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Abstract

The objective of the paper is to draw the theory of endogeneity in dynamic models in discrete and con-
tinuous time, in particular for diffusions and counting processes. We first provide an extension of the
separable set-up to a separable dynamic framework given in term of semi-martingale decompositions.
Then we estimate our function of interest as a stopping time for an additional noise process, whose role
is played by a Brownian motion for diffusions, and a Poisson process for counting processes.
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1 INTRODUCTION

1.1 Motivations

An econometric model has often the form of a relation where a random elémaepends on a set of
random elementg and a random noisg. If Z is exogenous (see for precise definition of this concept
[Engle et al., 1983] or| [Florens and Mouchart, 1982]) some independence or non correlation property
is assumed between th¢ and theU in order to characterize uniquely the relation. For example, if

the relation has the forrm = ¢(Z) + U the condition/E[U|Z] characterize® as the conditional ex-
pectation and it = ¢(Z,U) with ¢ monotonous inJ/, U uniform, the condition thaZ andU are
independent characterizésas the quantile function. This exogeneity condition is usually not satisfied
(as for instance in market models, treatment effect models, selection models...) and the relation should
be characterized by other assumptions.

The instrumental variables approach replaces the independence befveeell/ by an independence
condition betweer/ and another set of variableld], called the instruments. For example, in the case

Y = ¢(Z) + U the assumption becomds[U|W] = 0 or in the nonseparable model it is assumed that
U1W (see for a recent literaturg [Florens, 2002], [Newey and Powell,|2003], [Hall and Horowitz] or
for non separable case [Horowitz and Lee]). In these cases the characterization of the relation is not
fully determined by the independence condition but also by a dependence condition betwBemthe
theW. This dependence determines the identifiability of the relation and in a nonparametric framework
has an impact on the speed of convergence of the estimators.

The objective of this paper is to analyze dynamic models with endogenous elements. The goal is concen-
trated on the specification of the models in such a way that the functional parameter of interest appears
as the solution of a functional equation (essentially linear or nonlinear integral equation). Using this
equation, identification or local identification condition may be discussed. This paper is not concerned
by statistical inference but it shows how the functional parameter may be derived from objects which
may be estimable using data. The theory of nonparametric estimation in these cases belongs to the
theory of ill-posed inverse problems (sée [Carrasco and an Eric Renault, 2003]) and will be treated in
specific cases in other papers.

We address the question of endogeneity in dynamic models in two ways. First we consider a separable
case which extends the usual model= ¢(Z) + U with IE[U|W]. However, this case is not suffi-

cient to cover the endogeneity question in models where the structure of the process geferating
given (counting processes or diffusions for instance). In this case, we analyze the impact of endogenous
variables through a change of time depending on the endogenous variables. This approach covers the
example of the duration models, the counting processes, the diffusion with a volatility depending on the
endogenous for example. It will be shown that those change of time models give an interesting extension
of non-separable models in the dynamic case .

1.2 Mathematical framework

In this paper we essentially analyze a large class of stochastic processes verifying a decomposition prop-
erty. Let(X;):>o (¢ may be discrete or continuous) af a filtration of o-fields such thaiX, is cadiag
(its trajectories are right-continuous and have a left-limit) and ¢} is right-continuous (that is to



say thaf"), ., Fs = F3).
A processX; is a special semi-martingale w.r(tF; ), if there exists two processés and M, such that:

Xy = Xo + Hy + M;; 1)

e M, is anF;-martingale;

e H,is F;-predictable.

A more general definition only assumes thét is a local martingale but for sake of simplicity only the
martingale case is treated in this paper. We also simplify the expressions by always as&gmaing

Extension to local martingales and to cases whége# 0 is straightforward. Let us note that the de-
compositiorf L is a.s. unique. These concepts are fundamental in the theory of stochastic processes (see
in particular [Dellacherie and Meyer (1980)] - Vol Il - Chap VII).

We may easily illustrate this definition in the case of discrete time models. In that case wéhawe0,
My = My 1+ (X — E[X|Fi—1]) andH;, = H;_1 + [IE[X|Fi—1] — X:—1] (see[[Protter, 2003] - Chap
). Equivalently AX; = X; — X;_; may also be written:

AXy =Xy — Xy = (B[X¢| Fioa] — Xiem1) + (Xt — E[X¢|Fia)).

In case of continuous time processes, we also restrict our study to caseshyhsdifferentiable and
we se the expression:
dXt = htdt + th

whereH, = fg hsds.

Two particular cases will be analyzed in details. First the case wkigre a counting process ard its
stochastic intensity (see e.g. [Karr, 1991], [Andersen, Borgan, Gill, Kieding]). Second, we will explore
the situation whereX;, is a diffusion process whee\l, = o,d B, with B, a Brownian motion (see e.g.
[Gard (1988)]), andw; ando; are the drift and the volatility.

2 THE ADDITIVELY SEPARABLE CASE

2.1 The framework

Let us consider a multivariate stochastic proc&ss= (Y:, Z;, W) (Y; € R, Z, € IRP, W; € IR9)
andX; the filtration generated h, i.e. X, is theo-field generated by(ts, Z,, Ws)s<:). We consider
different subfiltrations ofY;:
e i) ), Z;, W, are the filtrations generated by each subprocess;
¢ ii) We call theendogenous filtratiotthe filtration generated by; and Z; and theinstrumental
filtration the filtration); vV, generated by, andW;.

We first extend the usual decomposition of semi-martingales in the following way.:



Definition 2.1. The proces¥; has a Doob-Meyer Instrumental Variable (DMIV) decomposition if:
Yi=MA+E;

where:
1. Ay is )Y vZ, predictable ;
2. E[E; — Es|[YivW, ] =0for0 < s < t.

Equivalently we may say that; is an IV semi-martingale w.r.t(),vZ;); and (Y,vW;);. First we

can note that iV, = Z, this definition reduces to the usual decomposition definition. If the filtration

Y vZ, isincluded into), vV, the problem becomes a problem of enlargement of filtrations and preser-
vation of the martingale property. This question is central in the theory of non-causality treated e.g. by
[Florens and Fougre, 1995].

We consider then the more general case wbgwZ, and), vV, has no inclusion relation. Moreover,
the two filtrations do not need to be generated by processe¥a] and);vV,, may be replaced by
more general filtrationg; andg; under the condition that; is adapted to each of them.

Assumption)) means that the predictable process “only depends” on the pEshafl onZ; and its past.
Assumptionii) is the independence condition between the “noBgand the instrument®’;. Equality

in i7) is a mean independence only (like in the static separable model¢(Z) + U) and looks like

a martingale property. It's not strictly speaking a martingale property bedausenot assumed to be
adapted t@/;vIV,. The usual decomposition is unique a.s. but it should be noted that this unicity result
is not true in general: this will be precisely the object of the identification condition analyzed below.

2.2 ldentification

Let us first consider the characterization of the decomposition in term of conditional expectation.

Theorem 2.1. Let us assume thaf; is a special semi-martingale w.r3;vV; and that :
dY; = hydt + dM;

whereH; = fot hsds is Y,vW,-predictable andM,; is a Y;vWV;-martingale. If the following family of
integral equations:
ht = E[}\t‘ytth] t Z 0 (2)

¢ is Yy vZ,-measurable and integrable

has a sequence of solutiong thenY; is an IV semi-martingale and; = f(f Aqds.

Roughly speaking equation|(2) means that we have to solve:

hedt = IE[dX|(Ys, Ws)o<s<t]

- / (Ve ZeJooc) F((Ze)ozscel (Yo, W Joac)d( ZeJocscs
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This expression has mathematically no sense because the arguments of the functions are infinite dimen-
sional but it shows how our definition extends the static separable case.

A DMIV decomposition exists if and only ik, belongs to the range of the conditional expectation op-
erator. If we restrict our attention to square integrable variables, this operator is definéoaV; ).

Note that the conditional expectation operator is compact under minor regularity conditions. Its range
is then a strict subspace &f();v\V;) and the existence assumption is an over-identification condi-
tion on the model. The main question concerns the unicity of the solution, which is equivalently the
identifiability problem. Given the distribution of the proceXs, the functionh,, and the conditional
expectation operatafs[ |V,vW,] defined onL?(),vZ;) are identifiable and then the DMIV decom-
position is unique 4; is identifiable) if and only if the conditional expectation operator is one-to-one.
The following concept extends the full known case of static models.

Definition 2.2. The filtration();vZ;); is strongly identified by the filtratioi;v\V;), (or Z; is strongly
identified by)V; given)),) if and only if :

Vi € L2A(VZ), B[V YW =0= ¢ =0 a.s.

For a good treatment of conditional strong identification, see [Florens et al (1990)] - Chap 5 and for
relation with the completeness concept in statistics. Thefy i strongly identified by, given ),

the conditional expectation operator is one-to-one/&nd identified. We want to illustrate this concept

in two examples : discrete-time models and diffusions.

2.3 Example 1 : discrete time models

Let'’s consider three stochastic processgsZ; andW, and let’'s assume that :
Zy=o{YE, ZI} and W, = o{Y{, Wi}

when e.gY{ = (Yp,...,Y;). In that case the decompositiongfw.r.t. Z; is characterized by:

t
Y, =Y EY; -Y; Vi Z) + M,

j=1

since :
Y, = Y1 = E[Y;, =YYy ZE + My — My—q = hy + (M — M;_q).

Under our assumptions dfy, )\, is a function onot‘1 andZ{ and the central equation becomes :
he = E[\Yy ', Wo] vt
or equivalently:
he(Yim1, Yo, We,...) = /At(Yt_l, Yieo,. .., Z4, Z4—q,...)

Fi(Ze, Zyr, . W Wi, .. Yie, .. ) dWdWy_y . ..
(3



Those examples show that the estimation afsually requires some conditional independence assump-
tions for practical computation. A first step may be to reduce the number of instruments by assuming

e.g.
Zy L(WE Yy W, YL

Using a stationary assumption the right hand sid¢ of 3 becomes :

/ A1, Z) F(ZW 4, Y ) dZ,

Note that :
hy = EY; — Y, 1 |Yi™H W)

Then equatior{ (3) becomes :
rim BIY = YV W) = [ AV Z05ZIWE Y )iz

For anyt, r and f may be estimated nonparametrically and the problem reduces to the same problem
considered in[Darolles et al., 2008].

2.4 Example 2 : Diffusions

Let us assume that the structural model has the following form :

d}/t = At(}/t,Zt)dt—‘rUt(}/t)dBt (4)

where B; is a Brownian motion. This means that4j is fixed (and not generated by the distribution
mechanism; follows a diffusion process with a drift equal % and a volatility equal te,(Y;). Note
that we assume thaf, does not appear in the volatility term. Let us assume that:

E[dBt |ytVWt] - 0

In that case equatiofi](4) characterizes the DMIV decompositidf.ofin order to identify\, we need
to construct the decomposition Bf w.r.t. the filtration),vW; (dY; = hidt + dM;) and to solve:

hy = IE[X | YWV )

Note that the “reduced form” modély; = h,dt + dM, has no reason to be a diffusion. Conditionally
to W; the process may be non Markovian alg maybe different from a Brownian motion.

3 THE NON-SEPARABLE CASE

We present here the general framework for the obtention of an integral equation for solving endogeneity
in dynamic models. We will give detailed applications in some cases of interest : diffusions, duration
models and counting processes. All technical details are available in [Protter, 2003].



3.1 General theory

We give here the intuition of the theorem under its most general form. Let's suppose that we observe
three processesX;, Z;, andW,. The relative and natural filtration relative to the observation of those
processes i&;vZ,vW,. Suppose thal; is a function ofX; (the nature of this function will be precised

in the applications).

Fundamentally our object of interest will be a functigrof time ¢ and variablesZ which will be con-

ceived as the inverse (as a function of time) of a counterfactual version of the compensataitbbut

endogeneity. Of courseé,is not the inverse of the usual compensatoXofv.r.t. to the natural filtration
of Z.

Practically, let(¢s(Z))s be an increasing sequence 2f finite stopping times. Lel be a process,
which will play the role of a perturbation noise. For ease of presentation, but without loss of generality
we suppose that all the processes are equabtdhe initial date. We assume that:

Assumption 3.1. Yy, (z) = U;
Assumption 3.2. (Uy); L(Wy):

We suppose that every process admits a Doob-Meyer decomposition towards their canonical filtrations.
MoreoverU; writes: U; = HY + MU as we suppose that it's a semi-martingale w.r.t. its canonical
filtration with MY a local martingale, andf” is known. Moreover, we make the following regularity
assumptions :

Assumption 3.3. Y is a semi-martingale w.r.tx,vZ,vV, and its finite variation process is differen-
tiable:
Y, = HY (tXvZ VW) + M) .

There exists a proce#s’ (t) such as:

t
HY (tHXvZvWy) = / hy (s)ds.
0

Assumption 3.4. There exists a sequence of functiQnZ, )o<s<: — IR* (with k fixed) such ag&Y (¢)
X:vZ,vW-measurable is als&v((Z)vIV,-measurable. There exists a density ofonditionally on
X andW: g¢(&|XvWy).

As ¢;(Z) is a sequence df; stopping timesZ,, z) is clearly defined as the stopping tirrealgebra
generated by:

Zqﬁt(Z) = {A € ZDO‘A N {¢f(Z) < 5} €2, Vs> 0}

The definition of such sets faf andW is not so obvious aghi.(Z) is not compulsory &, or aW;
stopping time. We will adopt the same notation, howeygy ;) and W, ) will be defined as the
smallestr-algebra that make respectivety, .y andWy, z) measurable, that is to say:



Vou(2) = 04 Yo, (z(w)) ()]s < t,w € Q}

W@(Z) = U{W@(Z(w))(w”s <twe Q}

as for anyw € Q, ¢:(Z(w)) and therefore)y, ) andW, ) are always defined. Moreover, we add
that as soon ag andWW are supposed to b@dlag processed, ) andW,, z) areé;(Z)-adapted. In
the following, we will noteAv B for two o-algebrasd and B the smallest-algebra containingl andB.

Lemma 3.1. (vavW)@(Z) = ym(z)vzd,t(z)vwm(z) = utVZ@(Z)VW@(Z)

Lemma 3.2. LetY; be a process with stochastic intensity, adapted to the filtrationd)” (containing
internal history ofY}). Let¢(t) be a monotonous function of time, sufficiently smooth. Then if we define
N, to be N; = Y, thenN, has also a stochastic intensity" for the filtration A = Ajf(t) which is
given by:

hiv = ¢/(t)h5>((t)

We then write:

O ZYDY (De(2)| Vo, () VW2V E 6, (7)) = WY (UNW g, (2)VE g, (2))- (6)

Moreover :

E[hY (HUNWes,(2))[UNWe, () = B[R (H{UNWy,(2)) U] = b7 (t)

as we assumed that, | W,, Depending on the proce$s this expression will become explicit and
generally speakingfot hY (s)ds = HY(t). Then we can also rewrite:

ERY (HUNWg, (2) UNWy, ()] = /m, . WY (HUNE(Z) g, (2)VWs,(2)) 901 (2) (EIUN W, () ) dE

and we have then:

t/
/ dt/ . hY (UNE(Z) g, 2)V Wi, (2)) 96, (2) EUNW s, (2))dE = HT (') @)
0 IRk

but we can repladg 6 |rj 7 and then:

t/
/0 dt /Bk 2D (De(Z2)| V5, (2)VE(Z) 0 2)VWi(2))90(2) (El Xy (2) Y Wepo(2))dE = HY ()

If we switch the integrals and make the change of variables¢,(Z) we get :

Theorem 3.1.

b1 (Z)
/ e / BY (] X VE(Z) VW) gs (€| XV ) = HY (1)
Rk 0



3.2 Diffusions
Before going further, we need to define the concept of quadratic variation of a semi-martingale.

Definition 3.1. LetY be a semi-martingale. The quadratic variatioiroflenotedY, Y] = ([Y, Y]¢):t>0

is defined by:
Y,Y]=Y? -~ Q/Y_dY.

[Y,Y] is a process which isatliag, increasing, adapted, such a%'is a stopping-time, then:
Y, Y] = [Yp,Y] = [Yr,Yr] = [Y,Y]7.

Let's recall that a proces¥’;),>o is of finite variation on0; t] as soon asup;. >, |V3,,, —
for each subdivision o0; t]. A procesgY;).>¢ is said to be of finite variation if it is of finite variation
on [0; t] for everyt. Itis then equal to the difference of two increasing processes (and reciprocally).

3.2.1 Driftless processes

Theorem 3.2. Levy’s theorem -A stochastic processX,)o<; is a Brownian motion if and only if it is
a continuous local martingale with, X|, = t.

Proposition 3.1. Let f : IR — IR* a non-decreasing and continuous function. Then there exists a
continuous martingalé/ such thatM, M|, = f(¢t).

We have that for &, B; = X|x x), is @ Brownian motion.

The compensator of the square of the process is equal to the quadratic variation. Then let's consider the
processY; = f(X,) = X? and apply what has been exposed in the previous sectiongwith?z) =

[X, X]:. For this class of process, we have obviously fias a Brownian motion, which is univocally
determined by the fact th@t/, U], = HY(t) = t. Consequently, the theorem becomes:

o (Z
/ dg / X (U XL VE(Z) VW) s (€| XV W, ) du = 1. ®)
Rk

3.2.2 General case

In the general case, processes with a drift can be handled by adding the approach of section 3.2.1 a
second equation to treat the drift term. Let's suppose Hds a diffusion and that there exists a
X, VW, -finite variation proces® such that:

E[Xt - Dt‘XtVWt] = 0

Equatio@ is fundamentally unchanged, except fais replaced by X — D);:

/ df/ pX- D) (u| X VE(Z) VW) gs (€| XV, ) du = t.
Rk



3.3 Durations

3.3.1 Definitions and generalities

A duration is the length of a time-period, spent by an observed individual in a given state. We can
make for simplicity the assumption th&#(7 = co) = 0. The distribution functiorf’ of the durationr
is defined as:

F(t)=IPP(r<t) for t>0.

The survivor functionS of the durationr is defined as:
SH)=Pr>t)=1-F@t)+P(T=t) for t>0.
The density ofr is a functionf : IR™ — IR™ which verifies:

' dF  ds
F(t)—/o fluydu or f(t)=—=——
The integrated (or cumulative) hazard function is of the duration variatdehe functionA such that:

A R"— R"

t— At) = /0 d;;g?.

A is left-continuous, monotone (increasing), and such @) = 0,A(cc) = oo. For a duration
variabler whose density ig, we have:

A(%) :/O ggz))du 7/0 d;((ul;) = —In(S(t)).

The hazard function of the durationr is defined through:

_dA() _ (1) _ din(S(t)

A®) dt S(t) dt

The following equations are then straightforward:

S() = exp(—A(t)) : A(t) = /0 Mu)du : f(8) = A(t) exp(— /0 Au)du).

When\(t) = A > 0 Vt € IR, we are in the particular case of a Poisson process. Given an increasing
sequence of duratior(s;);, the related univariate counting proce$sis such thatV, = > .., 1(7; <

t). The trajectories of such processes start in 0, are increasing right-continuous, left-limited, with jumps
of size one.

A duration model can be linked with counting processes, as we can défiael(r > t). The internal
history of the proces8/; is ¥ = o{N,|0 < s < t} potentially augmented with the null sets. A count-
ing processV,, in particular as & -adapted point process, is a sub-martingale : using the Doob-Meyer
decomposition we have always th&t = A, + M, whereM, is a martingale, and, is the compensator
process.

As soon as the compensator exists, and is absolutely continuous relatively to the Lebesgue measure, the
intensity process exists. We have the following definition (see [Karr,|1991]] ):
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Definition 3.2. [Stochastic intensity]
If NV is a point processF;-adapted, and; a F;-progressive process, positive, such as:

t
Nt—/ Audu
0

is a martingale. TheR,, is the stochastic intensity of the process. When it exists, the intensity is unique.

We have also inf [Bgmaud, 1991] the following characterization:

Definition 3.3. [Stochastic Intensity (characterization)]
If V; is a point processF;-adapted, and; a F;-progressive process, positive, such as:

Vt>0 /Ot/\sds<oo P —a.s.
Then if for all positive F;-predictable process,, the following relation holds:
/ 925st / DsAs ds
thenN; has theF;-intensity \;.
An other consequence is théd, ¢,0 < s < ¢t:
E[N, - N,|F,] = / A, ©)

As underlined by ([Bauwens and Hautsch])the previous relation characterizes the stochastic intensity of
a proces§

If A\: is bounded and right-continuous, the stochastic intensity of a point prégelsas the following
interpretation:

hn(t) = AIKIO K]E[NtJrAt — Ne| 7]

Let’s recall that ifA; is the compensator of an univariate counting prodéswhose stochastic intensity
is A Ay = fot Asds. The processM; = N; — A, is aF}N-martingale, withM, = 0: this gives the
Doob-Meyer decomposition of the process

The class of predictable processes (containing progressive processes) is generated by the sgfmerfits@fof the form:
[s;t] x A, Vs,t,0 < s<t<ooandA € F,. Moreover we can see that if equati@ [9] holds for every s < t then (leaving
aside regularity conditions) far < s < t:

t s t
E[N, —f AudulFs] = IE[N;— N, + N, — (/ Audu—i—/ )\udu)\fs]
0 0 s

t s
E[N: — NJ|F] - IE[/ AudulF.] + N, — / Audu
s 0

= Ns—/ Audu

In the second equality we use the fact that— fo Audu is Fi-adapted, and in the third we use the equa@n [9]. Then the process
(N — fo Audu)t is @ martingale and relatloE|[9] characterizes the stochastic intensity process.
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The intensity exists iff the jumps are totally unreachables and if the process is of locally integrable
variation (see [Protter, 2003]). It turns out that the class of processes made of processes with continuous
compensators can be transformed into a Poisson process through a time transformation. We have then
(see[[BEmaud, 1991]) :

Theorem 3.3. [Change of time for an univariate point process]
LetY; be a process with;, a F;-intensity, andu,, a G;-intensity, whereF;, and G, are histories ofY;
with:

FNcG cF

We suppose thdP-as, we havéim; ., ¥; = co. Fort € IR we definep(t) the G,-stopping time such

as:
o(t)
/ ydu =1
0

Then the process; = Yy () is @ Poisson process with an intensity equal to

3.3.2 Endogeneity in duration models

The analysis of endogeneity in duration models is particularly relevant in the context of treatment effect
using counterfactuals (see [Heckman]). A counterfactual is the hypothetical view of what have might
have occurred if what happened could be undone. Let us dendgtédmptinuous or discrete) the level

of a treatment and byr¢), the counterfactual process of outcome durations. For &k C IR, 7¢

is a duration. Actually this process is degenerate in the sense that tre all functions of a single
random element. We assume :

7€ = (A1 (U) = 2(U) (10)

whereU is an exponential (1) distribution. For eaghA¢ is the integrated hazard function of and is
assumed to be strictly increasing fraRit to IRT. We denote byb¢ its inverse function and, assuming
smoothness conditions:
0

X(8) = 5 AS(D)
is the hazard rate of¢. The parameter of interest of this model is functional and equalte) (or
A&(t)) or to its inverse®® (u). This counterfactual process is completed by an assignment mechanism.
We consider a joint distribution of a vect(iir®),, Z, W) whereW is a vector of instrumental variables
and Z is the level of treatment. We assume:

o (7%)¢ has a marginal distribution characterized by 10;

e We suppose for the moment that the instruments are not time dependent. This assumption is
introduced in order to simplify the intuition of the presentation, but the aim of the next sections
will be to drop this hypothesis and to incorporate dynamic instruments in the study.

The observed data afe, Z, W) wherer = 77 i.e. the value of outcome at the assigned level of treat-
mentZ = z. As in most of the treatment models, the dependence betwesd Z come from two
factors: the treatment effect described by and the assignment bias captured by the dependence be-
tweenU and Z. Without any additional assumption, these two effects may not be separated and the
parameter of interest? (t) is not identified. We may consider three independence (or conditional inde-
pendence) conditions which allow identification:

12



e H1-Z1U
e Hy-Z L UW
e H3-U LW
The conditionH defines the pure randomization case. In this d&smay be neglected and the condi-

tional integrated hazard function efgiven Z is preciselyA#(t). This parameter is then identified and
may be estimated by usual methods.

The assumptioiii/; is a conditional randomization condition from which the identification follows from
the following argument. Let us denote BYt|z, w) the conditional survivor function af that is to say:

S(tlz,w) = Plr>t|Z=2zW=uw)
= PU>N)Z=2W=uw)
= Su(A* ()W =w)
where Sy (u|W = w) = P(U > u|]W = w) = P(U > u|Z = z,W = w) with condition Hs.
Moreover :
PU = uwp(w|U > u)

p(w)
wherep represents both marginal and conditional density of W. Then:

PU>ulW=w)=

e MOS8 (t)p(w|z < t)
S(t)p(w)
e MO8 (tlw)
S0

S(t|z, w)

using obviouslys for the marginal and the conditional survivor functiong-ofThenA#(¢) is identified.

The third condition is the most interesting case and will be explored in the next section.

3.4 Model and integral equation

3.4.1 The counterfactual approach

We write a counterfactual modé§, 7) for durations that are now considered as time of jumps of an
elementary counting process{r: > t). Endogeneity arises through the assignment mechanism since
observations will be reduced to realizatiqnst*) of (£, 7¢). We are interested in the process :

Xep =11 2 1) = Ae(t) + Eee
whereE; ; ought to be a martingale. However, if we observe the pro¢ess given valueZ, we have:
Xe=Xz:=Az(t) +Ez,

Yet the termE ;, is no more a martingale. The latent model is still depending,dut £~ ; depends
on the observed endogenous variablesandr=. The previous considerations are no longer valid, since
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we don't know if E[Ez ;| Z] # 0 as no assumption (even conditional) on the independence beffveen
andU is made. Now, we have to try to look for an other form of dependence, and try to find for the
durationT an expression of the form = ¢(Z,U), Z being the set of endogenous variables, &hd
being a random perturbation. The function is then different from the hazardafditional onZ. Let's

U be an exponential variable of parameleand let's consider the proce$sU > t). It's easy to show

that its compensator isA U. We define:

M, =1(U>t)—tAU.

ThenM, a F;-martingale (where?, is the natural filtration of the proce3$U > ¢)). Now let’s turn to
the counterfactual proces& ; = 1(7¢ < t) with differential form :

dXey = At &)(1 — X,-)dt + dEe,,.

We noteA(t, &) = fot A(s, €)ds. The integrated hazard function &f, , is then equal to\(t A 7, ). We
have:
Xep = AMEATEE) + Bey

Theorem 3.4. Under the previous notations:
E&t = MA(t,&) <~ Te = A_l([]7 f)

See proof on appendix £z, is not bound to be a martingale bfit ; may be linked withAZ;, the
compensated version of an elementary counting process relative to an exponential randomariable
This is interesting since it allows to link® with U and¢ through the inverse counterfactual integrated
hazard function ofX¢ ;. This will be our function of interest, which we will try to estimate.

3.4.2 Transformation in time of a Poisson process

In this section we will explore the case of processes that are obtained through a time-transformation of

a standard Poisson process. As expressgd in|3.3.1, the processes that allow such a transformation are
those with continuous compensators (this class includes in particular increasing processes with locally
integrable variation, with jumps occurring at stopping times that are totally unreachables).

We want to work with instruments to treat endogeneity. Note that the condition that we obtgingd in 3.4 is
very close to the characterizatior{ of|3.3: the times of jump of the counting process and the corresponding
Poisson process are related through a compensator function of the pkagesst in the counterfactual
universe.

Exponential variables and Poisson processes are closely related. Let's cavisideomogenous Pois-
son process, of parameter 1. We ndfe = N; — t. We define, still in the counterfactual world:

Yer = At €) + Mo
It's a Poisson process of intensityt, §) = A'(t, ), sinceMy . ¢y = Ny — A, ) we have easily:

Yeo = A(t,6) + [Nawe) — At 6)] = Nage)

14



We begin by consideringy;, a standard Poisson proce$g; ~ P(1). We will note M, the martingale
(relatively to the usual filtration) such &d; = N; — ¢. Then,A be a function of’¢, £), continuous and
increasing irt, with the initial conditionA(0,¢) =0, V. We defineX, ; as being:

Xet = Nag O Ne=Xp-1(1¢)
In the counterfactual view, this is equivalent, thanks to the former discussion, to :
Xg,t = A(tu f) + MA(t,g)
However, the assignation mechanism of the observed vélaez) introduces endogeneity :

Xa-1(t,e=2) = Xog(t,2)-

We want to estimate(.,.) and we consider additional instruments to treat for endogeneity. Those
instruments are not supposed to be time-dependent in a first approach. The main hypothesis we make is
that:

Assumption 3.5. W are independent froii and V,.

3.4.3 Integral equation for ¢

We suppose thak; is a one-jump processX; = 1(r > t) wherer is a random duration. So is
N, = 1(U < u), but we make the additional assumption that= A(r, Z) follows an exponential
law of parameter one conditional to the instruméiits Our aim is to estimate(., .), the inverse of\,
observingr, Z, and W. However, we do not obser¥g, but assume thay, is independent fromil’.

Let’s write f (¢, z|w) the joint law of(r, Z) conditional toW. Havingr = ¢(U, z) andU = A(r, z), if
we noteg(u, z|w) the joint law of (U, Z) conditional tolV, we have clearly:

g(ua Z|w) = ¢/(uv Z) X f(¢(ua Z)v Z|w)

¢'(u, z) being the derivative op towards its first argument. We will notg(t, z, w) andg(u, z, w) the
corresponding joint laws, a point replacing a variable when it has been integrated along it, thus leading
to marginal laws. Then the survival functiéii¢, z|w) will be defined through:

oo t/
Sr(t, zlw) = Pt > t, Z = z|W] :/ Mdt/
t

f . w)

First, our main assumption was thét:= A(r, z) ~ Exp(1). Then, this leads to :
/g(u7 zlw)dz =e™

/<Z5/(u7 2 f(d(u, 2), 2|W)dz = e

Second, we have :
Su(u, z|W) = IP[U > u, Z = z|W]

PU > u|lW] = /Su(u,z|W)dz =e "
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as a survival function of an exponential variable. Provided ¢ghiatmonotonic in its first argument, we
have:

Then integrating along:

/Su(u,z|W)dz:/ST((;S(wz),Z\W)dz

Consequently :

/ST(¢(U, 2),z|W)dz = e

This second equation was already obtained in the static case : this is natural since we explore the same
kind of dependence = ¢(U, Z) with U being an exponential variable of parameteiThe novelty is

the first equation, resulting from the expression of the la@W.otZ) conditional tol¥’. We have the two
following expressions, holdingu > 0:

J &' (u, 2) (b(u z) 2|W)dz =e
[ S-(p(u,2),2|W)dz =e "

If we divide the first equation by the second, we get:

¢’ (u, z)f(é(u 2),2[W)

L= TS etu, 2, oW dz
_ /¢ u, 2) o(u, z) z|W) S ((b(u z), z|W)
o(u, 2), z|W) fS 2", 2'|W)dz
® B

@is the hazard function of the proce§k, } taken in¢(u, z) conditional onZ = z, W. Indeed:

[ 2W) Sz W)FGEW) Sz W)

S AW) ~ Sz W) W)~ S@mw) =)
B)is the law ofZ conditional toW andU > . Finally:
/ & (u, )N (B, 2)|Z = 2, W)g(2|U > u, W)dz = 1 (11)

It would be tempting to integrate with respect to the variablnd to switch both integrals but this will
be difficult since there is a conditioning termiihin the densities in. However if we integrate in for
u varying from0 to s we get :

| au [ ¢ a3 0tu,2)12 = 2 Wglel W £z = s
0 z
Then if we switch the integrals and make the following change in varigbtes(u, z) we get :
¢ S,Z)
// M (tZ = 2,W)g(2|U > ¢~ (t,2), W)dzdt = s
z Jt=0

and ayy(z|U > ¢~ 1(t,2), W) = g(z|7 > t,W) we conclude that:

(8,2
// Ar(t|Z = 2, W)g(z|r > t, W)dzdt = s (12)
z Jt=0
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3.4.4 Working with intensities

We can address this question in a more general framework and extend the formula 12 by using intensities
rather than using survivorship functions. We need the following lemma:

Lemma 3.3. Let X, be a process with stochastic intensky, adapted to the filtration4;* (containing
internal history ofX;). Let¢(¢) be a monotonous function of time, sufficiently smooth. Then if we define
N, to be Ny = X4y thenV, has also a stochastic intensity" for the filtration A}¥ = Ajf(t) which is
given by:

)‘:{V = ¢/(t))‘c)/><(t)

The proof is straightforward when we use characterizafjon 90Fors < t € IR we have:

E[N; — N,|AY] E[Xg — Xg(s)[Ajs)]

[ b(t) A ]
E/ Audu| A
o(5) o(s)

E[/t ¢’(U)A,Udu\,4ﬂ

by making the change of variables= ¢(u) in the last equation. This therefore characterizes the inten-
sity of N. This will help us to extend our result. Indeed, if we nafé and )X the intensities of jump
of N, and X, respectively, we have that:

M lulz, W, F¥] = M [b(u, 2) |2, W, T > ¢(u, 2)] x ¢/ (u, z)

Then, asV, is a process of intensity one:
[ AN lule W Y g, 7Yz = 1

which rewrites using the previous relation:

/ & (u, )N (6, 2)|Z = 2, W)g (2| W, FY)dz = 1 (13)

Consequently, integrating i, the general following result still holds:

¢ (u,z)
// N (HZ = 2, W)g(=|FX, W)dtdz — u = 0 (14)
zJ0

3.4.5 Generalization

The former section gives us insights to generalize what has been done to the case of dynamic variables
and / or instruments. Let's observe that it is always easier to work on intensities rather than on compen-
sators.

Let's suppose that we have for the procésshe Doob-Meyer decompositionX; = HX + M;X for

the filtration X, vZ,vW;. We suppose that(t, Z) is a family of increasing, finite stopping timeg;
measurable. We make the additional assumption that foreagty, 7) > ¢.
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We suppose ttht = X¢(t,Z)- Then ‘N; = HtN—I—MtN for X¢(t,Z)UZ¢(t,Z)UW¢(t,Z) = NtUZ¢(t’Z)UW¢(t,Z)

with HY = HJ, ;) and M} = Mj, ,.

In this case we need a stronger assumption betWiéemd V:

Assumption 3.6. N, and W, are independent that is to say, both all the trajectorywadnd all the
trajectory ofW are independent. We suppose that:

E[hY NowWy,z)] = E[hY | N]
We have that:

/Z¢/(S,Z)hx(¢(5,Z)\qu(s,Z)UZ¢(S,Z)UW¢(S,Z))Q(qu(s,Z)|X¢(S,Z)vW¢(s,Z))dZ =1

66 ds A ¢/(S, Z)hX((Z)(S, Z)|X¢(S,Z)’UZ¢(S,Z)’UW¢(S,Z))g(Z(z)(S,Z)‘X(b(S,Z)UW(z)(S,Z))dZ =t

If we make the change of variables= ¢(s, Z) then:

o(t,2)
/ dz / R (u| Xy vWov Z,)g(Zo | Xt W )du = t
Z 0

Dynamic covariates with all the trajectory : suppose that we have dynamic covariate but that we
can observe the whole trajectory of the processes (instruments and variables). The equation becomes:

b(t,2)
/dZ/ R (u| X oW Z)g(Z| X oW )du = t
Z 0

3.5 Estimation

We have to estimate™ () andg() that are unknown. It will be possible to give estimatarsf A(t|z, w)

but the situation foy(z|F7<, W) will be slightly different, since we will be unable to derive the speed of
convergence of a potential estimagowithout precisely defining the nature of the dependence between
Z andF/X, even in the static case.

We will work with fixed values of “u”. We suppose that for afwy, ) we have that — ¢(u,z) € L%,
and isIR"-valued. We considerf” as expressed formerly, and that for anyixed, T¢ € L. If ¢
stands for the true solution of equat@ 12 we will ndtethe proposed estimator @f for a sample
made ofn observations. I\ andg are estimators of andg, a form of 7}, could be:

nef [

In the following, we will drop the indexation by. As n goes to infinity, we will adopt the generic
notationd,, for the speed of convergence that is to say:

||Tn - THL€V = 0(6n)
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3.5.1 Speed of convergence

The easiest way to see that strongly relies on the assumption made6ronditionally onZ;* is to
linearize and to see that :

149 = Agll < 1A = Mgl + 11 = )Ml + o(lIA = Al x 11§ — gll)

Then the speed of convergenceXdfis driven by the lowest speed reached by either §. As both

andg are conditional densities or intensities, those speed of convergence will rely on the dimension of
the conditioning variable. For example, as soon as the dimensigh @) is greater than the dimension

of (FX, W), we will only have to control for the speed of convergence ofor instance, in the case

of a discrete time sample df, keeping all the past observationsXfwould lead to a dimensionality
problem concerning the speedpf

3.5.2 Example

We consider equati02) and suppose that = o({r > t}). We will use kernel density estima-

tion, kernels will be noted<(.) and will sometimes stand for a generalized multi-dimensional kernel,
depending on the dimension of the concerned variable, with associated bandwidth (generically denoted
by h_, depending on the size of the sample but we drop this indexation for sake of simplicity). The
joint densityf (¢, z, w) can be estimated through:

ft.2w) = ZK DK (=K (=)

for a set of observation§;, z;, w;)c[1;n], Wherep is the dimension of/, ¢ the dimension ofV. We
suppose moreover that there exist an analytical expression of the survival function of the kernel in
notedk, such as K (¢ ft t')dt’. Consequently, the survival function is estimated through:

Finally:
Atz = L Dt KORORCE) R (52
’ he 370y K () K (2 K (M)
and:
1 >y KO K (%) 1<y,
g(z|T>t, W) = —
g( | - ) h]zJ ZZ 1K(w Wi )1t<t

Then,T((;S) as a function o/ for a fixedu may be estimated by:

bu,z)
// A(tlz, W)g(z|T > t, W)dtdz — u
zJ0

We summarize here the hypotheses on the kernels and on the densities that we have to make in order to
derive speed of convergence. First, we suppose that the variables of interest take their values in compact
sets:T € [0;T], Z € [0;1]P andW € [0;1]?. Second, we consider nonparametric kerr€lsvith
corresponding bandwidths, &, andh,,. Kernels for estimation of andW are respectively andg
dimensional generalized product kernel functions. We suppose moreover that:

o [K(u)du=1,
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o [K?(u)du < oo;

. ft+°° K (u)du has a closed form expression.

We suppose that for each kernel of bandwilithere exists an ordere IN suchag 7! [ w/ K (u/h)du
is equal tol for j = 0, 0if j € [1;7 — 1], and is different fron0 for j = r. In the following,r will
denote the smallest order of those kernels. Each bandwidth depends on the sampémnsizg . — 0,

% — oo. Third, we suppose the intensity
A(t|z,w) is dx-times continuously differentiable with a boundégdderivative and thag(z|7 > ¢, w) is
d, times continuously differentiable with a boundégderivative. Under those hypotheses, and i
the minimum between the ordewf the kernelsd, andd,, the estimatoig tends to\g (in a L2 sense),
at a speed,, which is :

1 1
n =0 4+ (hP _h4 . hd )2p
v <nh£,zhgx,w ( hE w) ’I'Lhth,%,w + ( n,w) )

3.5.3 Simple forms ofp

hpz — 0, hpw — 0, @andnhy, ; — oo, nhi, . — oo, nh

We can also make some simplifying models §orin the case of a risk proportional model, we suppose
that there is a semi-parametric modeldrand that:

P(u,2) =v(¥(z)u) and P(z) = Yg(2) = ¥(z, )
with for exampley(z, 8) = exp(5z). This implies that the model becomes:
v(u)
//0 Y(2)Ax (Y(2)s|z, W)g(z|T > ()8, W)dsdz —u =0 =T(v, )

This assumption allows to switch the integrals in the former expression, which is not possible in the
general case. It is even sometimes possible to consider) = zy.

4 THE NON-SEPARABLE CASE : IDENTIFICATION AND CONVER -
GENCE

4.1 Anill-posed inverse problem

4.1.1 Definition

We want to show that the problem we are studying is an ill-posed linear one. We first assume without
loss of generality thaZ andW have a compact support and take their valuegdoh?z and|0; 1]9w .
We recall thall ~ Exp(1). The function(u, z) — ¢(u, z) to be estimated satisfies :

¢(UZ)
// 27 = 2 W)g(elr > ¢, W)dzdt = u
zJt

and is defined ofR* x [0; 1]¢2. Let's defineL?(U, Z), L*>(U, W) the spaces of functions such as :

LU, Z) = {¢ i RT x[0;1]%%2 — IR measurable | 1l L2, z) = (/ [ (u, z)|2fU(u)fZ(z)dudz> : < +oo}
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[NE

L2(U,W) = {¢ RY X [0;1]7W > R measurable | |[¢]]2w) = (/ v (u, w)\2fU(u)fW(w)dudw>

< +oo}

We define:

T:L*U,Z) — L*UW)
b(u,2)
¢ T(¢):(u,w)—>// a(s,z,w)dsdz —u
zJ0

wherea(s, z,w) = M (s|Z = z,W)g(z|t > s,w). We try to solve the following inverse
problem:T(¢) = 0. In fact this problem has to be solved for fixed values.ofTo simplify
notations, we will sometimes note in the followitd ) = L?(U, Z) and(Y') = L*(U, W).

This problem is nonlinear : to analyze its ill-posedness the first step is to check if the operator
T is Frechet-differentiable. We estimate the Gateaux-derivative of the operator which is given

by takinga = 0in :
(u,2)+ad(u,z)
E /Z/S a(s,z,w) —ul.

Then this derivative i is the operator :
q~5r—>T(;(¢~)) = /qbuz a( uz)zw) dz
f=(¢ (u 2),2|T2¢(u,2),W)

,2) fr(d(u, 2), 2|7 > d(u, 2), W) dz.

:fU (U,Z|UZU7W)

¢/

For each function € L*(U, Z), T}, is linear fromL?*(U, Z) to L*(U, W).
To ensure thal" is Frechet-differentiable, we have to check whether:

° T¢’S is linear, which is straightforward;
° T(; is continuous for every;

e the mappingp — le> is continuous or.(U, Z) on all.ll g2 ,z),22v,w)) sense (where
£(L2(U, Z), L*(U,W)) is the space of linear functions betweet(U, Z) andL?(U, W)).

We make the following assumption:

Assumption 4.1.V¢ € L*(U, Z) we have:
[ ) m s dududs < oo
R+x[0;1]4wW J 2z

Assumptio ensures thap, 77, is bounded, as it is lineaF;, is continuous for everyp. We
still need to prove that the mappigg— T(; is continuous or.?(U, 7). In fact, for our analysis
of ill-posedness, we only need this mapping to be continuous on the true saputiopy.
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As T is linear, || Tj|| ex.9) = supjex g =11T5|l9- Vo1 € X, we have forp € X andu, w:

(Té)o - T(;l)((;;) = /(Z)(uv Z) {)\((bo(u, Z)7 2 w)g(z|7' > ¢0(u’ Z)’ w)} dz
which can be rewritten:
(Téﬁo - Tq/ﬁl)@B) - /(ZNS(U7 Z))‘((ZSO(”’ z),z,w) {g(Z|T > ¢0(u7 Z)? ) (Z|T > ¢1(u Z )}dz
+ /(Z)(u, 2)g(z|T > ¢p1(u, z),w) {\(po(u, 2), z,w) — A(P1(u, 2), z,w) } dz
]

We may need the expression of the adjoint operator of teeHat derivative. For functions
¢ € L*(U, Z) andy) € L?(U, W) we seek the linear operatdj;* from L*(U, Z) to L*(U, W)
such that:

< Tho (@), % > 12wy =< & T (V) >12(11,2) -

Writing explicitly:
(T35 (@) (1, 2)) (W (1, w)) fr () fre (w) o
(

< T¢’>O($)a 1; >ruw)y =

ST
e

3w, 2 (Golu, 2) |2, w)g (217 > do(u, =), w)dzdt)
(3, w)) fr () fr- (w)dudo
By ) (o, 2)] 2 w)g (21 > do(u, ), w) fir(w))
X ((u, 2)) fu (v)dzdtdudw
= [ Bl )z witulr > do(w 2).2)
% £2(2)) (B, 2) for(w)dzdtdudw
_ / / By w)Ar (Go(u, 2)]z, w)g(wlr > do(u, 2), 2)dudw)

< (B(u, 2)) f2(2) fu(u)dzdt
= <. T W) > 2wz

(

1
T
S~ «

where:

T} () = / (s w) A (o, 2) 2, w)g(wlr > do(u, 2), 2)duduw

4.1.2 lll-posedness

As underlined by Proposition 10.1 of [Engl et al., 1996] the characterization of the ill-posedness

of an operator through conditions on its linearization is sometimes difficult and no general con-

ditions can be given. We could use this Proposition or its local version given in [Chernozhukov et &l., 20
and try to work directly or¥".
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Alternatively, one can try to show thdt’ computed on the true solution is compact. This
condition will be sufficient only in the case of infinite dimension of the rang@’afwhich is
straightforward since the arrival spaceldf is LU, W).

Suppose then that we want to show the compactne’§§.o4\ first approach could be to show
that the imagé’;(S) of bounded sets' is relatively compact (i.e. the closure Bf(95) is also
compact)and use for this the characterization of [Alt, 1992] used by [Chernozhukov et al., 2008].

We could also examine under which conditions the operator is an Hilbert-Schmidt one.

Assumption 4.2. We assume that ibg is the true solution of the problem :

/u/w/za2(¢(u, z),z,w)‘Wdzdwdu < +o0.

With conditio, if we posé (u,w, z) = %&”’) k(.) is then the kernel of the Hilbert-
Schmidt operatof; since:

T, = / k(uw, 2)8(2) f2(2)dz

with:
/u/w/zk(u’w’Z)|2fZ(Z)fW(w)fU(U)dzdudw.

Under those conditiong,”(;)o is Hilbert-Schmidt and therefore compact.

4.2 ldentification

We now want to explore the conditions for the identificatiomafefined by equation 14. Let’s
assume that there exists two functiefisand¢s such thaf I]1 holds. We assume moreover that
for normalization conditionsp; (0, z) = ¢2(0,2) =0 Vz. Then:

16100 2N (0n02)12 = 2. W)=, 0 (60, 2)|Z = 2 W)} g(aIU = 0, W)z =0
Assumption 4.3.Z << W | U > u which means that for all functiop(., .):
FElp(Z,w)W,U >ul=0 = p(z,u)=0
Under these conditions, the previous equality implies that:
Vu, ¢ (u, 2)A (¢1(u, 2)|Z = 2, W) = ¢(u, )XY (¢2(u, 2)|Z = 2, W).

Each term is the derivative o™ (¢;(u, z)|z, W) w.r.t. u wherei € {1,2}. Then there exists
a € IR such that:

A (p1(u, 2)|2, W) = A (¢o(u, 2)|2, W) + o Vu, 2.
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Especially for u=0:
AX(41(0, 2)|z, W) = AX(42(0, 2)|2, W) = AX(0]2, W) =0

thena = 0 and:

A (1 (u, 2)|2, W) = AX (¢ (u, 2)|2, W) Vu,z|

We see that the second assumption in order to get identificationpii.es ¢» is thatAX has

to be injective. We supposed earlier that the compensatdf bhd to be continuous. This
assumption is fundamental, but not to ensure injectivity. However, we supposeditzatin-
creasing: this is not sufficient, it has to be strictly increasing. This is equivalent to the fact that
XX never vanishes. WhekX = 0, the process becomes deterministic as we know it cannot
jump. The hypothesis is formally similar to the identification condition in the static case: how-
ever it is far stronger since the identification is controlled on the trajectory as larig-as.

We can also recover this condition by using operators. We study the op&rator— 7'(¢)
such as for a functiop we have:

¢ (u,2)
T() : (u,w) — //_0 a(s,z,w)dzds — u

(where the functioma(., ., .) is expressed through equat@ 14). We are looking for functions
such asl’(¢) = 0. ¢(.,.) takes for argument and Z, and7" maps¢ into a function ofs and
W. Additionally, we will have to constraim to be monotonic, increasing. Therefdrawill be
considered as a mapping between the two Hilbert spaces:

T:L%U,Z) — L*(U,W)

If we wantT' to be one-to-one, that is to sﬂ%(&) = 0, this implies the same condition than
in the former approach, that is to say :has to be strongly identified By conditional toU .

4.3 Convergence

OperatorT is defined as :

(s,2)
T:¢— // Mr(t|Z = 2, W)g(z|T > t,W)dzdt — s
z Jt=0

and we try to solvel'(¢) = 0. ¢ is a transformation of time, takes its valuesiitt, and its
arguments irf0; 7] x IR™ or IR* x IR"™. Moreover we assume thatbelongs toL?(U, Z). In
the following, we will notel’ = 7}, an estimator of. Generically"is :

. (s,2)
T:gzb—>// a(z, W,t) dzdt — s
z Jt=0
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wherea(z, W, t) is an estimator ofi(z, W,t) = Ap(t|Z = 2z, W)g(z|7 > t,W). We face a
non linear inverse problem, whefeand everil” are not knowf) which implies the use of a
regularization technique, and present first the case of regularization in Hibert Scales.

4.3.1 Regularization in Hilbert scales

We want to solve i the following problem:
m(gn IT(d)]2 + anllé — ¢*])> with é(u,z) € L% for u fixed (15)

wherec, is a regularization parameter apd is an arbitrary function. In particular, we will

have to control the behavior of the parametgrasn goes to infinity. We will adapt the ap-
proach of [Engl et al., 1996] p.245 although we face a different problem. Additional conditions
on the Frechet-derivative @f will be needed to obtain the speed of convergence of our solu-
tion. We first examine the convergence of the sequence of solutigng of 15 towards the true
solution of the initial problerp 12.

Assumption 4.4. Assume that:

e if ¢¢ is a solution of the problefn 12 then there exists a sequé&nsach as
1 T(¢0) — T(¢0)l| = |IT(d0)]| < bn

e 5., ay, ands? /v, tends ta) asn increases to infinity;
We can show that under hypoth€sis| 4.4 we have:

Lemma4.1. If (ég) is a sequence of solutions of the related minimization probl@ls (15), then
there exists a subsequeng#’ ,) of (¢%) which converges towards a functian (in a L3,
sense). Moreovep, is a solution of the problein 12.

See proofin append.3. We will only need to suppose |t]lfi%\t— T|| — 0 which is not a too
strong assumption.

Unicity : ~ some conditions may be examined to ensure unicity;oflf the problen{ IP is
identified, ¢q is unique andpy = ¢;. As soon asp; is unique, we have that there is only one
limit for any convergent subsequence (@), so (¢%) is itself convergent and tends .
However, even when the initial problem is not identified, it is possible to restrict our problem to
some classes of solutions. [Engl et al., 1996] uses the conceptminimal norm solutions.
Then ¢, is taken as the unction, among the set of solutipnsf [13, which minimizes the
quantity||¢ — ¢*||s. Then, we have thaty = ¢;. Indeed:

2As we are looking for which appears in the expression.
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g —¢%|| < limsup||doa, — ¢
< g0 — ¢*]]
< g — ¢*|].

The first inequality comes from the lower-semi continuity of the norm. The second comes from
the definition of(¢2) and the third from the fact thaf, is a¢*-minimal norm solution and that
¢y is itself a solution.

Speed of convergence : we suppose that the solution initial problem is identified and want to
derive the speed of convergence of the soluti(q}j?g to the true solutio, (when we suppose
that that the initial problem is identified). We mainly need conditions that are similar to those
of [Engl et al., 1995], with additional assumptions concerning the Frechet derivatiVenti
T in Po-
Assumption 4.5. We suppose that:

e (i) - the problem[(IP) is identified with a true solutigp

e (i) - 7" andT are continuous and Frechet differentiable with convex domains;

e (iii) - there existsC' > 0 such ag|#,|| < C||¢% — ¢y||?

e (iv) - there existsy, such ag|T, — 77, || <

e (V) -there existg} € IR such aspy — ¢* € H_gwhere(H,)cr is a Hilbert scale (source

condition)

o (Vi) - there exists: such ag|T} (¢ — ¢o)|[* ~ [|¢ — ¢ol[2,

e (Vil)-a<sands<fg<a+2s

o (viii) - 2T/ /0 — 0 whenn — +oc.
Under assumptiorjs 4.4 ahd A.5 we have the following lemma:

Lemma 4.2.

165 = doll2a +anlldh = ollZ < 07 + anlldh — dollzs—s + 165 — boll-a(6n + 16 — dol*)
+al165 = doll(8n + 1165 = doll—a + 1165 — oll?)

See the proof in appendix A.4.

At this point we obtain the same expression than in the case of nonlinear ill-posed inverse prob-
lems (see|[Engl et al., 1906]), but with the additional term relateg,tand the convergence

of the Frechet derivative taken on the true solutions,Jf= O(d,,) this term is likely to be
negligible. However when it's not the case, this term has to be taken into account for the study
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of the speed of convergence of the solutions. In our casE,isestimated along two integrals,
and7” only one,y,, will probably be slower than,, and can not be left aside. Yet, we will need
in the following the next assumption:

Assumption 4.6. We suppose that:

a+pB

Yn 57;1 — 0

This hypothesis will help us to derive the speed of convergence of the solution. It appears that
~» Must not be too slow compared &g and that there is a minimal power foy, (equal to
(a + ) /a which is greater thaih) to be at least faster tha,.

Lemma 4.3. The best choice fot,, is:

2a+2s
) a+p
n

Qo ~~

If moreover we make assumptjon|4.6, we get a speed of convergence equal to:
B=s

O(6++5)

The rate ofw,, is chosen according to the usual case and leads to a speed of convergence that
is similar to the standard situation. However, if hypothesi$ 4.6 is not verified, the terms in

are too slow and the result does not hold, those terms driving the speed of convergence of the
sequential solutions towards the true solution.

4.3.2 Using aL? penalization
We can reformulate the problem with a more traditional kind of penalization. We study the
same kind of minimization objective witfy — ¢*|| taken under &2 norm. That is to say :

min |7(9)][* + anll6 = 67" o(u,2) € L7 forufixed (16)

whereq, is still the regularization parameter agd is an arbitrary function. The study of
convergence is not affected by this, sinc&%anorm is a particular case of the Hilbert space
wheres = 0. Then we make the same hypothesis fhah 4.4 and the demonstration is not affected
by the change of penalization and re§uli 4.1 still holds (see appendix A.6).

However, the result concerning the speed of convergence is a bit different since we cannot sim-

ply replaces by 0 in the demonstration. However, we can make some similar assumptions to
derive the speed of convergence.

Assumption 4.7. We suppose that:
e (i) - the problem[(1IP) is identified with a true solutigp
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e (ii) - T and7" are continuous and Frechet differentiable with convex domains;
o (iii) - there existsC > 0 such ag|i,|| < C||¢% — éol|?
e (iv) - there existsy, such ag|7, — 77, || <
e (v) - there existsv such aspy — ¢f = T}, ".w;
o (Vi) - 7 = 0o(V/0n);
o (vii) - 2||w||C < 1.
Under hypothesis 4.4 apd]16, we can show that :

Lemma 4.4. The best choice fat,, is:
oy, ~ Op,
and the resulting speed of convergence is :
165 = oll = O(V/62)
I7()]] = O(6n)

4.3.3 Regularization by iteration

We may also try to regularize this problem by iterative methods. The principle of the method is
to linearize the operator around the current solution and to update it (see [Kaltenbachér et al., ]).
The interest is to compute linear versions of the operator rather than the initial one, and then to
reduce computation costs. This is the idea of the Newton-type methods. If we have a solution
¢y at the iteratiork, we try to solve the linearized problem:

T}, (¢hs1 — ¢k) = =Ty

However in practice, this linear problem may also be ill-posed and has to be regularized. If the
Tikhonov regularization is applied, then this is the Levenberg-Marquardt method. With an ad-
ditional penalty term this is the iteratively regularized Gauss-Newton method. The Levenberg-
Marquardt method leads to the expression:

Grr1 = b + (ol + Ty Ty ) T (~T,).

A stopping criterion has to be applied to assess that there is no need to further iterate. The
Tikhonov regularization parametey; has also to be controlled and depends on the iteration
paramete.. When we use the iteratively regularized Gauss-Newton method, the iteration is
the following:

Ot = bn + (ol + Ty Ty, )T (= Tdp) + (o — )

where¢! is ana-priori chosen function.
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How to apply this framework to our data? Suppose that a sample of\sire available:
(75,25, w;). We need to expreSqukgb for given ¢, ¢ € L?*(U, Z). In the following as we
will work with a fixed, we will omitw in the expression of the,_ . functions. ¢ may be repre-
sented with the help dfz;, ¢\)) wherep)) = ¢(u, z;). In this casep is estimated through

Z K(z - )

E] 1KZ—ZJ)

K () is here taken as the standard notation for an appropriated kernel, adapted to the modelled
object (despite the notations, kernels may differ depending an etc.). Similarly:

N (4)
I Cbk K(Z_Zj)
or(z) = g .
) j=1 Z;V:1 K(z — 2j)

Suppose that we have two estimatarandg of A andg. Then:

K (z — zj) <
/Z¢ J>A<<>|zw><|w>

For instance, we may defindd(z)|z, w) = Xo(¢(2))exp(f'z+~'w) where)q, 3 andy result
from the estimation of a general Cox modé(z|w) may be derived with a classical estimator
of a conditional density with a given kernel. At this Sta@%;ﬁ is still a function ofw. We
then conclude by applying this function at the poifits ) of the sample, obtaining then a linear
problem using a matrix formulation:

Apd = vy,

were ¢ is the vector of thé¢(!)) .y anduy, is the vector of the (—T'¢y) (w;)) e Ax
is the matrix made of the terms;:

a;; = K(z—z) MNo(2)|2, w;)g(z|w;)dz.
5 /ZELK(Z_W (3] wi)aeh)
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A APPENDIX

A.1 Proof of theorem[Z.1

We assume thatX, = H; + E; w.r.t. filtration Z; and X; = A; + M, w.r.t. filtration W, and
that bothH; andA; are smooth and have an intensity, respectivelgnd \;. Letty € IR. For

t > to we have:
t

Xt - Xto = hSdS + Et - Eto'
to

If we take the conditional expectation of this expression with respect to the filtréitign
considering thalE'[E; — M, |W;,] = 0 by assumption, we get:

t
E[Xt - Xto|Wt0} == E[/ hst|Wt0].

to
Equivalently:
t
E[Xt - th’Wto] == E[/ )\st‘Wto]-
to
by hypothesis. We confront the two expressiondiX; — Xy, |W;,] and divide byt — ¢ to
get:

1 t 1 t

E] hsds|Wy,| = IE] Asds| Wi,

_ 0 _ 0
t tO to t to to

As a property of the conditional expectation operator, we can switch the integral and the expec-
tation as soon as for each equation, at least one of two members exists :

1 t 1 t

E| heds|Wy] = —— | IE[hs|Wy,]ds

s 0
t - tO to t - to to

1 t 1 t

IE| Asds|Wy, ]| = E[\|Wy,]ds

0 0
t— tO to t— 0 Jtg

Finally, we want to take the limit under the expectation operatot fer t,. We will use the
Lebesgue theorem of dominated convergence. Then, we must make an additional assumption
on (hs) and()\s). Although it may not be necessary, it may be sufficient to assume thatboth
and), are bounded. Moreover, to take the lifiih;\ ;, of these expressions, we must suppose
that both processés, and )\, are right-continuous. We have then:

E[hto‘Wto] = IE[)‘t0|Wto]'
As E[hy,|Wy,| = hy,. We conclude that :

)‘to = ]E[hto |Wto]
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A.2 Proof of theorem[3.4

(<) Let's expressX¢; = 1(1e < t) with: Xy, = A(t A 7¢,§) + B¢, which rewritesEy ; =
Xet — A(t A 7¢,§). Then, by definition of\/, (; ¢):

= LA T(U,€) <t) — A7, €) AA(,9))
————
=T¢ =A(tAT¢,€)
= Xg’t—A(t/\T,f)
= E&,t

(=) Let's assume thale ; = M), ¢). We haveX; = 1(7¢ > t) = A(t A7¢, &) + B¢ with
7¢ > 0. By definition:
Eep = 1(T§ >t)— At A Tg,f)
Mpey = 1L(U > A&, 1) — A ) AU
As A(t, &) AN A(1e,&) = At A 7¢,§), the equalityEe ; = My ¢ ) holds as soon af =
A(re,€) ie. e = AH(U, €) (being the inverse function itf, ¢ being fixed).

A.3 Proof of lemmal4.1

We noteg@% the sequence of solutions of proble@ 15 (withan arbitrary function) and,

a true solution of the initial problem. We want now to show that under hypothesis 4.4, there
exists a subsequence of solutions which converges to a function which is solufion of 12. For
eachn and by definition Ofgzgg we have :

1 Tu(G0)II” + [ do — 6712
8 + an |l¢o —¢*|| =0
~ SN N——

—0 —0 fixed

1T = n(F)II” + aulldn” — 6712

IN

IN

It’ easy to see that:

e’ * 5721 *
1657 = ¢"[15 < == +llgo — o713

~—
—0

Consequently, the sequen({ﬁan) is bounded. We can therefore extract a convergent subse-

quence that we will not(ad?amg). We noteg; the limit of this subsequence. The question is to
know if ¢, is itself a solution of 12. First let's remark tha, (¢, 2) since :

1752 (Pan I < [|T0(90)|° + anlldo — 67112

:0 —0

31



Then we decompose:

T(¢1) =T (1) + T(1) — T(1) + T(Pan2) — T(Da.2)

and consequently:

1T (@] < [IT(ban 2|+ IT(31) = T(Pay 2l + [|(T = T)(¢1)]]

-~

—0 TNl ¢1—an 2lls IT=Tlll¢ulls

with the right hand side which tends @o Indeed,||¢;||5 is fixed, ||¢; — qBamQHs — 0, and we
just have to suppose thed’ — T'|| — 0, ||T'|| = O(1) will also follow.

We conclude from this thdth., 2) (which is a subsequence @f,,, )) tends towards;, which
is solution of the initial problem.

A.4 Proof of lemmal4.2

In the following, for sake of simplicity, we will skip indexation by, working with qﬁ o, T,
and/ instead oquz, an, T, ands,,. The problem is to minimize :

1T ()1 + allé - 67|12
In particular we have :
IT(@)1 + alld - 6"[12 < [|T(¢0)lI* + all¢o — 67|13

Having:

16— &*[12 = ||é — dol|? + 160 — ™12 +2 < & — o, Po — ¢* >s
we get:

IT(D)]1* + alld — pol2 < |1 T(¢0)|* + 20 < & — o, b0 — ¢" >

Equivalently, we can suppose in the following without loss of generalityghat 0. We write
the decomposition df' in ¢, with the Frechet derivative:

T(¢) = T(do) + Tj, (¢ — ¢o) + 7
Then:

IT(D)I* = 1T (d0) + #II” + |5, (6 — ¢o)lI> + 2 < T(¢ho) + 7, Ty, (& — o) >
and ag|T'(¢)||? < 62 we finally obtain:

1T5, (6= @0)lI> + alld — doll; < 8 +a < d— o, o >5 =2 < T(¢o) + 7, T}, (6 — ¢o) >
—2 < (T}, — T},) (& — ¢0), Th, (& — ¢) >
—IT(g0) + #I* = (T, — T, ) (& — o)
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The two last terms of the right hand side equation being negative, this becomes:

175, (6 — do)lI* + alld — g0l 2 < 6%+ a < d— o, do >s —2 < T(¢o) + 7, T}, (& — o) >
—2 < (T}, = T}, ) (& = 60), Ty, (6 — do) > (17)

Using hypothesi5—(vi), we have th\dif(;bo(éﬁ — 0)|]? ~ ||¢ — dol|? . Moreover the source

condition (hypothesi5-(v)) implies that there existsuch aspy = L~ Pw. We can also

transform< ¢ — ¢g, gy >s. As <, >, is a scalar product in a Hilbert scale, there exists an
operatorL (self-adjoint, unbounded, strictly positive, densely defined) such as:

<= o,d0>s = <L(¢— o), Lo >
= < L%s(¢ — o), do >
= < L?s(¢— ¢o), L Pw >
= <L*P($—¢o),w >
= O(||¢ — doll2s-5)

asL®,L~" are self-adjoint, the last equality comes from the Cauchy-Schwartz inequality. We
still have to transform the two scalar products in the right-hand side equation. First if we write:
T(;O =Ty + (T(;O — T}, ) we get simply by Cauchy-Schwartz inequality:

< T(¢o) + 7, T}, (¢ — o) >= O(||T(d0) + #|| [| T}, (6 — ¢0)])
‘,A_/\—/_,
OGHI ~o(lI(é—0)lI-a)
Using hypothesis Al5-(iii) we have consequently:

< T(¢o) + 7, Thy (¢ — d0) >= O((6 + || — ol )& — ¢0)l|-a)

< T(¢o) + 7, (Thy — Ty ) (6 — ¢0) >= O((6+ || = ¢ol*) (IIT5, — T4, II11é — o))
=0(7]lé—¢ol|)

Then:
< T(go) +7, (T}, = Th,) (6 = do) >= O + 16 — ¢ol*) (|16 — do)l|-a +Ié = ¢oll))
Moreover it's easy to obtain:
< (T}, = T,) (& — 60), Thy (6 — o) >= O(V]|6 — dolll|6 — )| -a)

by applying the Cauchy-Schwartz inequality and hypothlesgs A.5-(iv) and (vi). With all of this,
equation|(IJr) becomes:

165 = ol l2a + anlldhy = dollZ < 0 + anlldh — doll3e—g + 1165 — doll-a(6n + (16 — dol*)
+ullén = Goll(8n + 1165 = boll—a + 165 — dol[*)
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A.5 Proof of lemmal4.3

Let's present two useful results. First, the interpolation inequality in Hilbert scales which
expresses that farin H; and—oo < ¢ < r < s < oo we have:

s—r r—gq
[zl < Jlaflg™ lll[s (18)
Second,[[Engl et al., 1996] recalls that for any, e > 0 andp, ¢ > 0 we have that:

P <e+ded — P =0(e+dra) (19)

We now want to express equation of lemma 4.2 only with norms of Hilbert sgales, and
||.]|s- Consequently, applyirfg 18 with= 0, ¢ = —a ands = s, we have:

16— doll < 116 — dol| 5 l16 — dollF*

Then:

16— doll-alld — doll® < 116 — doll 2 l1d — dolls

a+2s

116 — doll—alld — dol| < |16 — dol| =5 |16 — ¢0HS+Q

116 — ¢ol® < 116 — <bo|!s+“|!<z5 oll "

If we suppose thai < s then it means thate — ¢o||_a||d — do||?> = o(||¢ — ¢o||—a)||? and

that|||é — ¢ol[* = o(|¢ — dol|_allé — do||) Additionally if we apply[18 withg = —a and
r = 2s — [ we get:

—B+a

16 — dollas—p < |6 — <l50||a+s!|¢ ¢0|| s

Finally:

a+2s— ﬁ

16 — doll2a + cnlldl — ollZ < 6%+ 6116 — doll-a + a(llé — ¢oH"“H¢ Polls

a+2s

Ty x (3116 — ol T [l — Goll* + 116 — doll 5% 116 — ol
(20)

Applying[19 four times to the terms of the right hand side of equétion 20 we get:

2(a+2s—p)

7 a+3s— a 5 (a+s) -~
185 —oll2., = O(+aT5575 |2 —goll, 7 +(18) B g3 —gol 227 o [lon—oll2)

Using that for anyu, v > 0: v/u + v < y/u + /v this can be rewritten:

a+2s—0 ats

1850l l—a = O(5+aTrH57 |12 — o127 +(78) 5% || 65 — o |7 7+ |63 —doll)
(21)
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Then we wish to replace this order obtaine@ 21[fof — ¢o||_4 in the right hand side of
equatior] 2. We use that= O(u + v) implies thatr® = O(u$ + vf).

If we use hypothesis -(viii) we get that:

a+2s— ﬁ

~ ~ a+s ~
185 — dol2, + allds — @0l = 08 + 80T 165 — gol |

B—s ~ at2s—p B—s ~ M
+a[6m”¢g_¢0||s a+s _'_amuqbg_d)oHsﬁf?af&q ]
254+2a—0

ats _3a+2s . B=s A 20
+{W+55 B 6% — G0ll 7 + a(16) 5 (195 — dolle

a+2s A~
+(r 50+ 075|165 — dolls + 8 Hcﬁn 0 H““

2a+2s—03

0TG5 Goll 7+ (30) B 167 — ol

4s+3a— 2B

% e _ 2a+3s— 2+ 3 (e} 2a+s
Yo 165 — ol &7+ 55 aders |63 — ol |3

and finally that:
a+2s— /3

~ B—a—2s ~
185 — @0l = O(8%™" + 2755 165 — gol ;7

B—s ~ at2s—p B—s ~ M
HEFE NG — dolls  + a7 TT|5 — ol )
25+2a—0

ats _3at+2s 4~ @ B—s
{8 7| — goll I + (78 |5 — dolls

ats —1, got2s 2 ats
a4+ 475162 — dolls + a8 162 — ol 7
&L e gZigi—g —1 2a42s e 2a+s
10055515 — ol| 7 + a7 (76) B 195 — ol
4s+3a— 26

Fa g8 — oll T 4y B 0 g — gol| 7 })

(22)

The first part of the right hand side of equatjon 22 is identical to the case of standard nonlinear
inverse problem, however a rather complicated term dependingappears. When we don't
know anything about,, it's difficult to simplify the former expression. However, we can apply

the property 19 to each term in this expression. The first part will be left unchanged and is
similar to the case of standard nonlinear inverse problems. In the second one, when applying

this property, the powers®, 52—, -22 of ||¢% — gy, leads to terms that ar@(52 )
=)
).

using the assumption -(viii). The term jlB® — ¢y||sleads to a term that is only@(~
Finally, we obtain (after having taken the root of every expression) :

1 2a+3s—u u—a—2s

||¢;7C‘XL — ¢0||S — O((Sa_i 53114»4.5 u (y 3a+4s—u +6a+u +a2g~;;s
B=s)
T(70) 557 44
(2a+3s—8) (B—2a—2s)
_|_(fy(5) 2a+4s—fF (y 2a+4s—B
(2a+3s—8) (B—a—s) 3(a+s) (s—a)
_'_,7 a+2s o at2s + f-}/ a+2s (y a+2s )

(23)
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The choice ofx must be made by examining the first part of the expression and then, to control
for conditions ony concerning the second part. Then, the good choice fsr

2a+2s
o~ ) atB

This quantity replaced in the first line of expresdioh 23 gives a speed of convergence of order:

0(5515)

We now want to derive conditions under which the remaining terms inith o replaced by
this value, are negligible compared to this speed of convergence.

s B=s -
Concerning the second term, we see that for Hylf?, must be a(§++7). As 3 > s, thisis
ensured by condition <" 6 1.

L=s B=s
The first term implies thatyd) 2¢+5 must be a(5+4). As:

B—s
62@+B —a B—s
Y 5 = (y§ath )2a+B
JatB

the former condition is still sufficient 88 — s and2a + 3 are positive.

The expression of the third term is the following:

2a+3s—3 5as+45275ﬁs+2a273qﬁ+[32
72a+457B5 (a+B)(B—4s—2a)

B=s .
To know if it's ao(d++5 ) we estimate:

2a+3s—0 5as+4s2—5ﬂs+2a2—3qﬂ+ﬂ2
2a-+4s—p (a+B)(B—4s—2a) a 2a+3s—p
Yy __a | 2£aTos—p
5 — (75 atp ) 2a+4ds—p
—s

§ ot
so we still get the desired convergence.

) 3s—B+2a —2(sta)(=B+a+s) B—s )
Studying the fourth termy «+2s § (@+(@+29)  must be a(J++7 ). That is to say:

3s—B+2a —2(s+a)(=pB+a+s)
y at+2s  § (atp)(at2s) —a  2a+3s—f3

B=s

JatB

which converges t0 with the same condition and the fact ti2at+ 3s — beta anda + 2s are
supposed to be positive.

. 3(ats) 2(ats)(s—a) B-s
For the fifth termyy e+2s ¢ (e+5)(a+25) must beo(d«+7). Consequently we remark that:

3(a+s) 2(a+s)(s—a)

7y at2s § (a+B)(a+2s) a+8 _2(ats)(s—a)—(B—s)(a+2s) a(a+2s)
— — (775 3a(a+s) )3(a+ﬁ>(a+s)
§a+p
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It appears thaP(“+5)(S;‘;)(a_ﬁ)_s)(“”s” > —1 since2s + a is supposed greater thah Then

the conditiom%éf1 — 0 is stronger and this is verified.

A.6 Proof of lemmal4.4

We study the proble@G. All the norms and the scalar products will be relatizé-spaces,
and we will notep, o andé instead ofqu, a, andd,, and takep* = 0 for sake of simplicity.
As in the demonstration of the lemina}4.3 it is possible to show that:

T (D)])* + an||d — ¢ol)* < 82 4+ 2a < ¢ — o, o >

We try to reexpress the scalar product in the former expression using the fagg ﬂaaf(;o*.w
and thatl'(¢) = T'(¢o) + T}, (¢ — éo) + 7, we have clearly that:

<d—¢o. o> = <w,Th (¢~ o) >
= <’LU,T(;50(¢E—¢0)>+<w,(T<;0—T¢/)O)(¢E—¢O)>
= <w, (T, =T} ,)(6— o) >+ <w,T(¢) > — < w,T(do) +7 >

We have using the Cauchy-Schwartz inequality that :

<w,(Th = Th) (b — o) > < Nl (Th —Th)@— )l < allwlllld — ¢oll

<w,T($)> < |wl| [T

- <w,T(go)+7 > < |wlll[T(¢)+7]| < [wllG+|IFl) < |wl|(6+C||d—¢oll*)
Consequently, we have that :

TN+ anlld —oll> < 62+ 2alw]|(6 + Clld — ol > + | T(HI] +7alI6 — dol)

This rewrites easily:

(17| = allw|)? + a(l = 2[[w||C)[|¢ - ¢ol* — 2al|w]|yallé — dol| < (6 + al|wl]])?

We can moreover express :

allwl*v2

) 7 - 2
O‘(l_z\|w\|C)||¢—¢0H2—20¢|’wH’Yanﬁ—%H:( a1 = 2||w||C)||¢p—dpol|— \1/&_||;‘|’|||ZZ|’“|LC)
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This gives :
a[wl*z
1 —2|jwl||C

As a? < b? 4 ¢? implies thata < b+ ¢ when a, b, ¢ are positive, we conclude that:

(IT(d)]] = allwl)? < (6 + allwl])® +

A A (0%
T <642 —_—
T (D) < 6+ 2e|w]] + [[w]|yn = 2]wl|C
Replacing in the former expression it's easy to obtain that :
5 + afjw] nlwll

16 — dol| <

a1 =2[[w]|C)  ~1-=2|lw||C
As in [Engl et al., 1996] the first term drives the choice of thparameterw,, ~ §,, implying

that||¢% —go|| = O(+/8,,). The second term remains of the same order as sogn-aso(1/4,,)
or equivalently thay 26~ tends ta). Finally, it's easy to conclude that(¢)|| = O(4,,).
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