3, then normalize

by the sum to get posterior probabilities.

If the posterior probability of model κ1 is small, that is evidence against the structural

model. Conversely, if it is large, that is evidence in favor of the structural model.

3.4 The Auxiliary Model

In the bivariate case the observed data are

yt = (consumption growth, stock returns)

for t = 1, . . . , n. Lagged values of yt are denoted as xt−1. For auxiliary models f0 through

f4, xt−1 = yt−1. For auxiliary model f5, xt = (yt−1, yt−2).

The data are modeled as

yt = µxt−1 +Rxt−1zt

where

µxt−1 = b0 +Bxt−1, (42)

which is the location function of a vector autoregression, and Rt−1 is the Cholesky factor of

Σxt−1 = R0R
′
0 (43)

+QΣxt−2Q
′ (44)

+P (yt−1 − µxt−2)(yt−2 − µxt−2)
′P ′ (45)

+ max[0, V (yt−1 − µxt−2)] max[0, V (yt−1 − µxt−2)]
′. (46)
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In our specification, R0 is an upper triangular matrix, P and V are diagonal matrices, and Q

is scalar; max(0, x) is applied elementwise. This specification is BIC preferred in simulations

from the habit, long run risks, and prospect theory models at the parameter values shown

in the first column of Tables 3, 5, and 7, respectively. In general P, Q, and V could be

scalar, diagonal, or full matrices and there could be additional terms in higher order lags.

This is the BEKK form of multivariate GARCH described in Engle and Kroner (1995) with

an added leverage term (46). In computations, max(0, x) in (46) is replaced by a twice

differentiable cubic spline approximation that plots slightly above max(0, x) over (0,0.1) and

coincides elsewhere. Auxiliary model f0 has term (43) only, f1 has terms (43), (44), and

(45), and f2 through f5 have all four terms.

The density h(z) of z is the square of a Hermite polynomial times a normal density, the

idea being that the class of such h is dense in Hellenger norm and can therefore approximate

a density to within arbitrary accuracy in Kullback-Leibler distance (Gallant and Nychka,

1987). The density h(z) is the normal when the degree of the Hermite polynomial is zero,

which is the case for auxiliary models f0 through f2. For model f3 the degree is four. For

models f4 and f5 the degree is four but the constant term of the Hermite polynomial is a

linear function of yt−1. This has the effect of adding a nonlinear term to the location function

(42) and the variance function (43). It also causes the higher moments of h(z) to depend

yt−1 as well.

The univariate auxiliary models are the same as the above but µxt−1 in (42) has dimension

one and becomes the location function of a first order autoregression and Σxt−1 in (43) has

dimension one and becomes a GARCH(1,1) with a leverage term added.

3.5 Diagnostic Checks

The idea behind diagnostic checking is straightforward: If one has compared two structural

models (p1, π1) and (p2, π2) using the same auxiliary model f(·|η) and the fit of (p2, π2)

is preferred, then one can examine the posterior means (or modes) η̂1 and η̂2 of f(·|η)

corresponding to the two fits to see which elements changed. The same is true for absolute

model assessment. If one fits (f, πκ1) and (f, πκ2) and concludes that (f, πκ1) fails to fit the

data, then one can examine the changes in the elements of the posterior means (or modes)
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of f(·|η) corresponding to the two fits to see which elements changed.

The changes in the elements of η̂1 and η̂2 need to be normalized to facilitate meaningful

comparison. Let η̂1i and η̂2i denote the respective ith elements of η̂1 and η̂2. Let σ̂2i denote the

ith posterior standard deviation of the second fit, i.e., the preferred fit. The normalization

we suggest is

ti =
η1i − η2i

σ2i

. (47)

The elements of the parameter η in models f0 through f5 of Table 1 are easy to interpret,

which aids this exercise. Table 12 is an example.

There is a caveat. The ti are often very informative but are subject to the same risk as

the interpretation of t-statistics in a regression, namely, a failure to fit one characteristic of

the data can show up not at the parameters that describe that characteristic but elsewhere

due to correlation (colinearity). Nonetheless, despite this risk, inspection of the ti is often

the most informative diagnostic available. If one does change a structural model as suggested

by the ti, one can check to see if the modification was successful by means of absolute model

assessment.

The methods proposed here are likelihood methods which means that at the conclusion

of an estimation exercise a transition density that represents the data under the fitted model

is available. The most useful are f(y|x, g(θ)) with θ set to the posterior mode from a fit of

(p, π) and f(y|x, η) with η set to the posterior mode from a fit of (f, πκ). One can apply

standard diagnostics to these transition densities such as plotting conditional means against

the data or comparing conditional volatility plots. Examples are Figures 9 through 12.

3.6 Forecasts

A forecast can be viewed as a functional Υ : f(·|·, η) 7→ υ of the auxiliary model that can

be computed from f(·|·, η) either analytically or by simulation. If f(·|·, η) encompasses the

structural model p(·|·, θ) then, due to the map η = g(θ), this forecast can also be viewed

both as a forecast from the structural model and as function of θ. As such, it can computed

at each draw in the θ-chain for the posterior and the posterior mean, mode, and standard

deviation obtained. Similarly for draws from the prior. Details are in Gallant and McCulloch

(2009). Examples are Figures 3, 5, and 8.
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4 Habit, Long Run Risks, Prospect?

Table 8 presents the posterior probabilities for a relative model comparison for the univariate

stock returns data. Table 9 is the same for an absolute model assessment. These two tables

are easily summarized: All three models fit the univariate stock returns data reasonably well

and none of them strongly dominates.

Table 8 about here

Table 9 about here

Results are startlingly different when we look at the bivariate consumption growth and

stock returns data. Table 10 presents the posterior probabilities for a relative model com-

parison. The long run risks model is totally dominant over the 1930–2008 period whereas

the habit model is totally dominant over the 1950–2008 period.

Table 10 about here

Table 11 presents the results for an absolute model assessment for the bivariate consump-

tion growth and stock returns data. The auxiliary model is the encompassing model f5. The

habit model fails definitively in the 1930–2008 period and the prospect theory model fails

definitively in the 1950–2008. The ordering of the posterior probabilities is as Table 10 would

suggest but, aside from the habit model in the 1930–2008 period and the prospect theory

model in the 1950–2008 period, results are not as stark as in Table 10.

Table 11 about here

It is of interest to determine why the habit persistence model fails to fit the bivariate

data using the diagnostic checks described in Subsection 3.5. For this purpose it is more

informative to use the simpler auxiliary model f1 rather than the encompassing model f5.

Because the habit model has seven parameters and f1 has twelve, this is a legitimate choice

for the habit model. It would not be a legitimate choice for the long run risks model, which

has thirteen parameters, and would be somewhat dubious for the prospect theory model

which has eleven.
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Table 12 presents the diagnostics for the habit model. In the table the fit of (f1, πκ) with

κ = 0.1 is compared to the fit with κ = 10 for the bivariate data over the period 1930–2008

and over the period 1950–2008. It is clear from the table what the problems are. The habit

model does not track consumption growth over the 1930–2008 period. The estimates of B11,

which is the feedback of consumption growth onto itself, and P11, which is the feedback

of consumption growth into its own volatility, are too small in absolute value. Also, the

magnitude of the intercept term b0,1 is incorrect. Of these problems, the failure to put

enough conditional heteroskedasticity into the consumption growth process seems the most

important (t = −4.98). This is consistent with the results of Gallant and McCulloch (2009).

As pointed out in Subsection 3.5, one cannot say definitively whether these problems are

actually due to the way consumption growth is specified in the habit model or are spillover

effects from failures elsewhere. To determine this one would have to modify the habit model

and use the absolute assessment procedure to see if the modification was successful.

Table 12 about here

We can confirm these interpretations visually. Figure 9 plots the conditional means for

κ = 0.1 and κ = 10 against the data. The discrepancies between the fit for κ = 10, which is

presumed to be the more correct fit, and the fit for κ = 0.1, which is the fit with the habit

model imposed, are small. The situation changes rather dramatically in Figure 10, which

plots conditional volatilities. The habit model cannot track the volatility in consumption

growth or the conditional correlation between consumption growth and stock returns over

1930–1950.

Figure 9 about here

Figure 10 about here

In Table 12, the habit model does better over the more quiescent 1950–2008 period. It is

still having the same problem with feedback from consumption growth to itself and is now

having a problem with the feedback of stock returns to consumption growth. The problem

with conditional heteroskedasticity is gone, but this is due to the quiescence of the data as
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exemplified by the less restricted estimate of P11 in the fit with κ = 10, which is now much

lower.

Plots over the quiescent period (not shown) look like Figures 9 and 10 from 1950 onward

but with the dashed line superimposed upon the solid line. Also, the volatility plots are

slightly smoother.

Figures 3, 5, and 8 examine the out-of-sample differences among the models and have

been discussed previously (Section 2). Figures 11 and 12 examine in-sample differences over

1930–2008. The scaling in Figures 11 and 12 is the same as the scaling in Figures 9 and 10

to permit comparison. The solid line in Figures 11 and 12 is the long run risks model, which

is the most correct of the three according to the relative model comparison in Table 10. In

Figure 11 one sees that the conditional mean of the long run risks model (solid line) tracks

consumption growth somewhat better than either the habit model (dashed line) or prospect

theory model (dot-dash line). The differences in the conditional mean for stock returns in

the lower panel are probably irrelevant because the volatility of stock returns is large. The

differences in conditional volatility in Figure 12 are somewhat more dramatic.

Figure 11 about here

Figure 12 about here

In our view the bivariate results reported in this section can be summarized as follows.

The strongest information in the data is the conditional mean of consumption growth and the

conditional volatility of stock returns. The three models track this information reasonably

well. The internals of these models affects how tracking the conditional mean of consumption

growth and the conditional volatility of stock returns well spills over into the representation

of the conditional volatility of consumption growth and the conditional correlation between

consumption growth and stock returns. These two spillover effects are the main statistical

differences among the three models.

5 Sensitivity Analysis

There is much experience with the data shown in Figure 1. That experience suggests that

about the richest model one would be willing to fit to these data is a model with one-
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lag VAR location, GARCH scale, and normal innovations. Recall, these data are annual,

not quarterly, monthly, or daily where one might consider more complex specifications. The

exact specification one gets using upward F -testing, BIC, AIC, etc. is sensitive to the sample

period used. One can get slightly richer or coarser specifications. We think that it is fair to

claim that the consensus view is that a one-lag VAR location, GARCH scale, and normal

innovations is the richest model one ought to entertain. We denote this model by f1. It is

the second of the six shown in Table 1 that we shall consider in our sensitivity analysis. We

use the BEKK form of multivariate GARCH (Engle and Kroner, 1995) because it is flexibly

parameterized and allows a leverage effect to be included if desired. Analytic expressions

for these auxiliary models are in Subsection 3.4 and code implementing them is part of the

public domain distribution at http://econ.duke.edu/webfiles/arg/gsm.

As seen in Subsection 3.1, theory requires that the auxiliary model encompass the struc-

tural model for estimation under the structural model and for relative model comparison.

A model that will encompass the three structural models that we consider has the following

characteristics: a two-lag linear conditional mean function with a one-lag nonlinear condi-

tional mean term added to it, a one-lag GARCH conditional variance function with a one-lag

leverage term and a one-lag nonlinear conditional variance term added, and a flexible inno-

vation distribution that permits fat tails and bumps. We denote this model by f5. It is the

last of the six in Table 1. It is not just one of the three structural models that requires this

complexity, they all do.

Gallant and McCulloch (2009) found the same to be true with the habit model, except

that they used the Bubnov-Galerkin method (Miranda and Fackler, 2002, p 152–3) to solve

the habit model and used data from 1933–2001 with the years 1930–1932 used to prime

recursions. They dismissed f5 out of hand as absurd and worked with a VAR with normal

innovations, which we term f0 here, and f1 with an R-GARCH variance specification instead

of BEKK. R-GARCH is more stable numerically than BEKK but cannot allow for leverage.

They did try a fat tailed innovation distribution and found that that did not change results.

The model f0 comes closest to mimicking the results of calibration and GMM procedures

as customarily implemented in macro/finance. The sufficient statistics for this model are

the mean and variance of yt and the first order autocorrelations. One is, effectively, finding
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parameter values for a model that best match six moments for the bivariate consumption

growth and stock returns series and best match three moments for the univariate stock

returns series. Using f0 and bivariate data from 1933–2001, Gallant and McCulloch (2009)

matched Campbell and Cochrane’s (1999) calibrations fairly closely as do we using f0 over

the period 1950–2008.

As discussed in Subsection 3.1 and in Gallant and McCulloch (2009), the logically correct

view toward using f1, which fits the data, instead of f5, which encompasses the structural

model, is that it is not the likelihood of the structural model that is being used. It is some

other likelihood. Therefore it is not the structural models that are actually being estimated

and compared.

Another point of view is the argument advanced by Gallant and McCulloch (2009) that

using a sensible auxiliary model is akin to GMM estimation. One only asks that the structural

models match certain features of the data and allows them to ignore others.

The logically correct way to permit the structural model to match certain features of the

data and allow it to ignore others is to use auxiliary model f5 and a prior of the form

π(θ, η) = π(θ)π(η) (48)

where π(θ) is (12), (18), or (31) and π(η) suppresses the unwanted features of f5, namely

leverage, nonlinearity, the second lag, and non-normal innovations. The functional form of

f5 makes it easy to construct such a π(η) and to construct variants that impose preferences

for a model without leverage, nonlinearity, a second lag, and non-normal innovations that

are milder than outright suppression.

The logically correct approach will not work for the models considered here. Repeated

attempts to impose (48) and milder variants have convinced us that there do not exist

parameters θ that can be approached along a path from the published values for θ or other

plausible values for θ that will suppress leverage, nonlinearity, the second lag, and non-normal

innovations in simulations from the structural model p(y|x, θ) that use the model solution

methods recommended by the proposers of the habit persistence, long run risks, and prospect

theory models. There may be isolated points that may require different solution methods.

If so, our computational methods cannot find them.
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What to do? About all one can do is try a battery of auxiliary model specifications and

see what happens.

We noted discrepancies between the work reported here and that reported in Gallant and

McCulloch (2009). What turned out to cause them was partially the difference in solution

methods but mostly the difference in sample periods. Accordingly, we check sensitivity to

sample period as well. Looking at Figure 1 it is fairly obvious what periods to choose. The

behavior of consumption growth between 1930 and 1950 is dramatically different than that

for 1950 onwards while there is little difference in the behavior of stock returns anywhere.

We consider two periods 1930–2008 and 1950–2008. We only use the data from 1925–1929

to prime BEKK recursions for the 1930–2008 analysis because it is of lesser quality than the

data for 1930 onwards. We do not need to go back past 1930 to prime the BEKK recursions

for the 1950–2008 analysis.

There is no logical requirement that the auxiliary model encompass the structural model

for the purpose of absolute model assessment. In our application, the requirement that the

auxiliary model have more parameters than the structural model compels the use of auxiliary

model f5 in the univariate case. We chose to use f5 in the bivariate case as well. The results

for the absolute model comparison using f5 are shown in Tables 9 and 11 and were discussed

in Section 4. To some extent a sensitivity analysis of absolute model assessment is irrelevant

because one is free to choose an auxiliary model as judgment suggests as long as it has more

parameters than the structural model. What can happen if one uses an auxiliary model

that has fewer parameters than the structural model anyway is that nearly equal posterior

probability gets assigned to all values of κ because for every relevant η in H there is nearly

always an η in M that is close to it thereby causing πκ not to depend on κ. Other than

the commentary in this paragraph, we do not analyze the sensitivity of absolute model

assessment in this section.

Table 13 displays the results for the relative comparisons for the univariate stock returns

data over the period 1930–2008 and Table 14 is the same over the period 1950–2008. There is

considerable sensitivity to specification of the auxiliary model in Table 13. Conclusions would

be affected by the choice of auxiliary model. Throughout all specifications in Table 14 one

would be indifferent between the habit model and the long run risks model. The preference
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for the prospect theory model increases as the complexity of the auxiliary model increases.

Table 13 about here

Table 14 about here

Table 15 displays the results for the relative comparisons for the bivariate consumption

growth and stock returns data over the period 1930–2008 and Table 16 is the same over the

period 1950–2008. These results are stark. The likelihoods are far enough apart that the

choice of auxiliary model is irrelevant. The choice of data period is not. The habit model

simply cannot cope with the volatility of consumption growth over the period 1930–1950.

Table 15 about here

Table 16 about here

To summarize, there can be sensitivity to auxiliary model choice, as seen in Tables 13

and 14: the choice of auxiliary model does matter. Because one is not actually comparing

structural models if the auxiliary model is not encompassing, it would seem that for relative

model comparison it is best to use the encompassing auxiliary model, which is f5.

We now consider the sensitivity of estimates to choice of the auxiliary model. Conceptu-

ally this entails constructing Tables 3, 5, and 7 for all our specifications. This is 72 tables;

they are available at http://econ.duke.edu/webfiles/arg/papers/appendix.pdf. This

is too much tabular information to digest. What we shall do instead is select certain lines

from these tables and plot them by model over all specifications. The values selected are

the risk aversion parameter, the equity premium, the volatility of stock returns, and, for the

case of the bivariate data, the correlation between consumption growth and stock returns.

These are Figures 13 through 16.

It is hard to make general statements after inspecting Figures 13 through 16. Sensitivity

varies by value considered and by structural model. If one wants to mimic the calibrations

of the macro/finance literature, then one would use the values plotted at 0 on the horizontal
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axis in these plots. If one finds the argument advanced by Gallant and McCulloch (2009)

that estimates from the auxiliary model that best fits the data be used, then one would use

the values plotted at 1. Otherwise one would use the estimates plotted at 5, which is our

choice for the results reported in Section 4. The defense of that choice is that it does make

a difference and theory supports the use of auxiliary model f5.

Figure 13 about here

Figure 14 about here

Figure 15 about here

Figure 16 about here

6 Conclusion

We used Bayesian statistical methods proposed by Gallant and McCulloch (2009) to compare

the habit persistence asset pricing model of Campbell and Cochrane (2003), the long run

risks model of Bansal and Yaron (2004), and the prospect theory model of Barberis, Huang,

and Santos (2001). This comparison fills a void in the literature because there are, to our

knowledge, no head-to-head comparisons of asset pricing models from macro/finance that

strictly adhere to the principles of statistical science.

We undertook two types of comparisons, relative and absolute, over two sample periods,

1930–2008 and 1950–2008, using two series, univariate U.S. stock returns and bivariate U.S.

consumption growth and stock returns. The prior for each model is that the real interest rate

be within 1% of 0.896% with probability 0.95 together with a preference for model parameters

that are near their published values. This prior appears to strike the right balance. It is

tight enough to insure that MCMC chains mix well but loose enough to allow the data to

be influential.

For the univariate series and for both sample periods, the models perform about the same

in the relative comparison and fit the data reasonably well in the absolute assessment.
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For the bivariate series, in the relative comparison the long run risks model overwhelm-

ingly dominates over the 1930–2008 period, while the habit persistence model overwhelm-

ingly dominates over the 1950–2008 period; in the absolute assessment, the habit model fails

definitively in the 1930–2008 period and the prospect theory model fails definitively in the

1950–2008 period.

We undertook a diagnostic analysis to discover why the models differ when estimated from

bivariate consumption growth and stock returns data. In our view the bivariate results can

be summarized as follows. The strongest information in the data is the conditional mean

of consumption growth and the conditional volatility of stock returns. The three models

track this information reasonably well. The internals of these models affect how tracking

the conditional mean of consumption growth and the conditional volatility of stock returns

well spills over into the representation of the conditional volatility of consumption growth

and the conditional correlation between consumption growth and stock returns. These two

spillover effects are the main statistical differences among the three models.

The estimator proposed by Gallant and McCulloch (2009) is a simulation based estimator.

Simulations from a structural model, which here is either the habit model, the long run

risks model, or the prospect theory model, are used to evaluate a map η = g(θ) from the

parameters θ of the structural model to the parameters η of an auxiliary model f(yt|xt−1, η),

where yt is the observed data and xt−1 are predetermined variables. Thereafter, L(θ) =
∏n
t=1 f(yt|xt−1, g(θ)) is used whenever a likelihood is required. Theory requires that the

auxiliary model encompass the structural model. However, Gallant and McCulloch argue

that one is better served by an auxiliary model that best represents the data rather than an

auxiliary model that best represents simulations from the structural model. We undertook

a sensitivity analysis and recomputed our results for a battery of six auxiliary models. The

simplest produces estimates that mimic values obtained by calibration or GMM estimation

as customarily employed in macro/finance. The next in order of complexity represents the

data well. The last encompasses the three structural models considered. We find that results

are sensitive to the choice of auxiliary models to some degree. Most importantly, results can

differ between the model that best represents the data and the model that best represents

the structural models. In view of this difference and the fact that theory supports the latter,
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our conclusions are based on the encompassing auxiliary model.

The models show interesting differences in their forecasts over the 2009–2013 horizon. For

these forecasts we used the bivariate data over the period 1950–2008 and the encompassing

auxiliary model f5. The habit model predicts an end to the current recession in 2009 and

return to steady-state growth by 2010. Stock returns are predicted to be high in 2009 with a

return to steady-state returns by 2013. The the long run risks model predicts an end to the

current recession in 2010 and slow increase in the growth rate thereafter. Stock returns are

predicted to be approximately at their steady-state values over the entire forecast period.

The prospect theory model predicts steady-state growth throughout the forecast period.

Stock returns are predicted to be double their steady-state value in 2009, reach steady-state

by 2011, and remain at steady-state thereafter.

There is little substantive difference in these forecasts if one changes either the sample

period from 1950–2008 to 1930–2008 or the auxiliary model from f5 to the auxiliary model

that best represents the data f1. All that changes is that when the auxiliary model is f1,

stock returns for the prospect theory model reach steady-state in 2010 rather than 2011 and

that a bump in stock returns for the habit model at 2011 is smoothed out.
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Table 1. Auxiliary Models

f0 f1 f2 f3 f4 f5

Mean 1 lag 1 lag 1 lag 1 lag 1 lag 2 lags

Variance constant garch garch garch garch garch

leverage leverage leverage leverage

Errors normal normal normal flexible flexible flexible

nonlinear nonlinear

Parms univar 3 5 6 10 11 12

Parms bivar 9 12 14 22 24 28

Bivariate GARCH variance matrices are of the BEKK form (Engle and Kroner, 1995)
with one lag throughout. A nonlinear error density adds nonlinear terms that depend
on one lag to the conditional mean and variance. When evaluated, data are centered
and scaled and lags are attenuated by a spline transform. See Gallant and Tauchen
(2009) for details. The functional form is displayed in Subsection 3.4. Parms univar
is the number of parameters when the data are stock returns alone and parms bivar is
the number of parameters when the data are consumption growth and stock returns.
The habit persistence model has 7 parameters, the long run risks model has 13, and
the prospect theory model has 11.

Table 2. Correlation Matrix

of the Habit Model Prior

Parameter g σ ρ σw φ δ γ

g 1.00 0.04 0.05 -0.01 -0.05 0.15 0.07
σ 0.04 1.00 0.04 -0.07 0.03 0.05 0.07
ρ 0.05 0.04 1.00 0.03 0.08 0.03 0.07
σw -0.01 -0.07 0.03 1.00 -0.02 0.01 0.01
φ -0.05 0.03 0.08 -0.02 1.00 0.45 0.32
δ 0.15 0.05 0.03 0.01 0.45 1.00 -0.29
γ 0.07 0.07 0.07 0.01 0.32 -0.29 1.00
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Table 3. Prior and Posterior Habit Model Parameters

Prior Posterior

Parameter Mode Mean Std.Dev. Mode Mean Std.Dev.

g 0.00157547 0.00156519 0.00008128 0.00166893 0.00159147 0.00007473
σ 0.00440979 0.00431169 0.00022113 0.00502777 0.00501054 0.00018533
ρ 0.20068359 0.20053348 0.01072491 0.19445801 0.19892873 0.00931413
σw 0.03228760 0.03247938 0.00169052 0.03193665 0.03175960 0.00138630
φ 0.98826599 0.98830499 0.00042475 0.98769760 0.98773761 0.00033629
δ 0.99046326 0.99041700 0.00043605 0.99033737 0.99033565 0.00044495
γ 2.04296875 2.04076156 0.08924751 1.97558594 1.96336336 0.07720679

rf 0.97796400 1.07587200 0.13273052 1.02530400 0.96219600 0.12647089
rd − rf 6.04969200 5.98359600 0.07700698 6.26854800 6.23908800 0.07426341
σrd 19.67246807 19.69228275 0.14078849 20.17062220 20.14121148 0.14442220

Parameter values are for the monthly frequency. Returns are annualized. Mode is the mode of
the multivariate density. It actually occurs in the MCMC chain whereas the mean does not. In
the data, rd − rf = 5.59 − 0.89 = 4.7 and σrd = 19.72. The auxiliary model is f5 as described in
Table 1. The data are annual consumption growth and stock returns for the years 1930–2008.

Table 4. Correlation Matrix of the

Long Run Risks Model Prior

Parameter δ γ ψ µc ρ φe σ̄2 ν σw µd φd πd φu

δ 1.00 -0.13 -0.10 -0.07 -0.16 0.06 -0.03 0.00 0.10 -0.00 0.04 -0.10 0.07
γ -0.13 1.00 -0.03 -0.04 0.07 0.05 0.11 -0.06 0.10 -0.01 0.00 0.00 -0.09
ψ -0.10 -0.03 1.00 -0.04 -0.08 -0.06 0.10 -0.07 0.06 -0.05 -0.00 0.03 0.03
µc -0.07 -0.04 -0.04 1.00 0.06 -0.02 0.08 -0.01 -0.06 0.09 0.03 0.01 0.05
ρ -0.16 0.07 -0.08 0.06 1.00 0.08 -0.04 -0.04 -0.06 0.11 0.05 0.03 -0.05
φe 0.06 0.05 -0.06 -0.02 0.08 1.00 -0.05 -0.01 0.01 0.06 0.01 0.02 -0.06
σ̄2 -0.03 0.11 0.10 0.08 -0.04 -0.05 1.00 -0.02 -0.01 -0.04 -0.03 -0.06 0.06
ν 0.00 -0.06 -0.07 -0.01 -0.04 -0.01 -0.02 1.00 -0.04 0.01 0.00 0.02 0.05
σw 0.10 0.10 0.06 -0.06 -0.06 0.01 -0.01 -0.04 1.00 -0.07 0.07 0.03 0.06
µd -0.00 -0.01 -0.05 0.09 0.11 0.06 -0.04 0.01 -0.07 1.00 0.03 0.11 0.01
φd 0.04 0.00 -0.00 0.03 0.05 0.01 -0.03 0.00 0.07 0.03 1.00 -0.05 0.14
πd -0.10 0.00 0.03 0.01 0.03 0.02 -0.06 0.02 0.03 0.11 -0.05 1.00 -0.05
φu 0.07 -0.09 0.03 0.05 -0.05 -0.06 0.06 0.05 0.06 0.01 0.14 -0.05 1.00
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Table 5. Prior and Posterior Long Run Risks Model Parameters

Prior Posterior

Parameter Mode Mean Std.Dev. Mode Mean Std.Dev.

δ 0.99961090 0.99934096 0.00031172 0.99964905 0.99943058 0.00029362
γ 9.89062500 10.07348625 0.48583545 9.92187500 10.00010750 0.50121255
ψ 1.49609375 1.49614344 0.07859747 1.53906250 1.50321312 0.07244585
µc 0.00148392 0.00148142 0.00007031 0.00151825 0.00149122 0.00007685
ρ 0.98413086 0.98408021 0.00468241 0.98284912 0.98435210 0.00320064
φe 0.03204346 0.03202031 0.00160150 0.03204346 0.03202844 0.00162241
σ̄2 0.00004041 0.00004124 0.00000196 0.00004160 0.00004061 0.00000196
ν 0.98730469 0.98738766 0.00441105 0.98199463 0.98223563 0.00299350
σw 0.00000168 0.00000170 0.00000009 0.00000169 0.00000170 0.00000008
µd 0.00120926 0.00119140 0.00006114 0.00121307 0.00120186 0.00006030
φd 2.78906250 2.80749125 0.14620180 2.88281250 2.82820500 0.15095447
πd 4.07031250 4.11655125 0.20586470 4.17187500 4.15665625 0.19923412
φu 6.14062500 6.27596375 0.31996896 6.45312500 6.19978500 0.30424633

rf 0.94398000 1.16133600 0.12177703 0.90874800 1.11896400 0.11709356
rd − rf 4.30737600 4.98738000 0.48844526 4.11223200 4.59213600 0.28433000
σrd 18.28002188 18.85677597 0.17586080 19.07839616 18.58935179 0.13239826

Parameter values are for the monthly frequency. Returns are annualized. Mode is the mode of
the multivariate density. It actually occurs in the MCMC chain whereas the mean does not. In
the data, rd − rf = 5.59 − 0.89 = 4.7 and σrd = 19.72. The auxiliary model is f5 as described in
Table 1. The data are annual consumption growth and stock returns for the years 1930–2008.

Table 6. Correlation Matrix of the

Prospect Theory Model Prior

Parameter gC gD σC σD ω γ ρ λ k b0 η

gC 1.00 0.06 -0.00 0.02 0.03 -0.12 0.06 0.06 -0.11 -0.06 -0.06
gD 0.06 1.00 0.02 0.06 -0.04 0.04 0.06 0.17 0.06 0.17 -0.02
σC -0.00 0.02 1.00 0.01 0.05 -0.03 0.08 0.13 0.00 0.06 -0.03
σD 0.02 0.06 0.01 1.00 -0.03 -0.09 -0.14 0.13 0.06 0.11 0.10
ω 0.03 -0.04 0.05 -0.03 1.00 -0.02 0.06 -0.01 -0.01 -0.05 -0.07
γ -0.12 0.04 -0.03 -0.09 -0.02 1.00 0.02 -0.03 -0.04 -0.03 -0.05
ρ 0.06 0.06 0.08 -0.14 0.06 0.02 1.00 0.06 -0.09 -0.14 0.02
λ 0.06 0.17 0.13 0.13 -0.01 -0.03 0.06 1.00 0.09 0.07 0.02
k -0.11 0.06 0.00 0.06 -0.01 -0.04 -0.09 0.09 1.00 0.23 0.14
b0 -0.06 0.17 0.06 0.11 -0.05 -0.03 -0.14 0.07 0.23 1.00 0.04
η -0.06 -0.02 -0.03 0.10 -0.07 -0.05 0.02 0.02 0.14 0.04 1.00
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Table 7. Prior and Posterior Prospect Theory Model Parameters

Prior Posterior

Parameter Mode Mean Std.Dev. Mode Mean Std.Dev.

gC 0.01828003 0.01792775 0.00093413 0.01846313 0.01795106 0.00095215
gD 0.01870728 0.01833821 0.00095276 0.01849365 0.01845027 0.00097794
σC 0.03918457 0.03764040 0.00200690 0.03295898 0.03356905 0.00201110
σD 0.12231445 0.12023010 0.00611083 0.11962891 0.11738381 0.00597238
ω 0.14794922 0.15018164 0.00694094 0.14892578 0.15015283 0.00801015
γ 0.98632812 0.98511422 0.05145608 0.96484375 0.97603082 0.04958596
ρ 0.99972534 0.99783899 0.00163604 0.99969482 0.99783430 0.00202090
λ 2.17968750 2.24709750 0.11486810 2.23437500 2.18521953 0.11761822
k 9.82812500 9.86375625 0.53189914 9.90625000 9.84252984 0.53634137
b0 2.00195312 2.00328703 0.10967111 1.89355469 1.93699477 0.12735310
η 0.91601562 0.89845969 0.04412695 0.85375977 0.85965642 0.02405305

rf 1.75579200 1.91283600 0.05667617 1.76136000 1.91498400 0.06495191
rd − rf 5.92353600 5.49249600 0.19235810 4.88326800 4.78360800 0.12334973
σrd 27.97748380 26.75881163 0.92424294 22.90177286 22.79236714 0.29273615

Parameter values are for the annual frequency. Mode is the mode of the multivariate density. It
actually occurs in the MCMC chain whereas the mean does not. In the data, rd−rf = 5.59−0.89 =
4.7 and σrd = 19.72. The auxiliary model is f5 as described in Table 1. The data are annual
consumption growth and stock returns for the years 1930–2008.

Table 8. Relative Model Comparison,

Stock Returns

Posterior Probabilities

Model 1930–2008 1950–2008

Habit Persistence 0.28 0.44
Long Run Risks 0.48 0.42
Prospect Theory 0.24 0.14

The data are annual stock returns over the years
shown. The auxiliary model is f5 described in Table 1.
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Table 9. Absolute Model Assessment,

Stock Returns

Posterior Probabilities

1930–2008 1950–2008

Prior hab lrr pro hab lrr pro

κ = 0.1 0.29 0.36 0.10 0.40 0.39 0.29
κ = 1.0 0.30 0.26 0.30 0.38 0.35 0.34
κ = 10.0 0.41 0.38 0.60 0.22 0.26 0.37

The data are annual stock returns over the years
shown. The auxiliary model is f5 is described in Ta-
ble 1. κ is the standard deviation of a prior that im-
poses the habit model (hab), the long run risks model
(lrr), and the prospect theory model (pro), respec-
tively, on the auxiliary model. The prior weakens as κ
increases. Assessment for the long run risks model may
overstate probabilities for small κ because the condi-
tion that the auxiliary model should have more param-
eters than the structural model is violated.

Table 10. Relative Model Comparison,

Consumption Growth and Stock Returns

Posterior Probabilities

Model 1930–2008 1950–2008

Habit Persistence 0.00 1.00
Long Run Risks 1.00 0.00
Prospect Theory 0.00 0.00

The data are annual consumption growth and stock
returns over the years shown. The auxiliary model is
f5 as described in Table 1.
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Table 11. Absolute Model Assessment,

Consumption Growth and Stock Returns

Posterior Probabilities

1930–2008 1950–2008

Prior hab lrr pro hab lrr pro

κ = 0.1 0.00 0.41 0.28 0.31 0.16 0.08
κ = 1.0 0.00 0.36 0.28 0.31 0.21 0.08
κ = 10.0 1.00 0.23 0.44 0.38 0.64 0.84

The data are annual consumption growth and stock returns
over the years shown. The auxiliary model is f5, which is de-
scribed in Table 1. κ is the standard deviation of a prior that
imposes the habit model (hab), the long run risks model
(lrr), and the prospect theory model (pro), respectively, on
the auxiliary model. The prior weakens as κ increases.

Table 12. Diagnostics for the Habit Persistence Model

1930–2008 1950–2008

Mode Mode Diag- Mode Mode Diag-
Parameter κ = 0.1 κ = 10 nostic κ = 0.1 κ = 10 nostic

b0,1 -0.08 -0.05 -1.30 -0.06 -0.05 -0.21
b0,2 0.07 0.04 0.53 0.06 0.04 0.34
B11 0.08 0.16 -1.62 0.09 0.15 -1.21
B21 -0.16 -0.09 -0.94 -0.15 -0.22 0.64
B12 0.29 0.32 -0.80 0.29 0.23 1.58
B22 0.02 0.02 -0.10 0.02 0.00 0.35
R0,11 -0.03 -0.01 -0.23 -0.03 -0.06 0.41
R0,12 0.23 0.27 -0.85 0.23 0.22 0.29
R0,22 0.21 0.21 -0.07 0.20 0.26 -0.74
P11 -0.06 0.17 -4.98 -0.05 -0.02 -0.55
P22 -0.21 -0.22 0.16 -0.21 -0.24 0.93
Q11 0.91 0.91 -0.04 0.91 0.91 0.13

Shown are the posterior modes from fitting (f1, πκ) to the bivariate consumption
growth and stock returns data over the periods and κ values shown together
with the diagnostic checks described in Subsection 3.5.
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Table 13. Posterior Probability, Relative

Comparison, Stock Returns, 1930–2008

Model f0 f1 f2 f3 f4 f5

Habit 0.47 0.71 0.28 0.36 0.28 0.28

LR Risks 0.49 0.25 0.57 0.34 0.45 0.48

Prospect 0.04 0.04 0.15 0.30 0.27 0.24

The data are annual stock returns 1930–2008. Auxiliary models
f0 through f5 are described in Table 1.

Table 14. Posterior Probability, Relative

Comparison, Stock Returns, 1950–2008

Model f0 f1 f2 f3 f4 f5

Habit 0.51 0.49 0.44 0.42 0.46 0.44

LR Risks 0.47 0.42 0.51 0.49 0.45 0.42

Prospect 0.02 0.10 0.05 0.09 0.09 0.14

The data are annual stock returns 1950–2008. Auxiliary models
f0 through f5 are described in Table 1.
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Table 15. Posterior Probability, Relative Comparison,

Consumption Growth and Stock Returns, 1930–2008

Model f0 f1 f2 f3 f4 f5

Habit 0.00 0.00 0.00 0.00 0.00 0.00

LR Risks 1.00 1.00 1.00 1.00 1.00 1.00

Prospect 0.00 0.00 0.00 0.00 0.00 0.00

The data are annual stock returns and consumption growth 1930–
2008. Auxiliary models f0 through f5 are described in Table 1.

Table 16. Posterior Probability, Relative Comparison,

Consumption Growth and Stock Returns, 1950–2008

Model f0 f1 f2 f3 f4 f5

Habit 1.00 1.00 1.00 1.00 1.00 1.00

LR Risks 0.00 0.00 0.00 0.00 0.00 0.00

Prospect 0.00 0.00 0.00 0.00 0.00 0.00

The data are annual stock returns and consumption growth 1950–
2008. Auxiliary models f0 through f5 are described in Table 1.
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Figure 1. Real Stock Returns and Consumption Growth, 1925–2008 The left

vertical line is at 1930 and the right at 1950. The data collection protocol is as described

in Bansal, Gallant, and Tauchen (2007) for the period 1930–2008. The earlier data,

which is only used to prime recursions, are the inflation adjusted Dow-Jones industrial

average and a real U.S. consumption growth series kindly supplied by Robert Barro.
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Figure 2. Prior and Posterior Density Estimates, Habit Persistence Model.

The dashed line is the prior. The solid line is the posterior. Other details as in Table 3.

Bandwidths are small to reduce smudging of isolated, peaked modes.
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Figure 3. Prior and Posterior Forecasts, Habit Persistence Model. The

dashed line is the prior. The solid line is the posterior. They are mean prior and

posterior forecasts, respectively. Other details as in Table 3.
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Figure 4. Prior and Posterior Density Estimates, Long Run Risks Model.

The dashed line is the prior. The solid line is the posterior. Other details as in Table 5.

Bandwidths are small to reduce smudging of isolated, peaked modes.
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Figure 5. Prior and Posterior Forecasts, Long Run Risks Model. The dashed

line is the prior. The solid line is the posterior. They are mean prior and posterior

forecasts, respectively. Other details as in Table 5.
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Figure 6. Utility of Gains and Losses in the Prospect Theory Model. The

dot-dash line represents the case where the investor has prior gains (z < 1), the dashed

line the case of prior losses (z > 1), and the solid line the case where the investor has

neither prior gains nor losses (z = 1).
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Figure 7. Prior and Posterior Density Estimates, Prospect Theory Model.

The dashed line is the prior. The solid line is the posterior. Other details as in Table 7.

Bandwidths are small to reduce smudging of isolated, peaked modes.
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Figure 8. Prior and Posterior Forecasts, Prospect Theory Model. The dashed

line is the prior. The solid line is the posterior. They are mean prior and posterior

forecasts, respectively. Other details as in Table 7.
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Figure 9. Conditional Mean of the Habit Persistence Model. The solid line

is the conditional mean of auxiliary model f1 with its parameters set to the posterior

mode from fitting (f1, πκ) with κ = 10 to the bivariate consumption growth and stock

returns data over the period 1930–2008. The dashed line is the same with κ = 0.1. κ

is the standard deviation of a prior that imposes the habit persistence model on the

auxiliary model f1. The prior weakens as κ increases.
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Figure 10. Conditional Volatility of the Habit Persistence Model. The solid

line is the conditional volatility of auxiliary model f1 with its parameters set to the

posterior mode from fitting (f1, πκ) with κ = 10 to the bivariate consumption growth

and stock returns data over the period 1930–2008. The dashed line is the same with

κ = 0.1. κ is the standard deviation of a prior that imposes the habit persistence model

on the auxiliary model f1. The prior weakens as κ increases.
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Figure 11. Conditional Means of the Three Models. The solid line is the

conditional mean of the long run risks model with its parameters set to the posterior

mode from fitting to the bivariate consumption growth and stock returns data over the

period 1930–2008 using auxiliary model f5. The dashed line is the same for the habit

persistence model and the dot-dash line is the same for the prospect theory model.
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Figure 12. Conditional Volatility of the Three Models. The solid line is the

conditional volatility of the long run risks model with its parameters set to the posterior

mode from fitting to the bivariate consumption growth and stock returns data over the

period 1930–2008 using auxiliary model f5. The dashed line is the same for the habit

persistence model and the dot-dash line is the same for the prospect theory model.
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Figure 13. Sensitivity to Specification of the Risk Aversion Parameter. In

each plot, the solid line is the posterior mean and the dashed lines are plus and minus

1.96 posterior standard deviations plotted against the auxiliary models f0 through

f5. From the left, the first column is for the bivariate consumption growth and stock

returns data from 1930–2008, the second for the bivariate data from 1950–2008, the

third for the univariate stock returns data 1930–2008, and the fourth for the univariate

data from 1950–2008.
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Figure 14. Sensitivity to Specification of the Equity Premium. In each

plot, the solid line is the posterior mean and the dashed lines are plus and minus 1.96

posterior standard deviations plotted against the auxiliary models f0 through f5. From

the left, the first column is for the bivariate consumption growth and stock returns data

from 1930–2008, the second for the bivariate data from 1950–2008, the third for the

univariate stock returns data 1930–2008, and the fourth for the univariate data from

1950–2008.
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Figure 15. Sensitivity to Specification of Stock Returns Volatility. In each

plot, the solid line is the posterior mean and the dashed lines are plus and minus 1.96

posterior standard deviations plotted against the auxiliary models f0 through f5. From

the left, the first column is for the bivariate consumption growth and stock returns data

from 1930–2008, the second for the bivariate data from 1950–2008, the third for the

univariate stock returns data 1930–2008, and the fourth for the univariate data from

1950–2008.
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Figure 16. Sensitivity to Specification of the Correlation between Consump-

tion Growth and Stock Returns. In each plot, the solid line is the posterior mean

and the dashed lines are plus and minus 1.96 posterior standard deviations plotted

against the auxiliary models f0 through f5. From the left, the first column is for the

bivariate consumption growth and stock returns data from 1930–2008 and the second

is for the bivariate data from 1950–2008.
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