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Abstract

Wholesale used-car markets have widely utilized ascending auctions for trading dealers�in-

ventories. To study the latent demand structure of these markets, one needs to recover the

underlying valuations of dealers from the bidding data observed at the auctions. Exploiting

a new, rich data set on a wholesale used-car auction, we estimate the distribution of bidders�

valuations nonparametrically under the symmetric independent private values (IPV) framework

and nonparametrically test the validity of the IPV assumption. We develop a new nonpara-

metric test of IPV for the case where the number of potential bidders is not observable to an

econometrician by extending the work of Athey and Haile (2002). This is done utilizing and ex-

tending the methodology provided in Song (2005) for identifying and estimating the distribution

of valuations nonparametrically when the number of potential bidders of ascending auctions is

unknown in an IPV situation. Unlike previous work on ascending auctions, our estimation and

testing methods use more information from observed losing bids by virtue of the rich structure

of our data. We �nd that the null hypothesis of IPV is not rejected with our sample after

controlling for observed auction heterogeneity and therefore our estimation result is a good

approximation of the underlying distribution of dealers�valuations.
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1 Introduction

Ascending-price auctions, or English auctions, are one of the oldest trading mechanisms that have

been used for selling a variety of goods ranging from �sh to airwaves. Wholesale used-car markets

are among those that have utilized ascending auctions for trading inventories among dealers.

In this paper, we exploit a new, rich data set on a wholesale used-car auction to study the latent

demand structure of the auction with a structural econometric model. The structural approach to

study auctions assumes that bidders use equilibrium bidding strategies, which are predicted from

game-theoretic models, and tries to recover bidders� private information from observables. The

most fundamental issue of structural auction models is estimating the unobserved distribution of

bidders�willingness to pay from the observed bidding data.1 ;2

We treat our data as a collection of independent, single-object, ascending auctions. So we are

not studying any feature of multi-object or multi-unit auctions in this paper though there might be

some substitutability and path-dependency in the auctions that we study. To reduce the complexity

of our analysis, we defer those aspects to a later study. Also, to deal with the heterogeneity in the

objects of our auctions, we �rst assume there is no unobserved heterogeneity in our data and then

control for the observed heterogeneity in the estimation stage.3

In our model, there are symmetric, risk-neutral bidders while the number of potential bidders

is assumed to be exogenous and unknown. Game-theoretic models of bidders�valuations can be

classi�ed according to informational structures.4 We �rst assume that the information structure of

our model follows the independent private-values (hereafter IPV) paradigm and then we develop a

new nonparametric test with an unknown number of potential bidders to check the validity of the

IPV assumption after we obtain our estimates of the distribution nonparametrically under the IPV

paradigm by extending the work of Athey and Haile (2002). We �nd that the null hypothesis of

IPV is not rejected in our sample and therefore our estimation result under the assumption remains

a valid approximation of the underlying distribution of dealers�valuations.

To deal with the problem of unknown number of potential bidders, we utilize and extend the

1Paarsch (1992) �rst conducted a structural analysis of auction models. He adopted a parametric approach

to distinguish between independent private-values and pure common-values models. For the �rst-price sealed-bid

auctions, Guerre, Perrigne, Vuong (2000) provided an in�uential nonparametric identi�cation and estimation results,

which was extended by Li, Perrigne, and Vuong (2000, 2002) and Campo, Perrigne, and Vuong (2003).
2See Hendricks and Paarsch (1995) and La¤ont (1997) for surveys of the early empirical works. For a survey of

latest works in the literature, see Athey and Haile (2005).
3See Krasnokutskaya (2004) for a novel empirical work regarding unobserved auction heterogeneity.
4Valuations can be either from the private-values paradigm or the common-values paradigm. Private-values are

the cases where a bidder�s valuation depends only on her own private information while common-values refer to all the

other general cases. IPV is a special case of private-values where all bidders have independent private information.
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methodology provided in Song (2005) for the nonparametric identi�cation and estimation of the

distribution when the number of potential bidders of ascending auctions is unknown in an IPV

setting. Unlike previous work on ascending auctions, the rich structure of our data, especially the

absence of jump bidding, enables us to utilize more information from observed losing bids for our

nonparametric estimation and testing. This is an important advantage of our data compared to

any other existing studies of ascending auctions.

There is considerable research on the �rst-price sealed-bid auctions in the structural analysis

literature; however, there are not as many on ascending auctions. One of the possible reasons for

this scarcity is the discrepancy between the theoretical model of ascending auctions, especially the

model of Milgrom and Weber (1982), and the way real-world ascending auctions are conducted.

Another important reason preventing structural analysis of ascending auctions is the di¢ culty of

getting a rich and complete data set that records ascending auctions.

Given these di¢ culties, our paper contributes to the empirical auctions literature by providing

a new data set that is free from both problems and by conducting a sound structural analysis using

recently developed econometric techniques.

Milgrom and Weber (1982) (hereafter MW) modeled ascending auctions as a button auction,

an auction with full observability of bidders�actions and, most importantly, with the irrevocable

exits assumption, an assumption that a bidder is not allowed to place a bid at any higher price once

she drops out at a lower price. This assumption signi�cantly restricts each bidder�s strategy space

and makes the auction game easier to analyze. Without this assumption for modeling ascending

auctions one would have to consider dynamic features allowing bidders to update their information

and therefore valuations continuously and to re-optimize during an auction. After MW, the button

auction assumption was widely accepted by almost all the following studies on ascending auctions,

both theoretical and empirical, because of its elegant simplicity.5

However, in almost all the real-world ascending auctions, we do not observe irrevocable exits.

Recently, a paper by Haile and Tamer (2003) (hereafter HT) conducted an empirical study of

ascending auctions without specifying such details as irrevocable exits. In their nonparametric

analysis of ascending auctions with IPV, HT adopted an incomplete modelling approach with

relaxing the button auction assumption and imposing only two axiomatic assumptions on bidding

behavior. The �rst assumption of HT is that bidders do not bid more than they are willing to pay

and their second assumption is that bidders do not allow an opponent to win at a price they are

able to beat. With these two assumptions and known statistical properties of order statistics, HT

5There are few exceptions, e.g. Harstad and Rothkopf (2000) and Izmalkov (2003) in theoretical literature and

Haile and Tamer (2003) in empirical literature. Also see Bikhchandani and Riley (1991, 1993) for extensive discussions

of modeling ascending auctions.
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nonparametrically estimated upper and lower bounds of the underlying distribution function.

The reason HT could only estimate bounds and could not make an exact interpretation of

losing bids is because they did not impose the button auction assumption and allowed free forms of

ascending auctions. Athey and Haile (2002) noted the di¢ culty of interpreting losing bids saying

�In oral �open outcry� auctions we may lack con�dence in the interpretation of losing bids below

the transaction price even when they are observed.�6 Our main di¤erence from HT is that we are

able to provide a stronger interpretation of observed losing bids. Within ascending auctions, there

are a few variants that di¤er in the exact way the auction is conducted. Among those variants, the

distinction between one in which bidders call prices and another one in which an auctioneer raises

prices has very important theoretical and empirical implications. The former is what Athey and

Haile called as �open outcry�auctions and the latter is what we are going to exploit with our data.

The main di¤erence is that the former allows jumps in prices but the latter does not allow those

jumps.

It is well known in the literature that it is empirically di¢ cult to distinguish between private-

values and common-values models with actual auction data. However, there have been a few recent

attempts to develop these tests. Hong and Shum (2003) estimated and tested general private-values

and common-values models in ascending auctions with a certain parametric modelling assumption

using a quantile estimation method. Hendricks, Pinkse, and Porter (2003) developed a test based

on data of the winning bids and the ex post values in �rst-price sealed-bid auctions. Athey and

Levin (2001) also used an ex post data to test the existence of common values in �rst-price sealed-

bid auctions. Most recently, Haile, Hong, and Shum (2003) developed a new nonparametric test for

common-values in �rst-price sealed-bid auctions using Guerre, Perrigne, Vuong (2000)�s two-stage

estimation method.

This paper contributes to this literature by developing the �rst nonparametric test of IPV in

ascending auctions without requiring the information about the potential number of bidders.

The remainder of this paper is organized as follows. We provide brie�y some background on

the wholesale used-car markets in general and on the wholesale used-car auctions in Korea, where

our data comes from, in the next section. We describe the data we use and give some summary

statistics in Section 3. Section 4 presents the empirical model and our empirical strategy that

includes identi�cation and estimation. We develop our new nonparametric test in Section 5. We

provide the empirical results in Section 6 and Section 7 discusses the implications and extensions

of the results. Section 8 concludes and additional technical details are included in the appendix

6Bikhchandani, Haile, and Riley (2002) also show there are generally multiple equilibria even with symmetry in

ascending auctions so that we have to be careful interpreting observed bidding data; however, they show that with

private values and weak dominance, there exists uniqueness.
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and the online supplementary technical appendix.

2 Wholesale Used-car Auctions

Any trade in wholesale used-car auctions is intrinsically intended for a future resale of the car.

Used-car dealers participate in wholesale auctions to manage their inventories in response to either

immediate demand on hand or anticipated demand in the future. The supply of used-car is generally

considered not so elastic but the demand side is at least as elastic as the demand for new cars. In

the wholesale used-car auctions, some bidders are general dealers who do business in almost every

model; however, others may specialize in some speci�c types of cars. Also, some bidders are from

large dealers, while many others are from small dealerships.7

For dealers, there exists at least two di¤erent situations about the latent demand structure.

First, a dealer may have a speci�c demand, i.e. a pre-order, from a �nal buyer on hand. This

can happen when a dealer gets an order for a speci�c used-car but does not have one in stock or

when a consumer looks up the item list of an auction and asks a dealer to buy a speci�c car for

her.8 We call this as �demand-on-hand�situation. In this case, we make a conjecture that a dealer

already knows how much money she can make if she gets the car and sells it to the consumer.

Second, though a dealer does not have any speci�c demand on hand, but she anticipates some

demand for a car in the auction in near future from the analysis of the market. We call this as

�anticipated-demand�situation. In this case, we make a conjecture that a dealer is not so certain

and con�dent about her anticipation of future market condition and has some incentives to �nd

out other dealers�opinions about it.

The auction data in our paper comes from an o­ ine auction house located in Suwon, Korea.

Suwon is located within an hour drive south of Seoul, the capital of Korea. It opened in May 2000

and it is the �rst fully-computerized wholesale used-car auction house in Korea. The auction house

engages only in the wholesale auctions and it has held wholesale used-car auctions once a week

since its opening.

The auction house mainly plays the role of an intermediary as many auction houses do. While

sellers can be anyone, both individuals and �rms, who wants to sell her own car through the auction,

only a used-car dealer who is registered as a member of the auction house can participate in the

auction as a buyer. At the beginning, the number of total memberships was around 250, and now

it has grown to about 350 and the set of the members is a relatively stable group of dealers, which

7These suggest that there may exist asymmetry among bidders in the auctions, which we are not studying in this

paper, but plan to do in the future.
8The item list is publicly available on the website 3-4 days prior to each auction day and these kinds of delegated

biddings seem to be not uncommon from casual observations.
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makes the data from this auction more reliable to conduct meaningful analyses than those from

online auctions in general.

Roughly, about a half of the members come to the auction each week. 600-1000 cars are

auctioned on a single auction day and 40-50 per cent of those cars are actually sold through the

auctions, which implies that a typical dealer who comes to the auction house on an auction day gets

2-4 cars/week on average. Bidders, i.e. dealers, in the auction have resale markets and, therefore,

we can view this as if they try to win these used-cars auctioned only to resell them to the �nal

consumers or, rarely, to other dealers.

The auction house generates its revenue by collecting fees from both a seller and a buyer when

a car is sold through the auction. The fee is 2.2% of the transaction price, both for the seller and

the buyer. The auction house also collects a �xed fee, about 50 US dollars, from a seller when the

seller consigns her car to the auction house. The auction house�s objective should be long-term

pro�t maximization. Since there exists repeated relationship between dealers and the house, it may

be important for the house to build favorable reputation.9 There also exists a competition among

three similar wholesale used-car auction houses in Korea. In this paper, we ignore any e¤ect from

the competition and consider the auction house as a single monopolist for simplicity.

3 Data

3.1 Description of the Data

The auction game itself is an interesting and unique variant of ascending auctions. There is a

reserve price set by an original seller with consultations from the auction house. An auction starts

from an opening bid, which is somewhere below the reserve price. The opening bids are made

public on the auction house�s website two or three days before an auction day. After an auction

starts, the current price of the auction increases by a small, �xed increment, about 30 US dollars

for all price ranges, whenever there are two or more bidders at the price who press their buttons

beneath their desks in the auction hall.10

In the auction hall, there are big screens in front that display pictures and key descriptions of

a car of the current auction. The current price is also displayed and updated real-time. Next to

the screens, there are two important indicators for information disclosure. One of them resembles

a tra¢ c light with green, amber, and red lights, and the other is a sign that turns on when the

9An original seller�s goal is to sell her car at the highest possible price near the time she wants to sell it after

considering the trade-o¤ between the price and the possibility of being sold.
10When the current price is below the reserve price, there only need to be one bidder to press the button for an

auction to continue.
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current price rises above the reserve price, which means that the reserve price is made public once

the current price reaches the level.

The three-colored lights indicate the number of bids at the current price. The green light signals

three or more bids, yellow means two bids, and red indicates that there is only one bid at the current

price while the current price is above the reserve price. When the current price is below the reserve

price, they are indicating two or more, one, and zero bids respectively. This indicator is needed

because, unlike the usual open out-cry ascending auctions, the bidders in this auction do not see

who are pressing their buttons and therefore do not know how many bidders are placing their bids

at the current price. With the colored lights, bidders only get somewhat incomplete information

on the number of current bidders and they never observe the identities of the current bidders.

There is a short length of a single time period, such that all the bids made in the same period

are considered as made at the same price. A bidder can indicate her willingness to buy at the

current price by pressing her button at any time she wants, i.e. exit and reentry are freely allowed.

The auction ends when three seconds have passed after there remains only one active bid at the

current price. When an auction ends at the price above the reserve price, the item goes to the

bidder who presses last, but when it ends at the price below the reserve price, the item is not sold.

Our data set consists of 59 weekly auctions from a period between October 2001 and December

2002. While all kinds of used-cars including passenger cars, buses, trucks, and other special-

purpose vehicles, are auctioned in the auction house during the period, we select only passenger

cars to ensure a minimum homogeneity of the objects in the auction. For those 59 weekly auctions,

there were 28334 passenger-car auctions. However, we use only data from those auctions where a

car is sold and there exist at least four bidders above the reserve price in an auction. After we

apply this criteria, we have 5184 cars, 18.3% of all the passenger-cars auctioned. Although this step

restricts our sample from the original data set, we do this because we need four meaningful bids,

which means they should be above the reserve price, to conduct our nonparametric test and we

think our analysis remains meaningful since what are important in generating most of the revenue

for the auction house are those cars where there are at least four bidders above the reserve price.11

In the actual estimation stage of our econometric analysis of the sample, we are forced to forgo

additional cars out of those 5184 auctions because of the ties among the second, third, and fourth

highest bids.12 ;13 We remove the total of 1358 cars and we use the �nal sample of 3826 auctions.14

11Since we maintain the assumption of no unobserved auction heterogeneity and the exogeneity of the number of

bidders, the sample selection is not a concern in this paper.
12We need to do this solely because there exists a technical di¢ culty in our estimation procedure.
13We never observe the �rst highest bids in ascending auctions separately. They are always the same as the second

highest bids (plus the minimum increment.)
14The second-highest bid and the third-highest bid are tied in 842 auctions. In 624 auctions, the third-highest bid
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Among those, 1676 cars are from the maker Hyundai, the biggest Korean carmaker, 1186 cars are

from the maker Daewoo, now owned by General Motors, and the remaining 964 cars are from the

other makers like Kia, Sssangyong, and Samsung while most of them are from Kia, which merged

with Hyundai in 1999. Some important summary statistics of the sample are provided in Table 1

and the market shares of major carmakers in the sample are presented in Table 2.

Available data includes the detailed bid-level, button-pressing log data for every auction. Auc-

tion covariates, very detailed characteristics of cars auctioned, are also available. The covariates

available includes each car�s make, model, production date, engine-size, mileage, rating - the auc-

tion house inspects each car and gives a 10-0 scaled rating to each car, which can be thought of

a summary statistic of the car�s exterior and mechanical condition, transmission-type, fuel-type,

color, options, purpose, body-type etc. We also observe the opening bids and the reserve prices of

all auctions. Some bidder-speci�c covariates such as identities, locations, �members since�date are

also available. And the date of title change is available for each car sold, which may be used as a

proxy for the resale date in a future study. Last, we only observe the information on �who�come

to the auction house at �what time�of an auction day for a very rough estimate on the potential

set of bidders for an auction.

Here is a descriptive snapshot of a typical auction day, September 4th, 2002, which is randomly

picked. A total of 567 cars were auctioned on that day, 386 cars of which were passenger cars and

the remaining 181 were full-size vans, trucks, buses, etc. Since this auction day was the �rst week

of the month, there was relatively a small number of cars (the number of cars auctioned greatest in

the last auctions of the month.) 248 cars (43 percent) were sold through the auction and, among

those unsold, at least 72 cars sold afterwards through post-auction bargaining, or re-auctioning

next week, etc. The log data shows that the �rst auction of the day started at 13:19 PM and the

last auction of the day ended at 16:19 PM. It only took 19 seconds per auction and 43 seconds

per transaction. 152 ID cards (132 dealers since some dealers have multiple IDs) were recorded as

entered the house. On average each ID placed bids for 7.82 auctions during the day. There were 98

bidders who won at least one car but 40 bidders did not win a single car. On average, each bidder

won 1.8 cars and there are three bidders who won more than 10 cars. Among 386 passenger cars,

there were at least one bid in 218 auctions. Among those 218 auctions, 170 cars were successfully

sold through auctions and 48 were unsold.

3.2 Interpretation of Losing Bids

As we brie�y mentioned in the Introduction, a strong interpretation of losing bids in our data is one

of the main strong points of this study that distinguishes it from other work on ascending auctions.

and the fourth-highest bid are tied, and for 108 auctions the second-, third-, and fourth-highest bids are all tied.
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Our basic idea is that with the assumption of IPV and with some institutional features of this

auction such as a �xed discrete increments of prices raised by an auctioneer, we are able to make

strong interpretations of losing bids above the reserve price and therefore identify the corresponding

order statistics of valuations from observed bids.

We are able to do this based on some equilibrium implications of the auction game in the spirit

of Haile and Tamer (2003). So, in the end, without imposing the button auction model explicitly,

we are able to treat some observed bids as if they come from a button auction. Then, we use

this information from observed bids to estimate the exact underlying distribution of valuations.15

Within the private values paradigm, in ascending auctions without irrevocable exits, the last price

at which each bidder shows her willingness to win, i.e. each bidder�s �nal exit price, can be directly

interpreted as her private value, and with symmetry, to relevant order statistics because it is a

weakly dominant strategy, and with high probabilities a strictly dominant strategy, for a bidder to

place a bid at the highest price she can a¤ord.16 Here, we assume there is no �real�cost associated

with each bidding action, i.e. an additional button pressing requires a bidder to consume zero or

negligible additional amount of energy, given that the bidder is interested in a car being auctioned.

The basic setup in our auction game model is that we have a collection of single-object ascending

auctions with all symmetric, risk-neutral bidders. The number of potential bidders in any auction

is assumed to be exogenous and the number of potential bidders is never observed to any bidders

nor an econometrician. For the information structure, we assume independent private values (IPV),

which means a bidder�s bidding strategy does not depend on any other bidder�s action or private

information in this auction we study, i.e. an ascending auction with exogenous rise of prices with

�xed discrete increments with no jump. Therefore, with IPV, the fact that any bidder has very

limited observability of other current bidders�identities or bidding activities does not cause any big

problem in this auction.

Within this setting, while it is obviously weakly dominant strategies for a bidder to press

her bidding button at the last chance she can press, it does not necessarily guarantee that a

bidder�s actual observed last press corresponds to the bidder�s true maximum willingness to pay. A

strictly positive potential bene�t from pressing at the last price a bidder can a¤ord will ensure that

our strong interpretation of losing bids is a close approximation and such a chance for a strictly

positive bene�ts can be present when there exists a possibility that all the other remaining bidders

simultaneously exit at the price, which a bidder is considering to press her button at. When the

15Actually, HT noted that if the true underlying model is the button auction, then their two bounds collapsed to

a single distribution, which is also the exact estimate.
16 In common values model, this is not the case and the analysis is much more complicated because a bidder may try

not to press her button unless it is absolutely necessary because of strategic consideration to conceal her information.

See Riley (1988) and Bikhchandani and Riley (1991, 1993).
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auction price rises continuously as in Milgrom and Weber (1982)�s button auction, with continuous

distribution of valuations, the probability of such event is zero at any price; however, when price

rises in a discrete manner with a minimum increment as in this auction we study, this is not a

measure-zero event, especially for the higher bidders like the second-, third-, and fourth-highest

bidders as well as the winner.17 ;18

4 Model and Estimation

4.1 Empirical Model and Identi�cation

This section describes the basic set-up of an IPV model we analyze. Consider a Wholesale Used-Car

Auction (hereafter, WUCA) of a single object with the number of risk-neutral potential bidders,

N � 2, drawn from pn = Pr(N = n). Each potential bidder i has the valuation V i, which is

independently drawn from the absolutely continuous distribution F (�) with support V = [v; �v].

Each bidder knows only his valuation but the distribution F (�) and the distribution pn are common
knowledge. By the design of WUCA, we can treat it as a button auction if we disregard the

minimum increment. The minimum increment (about 30 dollars) in WUCA is small relative to the

average car value (around 3,000 dollars) sold in WUCA, which is about one percent of the average

car value.

Hence, in what follows, we simply disregard the existence of the minimum increment in WUCA

to make our discussion simple and the bounds estimation implied by the minimum increment is

handled in Section 7.2. Therefore, if we observe the number of potential bidders and any ith order

statistic of the valuation (identical to ith order statistic of the bids), then we can identify the

distribution of valuations from the cumulative density function (CDF) of the ith order statistic as

done in many previous literatures.19 De�ne the CDF as

G(i:n)(v) = H(F (v); i : n) =
n!

(i� 1)!(n� i)!

Z F (v)

0
ti�1(1� t)n�idt

Then, we obtain the distribution of the valuations F (�) from

F (v) = H�1(G(i:n)(v); i : n)

17More precisely, for this argument, we need to model the auction game such that each bidder can only press the

button at any price simultaneously and at most once and the auction stops when only one bidder presses her button

at a price. Actually, although this is not an exact modeling of the auction we study, we think this modeling is an

acceptable and close approximation of the real auction.
18Actual observed bidding may depend on each bidder�s subjective probability regarding the simultaneous exits of

the all active bidders since a bidder does not know who the current active bidders are.
19See Arnold et al. (1992) and David (1981) for extensive statistical treatments on order statistics.
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However, in the auction we consider, we do not know the exact number of potential bidders in

a given auction and the number of potential bidders varies over di¤erent auctions. Nonetheless we

can still identify the distribution of valuations F (�) following the methodology proposed by Song
(2005), since we observe several order statistics in a given auction. Song (2005) showed that an

arbitrary absolutely continuous distribution F (�) is nonparametrically identi�ed from observations

of any pair of order statistics from an I.I.D. sample, even when the sample size, n, is unknown and

stochastic. The idea is that we can reinterpret the density of the kth1 highest value eV conditional

on the kth2 highest value V as the density of the (k2� k1)th order statistic from a sample of (k2� 1)
following F (�). Denote the probability density function (PDF) of the ith order statistic of the n
sample (I.I.D.) as g(i;n)(v)

g(i:n)(v) =
n!

(i� 1)!(n� i)! [F (v)]
i�1[1� F (v)]n�if(v) (1)

and the joint density of the i-th and the j-th order statistics of the n sample (I.I.D.) for n � j � i � 1
as g(i;j:n)(ev; v)

g(j;i:n)(ev; v) = n![F (v)]i�1[F (ev)� F (v)]j�i�1[1� F (ev)]n�jf(v)f(ev)
(i� 1)!(j � i� 1)!(n� j)! Ifev>vg. (2)

Then, the density of eV conditional on V , pk1jk2(evjV = v) can be written
pk1jk2(evjv) = g(n�k1+1;n�k2+1:n)(ev; v)

g(n�k2+1:n)(v)
(3)

=
(k2 � 1)!

(k2 � k1 � 1)!(k1 � 1)!
(F (ev)� F (v))k2�k1�1(1� F (ev))k1�1f(ev)

(1� F (v))k2�1 Ifev�vg
=

(k2 � 1)!
(k2 � k1 � 1)!(k1 � 1)!

((1� F (v))F (evjv))k2�k1�1
�((1� F (v))(1� F (evjv)))k1�1f(evjv)(1� F (v))

(1� F (v))k2�1 � Ifev�vg
=

(k2 � 1)!
(k2 � 1� k1)!(k2 � 1� (k2 � k1))!

� F (evjv)k2�1�k1(1� F (evjv))k1�1f(evjv) � Ifev�vg
� g(k2�k1:k2�1)(evjv);

where f(evjv)(g(�)(evjv)) denotes the truncated density of f(�)(g(�)(�)) truncated at v from below and

F (evjv) denotes the truncated distribution of F (�) truncated at v from below20. This interpretation

comes from the probability density function, g(i;n)(v) of the ith order statistic of the n sample for

n = k2 � 1 and i = k2 � k1 in our case noting limv!v p(k2;k1)(evjv) = limv!v g(k2�k1:k2�1)(evjv) =
20To be precise, f(evjv) = f(ev)

1�F (v) , F (evjv) = F (ev)�F (v)
1�F (v) , and g(k2�k1:k2�1)(evjv) = g(k2�k1:k2�1)(ev)

1�G(k2�k1:k2�1)(v) :
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g(k2�k1:k2�1)(ev). Then, the identi�cation of the distribution of valuations is straightforward by
Theorem 1 in Athey and Haile (2002) saying that the parent distribution is identi�ed whenever the

distribution of any order statistic (here k2�k1) with a known sample size (here k2�1) is identi�ed.

4.2 Auction Heterogeneity

In practice, the valuation of objects sold in WUCA (as in other auctions) varies according to several

observed characteristics such as car types, makes, mileage, year, and etc. We want to control the

e¤ect of these observables on the individual valuation to obtain the homogeneity of the idiosyncratic

factors such as tastes, cost shocks, or demand shocks. For this purpose, we assume the following

nonparametric form of the valuation Vi(Xt) as

lnVi(Xt) =W (l�(Xt)) + Vti; (4)

where W (�) is a known link function, Xt is a vector of observable characteristics of the auction
t, and i denotes the bidder i. We assume that Vti is independent of Xt. Thus, we do assume

the additively(or multiplicatively) separable structure of the value function, which is preserved by

equilibrium bidding. In the auction we consider, ignoring the minimal increment, we have

lnB(Vti; Xt) =W (l�(Xt)) + b(Vti);

where Vti is the valuation of a bidder i on an auction t, B(Vti; Xt) is a bidding function of a bidder
i with observed heterogeneity of an auction t and b(Vti) is a bidding function of homogeneous

auctions. Under the IPV assumption, we have B(V; X) = V(X) and b(V ) = V as before.

Here we impose parametric assumptions on the shape of l(�) but the distribution of V denoted by

F (�) is nonparametrically speci�ed. In what follows, we also assume W (�) is an identity function.
Thus, we have

lnVi(Xt) = Xt� + Vti; (5)

for a dim(Xk)� 1 parameter �.

4.3 Estimation

4.3.1 Distribution of Valuations

Here we use the semi-nonparametric (SNP) estimation procedure developed by Gallant and Nychka

(1987) and Coppejans and Gallant (2002).

In particular, we implement a particular sieve estimation of the unknown density function using

a Hermite series. First, we approximate the function space, H, containing the true density function
with a sieve space of the Hermite series, HT . Once we set up the objective function based on

12



a Hermite series approximation of the unknown density function, then the estimation procedure

is just a �nite dimensional parametric problem. In particular, we use the maximum likelihood

methods. What remains is to specify the particular rate in which a sieve space, HT , gets closer to
H achieving the consistency of the estimator. We will specify several regularity conditions for this

in the Technical Appendix.

Since we observe at least the second-, third- and fourth-highest bids in each auction of WUCA.

We can estimate several di¤erent versions of the distributions of valuations (F (�)), since any pair
of order statistics can identify the parent distribution according to Song (2005) under the number

of potential bidders unknown or unobserved. Here, we use two pairs of order statistics (second-,

fourth-) and (third-, fourth-) highest bids and obtain two di¤erent values of F (�), which provides us
an opportunity to test the hypothesis that WUCA is the IPV. This testable implication comes from

the fact that under the IPV, value of F (v) implied by the distributions of di¤erent order statistics

must be identical for all v:21

Once we show that the IPV assumption holds, then we can combine several order statistics to

identify F (�) extending Song (2005) to the case of more than three bids observed. This version of
estimator is better than the version that use a pair of order statistics in the sense that we are using

more information. In Appendix, we establish the consistency and the convergence rate of this SNP

estimator.

4.3.2 Simple Two Step Estimation

Though the estimation procedure considered up to now is a feasible one-step method and may be

more e¢ cient, we rather use a two-step estimation method as follows so that we can avoid the

computational burden involved in estimating l�(�) and F (�) at the same time22. First, we estimate
the following �rst-stage regression.

lnVtj = Xt0� + �tj ;

Then, construct the residuals for each order statistics as

bvtj(k1) = lnVtj �X 0
t
b�:

In the second step, based on the estimated pseudo values v̂tj , we estimate f(�) based on (23). To
implement the estimation we proposed here, we need to choose the optimal length of series denoted

by K� using a cross-validation strategy. In particular, we follow the Coppejans and Gallant (2002)�s

method. For detailed discussion, see Appendix B.1.

21For detailed discussion, see Athey and Haile (2002).
22We may also consider nonparametric estimation of l�(�). In this case, a two step procedure will be very relevant.

13



5 Nonparametric Testing

As noted in the previous section, we can test the IPV assumption, since several versions of distribu-

tion of valuations are identi�ed under availability of three order statistics. In particular, one is from

the pairs of the second- and fourth- highest bids and the second one is from the pairs the third-

and fourth- order statistics. Therefore, by comparing f̂1(�) and f̂2(�), we can test the following
hypothesis H0

H0 : WUCA is an IPV auction (6)

HA : WUCA is not an IPV auction

since under H0, there should be no signi�cant di¤erence between f̂1(�) and f̂2(�). Denote f01 to
be the true density of the parent distribution that generates the second- and fourth- highest order

statistics and f02 to be the true density of the parent distribution for the third- and fourth- order

statistics. Then, formally we can test (6) by comparing the two density functions f01(�) and f02(�).
Under the null we have

H0 : f01(�) = f02(�) (7)

against HA : f01(�) 6= f02(�).

5.1 Tests based on Means or Higher Moments

We can test (6) based on the means or higher moments implied by f1 and f2 as

Hj
0 (IPV ) : �j1 = �

j
2 (8)

Hj
A (NIPV ) : �j1 6= �

j
2; j = 1; 2; : : : ; J

where �jk =
R1
c vjfk(v)dv, k = 1; 2, since (6) implies (8) and (8) implies (6) as J ! 1. We can

compare several estimates of moments implied by f̂1 and f̂2 and test the signi�cance di¤erence of

each pair by constructing a standardized test statistics. One di¢ culty is to re�ect the fact that we

used pre-estimated functions in obtaining f̂1 and f̂2 in calculating the asymptotic variance of each

moment estimate.

5.2 Comparison of Densities Using the Pseudo Kullback-Leibler Divergence

Measure

Here we are interested in testing the equivalence of two densities f01 and f02 where these densities are

estimated from (29) and (31), respectively using the SNP estimation. A natural measure to compare

f01 and f02 will be the integrated squared error given by Is(f01(z),f02(z)) =
R
V(f01(z)� f02(z))

2dz
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noting f01 and f02 have the same support V. Under the null we have Is(f01(z),f02(z)) = 0. Li

(1996) develops a test statistic of this sort when both densities are estimated using a kernel method.

Other possible measures for the distance of two density functions are the Kullback-Leibler (KL)

information distance or the Hellinger metric. For testing of serial independence, it is well known that

test statistics based on these two measures have better small sample properties than those based on

a squared distance in terms of a second order asymptotic theory. The KL measure is entertained in

Ullah and Singh (1989), Robinson (1991), and Hong and White (2005) when they e¤ectively test

the a¢ nity of two densities. The KL measure is de�ned as IKL =
R
V (ln f01(z)� ln f02(z)) f01(z)dz

or IKL =
R
V (ln f02(z)� ln f01(z)) f02(z)dz which are equally zero under the null and have positive

values under the alternative as shown in Kullback and Leibler (1951). However, it is noted that

the KL information distance is not a proper distance measure, since it is not symmetric although it

still serves as a valid discrepancy measure. Kim (2005) proposes a variation of the Kullback-Leibler

measure which is symmetric and nonnegative as

I(f01; f02) =

Z
V
(ln f01(z)� ln f02(z)) f01(z)dz +

Z
V
(ln f02(z)� ln f01(z)) f02 (z) dz (9)

which has zero value under the null but is strictly positive under the alternative by construction.

It is also symmetric, I(f01; f02) = I(f02; f01).

We could construct a test statistic as a sample analogue of (9):

I( bf1; bf2) =

Z
V
(ln bf1(z)� ln bf2(z)) bf1(z)dz + Z

V
(ln bf2(z)� ln bf1(z)) bf2(z)dz

=

Z
V
(ln bf1(z)� ln bf2(z))d bF1(z) + Z

V
(ln bf2(z)� ln bf1(z))d bF2(z)

where d bF1(z) = bf1(z)dz and d bF2(z) = bf2(z)dz. Now suppose fevtgTt=1 are the second-highest order
statistics. Then, one may expect that for example,

R
V(ln

bf1(z)�ln bf2(z))d bFo1(z) � 1
T

PT
t=1

�
ln bf1(evt)� ln bf2(evt)�

but this cannot be true since vt follows the distribution of the second-highest order statistic not of

Fo1. We, however, argue that

1

T

TX
t=1

�
ln bf1(evt)� ln bf2(evt)� (10)

is still valid in terms of comparing two densities since under the null, the following object still

equals to zero Z
V
(ln fo1(z)� ln fo2(z)) g(n�1:n)(z)dz (11)

where g(n�1:n)(z) is the density of the second-highest order statistic among T . This is true for any

given order statistics. Based on (10), we develop a test statistic that tests (7) in Appendix E. For

more details on the proposed test statistic, see Appendix E.
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5.3 Combining Several Order Statistics

Once we show the several versions of estimates for the distribution of valuations are statistically

not di¤erent each other, we may obtain a better estimate by combining these. One way to do this

is to consider the joint density function of two or more order statistics conditional on a certain

order statistic. Assume that we have the kth1 , k
th
2 , and k

th
3 -highest order statistics, which are the

(n � k1 � 1)th, (n � k1 � 1)th, (n � k1 � 1)th order statistics respectively (1 � k1 < k2 < k3 � n).
Denote the joint density of these three order statistics as ~g(k1;k2;k3:n)(�)23

~g(k1;k2;k3:n)(ev;eev; v) = n!

(n� k3)!(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
�F (v)n�k3f(v)[F (eev)� F (v)]k3�k2�1f(eev)[F (ev)� F (eev)]k2�k1�1f(ev)[1� F (ev)]k1�1;

where eV denotes the kth1 -,
eeV denotes kth2 - and V denotes kth3 -highest order statistics. Using this

joint density function with (1), we obtain the conditional joint density of the kth1 and the k
th
2 -highest

order statistics conditional on the kth3 -highest statistics as

p(k1;k2)jk3(ev;eevjv) =
(k3 � 1)!

(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
(12)

� [F (
eev)� F (v)]k3�k2�1f(eev)[F (ev)� F (eev)]k2�k1�1f(ev)[1� F (ev)]k1�1

[1� F (v)]k3�1

=
(k3 � 1)!

(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
[(1� F (v))F (eevjv)]k3�k2�1

�f(eevjv)(1� F (v))[(F (evjv)� F (eevjv))(1� F (v))]k2�k1�1
�f(evjv)(1� F (v))[(1� F (evjv))(1� F (v))]k1�1

[1� F (v)]k3�1

=
(k3 � 1)!

(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
F (eevjv)k3�k2�1f(eevjv)

�[F (evjv)� F (eevjv)](k3�k1)�(k3�k2)�1f(evjv)[1� F (evjv)](k3�1)�(k3�k1)
= g(k3�k1;k3�k2:k3�1)(ev;eevjv);

where F (�jv) and f(�jv)(g(�jv)) are the truncated CDF and PDF truncated at x respectively. The
last equality comes from the joint density of the j-th and i-th order statistics (n � j > i � 1),

g(j;i:n)(a; b) =
n![F (b)]i�1[F (a)� F (b)]j�i�1[1� F (a)]n�jf(b)f(a)

(i� 1)!(j � i� 1)!(n� j)! Ifa>bg

where a and b are the j-th and i-th order statistics, respectively by matching j = k3�k1, i = k3�k2,
and n = k3 � 1. Therefore we can interpret p(k1;k2jk3)(�) as the joint density of (k3 � k1)th and
23We use this notation ~g(�) to distinguish it from g(�) so that ki denotes the kthi highest order statistics
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(k3 � k2)th order statistics from a sample of size equals to (k3 � 1). When (k1; k2; k3) = (2; 3; 4),

(12) becomes

p(2;3)j4(ev;eevjv) = 6f(eev)f(ev)[1� F (ev)]
[1� F (v)]3 (13)

Based on (13), we can estimate the distribution of valuations, f0(�), similarly with the method
proposed in Appendix D. The resulting estimator is more e¢ cient than f̂1(�) or f̂2(�) in the sense
that it uses more information than the others.

6 Empirical Results

6.1 Benchmark Monte Carlo

In this section, we perform several Monte Carlo experiments to illustrate the validity of our esti-

mation strategy. First, we generate arti�cial data of T = 1000 auctions as follows. The number

of potential bidders, fNig, are drawn from a Binomial distribution with (n; p) = (50; 0:1) for each

auction (i = 1; : : : ; T ). Ni potential bidders are assumed to value the object according to:

lnVij = �1X1i + �2X2i + �3X3i + vij ; (14)

where �1 = 1, �2 = �1, �3 = 0:5, X1i � N(0; 1), X2i � Exp(1), X3i = X1i � X2i + 1, and
vij � Gamma(9; 3)24. X�i�s represent the observed auction heterogeneity and vij is bidder j�s

private information in auction i, whose distribution is our primary interests here. To consider the

case of biding reserve prices, we also generate the reserve prices equation as

lnRi = �1X1i + �2X2i + �3X3i + �i;

where �i � Gamma(9; 3) � 2. Note that by construction Vij and Ri are independent conditional
on X�i�s. Arti�cial actual bidders bid only when those Vij are greater than Ri. Here we assume our

imaginary researcher do not know the presence of potential bidders with valuations below Ri. Thus,

in each experiment, she has a data set of X�i�s, and the second-, the third-, and the fourth-highest

among actual bidder�s bids. Auctions with fewer than four actual bidders are dropped. Hence,

our research has the sample size less than T = 1000 on average T = 680 with 50 repetitions. Our

researcher estimates �1, �2, �3 and fv(�) by varying the smoothness (K) of the SNP estimator,
from 0 to 7 without knowing the speci�cation of the distribution of vij in (14).25 ;26

24Note that for X � Gamma(9; 3), E(X) = 3 and V ar(X) = 1.
25For the actual Monte Carlo experiments in this paper, we used the simple two-stage estimation with linear model

because of a computational burden.
26Among K between 0 to 7, we choose K = 6 because it performs best in this Monte Carlo experiments.
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Figure 2 illustrates a sample performance of the estimator considered here. By construction of

the data generation, the three versions of estimates for the density function of valuations should

be almost identical (one is based on (2nd; 4th) order statistics pair, the others are on (3rd; 4th) and

(2nd; 3rd).)

6.2 Estimation Results

In the �rst stage regression obtaining the approximated function of the observed heterogeneity part,

l̂(x). We used a linear speci�cation for reducing the computational burden of our SNP estimation.

We consider the following covariates: X1 is the vector of dummy variables indicating the make

such as Hyundai, Daewoo, Kia or Others; X2 is the age; X3 is the mileage; X4 is the engine size;

X6 is the remaining time of the current title; X7 is the dummy variable for the transmission type;

X8 is the dummy variable for the fuel type; X9 is the dummy variable for the colors and X10 is the

dummy variable for the options. Table 3 provides the �rst-stage estimation results with the linear

speci�cation. The signs for the coe¢ cient of age, transmission, engine size, and rating variables

look reasonable, while the signs for the fuel type, mileage, colors, options, title remaining are not

so clear.

We estimate l�(x) separately for each car make and obtain the estimate of pseudo valuations

as residuals imposing the restriction l�(0) = 0 for identi�cation. Thus, we actually use the basis

functional form lH(X2; X3; :::; X10) for Hyundai and use cm + lm(X2; X3; :::; X10) for others, m 2
fDaewoo, Kia and Othersg.

Based on the estimated pseudo valuations, in the second step, we estimate the distribution of

valuations using three di¤erent pairs of order statistics (2nd; 4th), (3rd; 4th), and (2nd; 3rd). Figure

3 illustrates the estimated density function of valuations using the linear estimation in the �rst

stage.27

With these three nonparametric estimates of the distribution, we conduct our nonparametric

test of IPV. Our test statistic indicates that the null hypothesis of IPV is not rejected with 1%

signi�cance level when we compare all three possible combinations of the densities that are estimated

from three di¤erent pairs of order statistics. Values for the test statistic is provided in Table 4.

27Following the cross-validation strategy explained in Appendix B, we can pick the optimal lengths of series k�1 for

the �rst stage regression and K� for the SNP estimator.
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7 Implications and Discussions

7.1 Optimal Reserve Price

The key policy issue for the seller is the reserve price. The seller wants to maximize the expected

pro�t by setting a minimum acceptance price so that only bidders have higher valuations than the

reserve price attend the auction. The optimum depends on the distribution of valuations, which

is our primary interests and derived in previous sections. We are willing to assume the following,

which is implied by the standard regularity condition of Myerson (1981) and assumed in Haile and

Tamer (2003).

Assumption 7.1 (p� vc0)[1� Fv(p)] is strictly pseudo-concave in p on (v; �v),

where vc0 is the cost associated with the auction. The pseudo-optimal reserve price (without

the observed heterogeneity) is characterized by

p� = argmax
p
(p� vc0)[1� Fv(p)];

which becomes, under Assumption 7.1

p� = vc0 +
1� F (p�)
f(p�)

One nice feature of the additively separability assumed in (4) is that the equilibrium bidding is

preserved under the observed heterogeneity as B(V (x)) = l�(x) +B(v), where B(v) is the bidding

function under being absence of the observed auction heterogeneity. Thus, the optimal reserve

price also has the simple additive form of the observed heterogeneity part and the pseudo-optimal

reserve price:

p�(X) = l�(X) + p� = l�(X) + vc0 +
1� Fv(p�)
fv(p�)

Thus, we can estimate p�(x) using the previous estimates of l̂(�), f̂v(�) and F̂v(�) as

p̂(x) = l̂(x) + p̂;

where p̂ solves p = v̂c+ 1�F̂v(p)
f̂v(p)

and v̂c is a consistent estimator of vc0. It will be very interesting

to compare these implied optimal reserve prices from the distribution of valuations and the actual

reserve prices recorded in each auction of WUCA, since the actual reserve price data is readily

available in our data set. If signi�cant di¤erence emerges between these two and a particular

pattern is found in there di¤erence , then it may shed lights on the seller�s strategic behavior in

WUCA, if any.
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7.2 Bounds Estimation

Until now, we have disregarded the minimum increment of around 30 dollars in WUCA. In this

section, we discuss how to obtain the bounds of the distribution of valuations incorporating the fact

that there exists the minimum increment in WUCA. The bounds considered here is much simpler

than those considered in Haile and Tamer (2003), since in WUCA, by construction, a high order

statistic of valuations other than the �rst highest one is bounded as

b(i:n) � v(i:n) � b(i:n) +�; for all i = 1; : : : ; n� 1; (15)

where (i : n) denotes the ith order statistic out of the n sample. By the �rst-order stochastic

dominance, noting Gb(i:n)+�(v) = Gb(i:n)(v ��), (15) implies

Gb(i:n)(v) � Gv(i:n)(v) � Gb(i:n)(v ��);

, where G�(�) is the distribution of the order statistics. Then, using the identi�cation method
discussed in previous sections, we have

Fb(v) � Fv(v) � Fb(v ��) �= Fb(v)� fb(v)�;

where Fb(�); fb(�) are the CDF and PDF, respectively, of valuations based on bids and the last weak
equality comes from the �rst-order Taylor series expansion. Therefore, we can estimate the bounds

of Fv(v) as

F̂b(v) � Fv(v) � F̂b(v)� f̂b(v)�;

where f̂b(�) the SNP estimator based on the certain observed order statistics of bids, F̂b(x) =R x
min(b) f̂b(v)dv and min(b) is the minimum among the observed bids considered.

7.3 Discussions

In this section, we discuss our IPV test. With our estimates, we do not reject the null hypothesis

of IPV in our auction. We can interpret this result as an evidence of no informational dependency

among bidders about the valuations of observed characteristics of a used-car and no e¤ect of any

unobserved (to an econometrician) characteristics on valuations.

Our conjecture is that this situation may arise because each dealer operates in her own local

market and there is no interdependency among those markets, or when a dealer has a speci�c

demand (order) from a �nal buyer on hand.28

28This can happen when a dealer gets an order for a speci�c used-car but does not have one in stock or when a

consumer looks up the item list of an auction and asks a dealer to buy a speci�c car for her.
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If the assumption of IPV were rejected, it could have been due to a violation of the independence

assumption or a violation of the private value assumption. This could happen when a dealer does

not have a speci�c demand on hand, but she anticipates some demand in near future from the

analysis of the overall performance of the national market since every used-car won in the auction

is to be resold to a �nal consumer. In this case, a dealer may have some incentives to �nd out other

dealers�opinions about the prospect of the national market. With our data, we �nd no evidence

to support this hypothesis.

8 Conclusions

In this paper, we conducted a structural analysis of ascending-price auctions using a new data

set on a wholesale used-car auction, in which there is no jump bidding. Exploiting the data, we

estimated the distribution of bidders�valuations nonparametrically within the IPV paradigm.

Using the estimates of the distribution, we developed a new nonparametric test of IPV for the

case where the number of potential bidders is unknown by extending the work of Athey and Haile

(2002). We could implement our test because the data enabled us to exploit information from

observed losing bids. For our identi�cation and estimation, we utilized and extended the work

of Song (2005) for identifying and estimating the distribution of valuations when the number of

potential bidders of ascending auctions is unknown in an IPV setting.

We �nd that the null hypothesis of IPV is not rejected with our data after controlling for

observed auction heterogeneity, and therefore our estimation result remains a valid approximation

of the distribution of dealers�valuations.

The richness of our data has allowed us to conduct a structural analysis that bridges the gap

between theoretical models based on Milgrom and Weber (1982) and real-world ascending-price

auctions.

In this paper, we have considered the auction as a collection of isolated single-object auctions. In

future work, we will look at the data more closely in the alternative environments. For example, we

will examine intra-day dynamics of auctions with daily budget constraints for bidders, or possible

complementarity and substitutability in a multi-object auction environment.
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Appendices

A Normalized Hermite Polynomials

Here are examples of the normalized Hermite polynomials that we use for approximating the density

of valuations. For j = 0; : : : ; 9
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Note that
R1
�1H

2
j dx = 1 and

R1
�1HjHkdx = 0; j 6= k.

B Choosing the optimal smoothing parameters

Instead of using the Leave-one-out method, we will partition the data into P groups, making the

size of each group as equal as possible and use the Leave-one partition-out method. This is because

it will be computationally too expensive to use the Leave-one-out method, since the data size is

so large. We let Tp denote the set of the data indices that belongs to the pth group such that

Tp \ Tp0 = � for p 6= p0 and [Pp=1Tp = f1; 2; : : : ; Tg.
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B.1 Choosing K�

Coppejans and Gallant (2002) employ a cross-validation method based on the ISE (Integrated

Squared Error) criteria. The ISE is de�ned for ĥ(x), a density estimate of h(x)

ISE(ĥ) =

Z
ĥ2(x)dx� 2

Z
ĥ(x)h(x)dx+

Z
h(x)2dx

= M(1) � 2M(2) +M3:

To approximate the ISE in terms of p�(yjx), we again use the cross-validation strategy with the
data partitioned into P groups. We �rst approximate M(1) with

cM(1)(K) =

Z
(p̂�K(yjx))2

=

Z  
6(F̂K(y)� F̂K(x))(1� F̂K(y))f̂K(y)

(1� F̂K(x))3

!2
;

where f̂K(�) denotes the SNP estimate with the length of the series equal to K and F̂K(z) =R z
c f̂K(t)dt. For M(2), we consider

cM(2)(K) =
1

T

PX
p=1

X
t2Tp

p̂�p;K(ytjxt)

=
1

T

PX
p=1

X
t2Tp

6(F̂p;K(yt)� F̂p;K(xt))(1� F̂p;K(yt))f̂p;K(yt)
(1� F̂p;K(xt))3

;

where f̂p;K(�) denotes the SNP estimate obtained from the sample excluding pth group with the

length of the series, K and F̂p;K(z) =
R z
c f̂p;K(t)dt. Noting M(3) is not a function of K, we pick K�

such that

K� = argminK CVK(K) = cM(1)(K)� 2cM(2)(K)

C Nonparametric Extension: Control on the Observed Hetero-

geneity

Until now, we assume that l�(�) belongs to a parametric family. Here we consider a nonparametric
speci�cation of l�(�). Assuming the independence of the idiosyncratic factor, vi; on the observables,
Xi, we can approximate the unknown function l(Xi) in (5) using a sieve estimation such as power
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series or splines. We �rst approximate the function space L containing l�(Xi) with the following
power series sieve space LT

LT = fl(X)jl(X) = Rk1(T )(X)0� for all � satisfying klk�
1 � c1g;

where Rk1(X) is a triangular array of some basis polynomials with the length of k1. Here k � k�

denotes the Hölder norm:

jjgjj�
 = sup
x
jg(x)j+ max

a1+a2+:::adx=

sup
x 6=x0

jrag(x)�rag(x0)j
(jjx� x0jjE)
�


<1;

where rag(x) � @a1+a2+:::adx

@x
a1
1 :::@x

adx
dx

g(x) with 
 the largest integer smaller than 
. The Hölder ball (with

radius c) �
c (X ) is de�ned accordingly as

�
c (X ) � fg 2 �
(X ) : jjgjj�
 � c <1g:

Thus, we have l(X) 2 �
1c1 (X ). Functions in �


c (X ) can be approximated well by various sieves

such as power series, Fourier series, splines, and wavelets.

The functions in LT is getting dense as T !1 but not that fast, i.e. k1 !1 as T !1 but

k1=T ! 0. Then, according to Theorem 8, p.90 in Lorentz (1986), there exists a �k1
29 such that

for Rk1(x) on the compact set X (the support of X)

sup
x2X

jl�(x)�Rk1(x)0�k1 j < c1k1
� [
1]

dx ; (16)

where [s] is the largest integer less than s and dx is the dimension of X. Thus, in what follows, we

approximate the pseudo-value vi in (5) as

V k1i = lnVi � lk1(X); (17)

where lk1(x) = R
k1(x)0�k1 .

Speci�cally, we consider the following polynomial basis considered by Newey, Powell, and Vella

(1999). First let � = (�1; : : : ; �dx)
0 denote a vector of nonnegative integers with the norm j�j =Pdx

j=1 �j , and let x
� �

Qdx
j=1(xj)

�j . For a sequence f�(k)g1k=1 of distinct such vectors, we construct
a tensor-product power series sieve as

Rk1(x) = (x�(1); : : : ; x�(k1))0

Then, replacing each power x� by the product of orthonormal univariate polynomials of the same

order, we may reduce collinearity.

29We will suppress the argument T in k1(T ), unless otherwise noted from now on
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D Distribution of Valuations

In this section, to simplify the discussion, we assume that there is no observed heterogeneity in

the auction. In other words, we impose lnV = Vi, i.e. l�(�) � 0. First, consider the estimation of
the distribution of valuations using the second- and third-highest bids in each auction. Let (eVt; Vt)
denote the second- and fourth-highest pseudo-bids for each auction t and let (evt; vt) denote their
realizations, respectively. Also let vm = min

t
vt and vM = max

t
evt30 Noting F (v) for v < vm nor

v > vM can be recovered form the data, we treat F �(�) = F (�jvm; vM ) as the model primitive of
interest, where F (�jvm; vM ) denotes the truncated distribution of F (�) from below at vm and from

above at vM as

F �(v) � F (vjvm; vM ) =
F (v)� F (vm)
F (vM )� F (vm)

and hence

f�(v) � f(vjvm; vM ) =
f(v)

F (vM )� F (vm)
(18)

Then, we obtain the density of eVi conditional on Vi denoted by p2j4(evijVi = vi) from (3) as

p2j4(evjV = v) = 6(F (ev)� F (v))(1� F (ev))f(ev)
(1� F (v))3 for vM � ev > v � vm: (19)

To estimate the unknown function f�(z) (hence, F �(z) =
R z
vm
f�(t)dt), we �rst approximate f�(z)

with fK(z) as a member of FT up to the order K(T ):31

FT = ffK :
Z vM

vm

fK(z)dz = 1 and 0 < fK(�) <1g

One possible speci�cation of fK(�) is

fK(z) =

�
1 +

PK
j=1 aj

� z��
�

�j�1�2
�(z;�; �; c)R vM

vm

�
1 +

PK
j=1 aj

� t��
�

�j�1�2
�(t;�; �; c)dt

; (20)

which is proposed by Song (2005) when vM =1, where �(�;�; �; vm; vM ) is the density of N(�; �)
truncated below at vm and above at vM . Note this is an extension of the SNP density speci�cation

of Gallant and Nychka (1987) (in the univariate case) to the truncated distribution.

Then, we construct the sample likelihood based on fK(�) instead of the true f(�) using (19):

L(fK ; evt; vt) = 6(FK(evt)� FK(vt))(1� FK(evt))fK(evt)
(1� FK(vt))3

; (21)

30Note that vm is a consistent estimator of v under no binding reserve price and a consistent estimator of the

reserve price under the binding case. Similarly vM is a consistent estimator of v.
31We will suppress the argument T in K(T ) unless noted otherwise
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where FK(z) =
R z
vm
fK(t)dt. Noting that (21) is a parametric estimation problem for a given value

of K, one could approximate fK(�) with f̂(�) as the maximum likelihood estimator:

f̂(z) =

�
1 +

PK
j=1 âj

�
z��̂
�̂

�j�1�2
�(z; �̂; �̂; c)

R vM
vm

�
1 +

PK
j=1 âj

�
t��̂
�̂

�j�1�2
�(t; �̂; �̂; c)dt

;

where

(â1; : : : ; âK ; �̂; �̂) = arg max
a1;:::;aK ;�;�>0

1

T

TX
t=1

lnL(fK ; yt; xt) (22)

Now note that actually a pseudo-bid z is de�ned as the residual in (5) and is approximated as the

residual in (17)32. Thus, we have another set of parameter (�k1) to estimate in (22) as

f̂(ẑ) =

�
1 +

PK
j=1 âj

�
ẑ��̂
�̂

�j�1�2
�(ẑ; �̂; �̂; c)

R vM
vm

�
1 +

PK
j=1 âj

�
t��̂
�̂

�j�1�2
�(t; �̂; �̂; c)dt

;

where

(�̂; â1; : : : ; âK ; �̂; �̂) = arg max
�;a1;:::;aK ;�;�>0

L(fK): (23)

Note that our estimator requires a rich data set, since we estimate two nonparametric functions

at the same time. The approximation precision depends on the choice of smoothing parameters

k1 and K. Here, we pick the optimal length of series (the dimension of the sieve space HT ), K�,

following the Coppejans and Gallant (2002)�s method, which is a cross-validation strategy as used

in Kernel density estimations. Using a similar idea33, we also can pick the optimal k�1.

One obvious problem of using the usual polynomials in (20) is that the estimation may be

unstable due to under�ows and over�ows in
PK
j=1 aj

� z��
�

�j
. Moreover the estimated conditional

32We develop our discussion based on the nonparametric sepci�cation of l�(�), which nests the parametric case.
33We can use a sample version of the Mean Squared Error criterion for the cross-validation as

SMSE(l̂) =
1

T

TX
i=1

[l̂(Xi)� l�(Xi)]
2;

where l̂(�) = RK(�)0�̂. We again use the Leave-one partition-out method to reduce the computational burden. Namely,
we estimate the function l�(�) from the sample after deleting the pth group with the length of the series equal to k1

and denote this as l̂p;k1(�). As a next step, we choose k�1 such that

argmink1 CV (k1) =
1

T

PX
p=1

X
t2Tp

[lnVt �D0
t
̂ � l̂p;k1(Xt)]

2;

where Tp denotes the set of the data indices belonging to the pth group such that Tp \ Tp0 = � for p 6= p0 and

[Pp=1Tp = f1; 2; : : : ; Tg.
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density f̂(�) itself is a complicated function of truncated parameters and thus it is di¢ cult to
establish the convergence or the convergence rate of f̂(�) to f�(z). On the other hand this approach
is absurd in the sense that we implicitly assume that the support of the values is (�1;1) where
the true support is (v; v).

The �rst problem of instability can be resolved by using a truncated density version of the

speci�cation experimented in Fenton and Gallant (1996) as

fFG(z; �) =
fFG(z; �)R vM

vm
fFG(z; �)dz

=

�PK
j=1 �jHj(

z��
� )
�2

R vM
vm

�PK
j=1 �jHj(

z��
� )
�2
dz
; (24)

where

fFG(z; �) =

�PK
j=1 �jHj(

z��
� )
�2
+ �0�(

z��
� )PK

j=1 �
2
j + �0

(25)

for a small positive constant �0. Hj(t) is de�ned recursively as

H1(t) = (
p
2�)�1=2e�t

2=4; (26)

H2(t) = (
p
2�)�1=2te�t

2=4;

Hj(t) = [tHj�1(t)�
p
j � 1Hj�2(t)]=

p
j; for j � 3;

which is based on the normalized Hermite polynomials. Replacing fK(z; �) in (21) with its alterna-

tive (24) and solving (23), one can obtain estimator denoted by f̂FG(�). Fenton and Gallant (1996)
argue that the estimation based on (25) is much more e¢ cient computationally and is more stable.

Moreover, it is less sensitive to the choice of starting values.

However, the second and the third problem still remain. Here we entertain the speci�cation

proposed in Kim (2005) where a truncated version of the SNP density estimator with a compact

support is developed. Hereafter, to simplify the notation, we assume (�; �) = (0; 1) without loss

of generality since we can always standardize the data before the estimation and also the SNP

estimator is the scale- and location- invariant. Instead of de�ning the true density as (18), we

follow Kim (2005)�s speci�cation by denoting the true density as

f0(z) = h
2
f0(z)e

�z2=2 + �0
�(z)R

V �(z)dz

where V denotes the support of z. Kim (2005) uses a truncated version of Hermite polynomials to

approximate a density function f0 with a compact support as

FT =

8<:f : f(z; �) =
0@ KX
j=1

#jwjK(z)

1A2 + �0 �(z)R
V �(z)dz

; � 2 �T

9=; ; (27)
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where �T =
n
� = (#1; : : : ; #K(T )) :

PK(T )
j=1 #2j + �0 = 1

o
and fwjK(z)g are de�ned following Kim

(2005) as follows. First we de�ne

wjK(z) =
Hj(z)qR
V H

2
j (z)dx

that is bounded by

sup
z2V;j�K

jwjK(z)j �
1r

min
j�K

R
Z H

2
j (v)dv

sup
z2V

jHj(z)j < C eH
for some constant C < 1, since

R
V H

2
j (z)dz is bounded away from zero for all j and jHj(z)j <eH uniformly over z and j. Denoting W

K
(z) = (w1K(z); : : : ; wKK(z))

0, further de�ne QW =R
VW

K
(z)W

K
(z)0dz and its symmetric matrix square root as Q�1=2

W
. Now let

WK(z) � (w1K(z); : : : ; wKK(z))0 � Q�1=2W
W
K
(z) (28)

then by construction, we have
R
VW

K(z)WK(z)0 = IK . Then these truncated and transformed

Hermite polynomials are orthonormalZ
V
w2jK(z)dz = 1;

Z
V
wjK(z)wkK(z)dz = 0; j 6= k

from which the condition
PK(n)
j=1 #

2
j + �0 = 1 follows since for any f in FT , we have

R
V fdz = 1.

Now de�ne �(K) = supz2V


WK(z)



 using a matrix norm kAk =
p
tr(A0A) for a matrix A, which

is the Euclidian norm for a vector. Then, we have �(K) = O(
p
K) as shown in Lemma I.1. If the

range of V are su¢ ciently large, then
R
V H

2
j (z)dz � 1 and QW � IK and hence wjK � Hj which

implies immediately

sup
z2V



WK(x)


 � sup

x2X

vuut KX
j=1

H2
j �

p
K eH2 = O

�p
K
�
:

Here we need to introduce a trimming device �(�) that trims out those observations evt; vt > v � "
or evt; vt < v � ".

Now the SNP estimator is obtained by solving

bf1 = argmax
f2FT

1

T

TX
t=1

�(evt; vt) lnL(f ; evt; vt) (29)

� argmax
f2FT

1

T

TX
t=1

�(evt; vt) ln 6(F (evt)� F (vt))(1� F (evt))f(evt)
(1� F (vt))3
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where we rede�ne F (z) =
R z
v f(z)dz or equivalently

bf1 = f(�;b�K), b�K = argmax
�2�n

1

n

nX
i=1

�(evt; vt) lnL(f(�;b�K); evt; vt).
In the Technical Appendix F, we establish the consistency and the convergence rate of this SNP

estimator. Similarly we can also identify and estimate f0(�) using the pair of third- and fourth-
highest bids. First, denote (eeV t; Vt) to be the third- and fourth-highest pseudo-bids for each auction
t and let (eevt; vt) denote their realizations, respectively. Then, we have the conditional density

p3j4(eevjV = v) = 3(1� F0(eev))2f0(eev)
(1� F0(v))3

for v > eev � v � v (30)

from (3). Denote the estimate of f0(�) based on (30) as f̂2(�):

bf2 = argmax
f2FT

1

T

TX
t=1

�(eevt; vt) ln 3(1� F (eevt))2f(eevt)
(1� F (vt))3

(31)

for f 2 FT de�ned in (27).

E Comparison of Densities Using the Pseudo Kullback-Leibler Di-

vergence Measure

The idea of using (11) as a valid measure of comparing two densities is from the spirit of indirect

inference literature (see Gourieroux, Monfort, and Renault (1993), An and Liu (2000), Dridi, Guay,

and Renault (2003), and Keane and Smith (2003) among others). It is argued that the parameters

of interest can be inferred from some instrumental models which are possibly misspeci�ed. It is

noted that (11) is not a distance measure since it can have negative values and is not symmetric but

still can serve as a divergence measure. Now de�ne g2, g3, and g4 to be the density of the second-

, third-, and fourth- highest order statistics among n, respectively and hence g2(�) = g(n�1:n),

g3(�) = g(n�2:n), and g4(�) = g(n�3:n). We consider a modi�cation of (11) as a divergence measure
of two densities, which is de�ned by

I
g2
(fo1; fo2) =

�
A

Z
V
(ln fo1(z)� ln fo2(z)) g(n�1:n)(z)dz

�2
(32)

for some positive constant A.

Using (32), for bA ! A, we propose a test statistic of the form using the second-highest order

statistics in particular34

bIg2( bf1; bf2) =
0@ bA 1

T

X
t2T2

�
ln bf1(evt)� ln bf2(evt+1)�

1A2 (33)

34 Instead, we can use other order statistics. In that case, simply replace g2 with g3 or g4.
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where T2 is a subset of f1; 2; ; : : : ; T � 1g, which trims out those observations of bf1(�) < �1(T ) orbf2(�) < �2(T ) for chosen positive values of �1(T ) and �2(T ) that tend to zero as T ! 1. To be
precise, T2 is de�ned by

T2 =
n
t : 1 � t � T � 1 such that bf1(evt) > �1(T ) and bf2(evt+1) > �2(T )o .

This trimming is a usual device in a inference procedure for nonparametric estimations. Even

though the SNP density estimator that we are interested in is always positive by construction

di¤erently from higher order Kernel estimators, we still introduce this trimming device to avoid

the excess in�uence of one or several summands when bf1(�) or bf2(�) are arbitrary small. (33) will
converge to

Ig2(fo1; fo2) =

�
A

Z
V
(ln fo1(z)� ln fo2(z)) g(n�1:n)(z)dz

�2
under certain conditions that will be discussed later. However, unfortunately, both T bIg2( bf1; bf2) will
have degenerate distributions under the null similarly as discussed in Robinson (1991) and cannot

be used as reasonable statistics. To resolve this problem, we entertain modi�cation of (33) in the

spirit of Robinson (1991) as

bIg2
 ( bf1; bf2) =
0@ bA 1

T
 � 1
X
t2T2

ct(
)
�
ln bf1(evt)� ln bf2(evt+1)�

1A2

where for a nonnegative constant 
,

ct(
) = 1 + 
 if t is odd

= 1� 
 if t is even

and n
 is de�ned as35

T
 = T + 
 if T is odd and T
 = T if T is even. (34)

We let

I
g2
= I

g2
(f01; f02); eIg2
 = bIg2
 (f01; f02), and bIg2
 = bIg2
 ( bf1; bf2)

for notational simplicity. Now note, for any increasing sequence d(T ), any positive C <1, and 
,

Pr(d(T )bIg2
 < C) � Pr(d(T )
���bIg2
 � Ig2

��� > d(T )Ig2 � C)
� Pr(

���bIg2
 � Ig2
��� > Ig2=2)

35Consider s(n) � 1
n


Pn
i=1 ci(
) when n = 2m and n = 2m + 1, respectively. It follows that s(2m) =

((1+
)m+(1�
)m)
n


= 2m
n


= n
n


and s(2m + 1) = 1
n

((1 + 
)m+ (1� 
)m+ (1 + 
)) = 2m+1+


n

= n+


n

. Thus, by

constructing nr as (34), we have s(n) = 1.
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holds when T is su¢ ciently large and (7) is not true (i.e. I
g2 > 0). Since the probability

Pr(
���bIg2
 � Ig2

��� > Ig2=2) goes to zero under the alternative as long as bIg2
 �!
p
I
g2 , one could construct

a test statistic of the form

Reject (7) when d(T )bIg2
 > C. (35)

Therefore, as long as bIg2
 �!
p
I
g2 , (35) is a valid test consistent against all departures from (7).

We call a test statistic consistent against one direction of departure from the null hypothesis if

the rejection probability approaches one as the sample size gets large regardless of the size of that

departure.

We present the main result of this section in the following theorem. See the Technical Appendix

G for the proof.

Theorem E.1 Suppose Assumption F.3 in the Technical Appendix holds. Provided that Conditions

1-3 in the Technical Appendix hold under (7), we have

b�
 � T bIg2
 �!
d
�2(1)

for any 
 > 0 with bA = 1=
p
2
b� 1

2 and b� �!
p
�. Thus we reject (7) if b�
 > C� where C� is the

size � critical value of the �2(1) distribution.

F Large Sample Theory of the SNP Density Estimator

F.1 Consistency of the SNP Estimator

Here we impose the following regularity conditions. We again develop our discussion when l�(�) is
nonparametrically speci�ed, which nests the parametric case.

Assumption F.1 (Vtj ; Xt); : : : (VTj ; XT ) are i.i.d. for all j and Var(Vj jX) is bounded for all j.

Assumption F.2 (i) the smallest and the largest eigenvalue of E[Rk1(X)Rk1(X)0] is bounded away

from zero uniformly in k1 and; (ii) there is a sequence of constants �0(k1) satisfying supx2X


Rk1(x)

 �

�0(k1) and k1 = k1(T ) such that �0(k1)
2k1=T ! 0 as T ! 1, where the matrix norm kAk =p

trace(A0A).

Under Assumption F.1 and F.2 (which are essentially borrowed from Assumption 1 and 2 in

Newey (1997)), we obtain the convergence rate of l̂(�) = Rk1(�)0�̂ to l�(�) in the sup-norm by

Theorem 1 of Newey (1997), since (16) implies Assumption 3 in Newey (1997) for the polynomial

series approximation. Theorem 1 in Newey (1997) states that

sup
x2X

���l̂(x)� l�(x)��� = Op(�0(k1))[pk1=pT + k� [
1]
dx

1 ]:
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Noting �0(k1) � O(k1) for power series sieves, we have

sup
x2X

���l̂(x)� l�(x)��� = max

�
Op(k

3=2
1 =

p
T ); Op(k

1� [
1]
dx

1 )

�
(36)

= Op

�
T
max

n
3
2
'� 1

2
;
�
1� [
1]

dx

�
'
o�

with k1 = O(T #) and 0 < # < 1
3 .

The convergence rate result of (36) implies that by choosing a proper #, we can insure that

the convergence rate of the second step density estimator will not be a¤ected by the �rst step

estimation36. Moreover, the asymptotic distributions of the second step density estimator or its

functional may not be a¤ected by the �rst estimation step, which makes our discussion a lot easier.

This is noted also in Hansen (2004) when he derives the asymptotic distribution of the two-step

density estimator which contains the estimates of the conditional mean in the �rst step. This

result will be immediately obtained if we consider a parametric speci�cation of observed auction

heterogeneities since we will achieve the
p
n consistency for those �nite parameters.

Now following Kim (2005), we consider the convergence rate of the SNP density estimator

obtained from any pair of order statistics. Denote (qt; rt) to be a pair of k1-th and k2- th highest

order statistics. We �rst derive the convergence rate of the SNP density estimator when the data

f(qt; rt)gTt=1 are from the true values (after removing the observed heterogeneity part), not derived

ones from the �rst step estimation described in the previous section. First, we construct

L(f ; qt; rt) =
(k2 � 1)!

(k2 � k1 � 1)!(k1 � 1)!
(F (qt)� F (rt))k2�k1�1(1� F (qt))k1�1f(qt)

(1� F (rt))k2�1
(37)

where f 2 FT . Then the SNP density estimator bf is obtained by solving
bf = argmax

f2FT

1

T

TX
t=1

lnL(f(�; �); qt; rt) (38)

or equivalently

bf = f(z;b�K), b�K = argmax
�2�T

1

T

TX
t=1

lnL(f(�; �); qt; rt):

To establish the convergence rate, we need the following conditions

Assumption F.3 The observed data of a pair of order statistics f(qt; rt)g are randomly drawn
from the continuous density of the parent distribution f0(�).
36We have not derived this proper rate of convergence in this study. It is part of our future research. However,

comparing (36) and (39), we conjecture that we will need, for any small � > 0,
max

(
T
3
2
'� 1

2 ;T
1� [
1]

dx

)
maxfT�1=2+�=2+�;K(T )�s=2g ! 0 to

ensure that the convergence rate of the second step density estimator is not a¤ected by the �rst step estimation.
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Assumption F.4 (i) f0(z) is s-times continuously di¤erentiable with s � 3, (ii) uniformly bounded
from above and bounded away from zero on its compact support V, (iii) f0(z) has the form of

f0(z) = h
2
f0
(z)e�v

2=2 + �0
�(z)R

V �(z)dz
for arbitrary small positive number �0

Note that di¤erently from Fenton and Gallant (1996) and Coppejans and Gallant (2002), we

do not require a tail condition since we impose the compact truncated support. Under Assumption

F.4, we obtain

Theorem F.1 Suppose Assumption F.3 and F.4 holds and �(K)2K
T ! 0. Then, for K = O(T�)

with � < 1
3 , we have

sup
z2V

��� bf(z)� f0(z)��� = O ��(K)2� op �T�1=2+�=2+��+O ��(K)2K�s=2
�

(39)

for arbitrary small positive constant �.

We prove this theorem in the following section. Now we consider the convergence rate of the

SNP estimators where a pair of order statistics f(bqt; brt)g is obtained as residuals of the �rst step
estimation. The SNP estimator is given by

bbf = argmax
f2FT

1

T

TX
t=1

lnL(f ; bqt; brt; �) (40)

We note that under a suitable choice on the degree of approximation for the unknown function of

observed heterogeneity, the e¤ect of the �rst step estimation is negligible. Particularly, this is true

when l�(�) is parametrically speci�ed.

F.2 Convergence Rate of the SNP Estimator (Theorem F.1)

Here we derive the convergence rate of the SNP density estimator given in (38) following Kim

(2005).

Recall that we denote (qt; rt) to be a pair of k1-th and k2- th highest order statistics (k1 < k2).

We �rst derive the convergence rate of the SNP density estimator when the data f(qt; rt)gTt=1 are
from the true residual values (after removing the observed heterogeneity part). Though we use

a particular sieve here, we derive the convergence rate results for a general sieve that satis�es

some conditions. According to Theorem 8, p.90, in Lorentz (1986), we can approximate a v-times

continuously di¤erentiable function h such that there exists a K-vector 
K that satis�es

sup
z2Z

��h(z)�RK(z)0
K�� = O(K� v
dim(z) ) (41)
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where Z � Rdim(z) is the compact support of z and RK(z) is a triangular array of polynomials.
Now let

f0(z) = h
2
f0(z)e

�z2=2 + �0
�(z)R

V �(z)dz

and assume hf0(z) (and hence f0(z)) is s-times continuously di¤erentiable. Denote a K-vector

�K = (#1K ; : : : ; #KK)
0. Then, there exists a �K such that

sup
z2V

���hf0(z)� ez2=4WK(z)0�K

��� = O(K�s) (42)

by (41) noting hf0(z) is s-times continuously di¤erentiable over z 2 V , V is compact, andn
ez

2=4wjK(z)
o
are linear combinations of power series. (42) implies that

sup
z2V

���hf0(z)e�z2=4 �WK(z)0�K

��� � sup
z2V

e�z
2=4 sup

z2V

���hf0(z)� ez2=4WK(z)0�K

��� = O(K�s) (43)

from sup
z2R

e�z
2=4 � 1. From this result, now it is shown below that for f(z; �K) 2 FT ,

sup
z2V

jf0(z)� f(z; �K)j = O
�
�(K)K�s�

First, note (43) implies

WK(z)0�K �O(K�s) � hf0(z)e�z
2=4 �WK(z)0�K +O(K

�s)

from which it follows that�
WK(z)0�K �O(K�s)

�2 � �WK(z)0�K
�2 � h2f0(z)e

�x2=2 �
�
WK(z)0�K

�2
(44)

�
�
WK(z)0�K +O(K

�s)
�2 � �WK(z)0�K

�2
assuming WK(z)0�K is positive without loss of generality. Now, note that

sup
z2V

��WK(z)0�
�� � sup

z2V



WK(z)


 k�k = O (�(K)) (45)

by the Cauchy-Schwarz inequality and from k�k2 < 1 for any � 2 �n by construction. Now applying
the mean value theorem to the upper bound of (44), we have

sup
z2V

����WK(z)0�K +O(K
�s)
�2 � �WK(z)0�K

�2���
= sup

z2V

���2WK(z)0�K +O(K
�s)
�
O(K�s)

��
� sup

z2V

��2WK(z)0�K
��O(K�s) +O(K�2s)

= O(�(K)K�s)

38



where the last result is from (45). Similarly for the lower bound, we have

sup
z2V

����WK(z)0�K �O(K�s)
�2 � �WK(z)0�K

�2��� = O(�(K)K�s).

>From (44), it follows that

sup
z2V

���h2f0(z)e�z2=2 � �WK(z)0�K
�2��� = O(�(K)K�s)

and hence

sup
z2V

jf0(z)� f(z; �K)j = O
�
�(K)K�s� . (46)

Now to establish the convergence rate of the SNP estimator, a pseudo true density function is

introduced where the pseudo true density is given by

f�K(z) =
�
WK(z)0��K

�2
+ �0

�(z)R
V �(z)dz

such that for L(f(�; �); qt; rt) de�ned in (37)

��K = argmax
�

E [lnL(f(�; �); qt; rt)] :

To simplify notation, we only consider such case that k2 � k1 � 1 = 0 and let

eL(f(�; �); qt; rt) = (1� F (qt; �))k1�1f(qt; �)
(1� F (rt; �))k2�1

:

Then we have

��K = argmax
�

E
h
ln eL(f(�; �); qt; rt)i (47)

and b�K = argmax
�

1

T

TX
t=1

ln eL(f(�; �); qt; rt)
from (38). We �rst note

Lemma F.1 Suppose Assumption F.4 holds. Then for the �K in (42),

k�K � ��Kk = O
�
K�s=2

�
and

sup
v2V

jf0(z)� f�K(z)j = O
�
�(K)2K�s=2

�
: (48)
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Proofs of lemmas and technical derivations are in Section I. Lemma F.1 establishes the distance

between the true density and the pseudo true density.

Now the stochastic order of



b�K � ��K


 is derived. De�ne bQT (�) = 1

T

PT
t=1 �(qt; rt) ln

eL(f(�; �); qt; rt)
and Q(�) = E[�(qt; rt) ln eL(f(�; �); qt; rt)]. Then we have

sup
�2�T

��� bQT (�)�Q(�)��� = op �T�1=2+�=2+�� (49)

for all su¢ ciently small � > 0 from Lemma I.6. Now for k� � ��Kk � o(�T ), we also have

sup
k����Kk�o(�T );�2�T

��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� = op ��TT�1=2+�=2+�� (50)

as shown in Lemma I.7. From (49) and Lemma I.7, it follows that

Lemma F.2 Suppose Assumption F.4 holds and �(K)2K
T ! 0. Then for K(T ) = O (T�),


b�K � ��K


 = op �T�1=2+�=2+�� :

Thus we obtain

sup
z2V

��� bf(z)� f�K(z)��� (51)

= sup
z2V

����WK(z)0(b�K � ��K)��WK(z)0(b�K + ��K)����
� C1

�
sup
z2V



WK(z)


�2 


b�K � ��K




= O
�
�(K)2

�
op

�
T�1=2+�=2+�

�
since k�k2 < 1 for any � 2 �T . Thus �nally, we obtain

sup
z2V

��� bf(z)� f0(z)��� (52)

� sup
z2V

��� bf(z)� f�K(z)���+ sup
z2V

jf�K(z)� f0(z)j

= O
�
�(K)2

�
op

�
T�1=2+�=2+�

�
+O

�
�(K)2K�s=2

�
.

Thus we have proved Theorem F.1.
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G Asymptotics for Test Statistic (Proof of Theorem E.1 )

To prove Theorem E.1, we need the following lemma that establishes the conditions for bIg2
 �!
p
I
g2 .

First, we let Eh[�] denote an expectation operator that takes expectation with respect to a density
h.

Lemma G.1 Suppose Assumption F.3 holds. Suppose (i) f01 and f02 are continuous, (ii) Eg2 [jln f01j] <
1 and Eg2 [jln f02j] <1, (iii) 1

T�1
PT�1
t=1 Pr(t =2 T2) = o(1):Further suppose (iv)

1

T
 � 1
X
t2T2

ct(
) ln
� bf1(evt)=f01(evt)� �!

p
0 and

1

T
 � 1
X
t2T2

ct(
) ln
� bf2(evt+1)=f02(evt+1)� �!

p
0;

then we have bIg2
 �!
p
I
g2
:

Proof. Note

1

T
 � 1
X
t2T2

ct(
) ln f01(evt)
=

1

T
 � 1
X
t odd

(1 + 
) ln f01(evt) + 1

T
 � 1
X
t even

(1� 
) ln f01(evt)
+Op

 
1

T � 1

T�1X
t=1

Pr(t =2 T2)
!

=
1

2
(1 + 
)Eg2 [ln f01(evt)] + op(1) + 12(1� 
)Eg2 [ln f01(evt)] + op(1) + op(1)

= Eg2 [ln f01(evt)] + op(1)
by the law of large numbers under Condition (i) and by Condition (ii) and since fevtgTt=1 are iid.
Similarly we have

1

T
 � 1
X
t2T2

ct(
) ln f02(evt+1) = Eg2 [ln f02(evt+1)] + op(1)
and thus noting bA2 �!

p
A2, by the Slutsky theorem

eIg2
 �!
p
I
g2 (53)

since I
g2 (f01; f02) can be expressed as I

g2 (f01; f02) = (A2Eg2 [ln f01(evt)� ln f02(evt)])2. Condition
(iv) implies bIg2
 � eIg2
 �!

p
0 (54)
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applying the Slutsky theorem. From (53) and (54), we conclude

bIg2
 �!
p
I
g2
:

Now we prove Theorem E.1. We impose the following three conditions.

Condition 1
P
t2T2 ct(
) ln

� bf1(evt)=f01(evt)� = op �pT� andPt2T2 ct(
) ln
� bf2(evt+1)=f02(evt+1)� =

op

�p
T
�
.

Condition 2 1
T�1

PT�1
t=1 Pr(t =2 T2) = o

�
1p
T

�
.

Condition 3 Eg2
�
j ln f01(evt)j2� <1 and Eg2

�
j ln f02(evt)j2� <1.

Proof. Considering the powers of the proposed test, we may want to achieve the largest possible

order of d(T ) while letting d(T )bIg2
 preserve the some limiting distributions under the null. In what

follows, we show that we can achieve this with d(T ) = O (T ). Suppose Condition 1 holds, then it

follows immediately that bIg2
 � eIg2
 = op

�
1p
T

�
for all 
 � 0. This implies that the asymptotic distribution of T bIg2
 will be identical to that of T eIg2

under the null, which means the e¤ect of nonparametric estimation is negligible. Now consider,

under the null f01 = f02

1

T
 � 1
X
t2T2

ct(
) (ln f01(evt)� ln f02(evt+1)) (55)

=
2


T
 � 1
X
t2Q

(ln f01(evt)� ln f01(evt+1)) + 1 + 


T
 � 1
ln f01(ev1)� cmaxQ+1(
)

T
 � 1
ln f01(evmaxQ+1)

+Op

 
1

T � 1

T�1X
t=1

Pr(t =2 T2)
!

where Q = ft : 1 � t � T � 1; t eveng. First, we are willing to choose 
 > 0 and look into what
happens when 
 = 0 afterwards. Now suppose Condition 1 holds. Further suppose Conditions 2-3

hold. Then, under the null of (7), we have

1p
T=2

X
t2Q

(ln f01(evt+1)� ln f01(evt)) �!
d
N(0;�) and

1p
T=2

X
t2Q

(ln f02(evt+1)� ln f02(evt)) �!
d
N(0;�)

(56)
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where � = Eg2
h
(ln f01(evt+1)� ln f01(evt))2i or Eg2 h(ln f02(evt+1)� ln f02(evt))2i that equals to 2Varg2 [ln f01(�)]

or 2Varg2 [ln f02(�)] by the Lindberg-Levy central limit theorem under the null. Therefore from (55)
and (56), we conclude that under Conditions 1-3,

p
T

1

T
 � 1
X
t2T2

ct(
)
�
ln bf1(evt)� ln bf2(evt+1)� (57)

=
p
T

1

T
 � 1
X
t2T2

ct(
) (ln f01(evt)� ln f02(evt+1)) �!
d
N(0; 2
2�)

under (7) for any 
 > 0 noting f01 = f02 under the null. Finally, for any b� = �+op(1), we conclude
that

1
p
2
b� 1

2

p
T

1

T
 � 1
X
t2T2

ct(
)
�
ln bf1(evt)� ln bf2(evt+1)� �!

d
N(0; 1)

and hence

T bIg2
 �!
d
�2(1)

with A = 1p
2
�

1
2
and bA = 1p

2
b� 1
2
. Possible candidates of b� will be

b�1 = 2
0@ 1
T

TX
t=1

(ln bf1(evt))2 �( 1
T

TX
t=1

ln bf1(evt))2
1A or b�2 = 2

0@ 1
T

TX
t=1

(ln bf2(evt))2 �( 1
T

TX
t=1

ln bf2(evt))2
1A

or its average b�3 = b�1+b�2
2 . All of these are consistent under Condition 3 and under Condition (iii)

and (iv) of Lemma G.1 and (7).

H Primitive Conditions for the SNP Estimators

In this section, we show that all the conditions for Lemma G.1 and Theorem E.1 are satis�ed for

the SNP density estimators of (29) and (31). Here we should note that Lemma G.1 holds whether

or not the null (f01 = f02) is true while Theorem E.1 is required to hold only under the null. We

start with conditions for Lemma G.1. First, note Condition (i) is directly assumed and Condition

(ii) in Lemma G.1 immediately hold since f01 and f02 are continuous and V is compact. Condition
(iii) of Lemma G.1 is veri�ed as follows. For �1(T ) and �2(T ) that are positive numbers tending to

zero as T !1, consider
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1

T � 1

T�1X
t=1

Pr(t =2 T2) (58)

� 1

T � 1

T�1X
t=1

Pr
� bf1(evt) � �1(T ) or bf2(evt+1) � �2(T )�

� 1

T � 1

T�1X
t=1

Pr
���� bf1(evt)� f01(evt)���+ �1(T ) � f01(evt) or ��� bf2(evt+1)� f02(evt+1)���+ �2(T ) � f02(evt+1)�

� 1

T � 1

T�1X
t=1

Pr

�
sup
z2V

��� bf1(z)� f01(z)���+ �1(T ) � f01(evt) or sup
z2V

��� bf2(z)� f02(z)���+ �2(T ) � f02(evt+1)�

and hence as long as supz2V
��� bf1(z)� f01(z)��� = op(1), supz2V ��� bf2(z)� f02(z)��� = op(1), �1(T ) = o(1),

and �2(T ) = o(1), we have 1
T�1

PT�1
t=1 Pr(t =2 T2) = op(1) since f01 and f02 are bounded away from

zero. Therefore, under � � 1
3�

2
3� and s > 2, the condition (iii) of Lemma G.1 holds from Theorem

F.1 with a suitable choice of #.

Condition (iv) of Lemma G.1 is easily established from the uniform convergence rate result.

Using jln(1 + t)j � 2 jtj in a neighborhood of t = 0, consider������ 1

T
 � 1
X
t2T2

ct(
) ln
� bf1(evt)=f01(evt)�

������ (59)

� (1 + 
) sup
z2V

���ln bf1(z)� ln f01(z)��� � (1 + 
) sup
z2V

2

�����f01(z)� bf1(z)bf1(z)
�����

= O
�
�(K)2

�
op

�
T�1=2+�=2+�

�
+O

�
�(K)2K�s=2

�
from Theorem F.1 (with a suitable choice of #) and since bf1(�) is bounded away from zero. Therefore,
1

T
�1
P
t2T2 ct(
) ln

� bf1(evt)=f01(evt)� = op(1) under � � 1
3 �

2
3� and s > 2 with K = O(T�) noting

�(K) = O
�p
K
�
. Similarly we can show 1

T
�1
P
t2T2 ct(
) ln(

bf2(evt+1)=f02(evt+1)) = op(1) under

� � 1
3 �

2
3� and s > 2:

Now we establish conditions for Theorem E.1. Again Condition 3 immediately holds since f01

and f02 are assumed to be continuous and V is compact. Next, we show Condition 2. >From (58)
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and the Markov inequality, we have

1

T � 1

T�1X
t=1

Pr(t =2 T2) (60)

� sup
z2V

�
1

f01(z)�

�
1

T � 1

T�1X
t=1

Eg2

h��� bf1(evt)� f01(evt) + �1(T )����i
+sup
z2V

�
1

f02(z)�

�
1

T � 1

T�1X
t=1

Eg2

h��� bf2(evt+1)� f02(evt+1) + �2(T )����i
and hence 1

T�1
PT�1
t=1 Pr(t =2 T2) = op( 1p

T
) as long as

sup
z2V

��� bf1(z)� f01(z)���� = op( 1p
T
), sup

z2V

��� bf2(z)� f02(z)���� = op( 1p
T
); (61)

�1(T )
� = o( 1p

T
), and �2(T )� = o( 1p

T
) noting f01(�) and f02(�) are bounded away from zero. Note

sup
z2V

��� bf1(z)� f01(z)���� = op

�
T (�1=2+3�=2+�)�

�
+O

�
T (1�s=2)��

�
and

sup
z2V

��� bf2(z)� f02(z)���� = op

�
T (�1=2+3�=2+�)�

�
+O

�
T (1�s=2)��

�
from Theorem F.1 (with a suitable choice of #) and �(K) = O

�p
K
�
letting K = O (T�). In

particular, we choose � = 4 and hence (61) holds under � � 1
4�

2
3� and s � 2+

1
4� . �1(T )

� = o( 1p
T
)

and �2(T )� = o( 1p
T
) hold under �1(T ) = o(T�

1
8 ) and �2(T ) = o(T�

1
8 ). Therefore, under � � 1

4�
2
3�,

s � 2+ 1
4� , �1(T ) = o(T

� 1
8 ), and �2(T ) = o(T�

1
8 ), we �nally have 1

T�1
PT�1
t=1 Pr(t =2 T2) = o

�
1p
T

�
.

Condition 3 remains to be veri�ed. We conjecture that we can verify this condition similarly with

Kim (2005).

I Technical Lemmas and Proofs

I.1 Bound of the Truncated Hermite Series

Lemma I.1 Suppose WK(v) is given by (28). Then, supv2V


WK(v)



 = �(K) = O(pK):
Proof. Without loss of generality, we can impose V to be symmetric around zero such that v+v = 0.
Then, this lemma follows from Kim (2005).

I.2 Proof of Lemma F.1

Proof. In the following proof, we treat �0 = 0 to simplify discussions since we can pick �0 arbitrary

small but still we need to impose that f(�; �) 2 FT is bounded away from zero.
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Now de�neQ0 = E
h
�(qt; rt) ln eL(f0; qt; rt)i where eL(f0; qt; rt) = (1�F0(qt))k1�1f0(qt)

(1�F0(rt))k2�1
with F0(z) =R z

v f0(z)dz and �(qt; rt) is a trimming device (an indicator function) that excludes those val-

ues qt; rt > v � " and qt; rt < v + ". We denote V" = [v + "; v � "]. Also de�ne Q(�) =

E
h
�(qt; rt) ln eL(f(�; �); qt; rt)i. Then, by de�nition, ��K = argmax

�
Q(�). Consider

argmin
�

Q0 �Q(�) = argmax
�

Q(�)

which implies that among the parametric family ff (z; �) : � = (#1; : : : ; #K)g ; Q(��K) will have the
minimum distance to Q0 noting for all � 2 �T , Q(�) � Q0 from the information inequality (see

Gallant (1987, p.484)). First, we show that

Q0 �Q(�K) = O(K�s): (62)

De�ne F (z; �K) =
R z
v f(z; �K)dz and consider

jQ0 �Q(�K)j � E

"
�(qt; rt)

�����ln eL(f0; qt; rt)eL(f(�; �); qt; rt)
�����
#

(63)

� E

�
�(qt; rt)

����ln f0(qt)

f(qt; �K)

����� (64)

+E

�
(k1 � 1) �(qt; rt)

����ln 1� F0(qt)
1� F (qt; �K)

����� (65)

+E

�
(k2 � 1) �(qt; rt)

����ln 1� F0(rt)
1� F (rt; �K)

����� (66)

by the triangular inequality. We bound (64), (65), and (66) in turns.

(i) Bound of (64)

Now denoting a random variable Z to follow the distribution with the density f0 with the

support V and using jln(1 + t)j � 2 jtj in a neighborhood of t = 0, consider

Egk1

�
�(qt; rt)

����ln f0(qt)

f(qt; �K)

�����
� Egk1

�
2

���� f0(qt)f(qt; �K)
� 1
�����

= 2

Z
V

1

f(z; �K)
jf0(z)� f(z; �K)j g(n�k1+1:n)(z)dz

= 2

Z
V

g(n�k1+1:n)(z)

f(z; �K)

p
f0(z)p
f0(z)

���hf0(z)e�z2=4 +WK(z)0�K

��� ���hf0(z)e�z2=4 �WK(z)0�K

��� dz
� 2 sup

z2V

g(n�k1+1:n)(z)
p
f0(z)

f(z; �K)
sup
z2V

���hf0(z)e�z2=4 �WK(z)0�K

���Ef0
24
���hf0(Z)e�Z2=4���+ ��WK(Z)0�K

��p
f0(Z)

35 :
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Note

Ef0

24
���hf0(Z)e�Z2=4���p

f0(Z)

35 �
vuutEf0

"
h2f0(Z)e

�Z2=2

f0(Z)

#
< 1 (67)

since 0 <
h2f0

(z)

f0(z)
< 1 for all z 2 V by construction and note

Ef0

"��WK(Z)0�K
��p

f0(Z)

#
�

s
E

�
�0KW

K(Z)WK(Z)0�K
f0(Z)

�
=
q
�0K�K = k�Kk < 1 (68)

since k�Kk2 < 1. Also note supz2V
g(n�k1+1:n)(z)

p
f0(z)

f(z;�K)
< 1 since g(n�k1+1:n)(�) and f0(�) are

bounded from above and since f(z; �K) is bounded away from zero. Thus, from (43):supz2V
���hf0(z)e�z2=4 �WK(z)0�K

��� =
O (K�s), we have

E

�����ln f0(qt)

f(qt; �K)

����� = O �K�s� and similarly E �����ln f0(rt)

f(rt; �K)

����� = O �K�s� .
(iii) Bound of (65) and (66)

For some 0 < � < 1, note

Egk1 [jF0(qt)� F (qt; �K)j]

= Egk1

�����Z qt

v
f0(z)� f(z; �K)dz

�����
� Egk1 [(qt � v) jf0(�qt + (1� �)v)� f(�qt + (1� �)v; �K)j]

� (v � v)Egk1 [jf0(�qt + (1� �)v)� f(�qt + (1� �)v; �K)j]

where the last inequality is from v > qt > v. Using the change of variable z = �qt + (1� �)v, note

Egk1 [jf0(�qt + (1� �)v)� f(�qt + (1� �)v; �K)j]

� sup
z2V

���hf0(z)e�z2=4 �WK(z)0�K

��� Z v�(1��)(v�v)

v

1

�
g(n�k1+1:n)(z)

p
f0(z)

���hf0(z)e�z2=4 +WK(z)0�K

���p
f0(z)

dz

� sup
z2V

���hf0(z)e�z2=4 �WK(z)0�K

��� Z v

v

1

�
g(n�k1+1:n)(z)

p
f0(z)

���hf0(z)e�z2=4 +WK(z)0�K

���p
f0(z)

dz

where the second inequality is from (1� �)(v � v) > 0. Note

Z v

v

1

�
g(n�k1+1:n)(z)

p
f0(z)

���hf0(z)e�z2=4 +WK(z)0�K

���p
f0(z)

dz

< sup
z2V

1

�
g(n�k1+1:n)(z)

p
f0(z)Ef0

24
���hf0(Z)e�Z2=4���+ ��WK(Z)0�K

��p
f0(Z)

35 <1
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by (67) and (68) and hence

Egk1 [jF0(qt)� F (qt; �K)j] = O(K
�s): (69)

Similarly we can obtain

Egk2 [jF0(rt)� F (rt; �K)j] = O(K
�s) (70)

and thus E
h���ln F0(qt)�F0(rt)

F (qt;�K)�F (rt;�K)

���i = O(K�s).

Now using jln(1 + t)j � 2 jtj in a neighborhood of t = 0, note

E

�
�(qt; rt)

����ln 1� F0(qt)
1� F (qt; �K)

����� � 2E

�
�(qt; rt)

����F (qt; �K)� F0(qt)1� F (qt; �K)

�����
� CEgk1 [�(qt; rt) jF0(qt)� F (qt; �K)j]

since F (qt; �K) < 1 and hence from (69), we conclude (65)= O(K�s). Similarly, from (70), we can

show that (66)= O(K�s).

>From these results (i)-(iii), we conclude jQ0 �Q(�K)j = O (K�s). It follows that

0 � Q(��K)�Q(�K) � Q(��K)�Q0 + C1K�s � C1K�s (71)

where the �rst inequality is by de�nition of ��K = argmax
�

Q(�), the second inequality is by (62), and

the last inequality is since Q(��K) � Q0 from the information inequality (see Gallant (1987, p.484)).
Using the second order Taylor expansion where e� lies between a given �o 2 �T with dim(�o) = K
and ��K , we have

Q(��K)�Q(�o) (72)

= �@Q
@�0
(��K)(�

o � ��K)�
1

2
(�o � ��K)0

@2Q(e�)
@�@�0

(�o � ��K)

= �1
2
(�o � ��K)0

@2Q(e�)
@�@�0

(�o � ��K)

since @Q
@� (�

�
K) = 0 by F.O.C of (47).

�3(�) � E
�
�(qt; rt)

1

f(qt; �)

@2f(qt; �)

@�@�0
� �(qt; rt)

1

f(qt; �)2
@f(qt; �)

@�

@f(qt; �)

@�0

�
:

Note @
2f(�;�)
@�@�0

= 2WK(�)WK(�)0 and @f(�;�)
@�

@f(�;�)
@�0

= 4
�
WK(�)0�

�2
WK(�)WK(�)0 = 4f(�; �)WK(�)WK(�)0.
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Consider

�1
2
�3(�) = E

264�(qt; rt)
0B@2

�
WK(qt)

0e��2WK(qt)W
K(qt)

0

f(qt; �)2
� W

K(qt)W
K(qt)

0

f(qt; �)

1CA
375 (73)

= E

�
�(qt; rt)

WK(qt)W
K(qt)

0

f(qt; �)

�
= Pr (rt 2 V")

Z
V"

g(n�k1+1:n)(z)

f(z; �)
WK(z)WK(z)0dz

� Pr (rt 2 V") inf
z2V"

g(n�k1+1:n)(z)

f0(z)
inf
z2V

f0(z)

f(z; �)

Z
V
WK(z)WK(z)0dz

where the last inequality comes form assuming " is su¢ ciently small. Now note���f0(z)� f(z;e�)���
� jf0(z)� f(z; �K)j+

���f(z; �K)� f(z;e�)���
� O

�
�(K)K�s�+O ��(K)2� (k�o � ��Kk+ k��K � �Kk)

from (46) and hence (noting f0(z) is bounded away from zero and bounded from above)

f0(z)

f(z;e�) =
f0(z)

f(z;e�)� f0(z) + f0(z) � f0(z)

sup
z2V

���f(z;e�)� f0(z)���+ f0(z)
� f0(z)

O (�(K)K�s) +O (�(K)2) (k�o � ��Kk+ k��K � �Kk) + f0(z)
:

Noting infz2V"
g(n�k1+1:n)(z)

f0(z)
and Pr (rt 2 V") are bounded away from zero, it follows that

�1
2
�3(�) (74)

� C2 inf
z2V

�
f0(z)

O (�(K)K�s) +O (�(K)2) (k�o � ��Kk+ k��K � �Kk) + f0(z)

�
IK :

>From this, putting �o = �K , we note

�1
2
�3(�) � C2(1� o(1)) if k��K � �Kk = o

�
�(K)�2

�
(75)

�1
2
�3(�) � C3

1

O (�(K)2) (k�K � ��Kk)
otherwise.

>From (75), we conclude

�min

 
�1
2

@2Q(e�)
@�@�0

!
� C4(1� o(1)) if k��K � �Kk = o

�
�(K)�2

�
�min

 
�1
2

@2Q(e�)
@�@�0

!
� C5

1

O (�(K)2) (k�K � ��Kk)
otherwise
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since �min (IK) = 1. Thus, from Q(��K)�Q(�K) � �min
�
�1
2
@2Q(e�)
@�@�0

�
k�K � ��Kk

2, it follows that

Q(��K)�Q(�K) � C4 k�K � ��Kk
2 if k��K � �Kk = o

�
�(K)�2

�
Q(��K)�Q(�K) � O

�
�(K)�2

�
k�K � ��Kk � O

�
�(K)�4

�
otherwise. (76)

However, the case of (76) contradicts to (71) if s > 2, which means (71) implies k��K � �Kk =
o
�
�(K)�2

�
under s > 2 and hence

Q(��K)�Q(�K) � C4 k�K � ��Kk
2 . (77)

Together with (71), it implies C1K�s � Q(��K)�Q(�K) � C4 k�K � ��Kk
2 and hence under s > 2

k�K � ��Kk = O
�
K�s=2

�
(78)

as claimed in Lemma F.1. Finally note k�K � ��Kk = o
�
�(K)�2

�
as long as (78) holds under s > 2.

Now consider

sup
z2V

jf(z; �K)� f(z; ��K)j

� sup
z2V




�WK(z)0�K
�2 � �WK(z)0��K

�2



� sup

z2V



WK(z)0�K �WK(z)0��K


 sup
z2V



WK(z)0�K +W
K(z)0��K




� sup

z2V



WK(z)


 k�K � ��Kk sup

z2V



WK(z)


 (k�Kk+ k��Kk)

= O
�
�(K)2K�s=2

�
from the Cauchy-Schwarz inequality, (78), supz2V



WK(z)


 � �(K), and k�k2 < 1 for any � 2 �n.

It follows that

sup
z2V

jf0(z)� f�K(z)j

� sup
z2V

jf0(z)� f(z; �K)j+ sup
z2V

jf(z; �K)� f(z; ��K)j

� O
�
�(K)K�s�+O ��(K)2K�s=2

�
= O

�
�(K)2K�s=2

�
.

I.3 Uniform Law of Large Numbers

Note that we have de�ned

bQT (�) = 1

T

TX
t=1

�(qt; rt) ln eL(f(�; �); qt; rt) and Q(�) = E[�(qt; rt) ln eL(f(�; �); qt; rt)].
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Here we establish a uniform convergence with rate as

sup
�2�T

��� bQT (�)�Q(�)��� = op �T�1=2+�=2+��
following Lemma 2 in Fenton and Gallant (1996).

Lemma I.2 (Lemma 2 in Fenton and Gallant (1996)) Let f�T g be a sequence of compact subsets
of a metric space (�; �). Let fsTt(�) : � 2 �; t = 1; : : : ; T ; T = 1; : : :g be a sequence of real valued
random variables de�ned over a complete probability space (
;A; P ). Suppose that there are se-
quences of positive numbers fdT g and fMT g such that for each �o in �T and for all � in �T (�o) =
f� 2 �T : �(�; �o) < dT g, we have jsTt(�)� sTt(�o)j � 1

TMT�(�; �
o). Let GT (�) be the smallest

number of open balls of radius � necessary to cover �T . If sup
�2�T

P
n���PT

t=1 (sTt(�)� E [sTt(�)])
��� > �o �

�T (�), then for all su¢ ciently small " > 0 and all su¢ ciently large T ,

P

(
sup
�2�T

�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� > "MTdT

)
� GT

�
"dT
3

�
�T

�
"MTdT
3

�
.

First denote a set � c that contains (qt; rt)�s that survive the trimming device �(�). Now de-

�ne sTt(�) = 1
T �(qt; rt) ln

eL(f(�; �); qt; rt). Then, we have bQT (�) = PT
t=1 sTt(�) and Q(�) =PT

t=1E [sTt(�)]. To entertain Lemma (I.2), in what follows, three conditions are veri�ed.

Lemma I.3 Suppose Assumption F.4 holds. Then, jsTt(�)� sTt(�o)j � C 1
T �(K(T ))

2 k� � �ok.

Proof. First note that

eL(f(�; �); qt; rt) = �(qt; rt)(F (qt; �)� F (rt; �))k2�k1�1(1� F (qt; �))k1�1f(qt; �)
(1� F (rt; �))k2�1

where we denote F (z; �) =
R z
v f(z; �)dz.

Now note if 0 < c � a � b, then jln a� ln bj � ja� bj =c. Since f(z; �) is bounded away

from zero for all � 2 �T and z 2 V, F (rt; �) and F (qt; �) are bounded away from one (since

max
t
rt < max

t
qt � v � � for qt; rt 2 � c), and qt > rt for all t, we have 0 < C � eL(f(�; �); qt; rt) for

all qt; rt 2 � c. It follows that

jsTt(�)� sTt(�o)j �
���eL(f(�; �); qt; rt)� eL(f(�; �o); qt; rt)��� =nC.
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Consider ���eL(f(�; �); qt; rt)� eL(f(�; �o); qt; rt)���
� C1 jf(qt; �)� f(qt; �o)j

= C1
��WK(qt)

0� +WK(qt)
0�o
�� ��WK(qt)

0� �WK(qt)
0�o
��

� C1 sup
z2V



WK(z)


 (k�k+ k�ok) sup

z2V



WK(z)


 k� � �ok

� C2�(K)
2 k� � �ok

where the �rst inequality is obtained since F (rt; �) is bounded above from one, 0 < F (qt; �) �
F (rt; �) < 1, and 0 < F (qt; �) < 1 for all t; rt 2 � c. The last inequality is obtained from k�k < 1 for
all � 2 �T and supz2V



WK(z)


 = �(K). It follows that

jsTt(�)� sTt(�o)j

� C2�(K)
2 k� � �ok =T .

Lemma I.4 Suppose Assumption F.4 holds and �(K) = O
�
K�
�
. Then,

Pr

(�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� > �

)
� 2 exp

 
�2�2

T
�
1
T 2� lnK(T ) +

1
T C
�2
!
:

Proof. We have 0 < C1 � f(z; �) < C2K2�+�0
�(0)R

V �(z)dz
by construction and since f(z; �) is bounded

away from zero. Moreover 0 < F (qt; �) < 1, 0 < F (rt; �) < 1, and 0 < F (qt; �) � F (rt; �) < 1 for
all (qt; rt) 2 � c. Thus it follows that 1

T C3 < sTt(�) <
1
T 2� lnK + 1

T C4 for su¢ ciently large

K and for all (qt; rt) 2 � c. Hoe¤ding�s (1963) inequality implies that Pr (jY1 + : : :+ YT j � �) �
2 exp

�
�2�2=

PT
t=1(bt � at)2

�
for independent random variables centered zero with ranges at �

Yt � bt. Applying this inequality, we have

Pr

(�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� > �

)
� 2 exp

 
�2�2=T

�
1

T
2� lnK(T ) +

1

T
C

�2!
:

Lemma I.5 (Lemma 6 in Fenton and Gallant (1996)) The number of open balls of radius � required

to cover �T is bounded by 2K(T )(2=� + 1)K(T )�1.

Proof. Lemma 1 of Gallant and Souza (1991) shows that the number of radius-� balls needed to

cover the surface of a unit sphere in Rp is bounded by 2p(2=� + 1)p�1. Noting dim(�T ) = K(T ),
the result follows immediately.
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Applying the results of Lemma I.3-I.5, �nally we obtain

Lemma I.6 Let K(T ) = C � T� with 0 < � < 1 and suppose Assumption F.4 holds. Then,

sup
�2�T

��� bQT (�)�Q(�)��� = op �T�1=2+�=2+�� :
Proof. Let MT = C1O

�
K2�

�
= C2T

2��, dn = 1
C1
T�(2��1)��� , and �(�; �o) = k� � �ok. Then from

Lemma I.2, we have

Pr

(
sup
�2�T

�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� > "T���

)

� 4C � T�(6C1
"
T (2��1)�+� + 1)T

��1 exp

 
�2
�
"T���

3

�2
=T

�
1

T
2� lnK(T ) +

1

T
C2

�2!
applying Lemma I.3, Lemma I.4, and Lemma I.5.

Note 4C � T�(6C1" T
(2��1)�+�

+ 1)T
��1 is dominated by C3T�T ((2��1)�+�)(T

��1) for su¢ ciently

large T and note T
�
1
T 2� lnK(T ) +

1
T C2

�2
is dominated by T

�
1
T 2� lnK(T )

�2
. Thus, we simplify

Pr

(
sup
�2�T

�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� > "T���

)

� C4 exp

�
ln
�
T�T ((2��1)�+�)(T

��1)
�
� 2"

2

9
T 2��2�+1= (2� lnK(T ))2

�
= C4 exp

�
� lnT + ((2� � 1)�+ �) (T� � 1) lnT � 2"

2

9
T 2��2�+1= (2� lnK(T ))2

�
for su¢ ciently large T . As long as 2��2�+1 > �, 2"29 T

2��2�+1= (2� lnK(T ))2 dominates � lnT +

((2� � 1)�+ �) (T� � 1) lnT and hence we conclude

Pr

(
sup
�2�T

�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� > "T���

)
= o(1)

provided that �+12 > � > �. By taking � = 1
2 +

1
2�� � (the best possible rate), we have

sup
�2�T

��� bQT (�)�Q(�)��� = sup
�2�T

�����
TX
t=1

(sTt(�)� E [sTt(�)])
����� = op(T� 1

2
+ 1
2
�+�)

for all su¢ ciently small � > 0.

Lemma I.7 Suppose (i) Assumption F.4 holds and (ii) �(K)
2K

T ! 0. Let �T = T
��� with � < �� �

1=2� �=2� �,

sup
k����Kk�o(�T );�2�T

��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� = op ��TT�1=2+�=2+��

53



Proof. In the following proof again, we treat �0 = 0 to simplify discussions since we can pick �0
arbitrary small but still we need to impose that f(�; �) 2 FT is bounded away from zero.

Now applying the mean value theorem for � that lies between � and ��K , we can rewrite

bQT (�)� bQT (��K)� (Q(�)�Q(��K)) (79)

= bQT (�)�Q(�)� � bQT (��K)�Q(��K)�
=

0@@
� bQT (�)�Q(�)�

@�0

1A (� � �o) .
Now consider for any e� such that 


e� � ��K


 � o(�T ),

@ bQT (e�)
@�

� @Q(
e�)

@�
(80)

= � (k1 � 1)
 
1

T

TX
t=1

�(qt; rt)
f(qt;e�)

1� F (qt;e�) @f(qt;
e�)

@�
� E

"
�(qt; rt)

f(qt;e�)
1� F (qt;e�) @f(qt;

e�)
@�

#!
(81)

+

 
1

T

TX
t=1

�(qt; rt)
1

f(qt;e�) @f(qt;
e�)

@�
� E

"
�(qt; rt)

1

f(qt;e�) @f(qt;
e�)

@�

#!
(82)

+(k2 � 1)
 
1

T

TX
t=1

�(qt; rt)
f(rt;e�)

1� F (rt;e�) @f(rt;
e�)

@�
� E

"
�(qt; rt)

f(rt;e�)
1� F (rt;e�) @f(rt;

e�)
@�

#!
:(83)

We �rst bound (81). Note @f(qt;�)@� = 2WK(qt)W
K(Xi)

0� and de�neMTt = �(qt; rt)
f(qt;e�)

1�F (qt;e�)WK(qt)W
K(qt)

0e��
E
h
�(qt; rt)

f(qt;e�)
1�F (qt;e�)WK(qt)W

K(qt)
0e�i. Considering that MTt is a triangular array of i.i.d random

variables with mean zero, we bound (81) as follows. First consider

Var [MTt] = E
�
MTtM

0
Tt

�
� E

24�(qt; rt) f(qt;e�)
1� F (qt;e�)

!2 �
WK(qt)

0e��2WK(qt)W
K(qt)

0

35 : (84)

The right hand side of (84) is bounded by

E

264�(qt; rt) f(qt;e�)4�
1� F (qt;e�)�2WK(qt)W

K(qt)
0

375
� sup

z2V"

0B@ f(z;e�)4�
1� F (z;e�)�2

1CA sup
z2V"

g(n�k1�1:n)(z)

Z
V
WK(z)WK(z)0dz

� C1

�
sup
z2V"

���f(z;e�)� f0(z)���4 + sup
z2V"

f0(z)
4

�
IK
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since 1 � F (z;e�) is bounded away from zero uniformly over z 2 V" and since g(n�k1�1:n)(z)
is bounded away from above uniformly over z 2 V". Finally note supz2V"

���f(z;e�)� f0(z)��� �
supz2V"

���f(z;e�)� f(z; ��K)���+supz2V" jf(z; ��K)� f0(z)j = O ��(K)2� �o(�T ) +O(K�s=2)
�
and hence

we have

Var [MTt] � C2�(K)8
�
o(�4T ) +O

�
K�2s�� IK + C3IK � C4IK

under �(K)8
�
o(�4T ) +O

�
K�2s�� = o(1) which holds as long as s > 2 and �4�� + 4� < 0. Now

note

E

 




 1p
T

TX
t=1

MTt







!
�
p
tr (Var [LTt]) �

p
C4tr (IK) = O(

p
K)

and hence (81) is Op

�q
K
T

�
from the Markov inequality. Similarly we can show that (83) is also

Op

�q
K
T

�
.

Now we bound (82). De�ne LTt =
�
�(qt; rt)

WK(qt)WK(qt)0e�
f(qt;e�) � E

�
WK(qt)WK(qt)0e�

f(qt;e�)
��
. Then, we

can rewrite (82) as 2 1T
PT
t=1 LTt. Noting again LTt is a triangular array of i.i.d random variables

with mean zero, we bound (82) as follows. Consider

Var [LTt] = E
�
LTtL

0
Tt

�
� E

24�(qt; rt)
0@WK(qt)

0e�
f
�
qt;e��

1A2WK(qt)W
K(qt)

0

35
= E

24�(qt; rt) 1

f
�
qt;e��WK(qt)W

K(qt)
0

35
� sup

z2V"

g(n�k1�1:n)(z)

f
�
z;e��

Z
V
WK(z)WK(z)0dz � C1IK

since g(n�k1�1:n)(z) is bounded from above and f
�
z;e�� is bounded from below uniformly over

z 2 V". It follows that

E

 




 1p
T

TX
t=1

LTt







!
�
p
tr (Var [LTt]) �

p
C1tr (IK) = O(

p
K):

Thus, we bound (82) as Op

�q
K
T

�
from the Markov inequality. We conclude






@ bQn(e�)@�
� @Q(

e�)
@�






 = Op
 r

K

n

!
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under s > 2 and �4�� + 4� < 0. Thus, noting Op

�q
K
n

�
= op

�
n�1=2+�=2+�

�
for K = n� and

su¢ ciently small �, we have

sup
k����Kk�o(�T );�2�T

��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))���
� sup

k����Kk�o(�T );�2�T








@
� bQT (�)�Q(�)�

@�







 sup
k����Kk�o(�T );�2�T

k� � ��Kk

= op

�
�TT

�1=2+�=2+�
�

from (79) applying the Cauchy-Schwarz inequality.

I.4 Proof of Lemma F.2

Proof. Following Kim (2005), we can show



b�K � ��K


 = op(T

��) = op(T
�1=2+�=2+�). Here we

reproduce Kim (2005)�s proof. The idea is that the convergence rate contributed iteratively by the

local curvature of bQT (�) around ��K can be achieved up to the convergence rate of the uniform

convergence of bQT (�) to Q(�) and hence we can obtain the convergence rate of op(T�1=2+�=2+�).
A formal proof is as follows.

First, from (75) and k��K � �Kk = O
�
K�s=2� with s > 2, we note that

�min

 
�1
2

@2Q(e�)
@�@�0

!
� C1 inf

v2V

�
f0(z)

O (�(K)K�s) +O (�(K)2) (k� � ��Kk) + f0(z)

�

where e� lies between � and ��K and hence from (72),

Q(��K)�Q(�) � C1 k� � ��Kk
2 if k� � ��Kk = o

�
�(K)�2

�
(85)

Q(��K)�Q(�) � C2�(K)
�2 k� � ��Kk otherwise.

Denote � = 1=2� �=2� � and �0T = o(T��). We derive the convergence rate in two cases: one is
when �0T has the equal or a smaller order than o

�
�(K)�4

�
and the other case is when �0T has a

larger order than o
�
�(K)�4

�
.

1) When �0T has equal or smaller order than o
�
�(K)�4

�
, which holds under � < 1

5 :
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Now let �0T =
p
2�0T . For any c such that C1c

2 > 1, it follows

Pr
�


b�K � ��K


 � c�0T� (86)

� Pr

0@ sup
k����Kk�c�0T ;�2�T

bQT (�) � bQT (��K)
1A

� Pr

 
sup
�2�T

��� bQT (�)�Q(�)��� > �0T
!

+Pr

0@( sup
�2�T

��� bQT (�)�Q(�)��� � �0T
)
\

8<: sup
k����Kk�c�0T ;�2�T

bQT (�) � bQT (��K)
9=;
1A

� Pr

 
sup
�2�T

��� bQT (�)�Q(�)��� > �0T
!
+ Pr

0@ sup
k����Kk�c�0T ;�2�T

Q(�) � Q(��K)� 2�0T

1A
= P1 + P2:

Now note P1 ! 0 from (49). Now we show P2 ! 0. This holds since Q(�) has its maximum at ��K .

To be precise, note

Q(��K)�Q(�) � C1 k� � ��Kk
2 � 2C1c2�0T if k� � ��Kk = o

�
�(K)�2

�
Q(��K)�Q(�) � C2�(K)

�2 k� � ��Kk � C3�(K)�4 otherwise

and hence

sup
k����Kk�c�0T ;�2�T

Q(�)�Q(��K) � �2C1c2�0T if k� � ��Kk = o
�
�(K)�2

�
sup

k����Kk�c�0T ;�2�T
Q(�)�Q(��K) < �C3�(K)�4 otherwise.

Therefore, as long as C1c2 > 1 and �(K)4�0T ! 0, we have P2 ! 0. �(K)4�0T ! 0 holds under

� < 1
5 . Thus, we have proved




b�K � ��K


 = op(T��=2).
Now we re�ne the convergence rate by exploiting the local curvature of bQT (�) around ��K . Let

�1T = n
���0T = o

�
n�(�+�=2)

�
and �1T =

p
�1T = o

�
T�(�=2+�=4)

�
. For any c such that C1c2 > 1,
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we have

Pr
�


b�K � ��K


 � c�1T� (87)

� Pr

0@ sup
�0T�k����Kk�c�1T ;�2�T

bQT (�) � bQT (��K)
1A

� Pr

0@ sup
�0T�k����Kk�c�1T ;�2�T

��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� > �1T
1A

+Pr

0BBBBBB@

8<: sup
�0T�k����Kk�c�1T ;�2�T

��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� � �1T
9=;

\

8<: sup
�0T�k����Kk�c�1T ;�2�T

bQT (�) � bQT (��K)
9=;

1CCCCCCA
� Pr

0@ sup
�0T�k����Kk�c�1T ;�2�T

��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� > �1T
1A

+Pr

0@ sup
�0T�k����Kk�c�1T ;�2�T

Q(�) � Q(��K)� �1T

1A
= P3 + P4

where37 P3 ! 0 from Lemma I.7 and P4 ! 0 similarly with P2 noting

sup
�0T�k����Kk�c�1T ;�2�T

Q(�)�Q(��K) � �C1c2�1T

37Note

sup
�0n�k����Kk�c�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� � �1n
implies, for any � such that �0n � k� � ��Kk � c�1n,

��1n � sup
�0n�k����Kk�c�1n;�2�n

(Q(�)�Q(��K)) � bQn(�)� bQn(��K)
� �1n + sup

�0n�k����Kk�c�1n;�2�n
(Q(�)�Q(��K))

and hence we obtain

sup
�0n�k����Kk�c�1n;�2�n

bQn(�)� bQn(��K) � �1n + sup
�0n�k����Kk�c�1n;�2�n

(Q(�)�Q(��K))

Therefore,

Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

bQn(�)� bQn(��K) > 0
1A � Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

Q(�) � Q(��K)� �1n

1A ;
from which we have obtained the third inequality.
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by (85) and since k� � ��Kk = o
�
�(K)�2

�
for any � such that �0T � k� � ��Kk � c�1T under � < 1

5 .

This show that



b�K � ��K


 = op(T

�(�=2+�=4)). Repeating this re�nement for in�nite number of

times, we obtain


b�K � ��K


 = op(T�(�=2+�=4+�=8+:::)) = op(T��) = op(T�1=2+�=2+�)
under � < 1

5 .

2) Now we consider when �0T has larger order than o
�
�(K)�4

�
(which holds under � � 1

5):

Let e�0T = o ��(K)�2�T � for � > 0. Then, from (86), we have

Pr
�


b�K � ��K


 � ce�0T�

� Pr

 
sup
�2�T

��� bQT (�)�Q(�)��� > �0T
!
+ Pr

0@ sup
k����Kk�ce�0T ;�2�T Q(�) � Q(�

�
K)� 2�0T

1A
= P1 + P2:

Again note P1 ! 0 from (49). Now we show P2 ! 0. Note from (85),

sup
k����Kk�ce�0T ;�2�T Q(�)�Q(�

�
K) � �C2�(K)�2 k� � ��Kk � �o

�
�(K)�4

�
T �

since k� � ��Kk > o
�
�(K)�2

�
for any � such that k� � ��Kk � ce�0T . It follows that P2 ! 0 as long

as �(K)4T���0T ! 0, which holds under

� >
5

2
�� 1

2
+ � (88)

and hence the convergence rate will be op (�0T ) = op
�
T��+�

�
. Now we re�ne the convergence rate

by exploiting the local curvature of bQT (�) around ��K again. Let e�1T = T��e�0T = o �T�((���)+�)�
and e�1T =pe�1T = o �T�((���)=2+�=2)�. Then, from (87), we have

Pr
�


b�K � ��K


 � ce�1T� (89)

� Pr

0@ supe�0T�k����Kk�ce�1T ;�2�T
��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� > e�1T

1A
+Pr

0@ sup
�0T�k����Kk�c�1T ;�2�T

Q(�) � Q(��K)� e�1T
1A

= P3 + P41

where P3 ! 0 from Lemma I.7. Now we show P41 ! 0 similarly with P2. Here again we need to

consider two cases:
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2-1) When e�1T has equal or smaller order than o ��(K)�2�, which holds under � � 1
2 �

3
2�� �

and hence from � > � and (88) it requires 1=5 � � < 1=4. Under this case, note

supe�0T�k����Kk�ce�1T ;�2�T Q(�)�Q(�
�
K) � �C1 k� � ��Kk

2 � �C1c2e�21T = �C1c2e�1T if k� � ��Kk = o ��(K)�2�
supe�0T�k����Kk�ce�1T ;�2�T Q(�)�Q(�

�
K) � �C2�(K)�2 k� � ��Kk � �C2�(K)�4 otherwise

by (85) and hence P41 ! 0 as long as C1c2 > 1 and �(K)4e�1T = �(K)4e�1TT��e�0T = �(K)2o �T��T ��!
0, which holds under � � 1

2�
3
2���. Repeating this re�nement for in�nite number of times (noting

that for any � such that e�1T � k� � ��Kk, we have k� � ��Kk = o ��(K)�2�), we obtain


b�K � ��K


 = op(T�
�
lim
L!1

�PL
l=1

�

2l
+
(���)
L

��
) = op(T

��)

and hence the e¤ect of �0T�s having larger order than o
�
�(K)�4

�
disappear ( (���)L goes to zero as

L goes to in�nity)). This makes sense because the iterated convergence rate improvement using

the local curvature will dominate the convergence rate from the uniform convergence.

2-2) When e�1T has bigger order than o
�
�(K)�2

�
, which holds under � > 1

2 �
3
2� � � and

1=3 > � � 1=4:
In this case, we let e�1T = e�0TnT�
 for some 
 > 0 and hence we require � > 
. From (89), we

note

Pr
�


b�K � ��K


 � ce�1T�

� Pr

0@ supe�0T�k����Kk�ce�1T ;�2�T
��� bQT (�)� bQT (��K)� (Q(�)�Q(��K))��� > e�1T

1A
+Pr

0@ supe�0T�k����Kk�ce�1T ;�2�T Q(�) � Q(�
�
K)� e�1T

1A
= P3 + P42:

We have seen that P3 goes to zero since e�1T = T��e�0T and by Lemma I.7. Now we verify P42 goes
to zero. From (85), to have P42 ! 0, we require that �(K)�2e�1T have a bigger order than e�1T and
hence we need 
 < 1

2�
3�
2 ��. Now we improve the convergence rate again using the local curvature

by de�ning e�2T = T��e�1T = o �T�((���+
)+�)� and e�2T = pe�2T = o �T�((���+
)=2+�=2)�. Then,
similarly with before, at the end, we will obtain




b�K � ��K


 = op(T
��) as long as e�2T has equal

or smaller order than o
�
�(K)�2

�
. The tricky case is again when e�2T has a bigger order than

o
�
�(K)�2

�
, which happens when � � 
 > 1

2 �
3
2�� � but applying the same trick, at the end, we

will obtain the same convergence rate of



b�K � ��K


 = op(T

��) as long as 1=3 > �. Combining
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these results, we conclude that under � < 1=3, we have


b�K � ��K


 = op(T��) = op(T�1=2+�=2+�).
This result is intuitive in the sense that ignoring �, we obtain o

�
� (K)�2

�
= o(T��) = T�1=3 at

� = 1=3 and hence if � � 1=3, there is no room to improve the convergence rate using the local

curvature.
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Table 1. Summary Statistics (Sample Size: 5184)

Age Engine Mileage Rating 2nd 3rd 4th Reserve Opening

(years) Size (`) (km) (0-10) highest - - price bid

Mean 5.9278 1.7174 96888 3.1182 3812.1 3758.8 3690.5 3402.7 3102.5

S.D. 2.3689 0.3604 49414 1.2127 3004.8 2999.7 2992.1 2905.4 2866.1

Median 6.1667 1.4980 94697 3.5 3200 3150 3085 2800 2500

Max 12.75 3.4960 426970 7 29640 29580 29490 27800 27000

Min 0.1667 1.1390 69 0 100 70 70 50 0

Note: All prices are in 1000 Korean Won. (1000 Korean Won �1 US Dollar)

Table 2. Market Shares in the Sample

Hyundai Daewoo Kia Ssangyong Others

Share (%) 44:72 30:86 21:05 2:66 0:71

(Table 3. in the next page)

Table 4. Test Statistic

Speci�cation A B C

Values 0:6824 4:8835 0:9198

Note: 1. A-Test statistic with (2nd-4th) and (3rd-4th)

B-(2nd-4th) and (2nd-3rd)

C-(3rd-4th) and (2nd-3rd)

2. Cuto¤ point for the chi-squared distri-

bution with df=1 (99% cumulative

probability): 6.6349
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Table 3: First-Stage Estimation Results (Linear model)

Maker Covariate Estimate Standard Error

Hyundai Intercept 5.2247 0.094469

(n=1676) Age -0.24388 0.005780

Engine Size (l) 0.7760 0.036711

Mileage (104km) 0.00043601 0.002171

Rating 0.1241 0.008193

Title Remaining -0.03787 0.010661

Automatic 0.28736 0.019231

Gasoline 0.01551 0.038101

Popular Colors 0.05667 0.018439

Best Options 0.24411 0.031633

Better Options 0.11781 0.020955

Daewoo Intercept 5.2821 0.099089

(n=1186) Age -0.33693 0.006244

Engine Size (l) 0.94696 0.047855

Mileage (104km) -0.010808 0.002683

Rating 0.05077 0.010107

Title Remaining -0.1131 0.012582

Automatic 0.2430 0.021502

Gasoline 0.3306 0.037409

Popular Colors -0.05506 0.019077

Best Options 0.13444 0.029881

Better Options 0.02440 0.021799

Kia & etc. Intercept 5.2698 0.108150

(n=964) Age -0.2234 0.006959

Engine Size (l) 0.5731 0.039005

Mileage (104km) 0.0054277 0.002572

Rating 0.10036 0.011082

Title Remaining 0.02598 0.016192

Automatic 0.33469 0.024719

Gasoline -0.19433 0.041421

Popular Colors 0.02781 0.022544

Best Options 0.39472 0.042396

Better Options 0.20618 0.027255
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Figure 1: Sample Bidding Log (Opening bid: 1700, Reserve price: 2000, Transaction price: 2210,

Total bidders logged: 5)
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Figure 2: Estimated density function with K = 6 for a Monte Carlo simulated data
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Figure 3: Estimated density function with K = 6 for the wholedale used-car auction data
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