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Abstract

The objective of the paper is to draw the theory of endogeneity in dynamic models in discrete and con-

tinuous time, in particular for diffusions and counting processes. We first provide an extension of the

separable set-up to a separable dynamic framework given in term of semi-martingale decompositions.

Then we estimate our function of interest as a stopping time for an additional noise process, whose role

is played by a Brownian motion for diffusions, and a Poisson process for counting processes.
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1 INTRODUCTION

1.1 Motivations

An econometric model has often the form of a relation where a random elementY depends on a set of

random elementsZ and a random noiseU . If Z is exogenous (see for precise definition of this concept

[Engle et al., 1983] or [Florens and Mouchart, 1982]) some independence or non correlation property

is assumed between theZ and theU in order to characterize uniquely the relation. For example, if

the relation has the formY = φ(Z) + U the conditionIE[U |Z] characterizesφ as the conditional ex-

pectation and ifY = φ(Z,U) with φ monotonous inU , U uniform, the condition thatZ andU are

independent characterizesφ as the quantile function. This exogeneity condition is usually not satisfied

(as for instance in market models, treatment effect models, selection models...) and the relation should

be characterized by other assumptions.

The instrumental variables approach replaces the independence betweenZ andU by an independence

condition betweenU and another set of variables,W , called the instruments. For example, in the case

Y = φ(Z) + U the assumption becomesIE[U |W ] = 0 or in the nonseparable model it is assumed that

U⊥W (see for a recent literature [Florens, 2002], [Newey and Powell, 2003], [Hall and Horowitz] or

for non separable case [Horowitz and Lee]). In these cases the characterization of the relation is not

fully determined by the independence condition but also by a dependence condition between theZ and

theW . This dependence determines the identifiability of the relation and in a nonparametric framework

has an impact on the speed of convergence of the estimators.

The objective of this paper is to analyze dynamic models with endogenous elements. The goal is concen-

trated on the specification of the models in such a way that the functional parameter of interest appears

as the solution of a functional equation (essentially linear or nonlinear integral equation). Using this

equation, identification or local identification condition may be discussed. This paper is not concerned

by statistical inference but it shows how the functional parameter may be derived from objects which

may be estimable using data. The theory of nonparametric estimation in these cases belongs to the

theory of ill-posed inverse problems (see [Carrasco and an Eric Renault, 2003]) and will be treated in

specific cases in other papers.

We address the question of endogeneity in dynamic models in two ways. First we consider a separable

case which extends the usual modelY = φ(Z) + U with IE[U |W ]. However, this case is not suffi-

cient to cover the endogeneity question in models where the structure of the process generatingY is

given (counting processes or diffusions for instance). In this case, we analyze the impact of endogenous

variables through a change of time depending on the endogenous variables. This approach covers the

example of the duration models, the counting processes, the diffusion with a volatility depending on the

endogenous for example. It will be shown that those change of time models give an interesting extension

of non-separable models in the dynamic case .

1.2 Mathematical framework

In this paper we essentially analyze a large class of stochastic processes verifying a decomposition prop-

erty. Let(Xt)t≥0 (t may be discrete or continuous) andFt a filtration ofσ-fields such thatXt is càdl̀ag

(its trajectories are right-continuous and have a left-limit) and that(Ft)t is right-continuous (that is to
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say that
⋂

s>t Fs = Ft).

A processXt is a special semi-martingale w.r.t.(Ft)t if there exists two processesHt andMt such that:

Xt = X0 +Ht +Mt; (1)

• Mt is anFt-martingale;

• Ht isFt-predictable.

A more general definition only assumes thatMt is a local martingale but for sake of simplicity only the

martingale case is treated in this paper. We also simplify the expressions by always assumingX0 = 0.

Extension to local martingales and to cases whereX0 6= 0 is straightforward. Let us note that the de-

composition 1 is a.s. unique. These concepts are fundamental in the theory of stochastic processes (see

in particular [Dellacherie and Meyer (1980)] - Vol II - Chap VII).

We may easily illustrate this definition in the case of discrete time models. In that case we have:M0 = 0,

Mt = Mt−1 +(Xt−IE[Xt|Ft−1]) andHt = Ht−1 +[IE[Xt|Ft−1]−Xt−1] (see [Protter, 2003] - Chap

III). Equivalently∆Xt = Xt −Xt−1 may also be written:

∆Xt = Xt −Xt−1 = (IE[Xt|Ft−1]−Xt−1) + (Xt − IE[Xt|Ft−1]).

In case of continuous time processes, we also restrict our study to cases whereHt is differentiable and

we se the expression:

dXt = htdt+ dMt

whereHt =
∫ t

0
hsds.

Two particular cases will be analyzed in details. First the case whereXt is a counting process andht its

stochastic intensity (see e.g. [Karr, 1991], [Andersen, Borgan, Gill, Kieding]). Second, we will explore

the situation whereXt is a diffusion process wheredMt = σtdBt with Bt a Brownian motion (see e.g.

[Gard (1988)]), andht andσt are the drift and the volatility.

2 THE ADDITIVELY SEPARABLE CASE

2.1 The framework

Let us consider a multivariate stochastic processXt = (Yt, Zt,Wt) (Yt ∈ IR,Zt ∈ IRp, Wt ∈ IRq)

andXt the filtration generated byXt i.e.Xt is theσ-field generated by ((Ys, Zs,Ws)s≤t). We consider

different subfiltrations ofXt:

• i) Yt, Zt,Wt are the filtrations generated by each subprocess;

• ii) We call theendogenous filtrationthe filtration generated byYt andZt and theinstrumental

filtration the filtrationYtvWt generated byYt andWt.

We first extend the usual decomposition of semi-martingales in the following way.:
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Definition 2.1. The processYt has a Doob-Meyer Instrumental Variable (DMIV) decomposition if:

Yt = Λt + Et

where:

1. Λt isYtvZt predictable ;

2. IE[Et − Es|YtvWt] = 0 for 0 ≤ s < t.

Equivalently we may say thatYt is an IV semi-martingale w.r.t.(YtvZt)t and (YtvWt)t. First we

can note that ifWt = Zt this definition reduces to the usual decomposition definition. If the filtration

YtvZt is included intoYtvWt the problem becomes a problem of enlargement of filtrations and preser-

vation of the martingale property. This question is central in the theory of non-causality treated e.g. by

[Florens and Foug̀ere, 1996].

We consider then the more general case whereYtvZt andYtvWt has no inclusion relation. Moreover,

the two filtrations do not need to be generated by processes andYtvZt andYtvWt, may be replaced by

more general filtrationsFt andGt under the condition thatYt is adapted to each of them.

Assumptioni) means that the predictable process “only depends” on the past ofYt and onZt and its past.

Assumptionii) is the independence condition between the “noise”Et and the instrumentsWt. Equality

in ii) is a mean independence only (like in the static separable modelY = φ(Z) + U ) and looks like

a martingale property. It’s not strictly speaking a martingale property becauseEt is not assumed to be

adapted toYtvWt. The usual decomposition is unique a.s. but it should be noted that this unicity result

is not true in general: this will be precisely the object of the identification condition analyzed below.

2.2 Identification

Let us first consider the characterization of the decomposition in term of conditional expectation.

Theorem 2.1. Let us assume thatYt is a special semi-martingale w.r.t.YtvWt and that :

dYt = htdt+ dMt

whereHt =
∫ t

0
hsds is YtvWt-predictable andMt is aYtvWt-martingale. If the following family of

integral equations:

ht = IE[λt|YtvWt] t ≥ 0 (2)

λt isYtvZt-measurable and integrable

has a sequence of solutionsλt, thenYt is an IV semi-martingale andΛt =
∫ t

0
λsds.

Roughly speaking equation (2) means that we have to solve:

htdt = IE[dXt|(Ys,Ws)0≤s≤t]

=
∫
λt((Ys, Zs)0≤s≤t)f((Zs)0≤s≤t|(Ys,Ws)0≤s≤t)d(Zs)0≤s≤t
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This expression has mathematically no sense because the arguments of the functions are infinite dimen-

sional but it shows how our definition extends the static separable case.

A DMIV decomposition exists if and only ifht belongs to the range of the conditional expectation op-

erator. If we restrict our attention to square integrable variables, this operator is defined onL2(YtvWt).
Note that the conditional expectation operator is compact under minor regularity conditions. Its range

is then a strict subspace ofL2(YtvWt) and the existence assumption is an over-identification condi-

tion on the model. The main question concerns the unicity of the solution, which is equivalently the

identifiability problem. Given the distribution of the processXt, the functionht, and the conditional

expectation operatorIE[ |YtvWt] defined onL2(YtvZt) are identifiable and then the DMIV decom-

position is unique (Λt is identifiable) if and only if the conditional expectation operator is one-to-one.

The following concept extends the full known case of static models.

Definition 2.2. The filtration(YtvZt)t is strongly identified by the filtration(YtvWt)t (orZt is strongly

identified byWt givenYt) if and only if :

∀ψ ∈ L2(YtvZt), IE[ψ|YtvWt] = 0 ⇒ ψ = 0 a.s.

For a good treatment of conditional strong identification, see [Florens et al (1990)] - Chap 5 and for

relation with the completeness concept in statistics. Then ifZt is strongly identified byWt givenYt,

the conditional expectation operator is one-to-one andΛt is identified. We want to illustrate this concept

in two examples : discrete-time models and diffusions.

2.3 Example 1 : discrete time models

Let’s consider three stochastic processesYt, Zt andWt and let’s assume that :

Zt = σ{Y t
0 , Z

t
t} and Wt = σ{Y t

0 ,W
t+1
0 }

when e.g.Y t
0 = (Y0, . . . , Yt). In that case the decomposition ofYt w.r.t. Zt is characterized by:

Yt =
t∑

j=1

IE[Yj − Yj−1|Y j−1
0 , Zj

0 ] +Mt

since :

Yt − Yt−1 = IE[Yt − Yt−1|Y t−1
0 , Zt

0] +Mt −Mt−1 = ht + (Mt −Mt−1).

Under our assumptions onZt, λt is a function ofY t−1
0 andZt

0 and the central equation becomes :

ht = IE[λt|Y t−1
0 ,W t

0 ] ∀t

or equivalently:

ht(Yt−1, Yt−2,Wt, . . .) =
∫
λt(Yt−1, Yt−2, . . . , Zt, Zt−1, . . .)

ft(Zt, Zt−1, . . . |Wt,Wt−1, . . . , Yt−1, . . .)dWtdWt−1 . . .

(3)
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Those examples show that the estimation ofλ usually requires some conditional independence assump-

tions for practical computation. A first step may be to reduce the number of instruments by assuming

e.g.:

Zt⊥(W t
0 , Y

t−1
0 )|W t

t−k, Y
t−1
t−k .

Using a stationary assumption the right hand side of 3 becomes :∫
λ(Yt−1, Zt)f(Zt|W t

t−k, Y
t
t−k)dZt.

Note that :

ht = IE[Yt − Yt−1|Y t−1
0 ,W t

0 ].

Then equation (3) becomes :

r := IE[Yt − Yt−1|Y t−1
t−k ,W

t
t−k] =

∫
λ(Yt−1, Zt)f(Zt|W t

t−k, Y
t
t−k)dZt

For anyt, r andf may be estimated nonparametrically and the problem reduces to the same problem

considered in [Darolles et al., 2008].

2.4 Example 2 : Diffusions

Let us assume that the structural model has the following form :

dYt = λt(Yt, Zt)dt+ σt(Yt)dBt (4)

whereBt is a Brownian motion. This means that ifZt is fixed (and not generated by the distribution

mechanism)Yt follows a diffusion process with a drift equal toλt and a volatility equal toσt(Yt). Note

that we assume thatZt does not appear in the volatility term. Let us assume that:

IE[dBt|YtvWt] = 0

In that case equation (4) characterizes the DMIV decomposition ofYt. In order to identifyλt we need

to construct the decomposition ofYt w.r.t. the filtrationYtvWt (dYt = htdt+ dMt) and to solve:

ht = IE[λt|YtvWt] (5)

Note that the “reduced form” modeldYt = htdt + dMt has no reason to be a diffusion. Conditionally

toWt the process may be non Markovian andMt maybe different from a Brownian motion.

3 THE NON-SEPARABLE CASE

We present here the general framework for the obtention of an integral equation for solving endogeneity

in dynamic models. We will give detailed applications in some cases of interest : diffusions, duration

models and counting processes. All technical details are available in [Protter, 2003].
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3.1 General theory

We give here the intuition of the theorem under its most general form. Let’s suppose that we observe

three processes:Xt, Zt, andWt. The relative and natural filtration relative to the observation of those

processes isXtvZtvWt. Suppose thatYt is a function ofXt (the nature of this function will be precised

in the applications).

Fundamentally our object of interest will be a functionφ of time t and variablesZ which will be con-

ceived as the inverse (as a function of time) of a counterfactual version of the compensator ofX without

endogeneity. Of course,φ is not the inverse of the usual compensator ofX w.r.t. to the natural filtration

of Z.

Practically, let(φs(Z))s be an increasing sequence ofZs finite stopping times. LetU be a process,

which will play the role of a perturbation noise. For ease of presentation, but without loss of generality

we suppose that all the processes are equal to0 at the initial date. We assume that:

Assumption 3.1. Yφt(Z) = Ut

Assumption 3.2. (Ut)t⊥(Wt)t

We suppose that every process admits a Doob-Meyer decomposition towards their canonical filtrations.

MoreoverUt writes: Ut = HU
t + MU

t as we suppose that it’s a semi-martingale w.r.t. its canonical

filtration withMU
t a local martingale, andHU

t is known. Moreover, we make the following regularity

assumptions :

Assumption 3.3. Y is a semi-martingale w.r.t.XtvZtvWt and its finite variation process is differen-

tiable:

Yt = HY (t|XtvZtvWt) +MY
t .

There exists a processhY (t) such as:

HY (t|XtvZtvWt) =
∫ t

0

hY (s)ds.

Assumption 3.4. There exists a sequence of functionζt:(Zs)0≤s≤t 7→ IRk (with k fixed) such ashY (t)
XtvZtvWt-measurable is alsoXtvζ(Z)tvWt-measurable. There exists a density ofξt conditionally on

X andW : gt(ξ|XtvWt).

As φt(Z) is a sequence ofZt stopping times,Zφt(Z) is clearly defined as the stopping timeσ-algebra

generated by:

Zφt(Z) = {Λ ∈ Z∞|Λ ∩ {φt(Z) ≤ s} ∈ Zs ∀s ≥ 0}.

The definition of such sets forY andW is not so obvious asphit(Z) is not compulsory aYt or aWt

stopping time. We will adopt the same notation, howeverYφt(Z) andWφt(Z) will be defined as the

smallestσ-algebra that make respectivelyYφt(Z) andWφt(Z) measurable, that is to say:
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Yφt(Z) = σ{Yφt(Z(w))(w)|s ≤ t, w ∈ Ω}

Wφt(Z) = σ{Wφt(Z(w))(w)|s ≤ t, w ∈ Ω}

as for anyw ∈ Ω, φt(Z(w)) and thereforeYφt(Z) andWφt(Z) are always defined. Moreover, we add

that as soon asY andW are supposed to be càdl̀ag processes,Yφt(Z) andWφt(Z) areφt(Z)-adapted. In

the following, we will noteAvB for twoσ-algebrasA andB the smallestσ-algebra containingA andB.

Lemma 3.1. (YvZvW)φt(Z) = Yφt(Z)vZφt(Z)vWφt(Z) = UtvZφt(Z)vWφt(Z)

Lemma 3.2. LetYt be a process with stochastic intensityhY
t , adapted to the filtrationAY

t (containing

internal history ofYt). Letφ(t) be a monotonous function of time, sufficiently smooth. Then if we define

Nt to beNt = Yφ(t) thenNt has also a stochastic intensityλN for the filtrationAN
t = AX

φ(t) which is

given by:

hN
t = φ′(t)hX

φ(t)

We then write:

φ′t(Z)hY (φt(Z)|Yφt(Z)vWφt(Z)vZφt(Z)) = hU (t|UtvWφt(Z)vZφt(Z)). (6)

Moreover :

IE[hU (t|UtvWφt(Z))|UtvWφt(Z) = IE[hU (t|UtvWφt(Z))|Ut] = hU (t)

as we assumed thatN∞⊥W∞ Depending on the processU this expression will become explicit and

generally speaking:
∫ t

0
hU (s)ds = HU (t). Then we can also rewrite:

IE[hU (t|UtvWφt(Z))|UtvWφt(Z)] =
∫

IRk

hU (t|Utvξ(Z)φt(Z)vWφt(Z))gφt(Z)(ξ|UtvWφt(Z))dξ

and we have then :

∫ t′

0

dt

∫
IRk

hU (t|Utvξ(Z)φt(Z)vWφt(Z))gφt(Z)(ξ|UtvWφt(Z))dξ = HU (t′) (7)

but we can replace 6 in 7 and then:

∫ t′

0

dt

∫
IRk

φ′t(Z)hY (φt(Z)|Yφt(Z)vξ(Z)φt(Z)vWφt(Z))gφt(Z)(ξ|Xφt(Z)vWφt(Z))dξ = HU (t′)

If we switch the integrals and make the change of variablesu = φt(Z) we get :

Theorem 3.1. ∫
IRk

dξ

∫ φt(Z)

0

hY (u|Xuvξ(Z)uvWu)gs(ξ|XuvWu)du = HU (t)
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3.2 Diffusions

Before going further, we need to define the concept of quadratic variation of a semi-martingale.

Definition 3.1. LetY be a semi-martingale. The quadratic variation ofY , denoted[Y, Y ] = ([Y, Y ]t)t≥0

is defined by:

[Y, Y ] = Y 2 − 2
∫
Y−dY.

[Y, Y ] is a process which is càdl̀ag, increasing, adapted, such as isT is a stopping-time, then:

[Y, YT ] = [YT , Y ] = [YT , YT ] = [Y, Y ]T .

Let’s recall that a process(Ys)s≥0 is of finite variation on[0; t] as soon assupti

∑
i |Yti+1 − Yti

| < ∞
for each subdivision of[0; t]. A process(Yt)t≥0 is said to be of finite variation if it is of finite variation

on [0; t] for everyt. It is then equal to the difference of two increasing processes (and reciprocally).

3.2.1 Driftless processes

Theorem 3.2. Levy’s theorem -A stochastic process(Xt)0≤t is a Brownian motion if and only if it is

a continuous local martingale with[X,X]t = t.

Proposition 3.1. Let f : IR+ → IR+ a non-decreasing and continuous function. Then there exists a

continuous martingaleM such that[M,M ]t = f(t).

We have that for aX,Bt = X[X,X]t is a Brownian motion.

The compensator of the square of the process is equal to the quadratic variation. Then let’s consider the

processYt = f(Xt) = X2
t and apply what has been exposed in the previous section withφ−1

t (Z) =
[X,X]t. For this class of process, we have obviously thatU is a Brownian motion, which is univocally

determined by the fact that[U,U ]t = HU (t) = t. Consequently, the theorem becomes:∫
IRk

dξ

∫ φt(Z)

0

hX2
(u|Xuvξ(Z)uvWu)gs(ξ|XuvWu)du = t. (8)

3.2.2 General case

In the general case, processes with a drift can be handled by adding the approach of section 3.2.1 a

second equation to treat the drift term. Let’s suppose thatX is a diffusion and that there exists a

XuvWu-finite variation processD such that:

IE[Xt −Dt|XtvWt] = 0

Equation 8 is fundamentally unchanged, except thatXt is replaced by(X −D)t:∫
IRk

dξ

∫ φt(Z)

0

h(X−D)2(u|Xuvξ(Z)uvWu)gs(ξ|XuvWu)du = t.
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3.3 Durations

3.3.1 Definitions and generalities

A duration is the lengthτ of a time-period, spent by an observed individual in a given state. We can

make for simplicity the assumption thatIP (τ = ∞) = 0. The distribution functionF of the durationτ

is defined as:

F (t) = IP (τ ≤ t) for t ≥ 0.

The survivor functionS of the durationτ is defined as:

S(t) = IP (τ ≥ t) = 1− F (t) + IP (T = t) for t ≥ 0.

The density ofτ is a functionf : IR+ 7→ IR+ which verifies:

F (t) =
∫ t

0

f(u)du or f(t) =
dF

dt
= −dS

dt
.

The integrated (or cumulative) hazard function is of the duration variableτ is the functionΛ such that:

Λ : IR+ 7→ IR+

t→ Λ(t) =
∫ t

0

dF (u)
S(u)

.

Λ is left-continuous, monotone (increasing), and such thatΛ(0) = 0,Λ(∞) = ∞. For a duration

variableτ whose density isf , we have:

Λ(t) =
∫ t

0

f(u)
S(u)

du = −
∫ t

0

dS(u)
S(u)

= −ln(S(t)).

The hazard functionλ of the durationτ is defined through:

λ(t) =
dΛ(t)
dt

=
f(t)
S(t)

= −d ln(S(t)
dt

.

The following equations are then straightforward:

S(t) = exp(−Λ(t)) ; Λ(t) =
∫ t

0

λ(u)du ; f(t) = λ(t) exp(−
∫ t

0

λ(u)du).

Whenλ(t) = λ > 0 ∀t ∈ IR, we are in the particular case of a Poisson process. Given an increasing

sequence of durations(τi)i, the related univariate counting processNt is such thatNt =
∑

i≥1 1(τi ≤
t). The trajectories of such processes start in 0, are increasing right-continuous, left-limited, with jumps

of size one.

A duration model can be linked with counting processes, as we can defineNt = 1(τ ≥ t). The internal

history of the processNt isFN
t = σ{Ns|0 ≤ s ≤ t} potentially augmented with the null sets. A count-

ing processNt, in particular as aFN
t -adapted point process, is a sub-martingale : using the Doob-Meyer

decomposition we have always thatNt = Λt +Mt whereMt is a martingale, andΛt is the compensator

process.

As soon as the compensator exists, and is absolutely continuous relatively to the Lebesgue measure, the

intensity process exists. We have the following definition (see [Karr, 1991]] ):
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Definition 3.2. [Stochastic intensity]
If Nt is a point process,Ft-adapted, andλt aFt-progressive process, positive, such as:

Nt −
∫ t

0

λudu

is a martingale. Thenλu is the stochastic intensity of the process. When it exists, the intensity is unique.

We have also in [Bŕemaud, 1991] the following characterization:

Definition 3.3. [Stochastic Intensity (characterization)]
If Nt is a point process,Ft-adapted, andλt aFt-progressive process, positive, such as:

∀t ≥ 0
∫ t

0

λsds <∞ IP − a.s.

Then if for all positive,Ft-predictable processφs, the following relation holds:

IE
[ ∫ ∞

0

φsdNs

]
= IE

[ ∫ ∞

0

φsλsds
]

thenNt has theFt-intensityλt.

An other consequence is that∀s, t, 0 ≤ s ≤ t:

IE[Nt −Ns|Fs] = IE
[ ∫ t

s

λudu|Fs

]
(9)

As underlined by ([Bauwens and Hautsch])the previous relation characterizes the stochastic intensity of

a process1.

If λt is bounded and right-continuous, the stochastic intensity of a point processNt has the following

interpretation:

hN (t) = lim
∆t↘0

1
∆t

IE[Nt+∆t −Nt|FN
t ]

Let’s recall that ifΛt is the compensator of an univariate counting processNt whose stochastic intensity

is λt: Λt =
∫ t

0
λsds. The process:Mt = Nt − Λt is aFN

t -martingale, withM0 = 0: this gives the

Doob-Meyer decomposition of the processNt.

1The class of predictable processes (containing progressive processes) is generated by the segments of[0;∞[×Ω, of the form:

[s; t] × A, ∀s, t, 0 ≤ s ≤ t < ∞ andA ∈ Fs. Moreover we can see that if equation [9] holds for every0 ≤ s ≤ t then (leaving

aside regularity conditions) for0 < s < t:

IE[Nt −
Z t

0

λudu|Fs] = IE[Nt −Ns + Ns −
�Z s

0

λudu +

Z t

s

λudu
�
|Fs]

= IE[Nt −Ns|Fs]− IE[

Z t

s

λudu|Fs] + Ns −
Z s

0

λudu

= Ns −
Z s

0

λudu

In the second equality we use the fact thatNs −
R s

0
λudu isFt-adapted, and in the third we use the equation [9]. Then the process

(Nt −
R t

0
λudu)t is a martingale and relation [9] characterizes the stochastic intensity process.
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The intensity exists iff the jumps are totally unreachables and if the process is of locally integrable

variation (see [Protter, 2003]). It turns out that the class of processes made of processes with continuous

compensators can be transformed into a Poisson process through a time transformation. We have then

(see [Bŕemaud, 1991]) :

Theorem 3.3. [Change of time for an univariate point process]

Let Yt be a process withλt, aFt-intensity, andµt, a Gt-intensity, whereFt andGt are histories ofYt

with:

FN
t ⊂ Gt ⊂ Ft

We suppose thatIP -as, we havelimt−→∞ Yt = ∞. For t ∈ IR we defineφ(t) theGt-stopping time such

as: ∫ φ(t)

0

µudu = t

Then the process̃Yt = Yφ(t) is a Poisson process with an intensity equal to1.

3.3.2 Endogeneity in duration models

The analysis of endogeneity in duration models is particularly relevant in the context of treatment effect

using counterfactuals (see [Heckman]). A counterfactual is the hypothetical view of what have might

have occurred if what happened could be undone. Let us denote byξ (continuous or discrete) the level

of a treatment and by(τ ξ)ξ the counterfactual process of outcome durations. For eachξ ∈ Θ ⊂ IR, τ ξ

is a duration. Actually this process is degenerate in the sense that theτ ξ are all functions of a single

random element. We assume :

τ ξ = (Λξ)−1(U) = Φξ(U) (10)

whereU is an exponential (1) distribution. For eachξ, Λξ is the integrated hazard function ofτ ξ and is

assumed to be strictly increasing fromIR+ to IR+. We denote byΦξ its inverse function and, assuming

smoothness conditions:

λξ(t) =
∂

∂t
Λξ(t)

is the hazard rate ofτ ξ. The parameter of interest of this model is functional and equal toΛξ(t) (or

λξ(t)) or to its inverseΦξ(u). This counterfactual process is completed by an assignment mechanism.

We consider a joint distribution of a vector((τ ξ)ξ, Z,W ) whereW is a vector of instrumental variables

and Z is the level of treatment. We assume:

• (τ ξ)ξ has a marginal distribution characterized by 10;

• We suppose for the moment that the instruments are not time dependent. This assumption is

introduced in order to simplify the intuition of the presentation, but the aim of the next sections

will be to drop this hypothesis and to incorporate dynamic instruments in the study.

The observed data are(τ, Z,W ) whereτ = τz i.e. the value of outcome at the assigned level of treat-

mentZ = z. As in most of the treatment models, the dependence betweenτ andZ come from two

factors: the treatment effect described byΛz and the assignment bias captured by the dependence be-

tweenU andZ. Without any additional assumption, these two effects may not be separated and the

parameter of interestΛZ(t) is not identified. We may consider three independence (or conditional inde-

pendence) conditions which allow identification:

12



• H1 - Z ⊥ U

• H2 - Z ⊥ U |W

• H3 - U ⊥W

The conditionH1 defines the pure randomization case. In this caseW may be neglected and the condi-

tional integrated hazard function ofτ givenZ is preciselyΛz(t). This parameter is then identified and

may be estimated by usual methods.

The assumptionH2 is a conditional randomization condition from which the identification follows from

the following argument. Let us denote byS(t|z, w) the conditional survivor function ofτ that is to say:

S(t|z, w) = P (τ ≥ t|Z = z,W = w)

= P (U ≥ Λz(t)|Z = z,W = w)

= SU (Λz(t)|W = w)

whereSU (u|W = w) = IP (U ≥ u|W = w) = P (U ≥ u|Z = z,W = w) with conditionH2.

Moreover :

P (U ≥ u|W = w) =
P (U ≥ u)p(w|U ≥ u)

p(w)

wherep represents both marginal and conditional density of W. Then:

S(t|z, w) =
e−Λz(t)S(t)p(w|z ≤ t)

S(t)p(w)

=
e−Λz(t)S(t|w)

S(t)

using obviouslyS for the marginal and the conditional survivor functions ofτ . ThenΛz(t) is identified.

The third condition is the most interesting case and will be explored in the next section.

3.4 Model and integral equation

3.4.1 The counterfactual approach

We write a counterfactual model(ξ, τξ) for durations that are now considered as time of jumps of an

elementary counting process:1(τξ ≥ t). Endogeneity arises through the assignment mechanism since

observations will be reduced to realizations(z, τz) of (ξ, τξ). We are interested in the process :

Xξ,t = 1(τξ ≥ t) = Λξ(t) + Eξ,t

whereEξ,t ought to be a martingale. However, if we observe the processξ at a given valueZ, we have:

Xt = XZ,t = ΛZ(t) + EZ,t

Yet the termEZ,t, is no more a martingale. The latent model is still depending onξ, butEZ,t depends

on the observed endogenous variables :z andτz. The previous considerations are no longer valid, since

13



we don’t know ifIE[EZ,t|Z] 6= 0 as no assumption (even conditional) on the independence betweenZ

andU is made. Now, we have to try to look for an other form of dependence, and try to find for the

durationτ an expression of the formτ = φ(Z,U), Z being the set of endogenous variables, andU

being a random perturbation. The function is then different from the hazard ofτ conditional onZ. Let’s

U be an exponential variable of parameter1 and let’s consider the process1(U ≥ t). It’s easy to show

that its compensator ist ∧ U . We define:

Mt = 1(U ≥ t)− t ∧ U.

ThenMt aFt-martingale (whereFt is the natural filtration of the process1(U ≥ t)). Now let’s turn to

the counterfactual processXξ,t = 1(τξ ≤ t) with differential form :

dXξ,t = λ(t, ξ)(1−Xt−)dt+ dEξ,t.

We noteΛ(t, ξ) =
∫ t

0
λ(s, ξ)ds. The integrated hazard function ofXξ,t is then equal toΛ(t ∧ τ, ξ). We

have:

Xξ,t = Λ(t ∧ τξ, ξ) + Eξ,t

Theorem 3.4. Under the previous notations:

Eξ,t = MΛ(t,ξ) ⇔ τξ = Λ−1(U, ξ)

See proof on appendix .EZ,t is not bound to be a martingale butEξ,t may be linked withMt, the

compensated version of an elementary counting process relative to an exponential random variableU .

This is interesting since it allows to linkτ ξ with U andξ through the inverse counterfactual integrated

hazard function ofXξ,t. This will be our function of interest, which we will try to estimate.

3.4.2 Transformation in time of a Poisson process

In this section we will explore the case of processes that are obtained through a time-transformation of

a standard Poisson process. As expressed in 3.3.1, the processes that allow such a transformation are

those with continuous compensators (this class includes in particular increasing processes with locally

integrable variation, with jumps occurring at stopping times that are totally unreachables).

We want to work with instruments to treat endogeneity. Note that the condition that we obtained in 3.4 is

very close to the characterization of 3.3: the times of jump of the counting process and the corresponding

Poisson process are related through a compensator function of the processXξ,t but in the counterfactual

universe.

Exponential variables and Poisson processes are closely related. Let’s considerNt a homogenous Pois-

son process, of parameter 1. We noteMt = Nt − t. We define, still in the counterfactual world:

Yξ,t = Λ(t, ξ) +MΛ(t,ξ)

It’s a Poisson process of intensityλ(t, ξ) = Λ′(t, ξ), sinceMΛ(t,ξ) = NΛ(t,ξ) − Λ(t, ξ) we have easily:

Yξ,t = Λ(t, ξ) + [NΛ(t,ξ) − Λ(t, ξ)] = NΛ(t,ξ)

14



We begin by consideringNt, a standard Poisson process:Nt ∼ P(1). We will noteMt the martingale

(relatively to the usual filtration) such asMt = Nt − t. Then,Λ be a function of(t, ξ), continuous and

increasing int, with the initial conditionΛ(0, ξ) = 0, ∀ξ. We defineXξ,t as being:

Xξ,t = NΛ(t,ξ) or Nt = XΛ−1(t,ξ)

In the counterfactual view, this is equivalent, thanks to the former discussion, to :

Xξ,t = Λ(t, ξ) +MΛ(t,ξ)

However, the assignation mechanism of the observed value (ξ = z) introduces endogeneity :

XΛ−1(t,ξ=z) = Xφ(t,z).

We want to estimateφ(., .) and we consider additional instrumentsW to treat for endogeneity. Those

instruments are not supposed to be time-dependent in a first approach. The main hypothesis we make is

that:

Assumption 3.5.W are independent fromU andNt.

3.4.3 Integral equation forφ

We suppose thatXt is a one-jump process:Xt = 1(τ ≥ t) whereτ is a random duration. So is

Nu = 1(U ≤ u), but we make the additional assumption thatU = Λ(τ, Z) follows an exponential

law of parameter one conditional to the instrumentsW . Our aim is to estimateφ(., .), the inverse ofΛ,

observingτ , Z, and W. However, we do not observeNt, but assume thatNt is independent fromW .

Let’s writef(t, z|w) the joint law of(τ, Z) conditional toW . Havingτ = φ(U, z) andU = Λ(τ, z), if

we noteg(u, z|w) the joint law of(U,Z) conditional toW , we have clearly:

g(u, z|w) = φ′(u, z)× f(φ(u, z), z|w)

φ′(u, z) being the derivative ofφ towards its first argument. We will notef(t, z, w) andg(u, z, w) the

corresponding joint laws, a point replacing a variable when it has been integrated along it, thus leading

to marginal laws. Then the survival functionS(t, z|w) will be defined through:

Sτ (t, z|w) = IP [τ ≥ t, Z = z|W ] =
∫ ∞

t

f(t′, z, w)
f(., ., w)

dt′

First, our main assumption was that:U = Λ(τ, z) ∼ Exp(1). Then, this leads to :∫
g(u, z|w)dz = e−u

∫
φ′(u, z)f(φ(u, z), z|W )dz = e−u

Second, we have :

SU (u, z|W ) = IP [U ≥ u, Z = z|W ]

IP [U ≥ u|W ] =
∫
Su(u, z|W )dz = e−u
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as a survival function of an exponential variable. Provided thatφ is monotonic in its first argument, we

have:

IP [U ≥ u, Z = z|W ] = IP [φ(U, z) ≥ φ(u, z), Z = z|W ]

Then integrating alongz: ∫
Su(u, z|W )dz =

∫
Sτ (φ(u, z), z|W )dz

Consequently : ∫
Sτ (φ(u, z), z|W )dz = e−u

This second equation was already obtained in the static case : this is natural since we explore the same

kind of dependenceτ = φ(U,Z) with U being an exponential variable of parameter1. The novelty is

the first equation, resulting from the expression of the law of(U,Z) conditional toW . We have the two

following expressions, holding∀u ≥ 0:{ ∫
φ′(u, z)f(φ(u, z), z|W )dz = e−u∫

Sτ (φ(u, z), z|W )dz = e−u

If we divide the first equation by the second, we get:

1 =
∫

φ′(u, z)f(φ(u, z), z|W )∫
Sτ (φ(u, z′), z′|W )dz′

dz

=
∫
φ′(u, z)

f(φ(u, z), z|W )
Sτ (φ(u, z), z|W )︸ ︷︷ ︸

©A

× Sτ (φ(u, z), z|W )∫
Sτ (φ(u, z′), z′|W )dz′︸ ︷︷ ︸

©B

©A is the hazard function of the process{Xt} taken inφ(u, z) conditional onZ = z,W . Indeed:

f(t, z|W )
S(t, z|W )

=
f(t|z,W )f(z|W )
S(t|z,W )f(z|W )

=
f(t|z,W )
S(t|z,W )

= λτ (t|z,W )

©B is the law ofZ conditional toW andU ≥ u. Finally:

∫
φ′(u, z)λτ (φ(u, z)|Z = z,W )g(z|U ≥ u,W )dz = 1 (11)

It would be tempting to integrate with respect to the variableu and to switch both integrals but this will

be difficult since there is a conditioning term inU in the densities inz. However if we integrate inu for

u varying from0 to s we get :∫ s

0

du

∫
z

φ′(u, z)λX(φ(u, z)|Z = z,W )g(z|W,FN
u )dz = s

Then if we switch the integrals and make the following change in variablest = φ(u, z) we get :∫
z

∫ φ(s,z)

t=0

λT (t|Z = z,W )g(z|U ≥ φ−1(t, z),W )dzdt = s

and asg(z|U ≥ φ−1(t, z),W ) = g(z|τ ≥ t,W ) we conclude that:

∫
z

∫ φ(s,z)

t=0

λT (t|Z = z,W )g(z|τ ≥ t,W )dzdt = s (12)
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3.4.4 Working with intensities

We can address this question in a more general framework and extend the formula 12 by using intensities

rather than using survivorship functions. We need the following lemma:

Lemma 3.3. LetXt be a process with stochastic intensityλX
t , adapted to the filtrationAX

t (containing

internal history ofXt). Letφ(t) be a monotonous function of time, sufficiently smooth. Then if we define

Nt to beNt = Xφ(t) thenNt has also a stochastic intensityλN for the filtrationAN
t = AX

φ(t) which is

given by:

λN
t = φ′(t)λX

φ(t)

The proof is straightforward when we use characterization 9. For0 < s < t ∈ IR we have:

IE[Nt −Ns|AN
s ] = IE[Xφt −Xφ(s)|AX

φ(s)]

= IE[
∫ φ(t)

φ(s)

λudu|AX
φ(s)]

= E
[ ∫ t

s

φ′(v)λvdv|AN
s

]
by making the change of variablesv = φ(u) in the last equation. This therefore characterizes the inten-

sity ofN . This will help us to extend our result. Indeed, if we noteλN
t andλX

t the intensities of jump

of Nt andXt respectively, we have that:

λN [u|z,W,FN
u ] = λX [φ(u, z)|z,W, τ ≥ φ(u, z)]× φ′(u, z)

Then, asNt is a process of intensity one:∫
λN [u|z,W,FN

u ]g(z|W,FN
u )dz = 1

which rewrites using the previous relation:

∫
φ′(u, z)λX(φ(u, z)|Z = z,W )g(z|W,FN

u )dz = 1 (13)

Consequently, integrating inZ, the general following result still holds:

∫
z

∫ φ(u,z)

0

λX(t|Z = z,W )g(z|FX
t ,W )dtdz − u = 0 (14)

3.4.5 Generalization

The former section gives us insights to generalize what has been done to the case of dynamic variables

and / or instruments. Let’s observe that it is always easier to work on intensities rather than on compen-

sators.

Let’s suppose that we have for the processX the Doob-Meyer decomposition :Xt = HX
t + MX

t for

the filtrationXtvZtvWt. We suppose thatφ(t, Z) is a family of increasing, finite stopping times,Zt

measurable. We make the additional assumption that for eacht : φ(t, Z) ≥ t.
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We suppose thatNt = Xφ(t,Z). Then :Nt = HN
t +MN

t forXφ(t,Z)vZφ(t,Z)vWφ(t,Z) = NtvZφ(t,Z)vWφ(t,Z)

with HN
t = HX

φ(t,Z) andMN
t = MX

φ(t,Z).

In this case we need a stronger assumption betweenW andN :

Assumption 3.6. N∞ andW∞ are independent that is to say, both all the trajectory ofN and all the

trajectory ofW are independent. We suppose that:

IE[hN
t |NtvWφ(t,Z)] = IE[hN

t |Nt]

We have that:∫
Z

φ′(s, Z)hX(φ(s, Z)|Xφ(s,Z)vZφ(s,Z)vWφ(s,Z))g(Zφ(s,Z)|Xφ(s,Z)vWφ(s,Z))dZ = 1

∈t
0 ds

∫
Z

φ′(s, Z)hX(φ(s, Z)|Xφ(s,Z)vZφ(s,Z)vWφ(s,Z))g(Zφ(s,Z)|Xφ(s,Z)vWφ(s,Z))dZ = t

If we make the change of variablesu = φ(s, Z) then:∫
Z

dZ

∫ φ(t,Z)

0

hX(u|XuvWuvZu)g(Zu|XuvWu)du = t

Dynamic covariates with all the trajectory : suppose that we have dynamic covariate but that we

can observe the whole trajectory of the processes (instruments and variables). The equation becomes:∫
Z

dZ

∫ φ(t,Z)

0

hX(u|XuvWvZ)g(Z|XuvW )du = t

3.5 Estimation

We have to estimateλX() andg() that are unknown. It will be possible to give estimatorsλ̂ of λ(t|z, w)
but the situation forg(z|FX

t ,W ) will be slightly different, since we will be unable to derive the speed of

convergence of a potential estimatorĝ without precisely defining the nature of the dependence between

Z andFX
t , even in the static case.

We will work with fixed values of “u”. We suppose that for any(u, z) we have thatz 7→ φ(u, z) ∈ L2
Z

and isIR+-valued. We considerT as expressed formerly, and that for anyu fixed, Tφ ∈ L2
W . If φ0

stands for the true solution of equation 12 we will noteT̂n the proposed estimator ofT for a sample

made ofn observations. If̂λ andĝ are estimators ofλ andg, a form ofT̂n could be:

T̂n =
∫ ∫

λ̂ĝ

In the following, we will drop the indexation byn. As n goes to infinity, we will adopt the generic

notationδn for the speed of convergence that is to say:

||T̂n − T ||L2
W

= O(δn)
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3.5.1 Speed of convergence

The easiest way to see thatδn strongly relies on the assumption made onZ conditionally onFX
t is to

linearize and to see that :

||λ̂ĝ − λg|| ≤ ||(λ̂− λ)g||+ ||(ĝ − g)λ||+ o(||λ̂− λ|| × ||ĝ − g||)

Then the speed of convergence ofλ̂ĝ is driven by the lowest speed reached by eitherλ̂ or ĝ. As bothλ

andg are conditional densities or intensities, those speed of convergence will rely on the dimension of

the conditioning variable. For example, as soon as the dimension of(Z,W ) is greater than the dimension

of (FX
t ,W ), we will only have to control for the speed of convergence ofλ. For instance, in the case

of a discrete time sample ofX, keeping all the past observations ofX would lead to a dimensionality

problem concerning the speed ofĝ.

3.5.2 Example

We consider equation (12) and suppose thatFX
t = σ({τ ≥ t}). We will use kernel density estima-

tion, kernels will be notedK(.) and will sometimes stand for a generalized multi-dimensional kernel,

depending on the dimension of the concerned variable, with associated bandwidth (generically denoted

by h., depending on the sizen of the sample but we drop this indexation for sake of simplicity). The

joint densityf(t, z, w) can be estimated through:

f̂(t, z, w) =
1

nhth
p
zh

q
w

n∑
i=1

K(
t− ti
ht

)K(
z − zi

hz
)K(

w − wi

hw
)

for a set of observations(ti, zi, wi)i∈[1;n], wherep is the dimension ofZ, q the dimension ofW . We

suppose moreover that there exist an analytical expression of the survival function of the kernel int,

notedK̄, such as :K̄(t) =
∫∞

t
K(t′)dt′. Consequently, the survival function is estimated through:

Ŝ(t|z, w) =
1

hp
zh

q
w

n∑
i=1

K̄(
t− ti
ht

)K(
z − zi

hz
)K(

w − wi

hw
).

Finally:

λ̂(t|z, w) =
1
ht

∑n
i=1K( t−ti

ht
)K( z−zi

hz
)K(w−wi

hw
)∑n

i=1 K̄( t−ti

ht
)K( z−zi

hz
)K(w−wi

hw
)

and:

ĝ(z|τ ≥ t,W ) =
1
hp

z

∑n
i=1K( z−zi

hz
)K(w−wi

hw
)1t≤ti∑n

i=1K(w−wi

hw
)1t≤ti

.

Then,T̂ (φ) as a function ofW for a fixedu may be estimated by:∫
z

∫ φ(u,z)

0

λ̂(t|z,W )ĝ(z|τ ≥ t,W )dtdz − u

We summarize here the hypotheses on the kernels and on the densities that we have to make in order to

derive speed of convergence. First, we suppose that the variables of interest take their values in compact

sets: τ ∈ [0;T ], Z ∈ [0; 1]p andW ∈ [0; 1]q. Second, we consider nonparametric kernelsK with

corresponding bandwidthsht, hz, andhw. Kernels for estimation ofZ andW are respectivelyp andq

dimensional generalized product kernel functions. We suppose moreover that:

•
∫
K(u)du = 1;

19



•
∫
K2(u)du <∞;

•
∫ +∞

t
K(u)du has a closed form expression.

We suppose that for each kernel of bandwidthh there exists an orderr ∈ IN such ash−j+1
∫
ujK(u/h)du

is equal to1 for j = 0, 0 if j ∈ [1; r − 1], and is different from0 for j = r. In the following,r will

denote the smallest order of those kernels. Each bandwidth depends on the sample sizen andhn,t → 0,

hn,z → 0, hn,w → 0, andnhn,t → ∞, nhp
n,z → ∞, nhq

n,w → ∞. Third, we suppose the intensity

λ(t|z, w) is dλ-times continuously differentiable with a boundeddλ-derivative and thatg(z|τ ≥ t, w) is

dg times continuously differentiable with a boundeddg-derivative. Under those hypotheses, and ifρ is

the minimum between the orderr of the kernels,dλ anddg, the estimator̂λĝ tends toλg (in aL2 sense),

at a speedvn which is :

vn = O

(
1

nhp
n,zh

q
n,w

+ (hp
n,zh

q
n,w)2ρ;

1
nhth

q
n,w

+ (hq
n,w)2ρ

)

3.5.3 Simple forms ofφ

We can also make some simplifying models forφ. In the case of a risk proportional model, we suppose

that there is a semi-parametric model onφ, and that:

φ(u, z) = γ(ψ(z)u) and ψ(z) = ψβ(z) = ψ(z, β)

with for exampleψ(z, β) = exp(βz). This implies that the model becomes:∫
z

∫ γ(u)

0

ψ(z)λX(ψ(z)s|z,W )g(z|τ ≥ ψ(z)s,W )dsdz − u = 0 = T (γ, β)

This assumption allows to switch the integrals in the former expression, which is not possible in the

general case. It is even sometimes possible to considerγ(x, y) = xy.

4 THE NON-SEPARABLE CASE : IDENTIFICATION AND CONVER -

GENCE

4.1 An ill-posed inverse problem

4.1.1 Definition

We want to show that the problem we are studying is an ill-posed linear one. We first assume without

loss of generality thatZ andW have a compact support and take their values on[0; 1]dZ and[0; 1]dW .

We recall thatU ∼ Exp(1). The function(u, z) 7→ φ(u, z) to be estimated satisfies :∫
z

∫ φ(u,z)

t=0

λT (t|Z = z,W )g(z|τ ≥ t,W )dzdt = u

and is defined onIR+ × [0; 1]dZ . Let’s defineL2(U,Z), L2(U,W ) the spaces of functions such as :

L2(U,Z) =

(
ψ : IR+ × [0; 1]dZ 7→ IR measurable | ||ψ||L2(U,Z) =

�Z
|ψ(u, z)|2fU (u)fZ(z)dudz

� 1
2
< +∞

)
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L2(U,W ) =

(
ψ : IR+ × [0; 1]dW 7→ IR measurable | ||ψ||L2(U,W ) =

�Z
|ψ(u,w)|2fU (u)fW (w)dudw

� 1
2
< +∞

)

We define:

T : L2(U,Z) 7→ L2(U,W )

φ 7→ T (φ) : (u,w) →
∫
z

∫ φ(u,z)

0
a(s, z, w)dsdz − u

wherea(s, z, w) = λX(s|Z = z,W )g(z|τ ≥ s, w). We try to solve the following inverse

problem:T (φ) = 0. In fact this problem has to be solved for fixed values ofu. To simplify

notations, we will sometimes note in the following(X) = L2(U,Z) and(Y ) = L2(U,W ).

This problem is nonlinear : to analyze its ill-posedness the first step is to check if the operator

T is Frechet-differentiable. We estimate the Gateaux-derivative of the operator which is given

by takingα = 0 in :
∂

∂α

[ ∫
z

∫ φ(u,z)+αφ̃(u,z)

s=0
a(s, z, w)− u

]
.

Then this derivative inφ is the operator :

φ̃ 7→ T ′φ(φ̃) =
∫
z
φ̃(u, z) a(φ(u, z), z, w)︸ ︷︷ ︸

fτ (φ(u,z),z|τ≥φ(u,z),W )

dz

=
∫
z

φ̃(u, z)
φ′(u, z)

φ′(u, z)fτ (φ(u, z), z|τ ≥ φ(u, z),W )︸ ︷︷ ︸
=fU (u,z|U≥u,W )

dz.

For each functionφ ∈ L2(U,Z), T ′φ is linear fromL2(U,Z) toL2(U,W ).
To ensure thatT is Frechet-differentiable, we have to check whether:

• T ′φ is linear, which is straightforward;

• T ′φ is continuous for everyφ;

• the mappingφ 7→ T ′φ is continuous onL2(U,Z) on a||.||L(L2(U,Z),L2(U,W )) sense (where

L(L2(U,Z), L2(U,W )) is the space of linear functions betweenL2(U,Z) andL2(U,W )).

We make the following assumption:

Assumption 4.1. ∀φ ∈ L2(U,Z) we have:∫
IR+×[0;1]dW

∫
z
a2(φ(u, z), z, w)fU (u)fW (w)dudwdz < +∞.

Assumption 4.1 ensures that∀φ, T ′φ is bounded, as it is linear,T ′φ is continuous for everyφ. We

still need to prove that the mappingφ 7→ T ′φ is continuous onL2(U,Z). In fact, for our analysis

of ill-posedness, we only need this mapping to be continuous on the true solutionφ = φ0.
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As T ′φ is linear,||T ′φ||L(X,Y) = supφ̃∈X,||φ̃||=1||T
′
φ||Y. ∀φ1 ∈ X, we have forφ̃ ∈ X andu,w:

(T ′φ0
− T ′φ1

)(φ̃) =
∫
z
φ̃(u, z) {λ(φ0(u, z), z, w)g(z|τ ≥ φ0(u, z), w)} dz

which can be rewritten:

(T ′φ0
− T ′φ1

)(φ̃) =
∫
z
φ̃(u, z)λ(φ0(u, z), z, w) {g(z|τ ≥ φ0(u, z), w)− g(z|τ ≥ φ1(u, z), w)} dz

+
∫
z
φ̃(u, z)g(z|τ ≥ φ1(u, z), w) {λ(φ0(u, z), z, w)− λ(φ1(u, z), z, w)} dz

�

We may need the expression of the adjoint operator of the Fréchet derivative. For functions

φ̃ ∈ L2(U,Z) andψ̃ ∈ L2(U,W ) we seek the linear operatorT
′∗
φ0

fromL2(U,Z) toL2(U,W )
such that:

< T ′φ0
(φ̃), ψ̃ >L2(U,W )=< φ̃, T

′∗
φ0

(ψ̃) >L2(U,Z) .

Writing explicitly:

< T ′φ0
(φ̃), ψ̃ >L2(U,W ) =

∫
w
(T

′∗
φ0

(φ̃)(u, z))(ψ̃(u,w))fU (u)fW (w)dudw

=
∫
w
(
∫
z
φ̃(u, z)λT (φ0(u, z)|z, w)g(z|τ ≥ φ0(u, z), w)dzdt)

×(ψ̃(u,w))fU (u)fW (w)dudw

=
∫
z
(
∫
w
ψ̃(u,w)λT (φ0(u, z)|z, w)g(z|τ ≥ φ0(u, z), w)fW (w))

×(φ̃(u, z))fU (u)dzdtdudw

=
∫
z
(
∫
w
ψ̃(u,w)λT (φ0(u, z)|z, w)g(w|τ ≥ φ0(u, z), z)

×fZ(z))(φ̃(u, z))fU (u)dzdtdudw

=
∫
z
(
∫
w
ψ̃(u,w)λT (φ0(u, z)|z, w)g(w|τ ≥ φ0(u, z), z)dudw)

×(φ̃(u, z))fZ(z)fU (u)dzdt

= < φ̃, T
′∗
φ0

(ψ̃) >L2(U,Z)

where:

T
′∗
φ0

(ψ̃) =
∫
w
ψ̃(u,w)λT (φ0(u, z)|z, w)g(w|τ ≥ φ0(u, z), z)dudw

4.1.2 Ill-posedness

As underlined by Proposition 10.1 of [Engl et al., 1996] the characterization of the ill-posedness

of an operator through conditions on its linearization is sometimes difficult and no general con-

ditions can be given. We could use this Proposition or its local version given in [Chernozhukov et al., 2008],

and try to work directly onT .
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Alternatively, one can try to show thatT ′ computed on the true solution is compact. This

condition will be sufficient only in the case of infinite dimension of the range ofT ′ (which is

straightforward since the arrival space ofT ′φ0
isL2(U,W ).

Suppose then that we want to show the compactness ofT ′φ. A first approach could be to show

that the imageT ′φ(S) of bounded setsS is relatively compact (i.e. the closure ofT ′φ(S) is also

compact)and use for this the characterization of [Alt, 1992] used by [Chernozhukov et al., 2008].

We could also examine under which conditions the operator is an Hilbert-Schmidt one.

Assumption 4.2. We assume that ifφ0 is the true solution of the problem :∫
u

∫
w

∫
z
a2(φ(u, z), z, w)

fW (w)fU (u)
fZ(z)

dzdwdu < +∞.

With condition 4.2, if we posek(u,w, z) = a(φ0(u,z),z,w)
fZ(z) , k(.) is then the kernel of the Hilbert-

Schmidt operatorT ′φ since:

T ′φ0
φ̃ =

∫
z
k(u,w, z)φ̃(z)fZ(z)dz

with: ∫
u

∫
w

∫
z
|k(u,w, z)|2fZ(z)fW (w)fU (u)dzdudw.

Under those conditions,T ′φ0
is Hilbert-Schmidt and therefore compact.

4.2 Identification

We now want to explore the conditions for the identification ofφ defined by equation 14. Let’s

assume that there exists two functionsφ1 andφ2 such that 11 holds. We assume moreover that

for normalization conditions,φ1(0, z) = φ2(0, z) = 0 ∀z. Then:∫
{φ′1(u, z)λX(φ1(u, z)|Z = z,W )−φ′2(u, z)λX(φ2(u, z)|Z = z,W )}g(z|U ≥ u,W )dz = 0

Assumption 4.3.Z << W | U ≥ u which means that for all functionρ(., .):

IE[ρ(Z, u)|W,U ≥ u] = 0 =⇒ ρ(z, u) = 0

Under these conditions, the previous equality implies that:

∀u, φ′1(u, z)λ
X(φ1(u, z)|Z = z,W ) = φ′2(u, z)λ

X(φ2(u, z)|Z = z,W ).

Each term is the derivative ofΛτ (φi(u, z)|z,W ) w.r.t. u wherei ∈ {1, 2}. Then there exists

α ∈ IR such that:

ΛX(φ1(u, z)|z,W ) = ΛX(φ2(u, z)|z,W ) + α ∀u, z.
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Especially for u=0:

ΛX(φ1(0, z)|z,W ) = ΛX(φ2(0, z)|z,W ) = ΛX(0|z,W ) = 0

thenα = 0 and:

ΛX(φ1(u, z)|z,W ) = ΛX(φ2(u, z)|z,W ) ∀u, z .

We see that the second assumption in order to get identification, i.e.φ1 = φ2 is thatΛX has

to be injective. We supposed earlier that the compensator ofX had to be continuous. This

assumption is fundamental, but not to ensure injectivity. However, we supposed thatΛ was in-

creasing: this is not sufficient, it has to be strictly increasing. This is equivalent to the fact that

λX never vanishes. WhenλX = 0, the process becomes deterministic as we know it cannot

jump. The hypothesis is formally similar to the identification condition in the static case: how-

ever it is far stronger since the identification is controlled on the trajectory as long asU ≥ u.

We can also recover this condition by using operators. We study the operatorT : φ 7→ T (φ)
such as for a functionφ we have:

T (φ) : (u,w) 7→
∫
z

∫ φ(u,z)

s=0
a(s, z, w)dzds− u

(where the functiona(., ., .) is expressed through equation 14). We are looking for functionsφ

such asT (φ) = 0. φ(., .) takes for arguments andZ, andT mapsφ into a function ofs and

W . Additionally, we will have to constrainφ to be monotonic, increasing. ThereforeT will be

considered as a mapping between the two Hilbert spaces:

T : L2(U,Z) → L2(U,W )

If we wantT to be one-to-one, that is to sayT ′φ(φ̃) = 0, this implies the same condition than

in the former approach, that is to say :Z has to be strongly identified byW conditional toU .

4.3 Convergence

OperatorT is defined as :

T : φ→
∫
z

∫ φ(s,z)

t=0
λT (t|Z = z,W )g(z|τ ≥ t,W )dzdt− s

and we try to solveT (φ) = 0. φ is a transformation of time, takes its values inIR+, and its

arguments in[0;T ]× IRn or IR+ × IRn. Moreover we assume thatφ belongs toL2(U,Z). In

the following, we will noteT̂ = T̂n an estimator ofT . Generically,T̂ is :

T̂ : φ→
∫
z

∫ φ(s,z)

t=0
â(z,W, t) dzdt− s

24



whereâ(z,W, t) is an estimator ofa(z,W, t) = λT (t|Z = z,W )g(z|τ ≥ t,W ). We face a

non linear inverse problem, whereT and evenT ′ are not known2) which implies the use of a

regularization technique, and present first the case of regularization in Hibert Scales.

4.3.1 Regularization in Hilbert scales

We want to solve inφ the following problem:

min
φ
||T̂ (φ)||2 + αn||φ− φ∗||2s with φ(u, z) ∈ L2

Z for u fixed (15)

whereαn is a regularization parameter andφ∗ is an arbitrary function. In particular, we will

have to control the behavior of the parameterαn asn goes to infinity. We will adapt the ap-

proach of [Engl et al., 1996] p.245 although we face a different problem. Additional conditions

on the Frechet-derivative ofT will be needed to obtain the speed of convergence of our solu-

tion. We first examine the convergence of the sequence of solutions of 15 towards the true

solution of the initial problem 12.

Assumption 4.4. Assume that:

• if φ0 is a solution of the problem 12 then there exists a sequenceδn such as

||T̂ (φ0)− T (φ0)|| = ||T̂ (φ0)|| ≤ δn

• δn, αn, andδ2n/αn tends to0 asn increases to infinity;

We can show that under hypothesis 4.4 we have:

Lemma 4.1. If (φ̂αn) is a sequence of solutions of the related minimization problems (15), then

there exists a subsequence(φ̂αn,2) of (φ̂αn) which converges towards a functionφl (in a L2
W

sense). Moreoverφl is a solution of the problem 12.

See proof in appendix A.3. We will only need to suppose that||T̂ −T || → 0 which is not a too

strong assumption.

Unicity : some conditions may be examined to ensure unicity ofφl. If the problem 12 is

identified,φ0 is unique andφ0 = φl. As soon asφl is unique, we have that there is only one

limit for any convergent subsequence of(φ̂αn), so (φ̂αn) is itself convergent and tends toφ0.

However, even when the initial problem is not identified, it is possible to restrict our problem to

some classes of solutions. [Engl et al., 1996] uses the concept ofφ∗-minimal norm solutions.

Thenφ0 is taken as the unction, among the set of solutionsφ of 12, which minimizes the

quantity||φ− φ∗||s. Then, we have thatφ0 = φl. Indeed:

2As we are looking forφ which appears in the expression ofT ′.
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||φl − φ∗|| ≤ lim sup
n→∞

||φ̂2,αn − φ∗||

≤ ||φ0 − φ∗||

≤ ||φl − φ∗||.

The first inequality comes from the lower-semi continuity of the norm. The second comes from

the definition of(φ̂αn) and the third from the fact thatφ0 is aφ∗-minimal norm solution and that

φl is itself a solution.

Speed of convergence : we suppose that the solution initial problem is identified and want to

derive the speed of convergence of the solutions(φ̂αn) to the true solutionφ0 (when we suppose

that that the initial problem is identified). We mainly need conditions that are similar to those

of [Engl et al., 1996], with additional assumptions concerning the Frechet derivative ofT̂ and

T in φ0.

Assumption 4.5. We suppose that:

• (i) - the problem (12) is identified with a true solutionφ0

• (ii) - T andT̂ are continuous and Frechet differentiable with convex domains;

• (iii) - there existsC > 0 such as||r̂n|| ≤ C||φ̂αn − φ0||2

• (iv) - there existsγn such as||T̂ ′φ0
− T ′φ0

|| ≤ γn

• (v) - there existsβ ∈ IR such asφ0−φ∗ ∈ H−β where(Hs)s∈IR is a Hilbert scale (source

condition)

• (vi) - there existsa such as||T ′φ0
(φ̂− φ0)||2 ∼ ||φ̂− φ0||2−a

• (vii) - a ≤ s ands ≤ β ≤ a+ 2s

• (viii) - γ2(a+s)/a
n /αn → 0 whenn→ +∞.

Under assumptions 4.4 and A.5 we have the following lemma:

Lemma 4.2.

||φ̂αn − φ0||2−a + αn||φ̂αn − φ0||2s ≤ δ2n + αn||φ̂αn − φ0||2s−β + ||φ̂αn − φ0||−a(δn + ||φ̂αn − φ0||2)

+γn||φ̂αn − φ0||(δn + ||φ̂αn − φ0||−a + ||φ̂αn − φ0||2)

See the proof in appendix A.4.

At this point we obtain the same expression than in the case of nonlinear ill-posed inverse prob-

lems (see [Engl et al., 1996]), but with the additional term related toγn and the convergence

of the Frechet derivative taken on the true solution. Ifγn = O(δn) this term is likely to be

negligible. However when it’s not the case, this term has to be taken into account for the study
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of the speed of convergence of the solutions. In our case, asT is estimated along two integrals,

andT ′ only one,γn will probably be slower thanδn and can not be left aside. Yet, we will need

in the following the next assumption:

Assumption 4.6. We suppose that:

γ
a+β

a
n δ−1

n → 0

This hypothesis will help us to derive the speed of convergence of the solution. It appears that

γn must not be too slow compared toδn and that there is a minimal power forγn (equal to

(a+ β)/a which is greater than1) to be at least faster thanδn.

Lemma 4.3. The best choice forαn is:

αn ∼ δ
2a+2s
a+β
n

If moreover we make assumption 4.6, we get a speed of convergence equal to:

O(δ
β−s
a+β )

The rate ofαn is chosen according to the usual case and leads to a speed of convergence that

is similar to the standard situation. However, if hypothesis 4.6 is not verified, the terms inγn

are too slow and the result does not hold, those terms driving the speed of convergence of the

sequential solutions towards the true solution.

4.3.2 Using aL2 penalization

We can reformulate the problem with a more traditional kind of penalization. We study the

same kind of minimization objective with||φ− φ∗|| taken under aL2 norm. That is to say :

min
φ
||T̂ (φ)||2 + αn||φ− φ∗||2 φ(u, z) ∈ L2

Z for u fixed (16)

whereαn is still the regularization parameter andφ∗ is an arbitrary function. The study of

convergence is not affected by this, since aL2 norm is a particular case of the Hilbert space

wheres = 0. Then we make the same hypothesis than 4.4 and the demonstration is not affected

by the change of penalization and result 4.1 still holds (see appendix A.6).

However, the result concerning the speed of convergence is a bit different since we cannot sim-

ply replaces by 0 in the demonstration. However, we can make some similar assumptions to

derive the speed of convergence.

Assumption 4.7. We suppose that:

• (i) - the problem (12) is identified with a true solutionφ0
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• (ii) - T andT̂ are continuous and Frechet differentiable with convex domains;

• (iii) - there existsC > 0 such as||r̂n|| ≤ C||φ̂αn − φ0||2

• (iv) - there existsγn such as||T̂ ′φ0
− T ′φ0

|| ≤ γn

• (v) - there existsw such asφ0 − φ∗0 = T ′φ0

∗.w;

• (vi) - γn = o(
√
δn);

• (vii) - 2||w||C < 1.

Under hypothesis 4.4 and 16, we can show that :

Lemma 4.4. The best choice forαn is:

αn ∼ δn

and the resulting speed of convergence is :

||φ̂αn − φ0|| = O(
√
δn)

||T̂ (φ̂)|| = O(δn)

4.3.3 Regularization by iteration

We may also try to regularize this problem by iterative methods. The principle of the method is

to linearize the operator around the current solution and to update it (see [Kaltenbacher et al., ]).

The interest is to compute linear versions of the operator rather than the initial one, and then to

reduce computation costs. This is the idea of the Newton-type methods. If we have a solution

φk at the iterationk, we try to solve the linearized problem:

T ′φk
(φk+1 − φk) = −Tφk.

However in practice, this linear problem may also be ill-posed and has to be regularized. If the

Tikhonov regularization is applied, then this is the Levenberg-Marquardt method. With an ad-

ditional penalty term this is the iteratively regularized Gauss-Newton method. The Levenberg-

Marquardt method leads to the expression:

φk+1 = φk + (αkI + T
′∗
φk
T

′
φk

)−1T
′∗
φk

(−Tφk).

A stopping criterion has to be applied to assess that there is no need to further iterate. The

Tikhonov regularization parameterαk has also to be controlled and depends on the iteration

parameterk. When we use the iteratively regularized Gauss-Newton method, the iteration is

the following:

φk+1 = φk + (αkI + T
′∗
φk
T

′
φk

)−1T
′∗
φk

(−Tφk) + αk(φ† − φk)

whereφ† is ana-priori chosen function.
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How to apply this framework to our data? Suppose that a sample of sizeN is available:

(τj , zj , wj). We need to expressT ′φk
φ for givenφk, φ ∈ L2(U,Z). In the following as we

will work with a fixed, we will omitu in the expression of theφ... functions.φ may be repre-

sented with the help of(zj , φ(j)) whereφ(j) = φ(u, zj). In this caseφ is estimated through

φ̂(z) =
N∑
j=1

φ(j)K(z − zj)∑N
j=1K(z − zj)

.

K() is here taken as the standard notation for an appropriated kernel, adapted to the modelled

object (despite the notations, kernels may differ depending onz, w, etc.). Similarly:

φ̂k(z) =
N∑
j=1

φ
(j)
k K(z − zj)∑N
j=1K(z − zj)

.

Suppose that we have two estimatorsλ̂ andĝ of λ andg. Then:

T ′
φ̂k
φ̂ =

∫
z

N∑
j=1

φ(j)K(z − zj)∑N
j=1K(z − zj)

λ̂(φ̂(z)|z, w)ĝ(z|w)dz.

For instance, we may definêλ(φ̂(z)|z, w) = λ0(φ̂(z))exp(β′z+γ′w) whereλ0, β andγ result

from the estimation of a general Cox model.ĝ(z|w) may be derived with a classical estimator

of a conditional density with a given kernel. At this stage,T ′
φ̂k
φ̂ is still a function ofw. We

then conclude by applying this function at the points(wj) of the sample, obtaining then a linear

problem using a matrix formulation:

Akφ = vk

wereφ is the vector of the(φ(j))j∈[1;N ] andvk is the vector of the((−Tφk)(wj))j∈(1;N ]. Ak
is the matrix made of the termsaij :

aij =
∫
z

K(z − zj)∑N
j=1K(z − zj)

λ̂(φ̂(z)|z, wi)ĝ(z|wi)dz.
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A A PPENDIX

A.1 Proof of theorem 2.1

We assume that :Xt = Ht + Et w.r.t. filtrationZt andXt = Λt +Mt w.r.t. filtrationWt and

that bothHt andΛt are smooth and have an intensity, respectivelyht andλt. Let t0 ∈ IR. For

t > t0 we have:

Xt −Xt0 =
∫ t

t0

hsds+ Et − Et0 .

If we take the conditional expectation of this expression with respect to the filtrationWt0 ,

considering thatIE[Et −Mt0 |Wt0 ] = 0 by assumption, we get:

IE[Xt −Xt0 |Wt0 ] = IE[
∫ t

t0

hsds|Wt0 ].

Equivalently:

IE[Xt −Xt0 |Wt0 ] = IE[
∫ t

t0

λsds|Wt0 ].

by hypothesis. We confront the two expressions ofIE[Xt −Xt0 |Wt0 ] and divide byt − t0 to

get:

IE[
1

t− t0

∫ t

t0

hsds|Wt0 ] = IE[
1

t− t0

∫ t

t0

λsds|Wt0 ].

As a property of the conditional expectation operator, we can switch the integral and the expec-

tation as soon as for each equation, at least one of two members exists :

IE[
1

t− t0

∫ t

t0

hsds|Wt0 ] =
1

t− t0

∫ t

t0

IE[hs|Wt0 ]ds

IE[
1

t− t0

∫ t

t0

λsds|Wt0 ] =
1

t− t0

∫ t

t0

IE[λs|Wt0 ]ds

Finally, we want to take the limit under the expectation operator fort → t0. We will use the

Lebesgue theorem of dominated convergence. Then, we must make an additional assumption

on (hs) and(λs). Although it may not be necessary, it may be sufficient to assume that bothhs

andλs are bounded. Moreover, to take the limitlimt↘t0 of these expressions, we must suppose

that both processeshs andλs are right-continuous. We have then:

IE[ht0 |Wt0 ] = IE[λt0 |Wt0 ].

As IE[ht0 |Wt0 ] = ht0 . We conclude that :

λt0 = IE[ht0 |Wt0 ]

�
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A.2 Proof of theorem 3.4

(⇐) Let’s expressXξ,t = 1(τξ ≤ t) with: Xξ,t = Λ(t ∧ τξ, ξ) + Eξ,t which rewritesEξ,t =
Xξ,t − Λ(t ∧ τξ, ξ). Then, by definition ofMΛ(t,ξ):

MΛ(t,ξ) = 1(U ≤ Λ(t, ξ))− U ∧ Λ(t, ξ)

= 1(Λ−1(U, ξ)︸ ︷︷ ︸
=τξ

≤ t)− Λ(τξ, ξ) ∧ Λ(t, ξ)︸ ︷︷ ︸
=Λ(t∧τξ,ξ)

)

= Xξ,t − Λ(t ∧ τ, ξ)

= Eξ,t

(⇒) Let’s assume thatEξ,t = MΛ(t,ξ). We haveXt = 1(τξ ≥ t) = Λ(t∧ τξ, ξ)+Eξ,t with

τξ ≥ 0. By definition:

Eξ,t = 1(τξ ≥ t)− Λ(t ∧ τξ, ξ)

MΛ(ξ,t) = 1(U ≥ Λ(ξ, t))− Λ(ξ, t) ∧ U

As Λ(t, ξ) ∧ Λ(τξ, ξ) = Λ(t ∧ τξ, ξ), the equalityEξ,t = MΛ(ξ,t) holds as soon asU =
Λ(τξ, ξ) i.e. τξ = Λ−1(U, ξ) (being the inverse function inU , ξ being fixed).

�

A.3 Proof of lemma 4.1

We noteφ̂αn the sequence of solutions of problems 15 (withφ∗ an arbitrary function) andφ0

a true solution of the initial problem. We want now to show that under hypothesis 4.4, there

exists a subsequence of solutions which converges to a function which is solution of 12. For

eachn and by definition of̂φαn we have :

||T̂ − n(φ̂αn)||2 + αn||φ̂n
α − φ∗||2s ≤ ||T̂n(φ0)||2 + αn||φ0 − φ∗||2s

≤ δ2n︸︷︷︸
→0

+ αn︸︷︷︸
→0

||φ0 − φ∗||︸ ︷︷ ︸
fixed

→ 0

It’ easy to see that:

||φ̂αn − φ∗||2s ≤
δ2n
αn︸︷︷︸
→0

+||φ0 − φ∗||2s

Consequently, the sequence(φ̂αn) is bounded. We can therefore extract a convergent subse-

quence that we will note(φ̂αn,2). We noteφl the limit of this subsequence. The question is to

know if φl is itself a solution of 12. First let’s remark thatT̂n(φ̂αn,2) since :

||T̂n(φ̂αn,2)||2 ≤ ||T̂n(φ0)||2︸ ︷︷ ︸
→0

+αn||φ0 − φ∗||2s︸ ︷︷ ︸
→0
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Then we decompose:

T (φl) = T (φl) + T̂ (φl)− T̂ (φl) + T̂ (φ̂αn,2)− T̂ (φ̂αn,2)

and consequently:

||T (φl)|| ≤ ||T̂ (φ̂αn,2||︸ ︷︷ ︸
→0

+ ||T̂ (φl)− T̂ (φ̂αn,2||︸ ︷︷ ︸
||T̂ ||||φl−φ̂αn,2||s

+ ||(T̂ − T )(φl)||︸ ︷︷ ︸√
||T̂−T ||||φl||s

with the right hand side which tends to0. Indeed,||φl||s is fixed,||φl − φ̂αn,2||s → 0, and we

just have to suppose that||T̂ − T || → 0, ||T̂ || = O(1) will also follow.

We conclude from this that(φ̂αn,2) (which is a subsequence of(φ̂αn)) tends towardsφl, which

is solution of the initial problem.

�

A.4 Proof of lemma 4.2

In the following, for sake of simplicity, we will skip indexation byn, working with φ̂, α, T̂ ,

andδ instead ofφ̂αn, αn, T̂n, andδn. The problem is to minimize :

||T̂ (φ)||2 + α||φ− φ∗||2s

In particular we have :

||T̂ (φ̂)||2 + α||φ̂− φ∗||2s ≤ ||T̂ (φ0)||2 + α||φ0 − φ∗||2s

Having:

||φ̂− φ∗||2s = ||φ̂− φ0||2s + ||φ0 − φ∗||2s + 2 < φ̂− φ0, φ0 − φ∗ >s

we get:

||T̂ (φ̂)||2 + α||φ̂− φ0||2s ≤ ||T̂ (φ0)||2 + 2α < φ̂− φ0, φ0 − φ∗ >s

Equivalently, we can suppose in the following without loss of generality thatφ∗ = 0. We write

the decomposition of̂T in φ0 with the Frechet derivative:

T̂ (φ̂) = T̂ (φ0) + T̂ ′φ0
(φ̂− φ0) + r̂

Then:

||T̂ (φ̂)||2 = ||T̂ (φ0) + r̂||2 + ||T̂ ′φ0
(φ̂− φ0)||2 + 2 < T̂ (φ0) + r̂, T̂ ′φ0

(φ̂− φ0) >

and as||T̂ (φ0)||2 ≤ δ2 we finally obtain:

||T̂ ′φ0
(φ̂− φ0)||2 + α||φ̂− φ0||2s ≤ δ2 + α < φ̂− φ0, φ0 >s −2 < T̂ (φ0) + r̂, T̂ ′φ0

(φ̂− φ0) >

−2 < (T̂ ′φ0
− T ′φ0

)(φ̂− φ0), T ′φ0
(φ̂− φ0) >

−||T̂ (φ0) + r̂||2 − ||(T̂ ′φ0
− T ′φ0

)(φ̂− φ0)||2
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The two last terms of the right hand side equation being negative, this becomes:

||T̂ ′φ0
(φ̂− φ0)||2 + α||φ̂− φ0||2s ≤ δ2 + α < φ̂− φ0, φ0 >s −2 < T̂ (φ0) + r̂, T̂ ′φ0

(φ̂− φ0) >

−2 < (T̂ ′φ0
− T ′φ0

)(φ̂− φ0), T ′φ0
(φ̂− φ0) > (17)

Using hypothesis A.5-(vi), we have that||T ′φ0
(φ̂− φ0)||2 ∼ ||φ̂− φ0||2−a. Moreover the source

condition (hypothesis A.5-(v)) implies that there existsw such asφ0 = L−βw. We can also

transform< φ̂ − φ0, φ0 >s. As <,>s is a scalar product in a Hilbert scale, there exists an

operatorL (self-adjoint, unbounded, strictly positive, densely defined) such as:

< φ̂− φ0, φ0 >s = < Ls(φ̂− φ0), Lsφ0 >

= < L2s(φ̂− φ0), φ0 >

= < L2s(φ̂− φ0), L−βw >

= < L2s−β(φ̂− φ0), w >

= O(||φ̂− φ0||2s−β)

asLs,L−β are self-adjoint, the last equality comes from the Cauchy-Schwartz inequality. We

still have to transform the two scalar products in the right-hand side equation. First if we write:

T̂ ′φ0
= T ′φ0

+ (T̂ ′φ0
− T ′φ0

) we get simply by Cauchy-Schwartz inequality:

< T̂ (φ0) + r̂, T ′φ0
(φ̂− φ0) >= O(||T̂ (φ0) + r̂||︸ ︷︷ ︸

O(δ+||r̂||)

||T ′φ0
(φ̂− φ0)||︸ ︷︷ ︸

=O(||(φ̂−φ0)||−a)

)

Using hypothesis A.5-(iii) we have consequently:

< T̂ (φ0) + r̂, T ′φ0
(φ̂− φ0) >= O((δ + ||φ̂− φ0||2)||φ̂− φ0)||−a)

< T̂ (φ0) + r̂, (T ′φ0
− T ′φ0

)(φ̂− φ0) >= O((δ + ||φ̂− φ0||2) (||T ′φ0
− T ′φ0

||||φ̂− φ0||)︸ ︷︷ ︸
=O(γ||φ̂−φ0||)

)

Then:

< T̂ (φ0) + r̂, (T ′φ0
− T ′φ0

)(φ̂− φ0) >= O(δ + ||φ̂− φ0||2)(||φ̂− φ0)||−a + γ||φ̂− φ0||))

Moreover it’s easy to obtain:

< (T̂ ′φ0
− T ′φ0

)(φ̂− φ0), T ′φ0
(φ̂− φ0) >= O(γ||φ̂− φ0||||φ̂− φ||−a)

by applying the Cauchy-Schwartz inequality and hypotheses A.5-(iv) and (vi). With all of this,

equation (17) becomes:

||φ̂αn − φ0||2−a + αn||φ̂αn − φ0||2s ≤ δ2n + αn||φ̂αn − φ0||22s−β + ||φ̂αn − φ0||−a(δn + ||φ̂αn − φ0||2)

+γn||φ̂αn − φ0||(δn + ||φ̂αn − φ0||−a + ||φ̂αn − φ0||2)

�
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A.5 Proof of lemma 4.3

Let’s present two useful results. First, the interpolation inequality in Hilbert scales which

expresses that forx in Hs and−∞ < q < r < s <∞ we have:

||x||r ≤ ||x||
s−r
s−q
q ||x||

r−q
s−q
s (18)

Second, [Engl et al., 1996] recalls that for anyc, d, e ≥ 0 andp, q ≥ 0 we have that:

cp ≤ e+ dcq → cp = O(e+ d
p

p−q ) (19)

We now want to express equation of lemma 4.2 only with norms of Hilbert scales||.||−a and

||.||s. Consequently, applying 18 withr = 0, q = −a ands = s, we have:

||φ̂− φ0|| ≤ ||φ̂− φ0||
s

s+a
−a ||φ̂− φ0||

a
s+a
s

Then:

||φ̂− φ0||−a||φ̂− φ0||2 ≤ ||φ̂− φ0||
a+3s
s+a
−a ||φ̂− φ0||

2a
s+a
s

||φ̂− φ0||−a||φ̂− φ0|| ≤ ||φ̂− φ0||
a+2s
s+a
−a ||φ̂− φ0||

a
s+a
s

|||φ̂− φ0||3 ≤ ||φ̂− φ0||
3s

s+a
−a ||φ̂− φ0||

3a
s+a
s

If we suppose thata ≤ s then it means that||φ̂ − φ0||−a||φ̂ − φ0||2 = o(||φ̂ − φ0||−a)||2 and

that |||φ̂ − φ0||3 = o(|φ̂ − φ0||−a||φ̂ − φ0||) Additionally if we apply 18 withq = −a and

r = 2s− β we get:

||φ̂− φ0||2s−β ≤ ||φ̂− φ0||
β−s
a+s
−a ||φ̂− φ0||

2s−β+a
a+s

s

Finally:

||φ̂αn − φ0||2−a + αn||φ̂αn − φ0||2s ≤ δ2 + δ||φ̂− φ0||−a + α(||φ̂− φ0||
β−s
a+s
−a ||φ̂− φ0||

a+2s−β
a+s

s )

+γ × (δ||φ̂− φ0||
s

s+a
−a ||φ̂− φ0||

a
s+a
s + ||φ̂− φ0||

a+2s
s+a
−a ||φ̂− φ0||

a
s+a
s )

(20)

Applying 19 four times to the terms of the right hand side of equation 20 we get:

||φ̂αn−φ0||2−a = O(δ2+α
2(a+s)

2a+3s−β ||φ̂αn−φ0||
2(a+2s−β)
2a+3s−β
s +(γδ)

2(a+s)
2a+s ||φ̂αn−φ0||

2a
2a+s
s +γ

2(a+s)
a ||φ̂αn−φ0||2s)

Using that for anyu, v ≥ 0:
√
u+ v ≤

√
u+

√
v this can be rewritten:

||φ̂αn−φ0||−a = O(δ+α
a+s

2a+3s−β ||φ̂αn−φ0||
a+2s−β
2a+3s−β
s +(γδ)

a+s
2a+s ||φ̂αn−φ0||

a
2a+s
s +γ

a+s
a ||φ̂αn−φ0||s)

(21)
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Then we wish to replace this order obtained in 21 for||φ̂αn − φ0||−a in the right hand side of

equation 20. We use thatx = O(u+ v) implies thatxξ = O(uξ + vξ).

If we use hypothesis -(viii) we get that:

||φ̂αn − φ0||2−a + α||φ̂αn − φ0||2s = O
(
δ2 + δα

a+s
2a+3s−β ||φ̂αn − φ0||

a+2s−β
2a+3s−β
s

+α[δ
β−s
a+s ||φ̂αn − φ0||

a+2s−β
a+s

s + α
β−s

2a+3s−β ||φ̂αn − φ0||
2(β−2s−a)
β−2a−3s
s ]

+
{
γ

a+s
2a+s δ

3a+2s
2a+s ||φ̂αn − φ0||

a
2a+s
s + α(γδ)

β−s
2a+s ||φ̂αn − φ0||

2s+2a−β
2a+s

s

+(γ
a+s

a δ + αγ
β−s

a )||φ̂αn − φ0||s + γδ
a+2s
a+s ||φ̂αn − φ0||

a
a+s
s

γδα
s

2a+3s−β ||φ̂αn − φ0||
2a+2s−β
2a+3s−β
s + (γδ)

2a+2s
2a+s ||φ̂αn − φ0||

2a
2a+s
s

γα
a+2s

2a+3s−β ||φ̂αn − φ0||
4s+3a−2β
2a+3s−β
s + γ

3a+3s
2a+s α

a+2s
2a+s ||φ̂αn − φ0||

3a
2a+s
s

})
and finally that:

||φ̂αn − φ0||2s = O
(
δ2α−1 + δα

β−a−2s
2a+3s−β ||φ̂αn − φ0||

a+2s−β
2a+3s−β
s

+[δ
β−s
a+s ||φ̂αn − φ0||

a+2s−β
a+s

s + α
β−s

2a+3s−β ||φ̂αn − φ0||
2(β−2s−a)
β−2a−3s
s ]

+
{
γ

a+s
2a+s δ

3a+2s
2a+s α−1||φ̂αn − φ0||

a
2a+s
s + (γδ)

β−s
2a+s ||φ̂αn − φ0||

2s+2a−β
2a+s

s

+(γ
a+s

a δα−1 + γ
β−s

a )||φ̂αn − φ0||s + α−1γδ
a+2s
a+s ||φ̂αn − φ0||

a
a+s
s

γδα
β−2a−2s
2a+3s−β ||φ̂αn − φ0||

2a+2s−β
2a+3s−β
s + α−1(γδ)

2a+2s
2a+s ||φ̂αn − φ0||

2a
2a+s
s

γα
β−a−s

2a+3s−β ||φ̂αn − φ0||
4s+3a−2β
2a+3s−β
s + γ

3a+3s
2a+s α

s−a
2a+s ||φ̂αn − φ0||

3a
2a+s
s

})
(22)

The first part of the right hand side of equation 22 is identical to the case of standard nonlinear

inverse problem, however a rather complicated term depending onγ appears. When we don’t

know anything aboutγn it’s difficult to simplify the former expression. However, we can apply

the property 19 to each term in this expression. The first part will be left unchanged and is

similar to the case of standard nonlinear inverse problems. In the second one, when applying

this property, the powersaa+s ,
a

2a+s ,
2a

2a+s of ||φ̂αn − φ0||s leads to terms that areo(δ2α−1)

using the assumption -(viii). The term in||φ̂αn − φ0||sleads to a term that is only aO(γ
2(β−s)

a ).
Finally, we obtain (after having taken the root of every expression) :

||φ̂αn − φ0||s = O(δα−
1
2 + δ

2a+3s−u
3a+4s−uα

u−a−2s
3a+4s−u + δ

u−s
a+u + α

u−s
2a+2s

+(γδ)
(β−s)
2a+β + γ

(β−s)
a

+(γδ)
(2a+3s−β)
2a+4s−β α

(β−2a−2s)
2a+4s−β

+γ
(2a+3s−β)

a+2s α
(β−a−s)

a+2s + γ
3(a+s)
a+2s α

(s−a)
a+2s )

(23)
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The choice ofα must be made by examining the first part of the expression and then, to control

for conditions onγ concerning the second part. Then, the good choice forα is:

α ∼ δ
2a+2s
a+β

This quantity replaced in the first line of expression 23 gives a speed of convergence of order:

O(δ
β−s
a+β )

We now want to derive conditions under which the remaining terms inγ, with α replaced by

this value, are negligible compared to this speed of convergence.

Concerning the second term, we see that for this,γ
β−s

a must be ao(δ
β−s
a+β ). As β ≥ s, this is

ensured by conditionγ
a+β

a δ−1.

The first term implies that(γδ)
β−s
2a+β must be ao(δ

β−s
a+β ). As:

γδ
β−s
2a+β

δ
β−s
a+β

= (γδ
−a

a+β )
β−s
2a+β

the former condition is still sufficient asβ − s and2a+ β are positive.

The expression of the third term is the following:

γ
2a+3s−β
2a+4s−β δ

5as+4s2−5βs+2a2−3qβ+β2

(a+β)(β−4s−2a)

To know if it’s ao(δ
β−s
a+β ) we estimate:

γ
2a+3s−β
2a+4s−β δ

5as+4s2−5βs+2a2−3qβ+β2

(a+β)(β−4s−2a)

δ
β−s
a+β

= (γδ−
a

a+β )
2a+3s−β
2a+4s−β

so we still get the desired convergence.

Studying the fourth term,γ
3s−β+2a

a+2s δ
−2(s+a)(−β+a+s)

(a+β)(a+2s) must be ao(δ
β−s
a+β ). That is to say:

γ
3s−β+2a

a+2s δ
−2(s+a)(−β+a+s)

(a+β)(a+2s)

δ
β−s
a+β

= (γδ
−a

a+β )
2a+3s−β

a+2s

which converges to0 with the same condition and the fact that2a+ 3s− beta anda+ 2s are

supposed to be positive.

For the fifth term,γ
3(a+s)
a+2s δ

2(a+s)(s−a)
(a+β)(a+2s) must beo(δ

β−s
a+β ). Consequently we remark that:

γ
3(a+s)
a+2s δ

2(a+s)(s−a)
(a+β)(a+2s)

δ
β−s
a+β

= (γ
a+β

a δ
2(a+s)(s−a)−(β−s)(a+2s)

3a(a+s) )
a(a+2s)

3(a+β)(a+s)
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It appears that[2(a+s)(s−a)−(β−s)(a+2s)]
3a(a+s) ≥ −1 since2s + a is supposed greater thanβ. Then

the conditionγ
a+β

a δ−1 → 0 is stronger and this is verified.

�

A.6 Proof of lemma 4.4

We study the problem 16. All the norms and the scalar products will be relative toL2-spaces,

and we will noteφ̂, α andδ instead ofφ̂αn, αn andδn and takeφ∗ = 0 for sake of simplicity.

As in the demonstration of the lemma 4.3 it is possible to show that:

||T̂ (φ̂)||2 + αn||φ̂− φ0||2 ≤ δ2 + 2α < φ̂− φ0, φ0 >

We try to reexpress the scalar product in the former expression using the fact thatφ0 = T ′φ0

∗.w

and thatT̂ (φ̂) = T̂ (φ0) + T̂ ′φ0
(φ̂− φ0) + r̂, we have clearly that:

< φ̂− φ0, φ0 > = < w, T ′φ0
(φ̂− φ0) >

= < w, T̂ ′φ0
(φ̂− φ0) > + < w, (T ′φ0

− T̂ ′φ0
)(φ̂− φ0) >

= < w, (T ′φ0
− T̂ ′φ0

)(φ̂− φ0) > + < w, T̂ (φ̂) > − < w, T̂ (φ0) + r̂ >

We have using the Cauchy-Schwartz inequality that :

< w, (T ′φ0
− T̂ ′φ0

)(φ̂− φ0) > ≤ ||w|| ||(T ′φ0
− T̂ ′φ0

)(φ̂− φ0)|| ≤ γn||w||||φ̂− φ0||

< w, T̂ (φ̂) > ≤ ||w|| ||T̂ (φ̂)||

− < w, T̂ (φ0)+r̂ > ≤ ||w||||T̂ (φ0)+r̂|| ≤ ||w||(δ+||r̂||) ≤ ||w||(δ+C||φ̂−φ0||2)

Consequently, we have that :

||T̂ (φ̂)||2 + αn||φ̂− φ0||2 ≤ δ2 + 2α||w||(δ + C||φ̂− φ0||2 + ||T̂ (φ̂)||+ γn||φ̂− φ0||)

This rewrites easily:

(||T̂ (φ̂)|| − α||w||)2 + α(1− 2||w||C)||φ̂− φ0||2 − 2α||w||γn||φ̂− φ0|| ≤ (δ + α||w||)2

We can moreover express :

α(1−2||w||C)||φ̂−φ0||2−2α||w||γn||φ̂−φ0|| =
(√

α(1− 2||w||C)||φ̂−φ0||−
√
α||w||γn√

1− 2||w||C

)2
− α||w||2γ2

n

1− 2||w||C
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This gives :

(||T̂ (φ̂)|| − α||w||)2 ≤ (δ + α||w||)2 +
α||w||2γ2

n

1− 2||w||C

As a2 ≤ b2 + c2 implies thata ≤ b+ c when a, b, c are positive, we conclude that:

||T̂ (φ̂)|| ≤ δ + 2α||w||+ ||w||γn
√

α

1− 2||w||C
Replacing in the former expression it’s easy to obtain that :

||φ̂− φ0|| ≤
δ + α||w||√
α(1− 2||w||C)

+ 2
γ||w||

1− 2||w||C

As in [Engl et al., 1996] the first term drives the choice of theα parameter:αn ∼ δn implying

that||φ̂αn−φ0|| = O(
√
δn). The second term remains of the same order as soon asγn = o(

√
δn)

or equivalently thatγ2
nδ
−1 tends to0. Finally, it’s easy to conclude that̂T (φ̂)|| = O(δn).

�
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