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Abstract

I examine a model of a uniform price auction of a perfectly divisible good with private in-

formation in which the bidders submit discrete bidpoints, and hence step functions, rather than

continuous downward sloping demand functions. I prove equilibrium existence and characterize

necessary conditions for equilibrium bidding. The characterization result reveals a close rela-

tionship between bidding in multiunit auctions and oligopolistic behavior. I demonstrate that

an indirect approach to the revenue comparisons of discriminatory and uniform price auctions

is not valid if bid functions have steps. In particular, bidders may bid above their marginal

valuation in a uniform price auction.

I also use the necessary conditions for structural estimation. I examine a dataset consisting

of individual bids in uniform price treasury auctions of the Czech government. I propose an

alternative method for evaluating the performance of the employed mechanism. My results

suggest that the uniform price auction performs well, both in terms of efficiency of the allocation

and in terms of revenue maximization. I estimate that the employed mechanism failed to

extract at most 0.03% (in terms of the annual yield of T-bills) worth of expected surplus while

implementing an allocation resulting in almost all of the efficient surplus.

Keywords: multiunit auctions, equilibrium existence, treasury auctions, uniform price

auctions, structural estimation, nonparametric identification and estimation
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1 Introduction

There is a consensus among economists that the most effective way to sell government securities

is through an auction. There is not a consensus on the best auction mechanism, however. The
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theoretical literature on multiunit auctions does not provide a definitive recommendation whether

the ultimate goal is either revenue maximization or efficiency of the allocation. In practice, there

is a clear preference between the two most widely employed mechanisms. Bartolini and Cottarelli

(1997) report that 39 out of the 42 countries surveyed use the discriminatory auction mechanism

("pay your own bid"), and only 3 countries use a uniform price auction mechanism. In this paper

I contribute to the debate on the optimal auction mechanism by providing a method that allows

a choice between different auction mechanisms based on data on individual bids, while making as

few assumptions as possible. An essential part of my model is that the equilibrium strategies are

step functions, which has not been properly modelled in the previous literature.

In both discriminatory and uniform price auctions bidders may submit multiple price-quantity

pairs as their bids. These points trace out a bid function. The auctioneer then aggregates these bid

functions. The market clearing price is the point at which the aggregate bid function intersects the

supply quantity, which is usually preannounced. The securities are then allocated to the bidders for

those units for which their bids were higher than the market clearing price. The payments collected

from the bidders depend on the auction mechanism used. In the discriminatory auction, also known

as a pay-your-bid or multiple-price auction, the bidders pay their full bid for all securities that they

are allocated. In the uniform price auction, each bidder pays the market clearing price for every

unit won. The auctioneer’s revenue in the discriminatory auction is therefore the area under the

aggregate bid function up to the supply quantity. Revenue is the product of the market clearing

price and the quantity supplied in the uniform price auction. It might be tempting to conclude that

the discriminatory auction must therefore lead to a higher revenue, just as a perfectly discriminating

monopolist is able to earn more than if she cannot discriminate. This intuition is misleading since

the mechanism choice affects bidders’ strategic behavior and thus the location and shape of the

aggregate bid function. Results from single unit auction settings are also misleading. For example,

one might conclude from the similarity between a second price auction and a uniform price auction,

or between the first price auction and a discriminatory auction, that the revenue should be the same

if the values are private. This intuition is misleading since the revenue equivalence theorem requires

that the mechanisms be allocationally equivalent, which is typically not the case in a multi-unit

environment.

The strategic considerations are quite different in the two auction formats. In a discriminatory

auction a rational bidder would not bid his full marginal valuation for any unit that might be

accepted, because he wants to retain some surplus. In a uniform price auction, a bidder may not

worry about losing surplus by bidding his marginal valuation, since he pays the market clearing

price for all units won. On the other hand, he should shade his bid below his marginal valuation

at quantities that might be pivotal and might therefore determine the market clearing price. A

lower market clearing price increases his surplus on inframarginal units. Hence, in both auction

mechanisms, bidders will not always bid their true marginal valuations. Ausubel and Cramton

(2002) show that the comparison of the uniform and discriminatory auction formats, in terms of
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both efficiency and revenue, is an empirical question. Either format can be better than the other,

under either criterion, under some circumstances.

Most of the previous empirical literature that compares these two auction mechanisms focuses

on "natural experiments" in which different auction formats have been used in different time pe-

riods. Those papers examine the difference between the market clearing auction price and the

resale or forward price of the security (Umlauf (1993), Simon (1994), Nyborg and Sundaresan

(1996)). A drawback of this approach is that the researcher has to maintain strong assumptions on

the information structure across the auctions, especially those involving different auction formats.

In particular, observed differences that cannot be explained by observable control variables are

attributed solely to the auction format.

My paper instead belongs to a small set of recent papers, discussed in more detail below,

that employ structural econometric modelling to compare the alternative auction mechanisms in

a divisible good1 setting. These papers use a bidder’s optimality condition to recover structural

parameters and, in particular, the distribution of the marginal valuations and private signals, as

proposed in Guerre, Perrigne and Vuong (2000) in the single unit setting. This approach avoids

problems with comparing realizations of different formats, and it is also amenable to answering

counterfactual policy questions. My paper differs from these recent papers in two principle ways.

First, most of these papers use parametric assumptions to circumvent the problem of multiple

equilibria and for tractability (for example by restricting attention to equilibrium strategies that

are linear in private signals). My approach will instead be non-parametric. Second, and more

significantly, all of these papers focus on equilibria in strictly downward-sloping continuous bid

functions. In the data, however, we instead typically observe step bid functions. This occurs both

because bidders are in reality limited in the number of bidpoints they are allowed to submit, and

because they choose to submit even fewer bids than the allowed number. For example, in my dataset

the bidders are restricted to submit at most 10 bidpoints, yet the average number of submitted

bidpoints is less than 3 and the maximum number of submitted bidpoints is 9. My approach takes

this feature of the data seriously.

The main contributions of the paper can be classified into two groups. On the theory side,

in Section 3 and 4 I introduce a model of a divisible good auction with private information in

which the bidders are restricted in number of bids they are allowed to submit and thus submit step

bid functions. I prove existence of an equilibrium in distributional strategies in this model and

characterize necessary conditions for equilibrium bidding. These necessary conditions differ from

those in the differentiabe downward sloping bid functions case.2 These conditions, which relate

the primitives of the model to the observables serve as the basis for the empirical work later in

the paper. They also are useful for understanding equilibrium behavior in multiunit auctions of

1A divisible good auction is also known as a share auction.
2 In a companion working paper (Kastl (2005)) I show that these necessary conditions for equilibrium converge

to their counterpart in the model with differentiable downward sloping bid functions as the number of submitted
bidpoints goes to infinity.
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indivisible goods, in which case the observed bid is a discrete vector, since a model with a divisible

good can be viewed as the limiting case of such a class of models. My characterization theorem

reveals the close relationship between the optimal behavior of a bidder in a uniform price auction and

that of an oligopolist facing uncertain demand. I also demonstrate that when bidders are restricted

in the number of bids they can submit, they may submit bids higher than their marginal value for

some units. This suggests, for example, that recent work comparing uniform and discriminatory

auctions by Hortaçsu (2002) may provide an underestimate of the revenue arising for the uniform

price auction.

Sections 5 and 6 turn to the empirical side of the paper. In Section 5 I provide conditions under

which the primitives of the model can be identified nonparametrically and propose an estimation

method using a resampling approach introduced into the literature by Hortaçsu (2002). In Sec-

tion 6 I describe my data and apply my estimation method to obtain information about bidders’

marginal valuations in uniform price treasury auctions of the Czech government. I show that in a

nonnegligible share of these auctions, the actual revenue exceeds the revenue that would have been

obtained had the bidders bid their true marginal valuation schedules. This result would have been

impossible to obtain in the model with continuous downward-sloping demand functions. I propose

a new method for evaluating the performance of the auction mechanism using these estimates and

find that the uniform price auction performs quite well, both in terms of efficiency and revenue.

On average, the employed mechanism implements an allocation that achieves over 99.99% of the

efficient surplus. Moreover, the estimated maximum total expected surplus (in terms of the annual

yield of T-bills) left to the bidders does not exceed 3 basis points.

In addition, I review the existing literature on structural estimation of divisible good auctions

in Section 2, while Section 7 concludes the paper. All proofs are relegated to the appendix.

2 Existing Structural Approaches to Divisible Good Auctions

Fevrier, Preget and Visser (2004) develop an estimation method for a pure common value share

auction. They use a two-step estimation procedure. In the first step they estimate the distribution

of the bid functions. In the second step, a vector of parameters of the distribution of signals is

estimated using generalized method of moments. Finally, in order to evaluate the counterfactual

revenue from the uniform price auction they select the equilibrium in which the strategies are

linear functions of the private signals. Further, they show that this equilibrium is unique for a

class of demand functions under an assumption on parametric distribution of signals. Armantier

and Sbaï (2004) also assume pure common values. They parametrize the underlying distribution

of signals and choose a functional form for the utility function since they also study the effect of

attitudes toward risk. They constrain the set of strategies to finite order simple polynomials and

use the method of simulated moments to estimate structural parameters by applying the concept of
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constrained strategic equilibrium developed in Armantier, Florens and Richard (2002). They can

account for risk aversion and bidder asymmetries. In pure common value models, efficiency is not

an issue since any allocation is ex post efficient whenever all supply is allocated. These two papers

estimate an equilibrium in which the strategies are well-behaved downward sloping functions. In

particular, they do not address the issue of discrete bids. The theoretical model they consider

requires the implicit assumption that bidders submit downward sloping functions, from which the

econometrician observes a few points.

A notable exception is Hortaçsu (2002). He develops a clever nonparametric method to obtain

estimates of bidders’ private valuations in a discriminatory auction. His approach and in particular

his counterfactual revenue comparison can only be applied for data coming from discriminatory

auctions environment. Using Turkish treasury data Hortaçsu develops a resampling method that,

within an independent private values framework, allows us to nonparametrically estimate the dis-

tribution of market clearing prices. Using the estimated distribution he then estimates the marginal

valuations for quantities for which a bid was submitted using the optimality equation. He then

uses these estimates to calculate the revenue from a hypothetical auction in which each bidder

would bid the upper envelope of his possible valuation schedule and each bidder’s payment would

be determined according to the uniform price auction rule. Within the model that delivers equi-

libria in strictly downward sloping bid functions, the revenue from such a hypothetical auction

constitutes an upper bound on revenue from any equilibrium of the real uniform price auction. The

reason is as discussed above; in a uniform price auction each bidder finds it optimal to shade his

bid below his marginal valuation for larger quantities. Since he finds that the revenue from this

best case scenario would be lower than the observed revenue from the discriminatory auction, he

concludes that the discriminatory auction generates higher revenue. If the revenue from this best

case scenario turned out to be higher than the observed revenue from the discriminatory auction,

we could not make any definitive comparisons between these two auction formats. Moreover, if our

data came from the uniform price auction, this best case scenario approach would not be useful; the

revenue from an auction in which each bidder bids his true valuation and the payment is according

to the discriminatory auction rule would dominate the revenue in any other auction. Moreover,

my analysis shows that in a model with equilibria in step functions rather than strictly downward

sloping bid functions, the revenue of the hypothetical uniform price auction described above does

not constitute an upper bound on the ex post revenue of the uniform price auction. The reason is

that bidders might find it optimal to submit bids that are higher than their marginal valuations.

In general, the marginal valuation schedule may not be the upper bound on the bid schedule in a

uniform price auction, whenever the bidder is not allowed to submit a separate bid for every unit

offered for sale.

In a recent paper, Wolak (2004) examines Australian electricity auctions taking into account

that the bid functions are step functions. He develops an econometric technique to estimate para-

meters of parametrically specified cost functions from data on individual bids. His approach is to
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summarize the price uncertainty each bidder faces due to the behavior of other bidders and unfore-

seen demand shocks by a single index. He assumes that each bidder knows the joint distribution of

these uncertainty indices when deciding on his bid. Finally, he circumvents the non-differentiability

problem of the expected profit function by approximating it by a smooth function using a standard

normal density. Using the moment conditions implied by each bidder bidding optimally taking into

account the uncertainty, he applies GMM to recover the parameters of interest. In his analysis he

concludes that there is evidence of the presence of "ramping costs."

3 Model

I will start with the basic uniform price share auction framework of Wilson (1979) with private

information, in which both quantity and price are assumed to be continuous. There are N bidders,

who are bidding for a share of a perfectly divisible good. Each bidder receives a private real-valued

signal, si, which is the only private information about the underlying value of the auctioned goods.

The joint distribution of the signals will be denoted by F (s).

Assumption 1 Bidder i’s signal si is drawn from a common support [0, 1] according to an atomless
marginal d.f. Fi (si) with strictly positive density fi (si).

Winning q units of the security is valued according to a marginal valuation function vi (q, si, s−i).

For most of this paper we will deal with the special case of independent private values (IPV). We will

discuss the robustness of our estimation method with respect to this assumption later. In the IPV

case, the si’s are distributed independently across bidders, and bidders’ valuations do not depend

on private information of other bidders. At the estimation stage we will not impose full symmetry,

since we will allow for different groups, within which the signal is distributed identically across

bidders. We will impose the following assumptions on the marginal valuation function v (·, ·, ·):

Assumption 2 vi (q, si, s−i) is measurable and bounded, strictly increasing in si ∀ (q, s−i) and
weakly decreasing in q ∀ (si, s−i).

Notice that we do not require any differentiability or continuity assumptions on v. We will

denote by V (q, si, s−i) the gross utility: V (q, si, s−i) =
R q
0 vi (u, si, s−i) du.

Bidders’ pure strategies are mappings from private signals to bid functions: σi : Si → Y, where
the set Y includes all possible functions y : R+ → [0, 1]. A bid function for type si can thus be

summarized by a function, yi (·|si) , which specifies for each price p, how big a share yi (p|si) of the
securities offered in the auction (type si of) bidder i demands. Q will denote the amount of T-bills

for sale, i.e., the good to be divided between the bidders. Q might itself be a random variable if
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it is not announced by the auctioneer ex ante, or if the auctioneer has the right to augment or

restrict the supply after he collects the bids. In either case, I will assume that the distribution of

Q is common knowledge among the bidders. Furthermore, the number of bidders participating in

an auction, denoted by N , is also commonly known. The natural solution concept to apply in this

setting is Bayesian Nash Equilibrium. The expected utility of type si of bidder i who employs a

strategy yi (·|si) in a uniform price auction given that other bidders are using {yj (·|·)}j 6=i can be
written as:

EUi (si) = EQ,s−i|siu (si, s−i)

= EQ,s−i|si

"Z qci (Q,s,y(·|s))

0
vi (u, si, s−i) du− pc (Q, s,y (·|s)) qci (Q, s,y (·|s))

#

where qci (Q, s,y (·|s)) is the (market clearing) quantity bidder i obtains if the state (bidders’ private
information and the supply quantity) is (s, Q) and bidders bid according to strategies specified in

the vector y (·|s) = [y1 (·|s1) , ..., yN (·|sN)], and similarly pc (Q, s,y (·|s)) is the market clearing
price associated with state (s, Q). A Bayesian Nash Equilibrium in this setting is thus a collection

of functions such that almost every type si of bidder i is choosing his bid function so as to maximize

his expected utility: yi (·|si) ∈ argmaxEUi (si) for a.e. si and all bidders i.

In most of the previous literature, starting with Wilson (1979), the set Y of admissible strategies
is restricted to continuously differentiable functions so that calculus of variations techniques can be

applied. These techniques enable us to show that in an IPV model, and within this restricted class

of strategies, a symmetric BNE y (·|·) has to satisfy the following necessary condition for all (p, si):

v (y (p|si) , si) = p− y (p|si)
Hy (p, y (p|si))
Hp (p, y (p|si))

(1)

whereH (p, x) is the probability distribution of the market clearing price when x units are demanded

by bidder i and all other bidders j 6= i submit the equilibrium bid functions, i.e., H (p, x) ≡
Pr (pc ≤ p|x) = Pr

³
x ≤ Q−

P
j 6=i y (p, sj)

´
(Hp and Hy are the derivatives of H (·, ·) with respect

to the first and second argument respectively). As Wilson points out, the auction game might have

multiple equilibria, some of which lead to low revenue for the auctioneer. Such equilibria, while

achieved in a non-cooperative way, are usually called "seemingly collusive" and several authors

(e.g., LiCalzi and Pavan (2004)) show how the auctioneer would eliminate at least some of these

undesirable equilibria.

Because of the restricted set of strategies, it is an essential feature of a candidate equilibrium that

the equilibrium strategies are strictly downward-sloping differentiable functions. One implication of

this fact is that the rationing rule does not matter for equilibrium behavior, since rationing does not
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occur in equilibrium.3 In other words, we always have qci (Q, s,y (p|si)) = yi (p
c (Q, s,y (·|s)) |si).

While Wilson’s model provides useful insights, and illuminates some of the trade-offs bidders face

in share auctions, it cannot account for several features of the data in most actual share auctions.

In the next section, I will introduce a concept of a K-step equilibrium, in which I address

directly a central feature of most real-world share auctions: bid functions are step functions, and

hence not continuously differentiable. I will argue that accounting for these features has important

implications for both the theoretical model and empirical inference in these auctions.

4 K-step equilibrium

Why do bidders submit step functions in these auctions? The first reason is institutional. In the

vast majority of actual share auctions, the auctioneer imposes an upper bound on the number

of bidpoints that the bidders can submit, which restricts the bidders’ strategy space and makes

submitting a continuous function impossible. But this is not the whole story. In most auctions

the bidders do not attain this institutionally-set upper bound. Moreover, the number of bidpoints

bidders submit differs both across bidders within an auction and even for the same bidder across

auctions. One way to rationalize this variance is that there is some cost of bid submission that

might differ across bidders and/or time and which leads them to submit different number of bids.

The presence of such costs would constitute an endogenous, economic restriction on the number of

bidpoints. In this section I develop a model that incorporates these features and characterize its

equilibrium.

Let us suppose that the cost of submitting Ki steps is private information summarized by a

cost function c (Ki, ti) where the parameter ti is private information of bidder i.

Assumption 3 A bidder submitting Ki bidpoints incurs non-negative cost c (Ki, ti) where ti is

private information of bidder i which is drawn from a distribution function Gi (t|si) with the support
[0, 1].

Notice that this formulation nests the original model as a special case in which c (Ki, ti) ≡ 0
∀ (Ki, ti). It also includes the case in which there is an exogenous upper bound K̄ on the allowed

bidpoints, in which case c (Ki, ti) = ∞ for Ki > K̄ and any ti. All the results described in the

following paragraphs hold true for the model with c (Ki, ti) ≡ 0 ∀ (Ki, ti) . The important features

of the model are (i) bidders can submit only finitely many bidpoints, and (ii) the price and quantity

in each bidpoint are continuous choice variables.

3Because individual bid functions are strictly downward sloping, residual supply is always strictly upward sloping
and thus the market always clears exactly.
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The expected utility of a bidder of a type (si, ti) in a uniform price auction now becomes:

EU (si, ti) = EQ,s−i,t−i|si,tiu (si, s−i, ti, t−i)

= EQ,s−i,t−i|si,ti

" R qci (Q,s,t,y(·|s,t))
0 vi (u, si, s−i) du

−pc (Q, s, t,y (·|s, t)) qci (Q, s, t,y (·|s, t))− c (Ki, ti)

#

where Ki is the number of steps of yi (·|si, ti).

Definition 1 A K-step equilibrium is a collection of functions such that for each bidder i and

almost every type (si, ti), yi (·|si, ti) solves

yi (·|si, ti) ∈ argmaxEU (si, ti)

While most of the previous literature restricts bid functions to be continuously differentiable,

we allow them to be step functions. With this possibility, we cannot apply the calculus of variations

approach to characterize equilibrium strategies. Since for a finite K̄ bidders submit left-continuous

step functions, we can summarize bidder i’s action as a Ki−dimensional vector of bidpoints (bi, qi),
where the kth point denotes the price (the height of current step) and quantity (strictly speaking,

the share of total quantity) at which this step ends (its length). I impose the additional assumption

that there is a (price) bid l, at which a bidder is sure to lose and which is isolated from the remaining

bids. This is done in order to ensure that all bids are individually rational in the existence proof.

All bids other than l will be called "serious" bids. I will also assume that there is an upper bound

on the maximal bid, which for example in the case of treasury bills could be the face value. In

general, any bid above the value of the first infinitessimal unit is weakly dominated by bidding this

value, and thus this upper bound is v (0, s̄) where s̄ is the highest possible signal. To summarize:

Assumption 4 Each player i = 1, ..., N has an action set:

Ai =

( ³
�b, �q,K

´
: dim

³
�b
´
= dim (�q) = K ∈

©
0, ..., K̄

ª
,

bik ∈ B = {l} ∪ [0, p̄] , qik ∈ Q = [0, 1] , bik ≥ bik+1, qik ≤ qik+1

)

In what follows when more convenient I use the shorthand vector notation (bi, qi) to describe

the step function y (·|si, ti) of type (si, ti) of bidder i. Assumptions 1-4 are assumed throughout
the analysis.

It is also apparent that because each bidder’s bid function is a step function, the residual

supply will be a step function, and therefore but for knife-edge cases any equilibrium will involve

rationing with probability one. Rationing occurs whenever there is excess demand at the market

clearing price, while at all higher prices there is excess supply. On such occasions the auctioneer

will determine a rationing coefficient, by which demand is adjusted to equal supply. While the
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theoretical literature has considered a few alternative rationing rules, in our analysis we will consider

only the rationing rule that is employed in all uniform price auctions in practice, rationing pro-rata

on-the-margin.

Definition 2 Under rationing pro-rata on-the-margin, the rationing coefficient satisfies

R (pc) =
Q− TD+ (p

c)

TD (pc)− TD+ (pc)

where TD (pc) denote total demand at price pc, and TD+ (p
c) = limp↓pc TD (p). Only the bids

exactly at the market clearing price are adjusted.

Under this rule all bids above the market clearing price are given priority, and only after all such

bids are satisfied, the remaining marginal demands at exactly price pc are reduced proportionally

by the rationing coefficient so that their sum exactly equals the remaining supply. An alternative

rationing rule would, for example, not give bids at higher prices priority. Kremer and Nyborg

(2004) show that, in a complete information framework, this alternative rationing rule encourages

competition and may thus be preferred. Notice, however, that this alternative rationing rule may

have an adverse effect on allocative efficiency.

Equilibrium existence
Before we turn to the characterization of equilibria of a uniform price auction involving step func-

tions, we need to address the question of existence. Several recent papers (e.g. Reny (1999),

Athey (2001), McAdams (2003, 2004), Reny and Zamir (2004), Jackson and Swinkels (2005)) pro-

vide nice existence results for games of incomplete information that in many cases guarantee the

existence of a pure strategy equilibrium that is non-decreasing in private information. Unfortu-

nately, those results cannot be readily applied in our setting. For our purposes, however, it is

enough to prove existence of a K-step equilibrium in distributional strategies.

Proposition 1 (Existence) With private values, rationing pro-rata on-the-margin and restriction
of bid functions to at most K̄ steps, there exists a K-step equilibrium in distributional strategies of

a uniform price auction.

The existence result guaranteed by Proposition 1 holds for any specification of the cost c (Ki, ti)

and any distributionG (ti|si) . Therefore the model without costly bidding is also covered. Kastl (2005)
proves existence of an isotone pure strategy equilibrium for the case of no restriction on the number

of steps and no bidding costs.

Characterization of equilibrium
Even though the current problem involves many difficulties due to the lack of differentiability,
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we can provide the equivalent of a first-order necessary condition by working directly with limit

arguments. Before stating the main characterization result, let us first define a tie, and state a

lemma, which ensures that a tie is a zero probability event in equilibrium.

Definition 3 A tie occurs whenever there are at least two marginal bidders at the market clearing
price, i.e., for some types (si, ti) and (sj , tj) of bidders i and j, and some steps k and l in their bid

functions, and some state (s, t, Q) we have bik (si, ti) = bjl (sj , tj) = pc (Q, s, t,σ), where σ is the

vector of employed strategies.

Lemma 1 If values are private and rationing is pro-rata on-the-margin then, for a.e. type (si, ti)
of any bidder i, ties at the market clearing price have zero probability in equilibrium.

The intuitive argument behind Lemma 1 goes as follows. Suppose that for some type of bidder

i at a certain step, say k̂, there is a positive probability of tying with another bidder. Then

submitting a bid b0
k̂
= bk̂ + ε for quantity q0

k̂
= qk̂, where ε is sufficiently small, will yield a strict

increase in expected payoff. The incremental value of an increase in allocation on gross surplus

by avoiding the tie is strictly positive, otherwise the bidder would not request qk̂ to begin with.

The increase in expected payment is arbitrarily small by picking a small enough ε. Hence bidding

so that tying another bidder at the market clearing price has a positive probability is not a best

response. The crucial assumption delivering this important result is that the space of serious price

bids is continuous.

Notice that the argument behind the last lemma uses both the rationing rule and private values.

With a common value component, the presence of the winner’s curse could make such a deviation

upwards unprofitable. This would be the case, for example, if bidder i ties only with bidder j,

each requesting 51% of the quantity, and all other bids much lower. In this case, it is likely that

the common value lies below the market clearing price set by the tying bids, and hence the above

described deviation would no longer be strictly profitable, i.e., in this case, being in a tie is "bad

news".

The next proposition characterizes a necessary condition for a K-step equilibrium in a private

values model. This result can also be viewed as a characterization of an equilibrium of a limit

of a multiunit auction as the units become arbitrarily small, and it reveals the close relationship

between the behavior of a bidder in a uniform price auction and that of an oligopolist facing

uncertain demand.
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Proposition 2 (Characterization) Suppose values are private and rationing is pro-rata on-the-
margin. Then in any Bayesian Nash Equilibrium, for almost every (si, ti), every step k in the

Ki-step function yi (·|si, ti) in the support of i’s equilibrium strategy has to satisfy

Pr (bk > p > bk+1) [v (qk, si)−E (p|bk > p > bk+1)] = qk
∂E (p; bk ≥ p ≥ bk+1)

∂qk
(2)

∂E [V (qci (Q, s, t,y (·|s, t)) , si) ; bk−1 > p > bk+1]

∂bk
= (3)

= E (qci (Q, s, t,y (·|s, t)) ; p = bk) + bk
∂E (qci (Q, s, t,y (·|s, t)) ; p = bk)

∂bk

+qk
∂E (p; bk > p > bk+1)

∂bk
+ qk−1

∂E (p; bk−1 > p > bk)

∂bk

The intuition for the result is the following. Consider the first condition, which rules out

profitable local perturbations of qk. It is this equation that reveals the parallel between the behavior

of a bidder in a multiunit uniform-price auction and an oligopolist facing uncertain demand. Since

Lemma 1 ensures that a tie (multiple bids at the market clearing price) occurs with probability

zero, the only states at which the bidder can affect his payoff by varying the quantity demanded,

qk, are those in which the residual supply cuts the vertical piece of his bid function, i.e., between

his adjacent bids bk > p > bk+1. In all states such that the market clearing price is between the two

steps of bidder i, he obtains his full quantity request, and the expected marginal cost of quantity

shading captured on the LHS is thus the difference between his marginal utility and the expected

price. Since in all states that he is rationed he is the only marginal bidder with probability one,

there is no cost of quantity shading in those states. On the other hand, the marginal benefit of

quantity shading is saving money on the inframarginal units, and this is captured on the RHS.

Therefore, the bidder facing random residual supply acts in the same way as a monopolist facing

random demand. Notice that (2) can be rewritten as

v (qk, si) = E (p|bk > p > bk+1) +
qk

Pr (bk > p > bk+1)

∂E (p; bk ≥ p ≥ bk+1)

∂qk
(4)

which can be interpreted as MC =MR, i.e., like an oligopolist’s optimality condition.

The second condition makes sure that a local perturbation of bk is not optimal. Bidder i has to

balance the change in the expected prices in the steps above and below the kth one. He also needs

to take into account the payoff effect of the perturbation if he is rationed at bk, which includes the

indirect effect on the expected quantity received after rationing. It is this condition that we would

regularly obtain in a multiunit auction with discrete units. Equation (2) would become a system

of inequalities in that setting.

Equation (2) immediately gives us the following important corollary.
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Corollary 3 Under the hypotheses of Proposition 2, when bidders are restricted to submit step
functions, they may optimally bid above their marginal valuation schedules in a uniform price

auction.

To see why this corollary holds, it is sufficient to consider one very small bidder, so that she is a

"price taker," and let Ki = 1.4 In this case, the RHS of (2) vanishes, and the bidder thus optimally

asks for a quantity such that her marginal valuation at that quantity is equal to the expected

price conditional on this price being lower than her bid, v (qk, si) = Es−i (p|bk > p). Therefore,

whenever there is a positive probability of a market clearing price below her bid, her bid will be

higher than her marginal valuation for that quantity. This important result indicates that the ex

post revenue in a uniform price auction is not necessarily bounded by the revenue of the "best

case" Vickrey auction, in which each bidder submits his marginal valuation schedule as his bid

without getting any transfer from the auctioneer. I should note that this "best case" upper bound

is valid for revenues from equilibria in continuously differentiable bid functions since in that setting

a bidder never submits a bid above his marginal value such that this bid is in the support of

the distribution of the market clearing price. This result is important for empirical work, since

calculating counterfactual equilibria and the associated revenues under alternative auction regimes

is often an intractable task. The researcher is thus forced to report estimated revenue losses from

the realized auction relative to this "best case" Vickrey auction (also sometimes called the "truthful

bidding" auction). Corollary 3 reveals, however, that even a uniform price auction can lead to a

higher ex post revenue than the "best case" Vickrey auction. As we will see later in the empirical

section, this point is not purely theoretical, since in a nonnegligible share of auctions in my dataset

the realized ex post revenue is higher than the revenue in an auction in which the bidders submit

bids equal to the estimated upper bound of their marginal valuation schedules. This result also

suggests that using the model with continuously differentiable bid functions might not be a good

approximation.

Another question is the size of set of equilibria (in terms of the range of possible market clearing

prices) and whether a proper choice of K̄ might restrict this set. Wilson showed that the model

with continuously differentiable bid functions has many equilibria, and under some circumstances

even a continuum, some of which might yield very low revenue. Back and Zender (1993) describe a

class of equilibria that are independent of private information and that they call "collusive," since

the resulting revenue is low. LiCalzi and Pavan (2004) show that with pure common values and

increasing supply, all possible equilibrium market clearing prices can be achieved by bid functions

with just two steps. In both cases, these equilibria depend on the rationing rule (pro-rata on-

the-margin), and either on differentiable bid functions (Back and Zender) or on increasing supply

4A bidder is a price taker if no small change in her bid has any effect on the distribution of the market clearing
price.
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(LiCalzi and Pavan). The common feature of these equilibria is that bidders tie at the market

clearing price and get rationed. Any deviation to a higher bid results in a large increase in the

market clearing price, due to high inframarginal bids by all bidders, rendering such a deviation

unprofitable. In the present model neither of those two conditions is satisfied. As Lemma 1 shows,

ties at the market clearing price cannot occur in equilibrium with positive probability. Moreover,

such equilibria could be easily detected by the auctioneer, since they have to involve ties at the

market clearing price together with very high inframarginal bids.5

5 Econometric Model and Identification

Suppose we have data on all bids from T auctions. I will impose the following assumption on the

data generation process.

Assumption 5 Bidders have private values and can be split into G groups within which the mar-

ginal valuation function is symmetric. Private information is identically distributed within groups

and independent across bidders and auctions. The data
n
{bit, qit}Nt

i=1

oT
t=1

is generated by K-step

equilibrium behavior, where Nt is the number of bidders in auction t.

The estimation and identification procedure follows the first-order condition approach proposed

in Laffont and Vuong (1996) and Guerre, Perrigne and Vuong (2000). In particular, the price-

quantity pair submitted as the kth out of Ki total bidpoints has to satisfy condition (4). Thus, if

we are able to estimate E (p|bk > p > bk+1) and the derivative
∂E(p;bk≥p≥bk+1)

∂qk
we can use (4) to

obtain an estimate of the marginal valuation at this particular quantity for a fixed, but unknown,

realization of si. The general problem of multiunit auctions is that the full marginal valuation

function might still not be identified because there may be many functions that are nonincreasing

in q and strictly increasing in s that go through all the point estimates obtained from the data.

Usually we circumvent this problem by imposing some parametric structure, which ensures unique

identification. I will argue below that in theory there are situations under which the marginal

valuation functions can be identified nonparametrically from the data. Before stating the main

identification results, let us discuss first the method for obtaining the point estimates of marginal

valuations at the submitted quantity-bids.

Estimating E (p|bk > p > bk+1)

To estimate E (p|bk > p > bk+1) we can use the resampling strategy proposed by Hortaçsu

(2002), which closely follows the usual bootstrapping approach. In particular, under the assump-

tion of independent private values, independence of cost types across bidders, and within-group

symmetry of the marginal valuation function and distribution functions of signals and cost types,

we can perform the following procedure:

5For further discussion of the issue of "collusive seeming" equilibria see Kastl (2005).
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1) Fix bidder i from group g ∈ G among Ntg bidders in auction t who belong to group g.

2) From the sample of Ntg bid vectors in the data set, draw a random sample of Ntg − 1 and
from all groups h other than g draw Nth for h ∈ G\ {g} with replacement, giving equal probability
of 1

Ntg
(or 1

Nth
respectively) to each bid vector in the original sample.

3) Construct the residual supply function generated by these resampled bid vectors.

4) Intersect this residual supply curve with bidder i’s bid function to find the market clearing

price.

5) Repeat steps 1-4 B (a large number) times for each bidder and for all bidders in the data

set.

This procedure generates B market clearing prices conditional on the bid vector (bi,qi) and one

can estimate E (p|bk > p > bk+1) by looking at the conditional distribution of the market clearing

prices which fall in the required interval.

For this method to perform reliably we would like to have a large number of bidders in each

group in every auction, so that we observe bid vectors reflecting a large number of signal realizations

from the group distribution function of signals. If that is not the case, but we are willing to assume

that several auctions are repetitions of the same experiment, we can pool the bid vectors from

different auctions. In either case, if we call the estimator obtained by the above procedure the

resampling estimator ÊR (p|bk > p > bk+1), it can be shown (Hortaçsu (2002)) that it is consistent

for E (p|bk > p > bk+1) (it converges almost surely) as the number of auctions (regarded as the

repetitions of the same experiment) go to infinity, T →∞.6

Estimating ∂E(p;bk≥p≥bk+1)
∂qk

To obtain this piece of equation (4), we can use the same resampling approach described ear-

lier when estimating E (p|bk > p > bk+1) to estimate E (p|bk ≥ p ≥ bk+1), which together with an

estimate of Pr (bk ≥ p ≥ bk+1) and Bayes’ rule yields an estimate of E (p; bk ≥ p ≥ bk+1). Call this

estimate ER (p; bk ≥ p ≥ bk+1). Notice that while obtaining this estimate, we condition on the

submitted vector of bidpoints. The natural way to estimate the derivative of this expectation with

respect to quantity bid at step k is to perturb qk in the submitted bid vector to some qk − εn and

obtain an estimate of ER (p; bk ≥ p ≥ bk+1) conditional on the perturbed bid vector. We can then

construct the estimator of the derivative:

∂ER (p; bk ≥ p ≥ bk+1)

∂qk
=

ER (p; bk ≥ p ≥ bk+1, qk)−ER (p; bk ≥ p ≥ bk+1, qk − εn)

εn

where εn is a sequence converging in probability to zero. One difficulty when estimating the slope

of this expectation w.r.t. qk is choosing the appropriate neighborhood εn so that the numerical

derivative is a consistent estimate. Loosely speaking, this neighborhood should shrink to zero as

6 It may also be consistent under other conditions - see Hortaçsu (2002).

15



the sample size increases. Pakes and Pollard (1989) establish that with a regularity condition (on

uniformity), such an estimator is consistent whenever n
−1
2 ε−1 = Op (1), i.e., whenever ε does not

decrease too fast as the sample size increases.

Proposition 4 (Consistency of the resampling estimator)
(i) If Pr (bk > p > bk+1) > 0, then ÊR (p|bk > p > bk+1)→a.s. E (p|bk > p > bk+1) as {minhNth}T →
∞
(ii) If Pr (bk ≥ p ≥ bk+1) > 0, then

∂ÊR(p;bk≥p≥bk+1)
∂qk

→a.s. ∂E(p;bk≥p≥bk+1)
∂qk

as {minhNth}T →∞

Given consistent estimates of all the pieces of the right hand side of (4), we can obtain the point

estimates of the marginal valuations at the submitted bids, conditional on the fixed unobserved

private signal. As mentioned above, having these point estimates does not guarantee identification

of the entire marginal valuation function. In particular, there could be many functions v (·, ·) that:
(i) go through the estimated points , (ii) are everywhere nonincreasing in the first argument, (iii)

are everywhere strictly increasing in the second. We can also use our second necessary condition,

equation (3), to narrow down the set of candidate marginal valuation functions, but this might

still not achieve unique identification. The second equation puts restrictions on the area below the

marginal valuation function between each two bidpoints, but there is still not enough information

to pin down the curvature.

Using bidders with multiple bidpoints
One can exploit information available from bidders submitting more than one bidpoint within

an auction. In particular, all bids by one bidder within an auction are generated by the equilibrium

strategy for the same type ŝ. Therefore all point estimates for one bidder from a fixed auction

come from the same realization of his signal ŝ, and hence have to lie on the same level curve,

v (·, ŝ). Since v (·, ·) is strictly increasing in the second argument (signal s) by assumption, an
inverse function exists, which maps the quantity requested and the marginal valuation back into

the signals, σ : [0, 1] × R+ → [0, 1]. Suppose now we observe two bidpoints (q1, p1, q2, p2). Using

the method described earlier we can recover the marginal valuations at q1 and q2. Let us call those

v1 and v2. Using the inverse function σ we can write:

v1 = v (q1, ŝ)

= v (q1, σ (q2, v2))

= g (q1, q2, v2)

The function g is an estimate of v
¡
·, v−1 (·, ·)

¢
. This object allows us to construct v (·, ·). Keeping

the second and third argument of g fixed and varying the first on its domain [0, 1] traces out
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an estimate of a level curve of v (·, s) at a particular s. If we normalize v at some point, for

example so that v (0, s) = s, we can also trace out all remaining level curves, and thus the whole

function. We are free to perform such a normalization (with the appropriate renormalization of

the support of signals if needed) since the signal plays a purely informational role. Since the

"data" (v1, v2, q1, q2) is iid across bidders and auctions, we can estimate the function g (·, ·, ·) by a
nonparametric regression.7 This approach is demanding on the richness of the data, since otherwise

the estimates would be extremely imprecise. Moreover, as we will discuss below, we might not be

able to obtain point identification of v (·, ·) on its full domain unless there is a positive probability
of obtaining a datapoint in any neighborhood of any point of its domain at least as the number of

bidders and/or auctions goes to infinity.

Proposition 5 (Identification of the marginal valuation function)
ĝh (q1, q2, v2) →a.s. vh

¡
q1, v

−1
h (q2, v2)

¢
as N≥2hT → ∞ for all q1 such that q1 is in the support of

the equilibrium strategy of type s = v−1h (q2, v2), where N≥2h is the number of bidders from group h

with at least two bidpoints.

The identification of vh (·, ·) relies on observing bidders with more than one bidpoint. In order to
obtain identification of this function on its full domain, we would need that any type si that submits

at least two bidpoints in an auction submits a bid for any quantity with positive probability as the

number of bidders and/or auctions goes to infinity. The reason for this requirement is that in order

for the nonparametric regression to be a consistent estimate for vh on its full domain [0, 1]×[0, 1], we
would need that there is a nonzero probability of observing a bidpoint in any neighborhood of any

point in the domain (any type-quantity pair) as the number of datapoints goes to infinity. If this

property is not satisfied, we cannot obtain full identification of vh (·, ·) on its domain, since we can
identify the function vh (·, ·) only at the points of the support of the equilibrium strategy for players
with at least two bidpoints. For example suppose that only one bidder bids, and always submits 2

bidpoints, and follows an equilibrium strategy [q1 (s) , p1 (s) , q2 (s) , p2 (s)] . If we fix any signal s̄ > 0

with q1 (s̄) > 0, then we can always find an ε > 0 such that even if the number of auctions goes to

infinity we will never observe any bidpoint in a ball around (0, s̄) and therefore there would always

be a hole around vh (0, s̄). A simple corollary to Proposition 5 would establish that in the model

with differentiable downward sloping demand functions from which the researcher observes just a

random selection of points we can obtain nonparametric identification of the marginal valuation

function on a large part of its domain by performing the nonparametric regression outlined above.

How large this part would be depends on the relationship between the private valuantions and

the support of market clearing prices. If, for example, equilibrium bids for the first infinitessimal

7There is a caveat that the explanatory variables involve v̂2 which itself is an estimate, and therefore we have a
problem of a regression with measurement error. In a nonlinear setting such as ours, this problem is difficult to solve
and involves complicated econometric techniques (Fan and Truong (1993)).
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unit and last unit, y−1 (0|si) and y−1 (1|si), lie within the support of the market clearing price
for all types, then all types should in equilibrium submit a demand function for all units in [0, 1],

and therefore the nonparametric regression would achieve point identification on the full domain

[0, 1]× [0, 1].
In practice it may be hard to show which points of the domain of v (·, ·) are actually in the sup-

port of the equilibrium strategy without having closed form solution for the equilibrium strategies

that generated the data. If we do not want to go into such an argument to obtain point identifica-

tion, we may approach the identification problem via set identification instead. We may be able to

use both necessary conditions for bidding (2) and (3) and inequalities implied by assumptions on

the primitives and by the data to obtain the set of all possible marginal valuation functions that

would rationalize the data, in a similar way to Haile and Tamer (2003). The difficulty with this

approach, however, is that both the necessary condition (3) and inequalities implied by choosing qk
rather than qk −∆ involve the gross utility V (·, si), which is an integral of the object of interest,
v (·, si). This research direction is currently left for the future.

Estimating Fh (s)

If we impose the normalization that vh (0, si) = si, for all groups h and for all si, then one can

get Fh (·) using a consistent estimate of vh (0, ·), such as ĝh (0, ·, ·). For all bidders for whom we

observe at least one bidpoint in a given auction, we can obtain the point estimate of their signal

by evaluating the estimated function ĝh at 0 and the submitted quantity-bid and the associated

estimate of marginal valuation. Using the point estimates of private signals, we can estimate their

density by kernel methods. As the number of bidders in a group or auctions grows large (and thus

also the number of estimated signals), the kernel estimates of the density converge to the truth.

Proposition 6 (Identification of the distribution of signals)
Suppose vh (0, si) = si and a consistent estimate of vh (0, ·) is available. Then f̂h (s)→a.s. fh (s) as

NthT →∞, where f̂h (s) is the kernel estimate of the density of the signals for group h.

While we are able to estimate the distribution of private information whenever we have a

consistent estimate of the marginal valuation function, the latter requirement might not be satisfied

in many applications. As mentioned above, whenever there is a possibility of not obtaining a

datapoint in some part of the domain of v even as the number of auctions and/or bidders increases,

which will in general be the case if the bidders submit step functions, the nonparametric regression

might not yield a consistent estimate of the function v in that region. One possibility would be to

normalize the function vh to equal the signal at some other point q̄h 6= 0 so that vh (q̄h, si) = si,

and in particular we would choose this point so as our estimate of vh would be consistent at that

level curve. In this way the distribution of the private signals can again be estimated consistently

via kernel methods. If we do not believe that we can obtain a consistent estimate of a level curve of
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vh at which we could estimate the signal, we would have to abandon our hopes for nonparametric

point identification. Instead, we might be able to identify a set in which the underlying marginal

valuation belongs as discussed above. Alternatively, we could parametrize vh so that we can obtain

point estimates of signals for the chosen functional form.

6 Data and Results

6.1 Description of the Data

My dataset consists of 28 auctions of Treasury bills of the Czech government. The sample period

is 11/25/1999 until 12/14/2000. The auctions were conducted by the Czech National Bank. The

payment by each bidder whose order was accepted was determined according to the uniform price

rule; each bidder paid the market clearing price for all units for which his bid was at least the

market clearing price. These auctions of T-bills were conducted weekly, with the auction plan

being published quarterly. The T-bills that were sold in different auctions differed in maturities.

I will consider only auctions of 3-month T-bills, since they were auctioned most often - usually

at least bi-weekly. In the quarterly published auction plan the Bank announces the intentions of

the Ministry of Treasury as to how many securities will be sold on a given week and of which

maturity. The main purpose of the T-bills is to smooth out the difference between tax revenue and

expenditures by the government.

The bidders who wished to participate in an auction of T-bills had to be preregistered by the

Czech National Bank. The only requirement for the registration was that the bidder possesses

either a banking license or a broker license in the Czech Republic or other EU member country.

The list of registered bidders was publicly available. Furthermore, there were limits with which

each registered bidder had to comply. Each bidder was obliged to buy at least 3% of the securities

offered within a calendar year, and his demand in a given auction could not exceed 50% of the

securities offered for sale. The first restriction was usually met by each bidder early in the calendar

year. Moreover, since bidders were not given any information about the identities of the winners

after any auction, we can safely ignore this restriction in our model, since it is not likely to affect

the strategic behavior. The main motive for the bidders to purchase the treasury bills was for

their investment portfolios, since T-bills do not carry any risk premium and thus do not have to be

outweighed by any cash (or other no-risk) reserves. Moreover, many of the banks involved in these

auctions are subject to investment risk regulation for various reasons, and T-bills are one of the few

ways to profit from their cash reserves. It is for these reasons that the secondary market for T-bills

in the Czech Republic is virtually nonexistent. The absence of active trading on the secondary

market suggests that we may not have to worry about an unknown common value component

in the auctions. On the other hand, how much bank i valued q units of T-bills depended on its

available cash and investment decisions, which were likely to be private information. These two
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features together lead me to believe that the private values model might be appropriate for this

setting.

Table 1 describes the summary statistics of the important data components.

Table 1: Data Summary

Mean Min Max StDev
Active Bidders in an Auctiona 13 10 16 1.4
Number of Submitted Bidpoints 2.3 1 9 1.55
Price Bids (in CZK)b 986,789 985,919 987,544 252.9
Annual yields corresponding to price bids 5.30 4.99c 5.65 0.10
Quantity Bidsd 0.059 0.0005 0.5 0.082
Noncompetitive Bide 0.36 0 0.75 0.28
Market Clearing Price 986,745 986,190 986,972 192.1
Annual yields corresponding to mkt. cl. price 5.32 5.22 5.54 0.08
Reference interest rate 5.39 5.32 5.74 0.10
Auction Revenue (in mil USD) 423.1 144.1 598.1 170
a Active bidder is any bidder actually submitting a serious bid.
b 1USD is approximately 38CZK over the sample
c Lowest yield corresponds to highest bid
d As a share of total quantity offered for sale, across all steps
e As a share of total quantity offered for sale

The face value of all T-bills is 1,000,000 Czech Korunas (approximately $26,300). The range

of bids in annual yield is 66 basis points, while the range of the market clearing yield is 32 basis

points. Bidders submitted bids for as little as 0.05% of total quantity supplied and for as much as

50% which is the maximal amount they can demand in an auction. Bidders are allowed to submit

up to 10 bidpoints (price-quantity pairs) in any given auction. Yet the average number of bidpoints

submitted by a bidder in an auction is less than 3 and the maximal number of submitted bidpoints

is 9. For each auction I observe all individual bids (including the noncompetitive ones placed on

behalf of the government, which will be described below), the preannounced supply quantity, and

the market clearing price. I also observe the final allocation. My dataset includes 16 unique bidder

identities. 7 of these bidders can be classified as belonging to the "small bidder" group, since they

request less than 5% of the total quantity in any given auction and also submit fewer bidpoints on

average than their larger opponents. The remaining 9 bidders will be treated as belonging to the

"large bidder" group. Table 2 offers a split of summary statistics between these groups.

An important feature of many treasury auctions of government securities is the possibility of

"noncompetitive bids". These bids specify a quantity which the bidder would like to obtain at the

market clearing price no matter what this price will be. Therefore, in terms of modelling, these bids

simply decrease the available supply of T-bills in a given auction. While the rules of the auction

allow for such bids to be submitted by regular bidders, they rarely use this possibility. In my

dataset, none of the bidders submits a noncompetitive bid in any auction. On the other hand, the
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Table 2: Data Summary - Large vs Small Bidders

Large Small
Active Bidders in an Auction 7.5 5.5

(0.82) (0.90)

Number of Submitted Bidpoints 2.45 1.11
(1.67) (0.68)

Price Bidsa (in CZK) 986,792 986,781
(253) (251)

Quantity Bidsa,b 0.075 0.02
(0.09) (0.01)

a Average taken across all bidpoints.
b As a share of total quantity offered for sale.
c Standard deviations in parentheses

auctioneer himself, as instructed by the Ministry, can submit such a bid even after observing the

bids of regular bidders. In fact, in each announcement about an upcoming auction, which includes

the details such as the number of T-bills to be auctioned off, there is a disclaimer that, "The issuer

of the security reserves the right to include part or all of the emission in his own portfolio." This

possibility then serves as an insurance device against low market clearing prices. Table 1 shows that

the auctioneer withdrew as much as 75% of the supply. Further notice that the reference interest

rate that the banks use for transactions among themselves has all descriptive statistics only slightly

higher than the corresponding statistics of the market clearing yield of T-bills, which suggests that

the it might be a factor in the auctioneer’s decision how much supply to withdraw. In terms of

empirical implementation I treat the noncompetitive bids of the government as a separate bidder

group and thus resample from these in the same way as I resampled from the other two groups.

This approach may be problematic if bidders’ signals were affiliated. For example if bidder i getting

a lower signal implied an increase in the probability that the signals of her rivals’ signals were also

low, then the conditional distributions of the noncompetitive bid would differ depending on the

signal received. I will test for signal affiliation in the section discussing the robustness checks.

6.2 Results

Estimating marginal valuations
I first illustrate the resampling procedure, described in Section 5, that I use to estimate the dis-

tribution of the market clearing price, and thus the conditional expectation and its derivative.

Consider a particular auction labeled as Auction 52 in my data. There are 13 bidders (8 large and

5 small) who actually submitted a bid. For the purposes of resampling, this is not a large number

and I therefore pool 4 neighboring auctions, in which T-bills of the same maturity were offered,

and consider these auctions to be independent repetitions of the same experiment. Therefore, I
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split my sample of 28 auctions in 7 groups with 4 auctions in each. In all auctions I assume that

the number of potential bidders is the same with one exception. In particular, I assume that there

is 7 potential small bidders and 8 potential large bidders8. The reason for assuming there is 8

potential large bidders even though there is 9 bidder identities that I classify as large is that one

large bidder starts bidding first in auctions later in the sample and another large bidder at that

point stops bidding aand never submits a bid again during the sample period. Bids of those two

bidders overlap only in two auctions, and therefore for the group of four auctions in which these

two particular auctions belong I assume that there are 9 potential large bidders rather than 8. I

assume that any bidder for whom I do not observe a bid in a given auction submitted a losing bid

l (or a bid of zero for any quantity) and I include such a bid function in the sample from which I

resample.

The assumption of the four auctions grouped together being the "same experiment" might be

problematic, since as I argued above the private information driving the marginal valuation of each

bidder is assumed to come from the current state of its cash reserves and alternative investment

opportunities, both of which could be affected by the outcome of previous auctions, or be correlated

across auctions. Therefore I will later provide a robustness check against this assumption by testing

whether winning larger quantities in earlier auctions results in lower levels of private signals for

the later auctions. I decided to pool 4 neighboring auctions for two reasons. For resampling I

want to include bid functions from auctions from as short a time-span as possible in order to be

more confident about treating the auctions as repetitions of the same experiment, i.e., without the

outside environment changing. On the other hand I need a larger number of bid functions so that

resampling generates enough variation. Given that there are 15 potential bidders in an auction

pooling 4 auctions together yields 60 bid functions for the purposes of resampling which should

be enough to generate enough variation. Each four neighboring auctions I pool together were

conducted in a time frame of two months, and the macroeconomic variables such as the consumer

price index or the interest rate were stable across this period.

In the first three auctions, there are 5 active small bidders and 8 active large bidders. In the

fourth auction, there are 6 active small bidders and 8 active large bidders. Under the assumptions

of full symmetry and constant number of potential bidders (7 small and 8 large bidders), pooling

these four auctions results in 60 ex ante symmetric bidders, who differ ex post because of their

private information. Alternatively, with two groups, this results in 28 ex ante symmetric small

bidders and 32 large bidders. Let us fix bidder 1’s bid function and generate the different residual

supply curves he might face by the above described resampling procedure. Figure 1 shows the

procedure with 15 different realizations of the residual supply curves.

This process generates a distribution of market clearing prices. The distribution generated by

5000 residual supply draws is depicted in Figure 2.

8 I also estimated the model assuming that the number of potential bidders differs across the groups of auctions
and is equal to the largest number of active bidders within an auction in that group. The results were similar.
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Figure 3: Marginal valuation estimation - bidder 1

With the distribution of the market clearing price, we can recover the marginal valuations for

the bidder by using our optimality equation. Figure 3 shows using squares point estimates of

marginal valuation of bidder 1 at quantities for which he submitted a bid. Open circles depict the

conditional expectation of the market clearing price E [pc|bk > pc > bk+1]. The distance between

these two points is the amount of shading that the bidder executes, which is a direct measure

of bidder’s market power. Notice that, as suggested in Corollary 3, the actual bid is above the

true marginal valuation for the first bidpoint. The fact that it occurs at the first bidpoint is not

a coincidence, since the incentives to shade increase in the quantity demanded. Thus, it is more

likely that for smaller quantities the marginal valuation will be closer (given market power) to the

conditional expectation of the market clearing price and thus below the actual bid.

Similarly, Figure 4 shows the results of the estimation for bidder 4. At smaller quantities, the

bid again exceeds the estimated marginal value.

Repeating the same procedure for each bidder in the auction, we obtain point estimates of the

marginal valuation function v (q, s) at the different (observed) quantities that the bidders request

and at the different (unobserved) signal levels s. As described above, we could use information

from bidders who submit at least two bidpoints to estimate v (q, s) nonparametrically, as long as

in the limit, as the number of datapoints increases, the whole domain of v (., .) would be covered.

Even if the latter condition were satisfied, however, this exercise would not be useful for empirical

estimation with little data, since it involves a three dimensional kernel regression.
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Figure 4: Marginal valuation estimation - bidder 4

Standard Errors
The asymptotic variance of the estimated marginal valuations is difficult to obtain, since our mar-

ginal valuation estimator is a nonlinear function of the distribution of the market clearing price.

But since this distribution is also estimated, taking the usual delta method approach would be

very cumbersome. For this reason I employ bootstrap methods to compute the standard errors

of my estimates. The reported standard errors are from the sample of 100 estimates generated

by repetitions of the estimation procedure with a new bootstrap sample of bid functions at each

round.

Step functions versus continuous downward sloping bids
One might wonder what difference it makes to assume that bidders submit step functions strate-

gically, rather than treating the observed bidpoints as some selection from a downward sloping

continuous function, as assumed in previous work. Equation (1) reveals that in the continuous bid

functions setting the observed bids should equal marginal valuations less a markup associated with

that bidder’s market power. In other words, it is necessarily the case that within such a model

the marginal valuations are strictly above the observed bids (as long as these bids are within the

support of the distribution of the market clearing price), unless the bidder is a pricetaker, in which

case the two values coincide. It is not immediately obvious, however, how to estimate such a model

using data consisting of few points, rather than full downward sloping continuous functions. First

of all, why do we not observe the whole downward sloping functions, i.e., how were the data gen-

erated? It seems to me that the researcher would have to assume that he observes some random
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selection of points from the true bid function. This assumption would allow for use of optimality

equation (1), which has to hold at every point of the bid function, and thus also at the observed

ones. Do the derivatives of the distribution of the market clearing price exist? The derivative with

respect to p should not cause trouble, since that is simply the density of p. The other deriva-

tive, however, is not so straightforward. It turns out that this derivative is closely related to the

derivative of the expectation of the market clearing price.9 The problem, however, is that it is no

longer an expectation conditional on an interval, but rather on a particular value of the market

clearing price. Therefore to estimate this derivative w.r.t. qk consistently we would have to shrink

the neighborhood around both qk and bk. After this procedure, we would obtain a similar term

related to the expected local market power of a bidder at a particular bidpoint, and the estimate

of the corresponding marginal value would thus be just the bid plus this term as seen from Euler

equation (1). Therefore to illustrate the difference between using the optimality conditions for the

model with step functions from the one with continuously differentiable bids, we can think of the

estimates of marginal values in the latter model as adding the estimated shading factor10 from

the model with step functions to the observed bid rather than to the conditional expectation of

price. Clearly, if the model with step functions is the one from which the data is generated, then

using the necessary conditions from the model with continuously differentiable bid functions would

overestimate marginal valuations. If these biased estimates are used for counterfactual exercises,

such as the computation of revenues from a discriminatory auction, we would expect the results

to be biased towards the discriminatory auction. Figures 3 and 4 show that the model used for

estimation can matter, especially when estimating marginal valuations at low quantities, where

bidders do not have a lot of market power. Furthermore, I will now show that in a nonnegligible

number of the auctions, the actual ex post revenue exceeded the revenue that would have been

realized had all bidders bid the upper bound of their estimated marginal valuation functions.

Counterfactual: Truthful Bidding
In my first counterfactual analysis, I compare the actual revenue to the revenue from a best case

Vickrey auction, in other words a uniform price auction in which bidders truthfully bid their

marginal valuation schedules without actually receiving any payments. To perform this experiment

exactly, we need to know the full functional form of v (q, s). Instead, I construct an upper and lower

envelope of marginal valuations by using step functions that have steps at the estimated marginal

valuations. Unfortunately, we do not have enough information to construct the upper bound on the

marginal valuation to the left of the first step. Similarly we can only bound the marginal valuation

to the right of the last step from below by zero and from above by the last estimated marginal

value. I therefore assume that the estimated first marginal valuation is also equal to the highest

possible marginal valuation. This assumption should not be too influential, since for the important

9See Kastl (2005) for details.
10Recall that the shading factor is the difference between the conditional expectation of price and the estimated

marginal value.
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(large) bidders whose demands are essential for market clearing, the market usually clears at one

of their "interior" steps, and we use the appropriate bounds for those. Nevertheless, to test the

robustness of the results with respect to this assumption, I also tried using the first step plus

a mark-up as the maximum marginal valuation for smaller quantities, and obtained qualitatively

similar results. While the upper bound on the marginal valuation for larger quantities than the last

observed bidpoint is the marginal value estimated at this bidpoint, I cannot use such a bound in my

analysis. The reason being that there can be a small bidder who demands just a negligible share of

the total supply with a high marginal value at his last step, and by bidding such an upper bound

for all larger quantities she might win the full supply. I will therefore assume that the marginal

value for larger quantities than the one demanded at the last bidpoint is zero. Using these upper

and lower envelopes of marginal valuations, I obtain the market clearing price given the same ex

post realization of noncompetitive bids as in the actual auction. Tables 3 and 4 report the results

in terms of the market clearing price. The first column reports the actual realized market clearing

price and the second and third column the market clearing price under bidding truthfully the lower

or upper envelope respectively.

These tables reveal that the actual market clearing prices are not far from those that would

be obtained under truthful bidding. This suggests that bidders do not have enough (local) market

power around the expected market clearing price to adversely affect auction’s revenue. In order to

offer a better idea about the magnitudes of the differences in revenue, Table 5 reports the same

results in terms of annual percentage yield of the T-bills.

In 7 of the 28 auctions, which are highlighted by an asterisk in the table, the actual ex post

revenue exceeds the revenue from bidding the upper bound of the marginal valuation schedules,

which suggests that the point raised in Corollary 3 is not purely theoretical. These results may

cast some doubt on the conclusions that Hortaçsu (2002) reaches in his empirical study of Turkish

treasury auctions, which have a discriminatory format. In particular, he concludes that since the

revenue generated in a uniform price auction in which bidders submit the upper bound11 of the

estimated marginal valuations as their bids is lower than the actual revenue, the discriminatory

auction performs better ex post. (From the ex ante perspective, when he draws the bid functions

randomly before the auction, he cannot reject the revenue equivalence hypothesis.) My results

suggest that using a model with continuously differentiable bid functions as an approximation to

the true model of discrete bidding to conduct any counterfactual exercises will most likely lead to

results that are biased towards the discriminatory auction.

Effectiveness of value extraction
How effective a mechanism are these uniform price auctions? Could the Czech government do better

by using a discriminatory auction? One way to get a handle on these questions is to compare

the performance of the employed mechanism to the ideal mechanism, which would implement

11Hortaçsu constructs this upper bound in the same way.
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Table 3: Comparison with truthful bidding - part 1

Auction Actual p TruthBidMin pa TruthBidMax pb

52 986,190 986,347 986,476
(39.95) (60.66)

55 986,509 986,475 986,545
(16.99) (19.24)

56 986,460 986,509 986,610
(42.79) (42.49)

60 986,805 986,755 986,829
(22.03) (23.3)

61 986,928 986,879 986,947
(21.11) (18.56)

64 986,829 986,831 986,847
(2.64) (2.04)

65 986,805 986,832 986,852
(5.95) (6.02)

67∗ 986,903 986,855 986,868
(6.22) (12.96)

69 986,834 986,805 986,875
(10.01) (9.13)

72 986,854 986,846 986,903
(7.37) (1.23)

73 986,903 986,879 986,909
(10.16) (5.42)

75∗ 986,903 986,864 986,892
(7.48) (14.20)

76 986,903 986,885 986,917
(10.19) (2.41)

81 986,854 986,820 986,861
(5.63) (10.65)

82 986,805 986,812 986,834
(4.82) (8.48)

85 986,854 986,854 986,878
(2.58) (6.60)

Mean (52-108) 986,745 986,729 986,768
* Ex post revenue higher than under truthful bidding
a Market clearing price when bidding the lower envelope of marginal valua-
tions

b Market clearing price when bidding the upper envelope of marginal valua-
tions

c Bootstrap std. errors in parentheses
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Table 4: Comparison with truthful bidding - part 2

Auction Actual p TruthBidMin pa TruthBidMax pb

86∗ 986,903 986,873 986,887
(6.98) (13.60)

87 986,829 986,832 986,832
(2.10) (3.37)

91∗ 986,972 986,887 986,952
(2.76) (8.59)

92 986,805 986,805 986,855
(0.00) (5.47)

94∗ 986,878 986,744 986,785
(41.79) (46.45)

95∗ 986,829 986,685 986,688
(14.87) (18.42)

99 986,632 986,632 986,659
(2.71) (4.28)

100 986,608 986,608 986,636
(0.00) (3.21)

103 986,487 986,487 986,540
(4.89) (4.28)

104∗ 986,534 986,500 986,500
(4.97) (4.99)

107 986,509 986,522 986,542
(8.58) (5.16)

108 986,534 986,544 986,594
(10.1) (20.77)

Mean (52-108) 986,745 986,729 986,768
* Ex post revenue higher than under truthful bidding
a Market clearing price when bidding the lower envelope of marginal valua-
tions

b Market clearing price when bidding the upper envelope of marginal valua-
tions

c Bootstrap std. errors in parentheses
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Table 5: Comparison with truthful bidding - market clear-
ing yield

Auction Actual yield Highest yielda Lowest yieldb

52 5.54 5.48 5.42
55 5.41 5.42 5.40
56 5.43 5.41 5.37
60 5.29 5.31 5.28
61 5.24 5.26 5.23
64 5.28 5.28 5.27
65 5.29 5.28 5.27
67∗ 5.25 5.27 5.26
69 5.28 5.29 5.26
72 5.27 5.27 5.25
73 5.25 5.26 5.25
75∗ 5.25 5.27 5.26
76 5.25 5.26 5.24
81 5.27 5.28 5.27
82 5.29 5.29 5.28
85 5.27 5.27 5.26
86∗ 5.25 5.26 5.26
87 5.28 5.28 5.28
91∗ 5.22 5.26 5.23
92 5.29 5.29 5.27
94∗ 5.26 5.31 5.30
95∗ 5.28 5.34 5.34
99 5.36 5.36 5.35
100 5.37 5.37 5.36
103 5.42 5.42 5.40
104∗ 5.40 5.41 5.41
107 5.41 5.40 5.40
108 5.40 5.40 5.38
Mean 5.31 5.32 5.30
* Ex post revenue higher than under truthful bidding
a Achieved by bidding the lower envelope of marginal valuations
b Achieved by bidding the upper envelope of marginal valuations
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an efficient allocation and extract full surplus. We can use the upper envelope of the estimated

marginal valuations together with the estimated distribution of the market clearing price to obtain

estimates of (upper bound of) bidders’ expected (interim) utility per T-bill sold in the auction.

If this expected utility is close to zero for every bidder, and the allocation is efficient, then the

auction mechanism would perform well even from an ex ante perspective. Under the equilibrium

hypothesis, the observed bid function of each bidder should be a best response of his type to the

equilibrium strategies of other bidders. Using the estimated distribution of the market clearing

price conditional on bidder i’s bid and setting c (Ki, ti) ≡ 0, I can evaluate i’s expected utility

given the submitted bid function, i.e., conditional on his type. In equilibrium, this submitted bid

function should deliver the highest utility this bidder can obtain (given his type). Therefore this

exercise indeed delivers an estimate of the maximal interim utility of each bidder. The results are

reported in Tables 6 and 7.

The minimal estimated interim utility is close to zero, which suggests that submitted bid func-

tions are individually rational. It also suggests that using the upper envelope of the marginal

valuations may be close to the true valuation functions. This should hold at least for bidders with

interim utility very close to zero, since a lower marginal valuation curve would result in negative in-

terim utility, in which case the observed bid function would not be individually rational. Allocations

in all auctions appear to be efficient, since the ratio of the realized surplus to the efficient surplus

exceeds 0.9999 on average. Moreover, the sum of expected surpluses across all bidders (strictly

speaking, it is the sum across their actual realized types) reported in the columns labelled "Total"

of Tables 6 and 7 is close to zero. I conclude that the uniform price auction mechanism performed

well, in terms of both efficiency and value extraction. The columns labelled "Total" reveal that in

11 auctions we cannot reject the hypothesis that full expected surplus has been extracted. In 22

out of the 28 auctions we cannot reject the hypothesis that the mechanism failed to extract less

than 1 basis point worth of bidders’ surplus. In 25 out of the 28 auctions studied we cannot reject

that the mechanism failed to extract less than 2 basis points worth of bidders’ surplus. On average

the mechanism failed to extract less than 3 basis points worth of bidders’ surplus12. Because the

estimated average total expected bidders’ surplus is a consistent estimate of the part of the sur-

plus that the mechanism fails to extract ex ante, and because the allocation is nearly efficient, I

conclude that the uniform price auction exhibits excellent performance. Value extraction might be

even better, since I considered the upper bound on the marginal valuation functions of each realized

type when performing the computations. Because the uniform price auction mechanism performed

well in terms of both value extraction and allocative efficiency, switching to an alternative auction

mechanism is unlikely to result in economically significant improvements in either aspect.

My computations appear to be the best way to assess the performance of an auction mechanism,

without having to obtain counterfactual strategies. They are computationally easy to implement,

and they can be implemented for data from both uniform price and discriminatory auction mech-

12Notice that if we eliminated the insignificant outlier in auction 61, it would be 2 basis points.

31



Table 6: Interim profit of bidders per T-bill for sale - part 1

Auction | Expected Surplusb Average Maximal Minimal Total Allocative Efficiencyc

52 6.71 64.52 0 87.29 0.9995
(6.34) (79.11) (0.003) (82.41) (0.003)

55 2.98 13.67 -0.20 38.74 0.99991
(0.46) (4.1) (0.15) (5.92) (1*10−6)

56 9.25 32.44 -0.34 120.29 0.99992
(2.39) (17.88) (0.49) (31.02) (4*10−6)

60 20.29 117.79 -0.21 283.98 0.99977
(5.33) (73.12) (0.004) (74.67) (7*10−6)

61 32.66 411.29 -0.004 457.18 0.99942
(29.00) (401.74) (0.08) (406.05) (0.0011)

64 1.65 7.67 -0.20 19.77 0.99996
(1.15) (9.38) (0.11) (13.80) (4*10−7)

65 2.93 14.80 -0.33 35.13 0.99994
(6.44) (74.28) (0.08) (77.28) (8*10−7)

67∗ 2.27 14.74 -0.22 31.78 0.99994
(0.31) (2.57) (0.11) (4.32) (2*10−6)

69 5.62 60.72 -0.18 73.02 0.99993
(21.9) (285.2) (0.01) (284.7) (1*10−6)

72 1.14 7.37 -0.05 18.27 0.99996
(0.26) (3.30) (0.02) (4.19) (5*10−7)

73 0.66 3.43 -0.09 10.63 0.99996
(0.20) (1.33) (0.05) (3.18) (2*10−7)

75∗ 1.20 3.67 -0.26 16.90 0.99997
(0.31) (2.08) (0.96) (4.27) (3*10−7)

76 3.11 14.78 -0.07 40.43 0.99997
(2.00) (24.18) (0.20) (26.01) (4*10−7)

81 0.32 3.63 -0.65 4.54 0.99997
(0.21) (2.51) (0.31) (3.01) (3*10−6)

82 0.45 4.09 -0.60 6.31 0.99998
(0.31) (2.84) (0.34) (4.37) (5*10−7)

85 10.01 122.73 -0.47 130.12 0.99937
(0.27) (1.88) (0.59) (3.48) (0.00011)

Mean (Auctions 52-108) 5.07 43.24 -0.20 66.14 0.9999
* Ex post revenue was higher than under truthful bidding
a Standard errors in parentheses
b Using the upper envelope of marginal valuations
c Defined as (Actual surplus)/(Surplus from the efficient allocation)
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Table 7: Interim profit of bidders per T-bill for sale - part 2

Auction | Expected Surplusb Average Maximal Minimal Total Allocative Efficiencyc

86∗ 0.78 3.67 -0.27 10.14 0.99998
(0.22) (1.17) (1.01) (2.82) (6*10−7)

87 0.75 4.98 -0.08 9.01 0.99999
(0.34) (2.70) (0.40) (4.11) (2*10−7)

91∗ 3.29 29.43 0 39.53 0.99998
(0.63) (4.99) (0.01) (7.57) (2*10−6)

92 9.87 55.25 -0.27 118.49 0.99993
(3.30) (31.06) (4.00) (39.54) (8*10−8)

94∗ 2.83 14.86 -0.01 28.27 0.99993
(1.47) (14.33) (0.41) (14.73) (6*10−7)

95∗ 8.88 70.76 -0.82 88.81 0.99999
(2.51) (22.15) (1.97) (25.08) (2*10−7)

99 3.96 52.51 -0.08 55.43 0.99975
(12.03) (168.52) (0.052) (168.46) (4*10−5)

100 3.74 25.19 -0.16 41.12 0.99994
(2.30) (22.20) (0.04) (25.32) (6*10−7)

103 1.51 16.78 0 19.60 0.99967
(0.55) (7.05) (0) (7.10) (1*10−7)

104∗ 0.54 3.12 -0.20 6.42 0.99999
(0.23) (1.90) (0.16) (2.81) (3*10−7)

107 0.54 4.27 -0.01 6.98 0.99998
(0.18) (1.98) (0.21) (2.32) (2*10−6)

108 4.13 32.62 -0.21 53.64 0.99995
(14.22) (181.4) (0.02) (184.83) (2*10−6)

Mean (Auctions 52-108) 5.07 43.24 -0.20 66.14 0.9999
* Ex post revenue was higher than under truthful bidding
a Standard errors in parentheses
b Using the upper envelope of marginal valuations
c Defined as (Actual surplus)/(Surplus from the efficient allocation)
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anisms. It would be useful to examine other datasets and auction mechanisms.

Bidding costs
In equilibrium, the cost c (Ki + 1, ti) must be weakly higher than the expected benefit of submitting

one more bidpoint. Similarly, c (Ki, ti) must be weakly less than the expected benefit of going from

Ki−1 toKi bidpoints. This allows us to compute bounds on the implied cost of bidding. I compute

the lower bound for bidders submitting one bidpoint by searching for the optimal bid function with

two steps given the distribution of residual supplies obtained by the resampling procedure and

assuming that bidder i’s marginal valuation is the upper envelope of my point estimates. The

estimates suggest that the lower bound on costs of going from 1 to 2 bidpoints can total as little

as $2 and as much as $147. I use the same procedure for bidders who submitted two bidpoints to

obtain an upper bound. I estimate that the upper bound on costs of going from 1 to 2 bidpoints

can be as low as $13 and as high as $360. These computations suggest that the extra benefit of

finetuning the bid function a little more may not be that high. I should note that these bounds are

for a given specification of the marginal valuation curve (in the case above, the upper envelope of

the estimates). It does not necessarily follow that the upper bound obtained from the experiment

performed is the largest upper bound for all permissible marginal valuation functions.

Estimation of the distributions of private signals
Using the bounds approach described above does not lead to estimates of bidders’ actual signals,

and thus does not permit estimation of the distribution of private signals. Hence I will adopt a

parametric assumption for v (·, ·) that allows me to estimate the private signals and their distribu-
tion.

Parametric Approach
To obtain the estimates of private signals, I first specify a parametric functional form for the

marginal valuation function. I can then obtain imputed signals corresponding to submitted bids.

For simplicity assume that the marginal valuation function is linear in signal and quantity and

separable in its two arguments, v (q, s) = s+β1q. The private information s can thus be interpreted

as the marginal utility from the first infinitessimal unit consumed v (0, s) , and in econometric terms

as a fixed effect for a given bid curve.

This parametric structure allows me to identify β by using bidders who submitted at least two

bidpoints. As before we can invert for the unobservable signal to obtain a relationship:

vi1 − vi2 = β1 (qi1 − qi2)

Now we can estimate β by standard regression methods. The estimate of β will be consistent as

long as the measurement error contained in vi1−vi2 is uncorrelated with qi1−qi2. In this regression
I used all bidders who submitted a bid function with at least two steps. While for a bidder with
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Table 8: Marginal valuation function regression
(Auctions 52-60)

Pooled Large bidders Small bidders
β1 -17461∗ -17403∗ -27818∗

(2180) (2475) (8616)

n 39 30 9
R2 0.63 0.63 0.56
∗ Significant at 5%
a Std. errors in parentheses

more than 2 steps any pair of his bidpoints would be a valid observation, we might be worried

that the error term might be correlated across observations in that case. Therefore for each such

bidder I used only the first two steps. I first estimated this regression using a pooled sample of

all bidders, and later using the subsamples of small and large bidders separately. The estimates

for the first group of auctions are reported in Table 8. The results suggest that the marginal

valuation of bidders from the small group is declining more steeply in quantity obtained than that

of large bidders. An increase in quantity bought by a small bidder of one percentage point results

in decrease in marginal valuation of the last unit by 278 CZK (cca $8), which is almost twice

the decline for a large bidder. Results in all other groups of auctions were qualitatively similar -

the marginal valuation of smaller bidders declines significantly faster than that of large bidders.

Using the estimates, we can obtain imputations of signals corresponding to submitted bid functions

(i.e., the bid functions’ fixed effects) and thus obtain an estimate of the distribution of the private

information as depicted in Figure 5 for the first group of auctions. Since I cannot obtain an estimate

of the signal for small bidders that do not submit a serious bid in an auction, the shown density

is that conditional on submitting a serious bid. The estimate shown in the figure was obtained by

using a Gaussian kernel with automatic bandwidth selection. As we can see in the figure, small

and large bidders indeed differ substantially in the distributions of their private signals.

Since the parametric approach outlined above uses a subsample of bidders with at least two

bidpoints to estimate the parameter β, we may worry about a sample selection problem. Conditional

on the same cost of bidding (type t) a bidder with higher signal s is more likely to submit more

than one bidpoint and hence is more likely to be in the sample. While it is likely that some

sample selection takes place, it does not influence the consistency of the estimate of the slope of the

marginal valuation function β as long as this slope does not vary with s. To verify the robustness

of this parametric approach, I also estimated private information under an alternative scenario. I

imposed a simplifying assumption that the first estimated marginal valuation is equal to the private

signal received by that particular bidder. In other words, instead of normalizing the function v (·, ·)
to equal the private signal at a particular quantity level q̄, I imposed that v (qi1, si) = si. Notice
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Figure 5: Nonparametric Density Estimation

that this approach does not suffer from using a selected subsample of observed bid functions and

it is equivalent to using our bounds on the marginal valuation function constructed above, and

evaluating these at q = 0, since the marginal valuation was assumed to be constant to the left of

the first bidpoint. The results from both approaches were similar.

Robustness checks
I first check whether treating four auctions as repetitions of the same experiment is problematic. A

problem might arise if there is some persistent relationship between quantity won in earlier auctions

and valuations in the later auctions. For example, if a bidder wins a high quantity in an auction

in week 1, his valuation for units offered in the auction in week 2 might decrease. To test this

dependence I regress the estimates of signals in auction t on the quantity won in auction t−1. The
results are reported in Table 9. Under the assumption that the measurement error in the signal

estimate from auction t is not correlated with the quantity won in auction t− 1, the estimates are
consistent. The data does not reveal a significant relationship between the signal in auction t and

quantity won in auction t − 1. I therefore conclude that pooling the four auctions together does
not constitute a major problem.

Another problem might arise if bidders’ signals are affiliated. While affiliation of signals would

be a problem on its own for the resampling method, it would also be troublesome because of

the presence of the noncompetitive bids by the government. Recall that noncompetitive bids are

submitted with the knowledge of the bids submitted by regular bidders. Suppose that the objective

of the auctioneer who submits the noncompetitive bid on behalf of the ministry is to maintain a

minimal level of the market clearing price, by reducing the supply if necessary. Therefore the supply,
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Table 9: Testing dependence of signals and quantities won earlier

Auctions: {52− 60} {61− 67} {69− 75} {76− 85} {86− 92} {94− 100} {103− 108} All
Constant 986,477 986,949 986,894 994,878 1,003,891 991,824 986,539 990,818

(49.93) (32.3) (16.7) (6765) (8531) (4015) (21.2) (1626)

qt−1 885.6 161.8 193.5 -8302 -92956 -12816 514.6 -13576
(514.8) (310.1) (161) (55972) (90899) (30417) (340.5) (15638)

R2 0.09 0.01 0.04 0.001 0.03 0.01 0.06 0.003
N 33 37 39 39 32 33 37 250
a Std. errors in parentheses
b Dependent variable: st

Table 10: Wilcoxon Rank Sum Test of Equality of Distributions Fs−1|s1

Auctions | Sample splita {1, 2} , {3, 4} {1} , {2, 3, 4} {1} , {2} {3} , {4}
{52, 55, 56, 60} 0.85 0.14 0.45 0.04
{61, 64, 65, 67} 0.78 0.99 0.88 0.37
{69, 72, 73, 75} 0.25 0.37 0.38 0.19
{76, 81, 82, 85} 0.12 0.95 0.05 0.60
{86, 87, 91, 92} 0.30 0.02 0.83 0.28
{94, 95, 99, 100} 0.40 0.09 0.85 0.55
{103, 104, 107, 108} 0.82 0.79 0.72 0.17
a For example splitting the first group of auctions {52, 55, 56, 60} according to the split
{1, 2} , {3, 4} means that two samples are created. First sample consisting of auctions
{52, 55} and second sample of auctions {56, 60}

b p-values of H0: Samples are from the same continuous distribution.

even though preannounced, is random from the perspective of the bidders. Therefore, when bidders

solve their maximization problem, they have to take an expectation with respect to the distribution

of supply. If bidders’ signals were affiliated, a lower signal would result in a conditional distribution

of supply that is first order stochastically dominated by a conditional distribution obtained after

a high signal draw. In this case, we would have to adjust the estimation procedure. To test for

signal affiliation, I will employ a nonparametric rank test. I first split the sample of estimated

signals from the four auctions from each estimation round into subsamples. I report the results

for four particular ways of splitting the sample, but alternative splits led to similar results. I then

leave out the signals of bidder 1, and conduct a one-sided Wilcoxon Rank Sum test of equality of

distributions Fs−1|s1 .
13 Under the null hypothesis of no affiliation, the two distributions are equal.

Table 10 reports the p-values for which H0 holds for this test. The results suggest that we cannot

reject the null that the signals are not affiliated.

13Doing the same exercise for other bidders yields similar results.
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7 Conclusion

In this paper I analyze a model of a uniform price auction of a perfectly divisible good with private

information. I show that the fact that bidders submit step functions has important implications for

equilibrium. I characterize equilibrium strategies in a model in which bidders submit step functions.

There is a close relationship between the optimal behavior of an oligopolist facing uncertain demand

and that of a bidder in a multiunit auction with private information. My results suggest that it

is difficult to make an indirect comparison between a uniform price and discriminatory auction

as, for example, is done in Hortaçsu (2002), as in the uniform price auction bidders may submit

bids above their marginal valuation schedule when bid functions have finite number of steps. This

point is not purely theoretical. In many of the auctions in my empirical analysis, actual revenue

exceeds the revenue that would have been achieved had the bidders bid their marginal valuation

schedules. Furthermore, the model with continuously differentiable bid functions might not be a

good approximation, since the results may be biased towards the discriminatory auction. I propose

a new method to evaluate the performance of the employed mechanism, based on estimating the

effectiveness of values extraction and the efficiency of the allocation. In the empirical analysis of

Czech treasury auctions, I examine the performance of the uniform price auction. I conclude that

the uniform price auction performed well. The allocation was nearly efficient, and the mechanism

extracted almost all of bidders’ values. The method also allows me to obtain an estimate of the

implicit bidding costs faced by bidders in these auctions. I find that the bidders may not benefit

much from submitting a finer bid function.

For my empirical analysis I used only one of the necessary conditions for equilibrium bidding

that allowed me to obtain point estimates of the marginal value at the submitted quantity bids.

Using the other necessary condition together with the (infinitely many) inequalities implied by

the bid being globally optimal in equilibrium, we may be able to obtain a tighter bound on the

marginal valuation function than the upper and lower envelopes of the obtained point estimates

used in this paper. Thus improving idenfication of the marginal valuation function is a promissing

direction of future research. Apart from this direction it would also be interesting to study the

role of noncompetitive bids by the auctioneer. Furthermore, the question of providing methods for

computation of counterfactual equilibria is of great interest. Finally, it would be interesting to see

whether a strategic choice of the maximal number of bidding steps could eliminate "bad" equilibria

that yield low revenue. Does an upper bound on the number of bidpoints increase the lower bound

on expected revenue?
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A Appendix

A.1 Proof of Proposition 1

I will follow the strategy of Reny and Zamir (2004) of discretizing the action space to a fine grid and

applying existence results from such settings and then taking a sequence of the discretized games

as the action spaces become dense in the original ones to argue that the limit of the equilibria from

the discretized games constitutes an equilibrium of the original game.

For n = 1, 2, ..., let Gn denote the modified auction in which bidder i’s finite set of possible

bids is denoted by Bn
i and common quantity grid Qn. Further, suppose that Bn

i ⊇ Bn−1
i and that

B∞i = ∪nBn
i is dense in Bi and similarly for Qn. Let the set of the possible number of steps be

the same as in the original game K =
©
0, ..., K̄

ª
. Notice that I require that the discretized bid

space is individual specific, while the discretized quantity space may be common. The reason for

this is that I require that at each discretized game, no two players have a common serious bid,

Bn
i ∩Bn

j = {l} ∀i, j ∀n <∞, and thus a tie (two bidders with the same bid at the market clearing
price) can never occur. Each discretized game Gn is thus a game with finite actions and thus Nash

equilibrium in distributional strategies exists by Theorem 1 of Milgrom and Weber (1985). Let σn

denote an equilibrium of Gn. Notice that the set of all probability measures over a product of i’s

type and all non-increasing left-continuous bid functions with at most K̄ steps defined on B × Q

(i.e., the set of his distributional strategies) is a compact metric space with respect to the weak

topology and any equilibrium in distributional strategies of the discretized game can be expressed

as an element of this set. Therefore as we take the limit of such equilibria there exists a convergent

subsequence, so that the limit, σ̂, is itself a probability measure over Si×Ti× [{l} ∪ [0, p̄]× [0, 1]]K̄ .
Now we need to argue that σ̂ is an equilibrium of the unrestricted uniform price auction game.

The problem in this argument arises because of the rationing pro-rata on-the-margin and the

associated possible discontinuity in ex post payoff due to ties. In order to establish existence in the

unrestricted game, we need to show the following for a.e. (si, ti):

sup
b×q∈(Bi×Q)K

EUi (b, q, σ̂−i|si, ti) ≤ lim
n

EUi

¡
σni ,σ

n
−i|si, ti

¢
(A-1)

and also:

lim
n

EUi

¡
σni ,σ

n
−i|si, ti

¢
= EUi (σ̂i, σ̂−i|si, ti) (A-2)
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EUi

¡
σni ,σ

n
−i|si, ti

¢
denotes the conditional expected utility of type (si, ti) obtained using a

behavioral strategy14 of type (si, ti), i.e., a conditional distribution over i’s actions, corresponding

to his distributional strategy σni .

Consider an arbitrary bid vector (b, q) (i.e., i’s pure strategy). Then we have:

EUi (b, q, σ̂−i|si, ti) ≤ lim
b0↓b

lim
q0→q

EUi

¡
b0, q0, σ̂−i|si, ti

¢
(A-3)

where the inequality follows since the only case in which we do not obtain an equality is that some

component of b equals somebody else’s bid with positive probability and this bid becomes a market

clearing price with positive probability. In that case as we take the limit as b0 ↓ b the payoff to
i would be strictly higher, since he would be breaking the tie in his favor at any point along the

sequence.

As Bn
i becomes dense in Bi, for every b0 ∈ Bi, every ε > 0, and a.e. (si, ti) there exists n̄ ≥ 1

and b̄ ∈ (Bn̄
i )

K , q̄ ∈ (Qn̄)K such that

lim
b0↓b

lim
q0→q

EUi

¡
b0, q0, σ̂−i|si, ti

¢
≤ EUi

¡
b̄, q̄, σ̂−i|si, ti

¢
+ ε

≤ EUi

¡
b̄, q̄,σn

−i|si, ti
¢
+ 2ε, for n ≥ n̄

≤ EUi

¡
σni ,σ

n
−i|si, ti

¢
+ 2ε, for n ≥ n̄

where the first and second line follow because the bid vector b̄ can be chosen so that the probability

that any component of b̂j ∈supp σ̂j (sj , tj) (there is only finitely price bids, i.e., components of b̂j ’s,
which may have positive probability) equals any component of b̄ is arbitrarily small for any bidder

j, and hence the probability of type (si, ti) tying is arbitrarily small. The third line follows since

the profile
¡
b̄, q̄
¢
∈ (Bn̄

i ×Qn̄)K is feasible in Gn for every n ≥ n̄ and σni is a best reply to σ
n
−i.

Because ε > 0 is arbitrary, and so is (b, q) in (A-3), we obtain the inequality in (A-1) for all i and

a.e. (si, ti).

To obtain the equality in (A-2) we need to establish that no two price-bids by two distinct

bidders in the support of their limiting strategies can be the same and equal to the market clearing

price with positive probability, since the interim payoff would then be continuous at the limiting

bid strategy.

Suppose that under σ̂ there is a price-bid b̂ik that is in the support of the equilibrium distrib-

utional strategy of bidder i and that is the same as some price bid by a rival and can at the same

time clear the market with positive probability π. Since there can be only finitely many prices

that can clear the market with positive probability, there must exist a positive measure subset of

types Ŝ × T̂ ∈ [0, 1]2N such that for some bidder j and some profile of types (s, t) ∈ Ŝ × T̂ we have

b̂ik = b̂jl = pc (s, t, σ̂) with positive probability under σ̂ for some steps k and l that may depend on

14 In general, there can be many behavioral strategies that are generated by a distributional strategy - see Milgrom
and Weber (1985).
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the type. The associated allocation (expected allocation conditional on the tie occuring) is q̂ci and

q̂cj to the players that tie at the market clearing price. Now we will show that this would contradict

having an equilibrium in a nearby discretized game by showing that with a sufficiently fine grid,

one of these two players would have a profitable deviation from bidding according to σn. The idea

is that one of these two bidders has to lose in the discretized game, since there can be no ties by

construction. With sufficiently fine grid, it will be worthwhile for this player to adjust his bidding

strategy up to beat his rival since the discontinuous jump in allocation will outweigh the possible

increase in the market clearing price.

Formally, let πjn denote the probability that j beats i in the discretized game Gn but ties

in the limit and πin the probability that i beats j in Gn but ties in the limit. Notice that by

construction limn→∞ (πin + πjn) = π. Suppose without loss that limn→∞ πjn > 0. This implies

that the tie that arises in the limit is broken in j’s favor at least in some states of positive measure

in the discretized game sufficiently far along the sequence, and thus the (expected) allocation to

i conditional on states leading to a tie in the limiting game satisfies (qci )
n < q̂ci - in other words

i gets allocated even less than in the limit when he ties with j. Let b̄j denote the supremum

of the bid by bidder j that is submitted with positive probability under the strategy σnj and

that just beats the market clearing price in states in which these bidders tie in the limit: b̄j =

sup
n
inf
n
bj : bj > pc (s, t,σn) , Pr

³
bj |σnj

´
> 0, and (s, t) ∈ Ŝ × T̂

oo
. Now consider a deviation

for all pure strategies in the support of types (si, ti) ∈ Ŝi× T̂i at the relevant step k to b0 > b̄j such

that b0 = inf
©
b ∈ Bn

i : b > b̄j
ª
. For a sufficiently fine grid (high enough n) this deviation results in

an arbitrarily small increase in expected market clearing price, while resulting in a strict increase

in expected allocation, thus being strictly profitable. Formally, consider a sequence {εn}∞n=1 such
that limn→∞ εn = 0 and εn > 0 ∀n. Then ∀εn : ∃n̄ : ∀n ≥ n̄,

¯̄̄
b0 −max

n
b̂ik, b

n
ik

o¯̄̄
< εn since in

the limit i’s action set is dense in Bi = {l} ∪ [0, p̄]. Bidding b0 instead of bnik results in a change of
market clearing price of at most εn (since

¯̄̄
b0 −max

n
b̂ik, b

n
ik

o¯̄̄
< εn), and hence the change in the

expected payment is at most εn (since the most a bidder can win is q = 1). Increasing i’s bid also

increases the probability of i winning some units. The lowest bound on the change in expected gross

utility in game Gn is therefore πjn [V (qci , si)− V ((qci )
n , si)] where qci is the allocation to i after

the deviation (and thus i beats j’s bid) and (qci )
n is i’s allocation before the deviation (and thus

j beats i0s bid). πjn must be positive for sufficiently high n since by assumption limn→∞ πjn > 0.

Fix some small δ > 0 such that limn→∞ πjn > δ and let n1 solve:

∀n ≥ n1 :
¯̄̄
πjn − lim

m→∞
πjm

¯̄̄
< δ

Let n2 solve:

∀n ≥ n2 : εn <
³
lim

m→∞
πjm − δ

´
[V (qci , si)− V ((qci )

n , si)] (A-4)
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The right hand side of (A-4) is strictly positive, since limm→∞ πjm > δ, qci > (q
c
i )
n, V (·, si) is non-

decreasing in the first argument since it is defined as V (q, si) =
R q
0 v (u, si) du and

R qci
(qci )

n v (u, si) du

must be strictly positive otherwise i would not have demanded qik > qci . Therefore by picking εn∗

where n∗ = max {n1, n2, n̄}, this deviation would be strictly profitable in some discretized game
Gn∗ , a contradiction to σn∗ being an equilibrium. Therefore we cannot have ties with positive

probability of also setting the market clearing price under the limiting strategies (except possibly

for a measure zero subset of i’s types).

But this implies that the expected payoff EUi (σ̂i, σ̂−i|si, ti) is continuous in all components of
bid vector b̂i (also at l since l is isolated) at the limit σ̂i for a.e. (si, ti) and all b̂i ∈supp σ̂i (si, ti).

Therefore limnEUi

¡
σni ,σ

n
−i|si, ti

¢
= EUi (σ̂i, σ̂−i|si, ti) and so (A-1) and (A-2) together imply that

σ̂ is an equilibrium, since they establish that σ̂i is a best reply to σ̂−i for a.e. (si, ti). QED

A.2 Proof of Lemma 1

Suppose that there exists an equilibrium, in which for a type (si, ti) of bidder i a tie between

at least two bidders can occur with positive probability π > 0. Since there can be only finitely

many prices that can clear the market with positive probability, in order for a tie to be a positive

probability event, it has to be the case that there exists a positive measure subset of types Ŝ−i ×
T̂−i ∈ [0, 1]N−1 × CN−1 such that for some bidder j, and all profiles of types (s−i, t−i) ∈ Ŝ0−i
×T̂ 0−i ⊆ Ŝ−i × T̂−i (another positive measure subset) and some steps k and l we have bik (si, ti) =

bjl (sj , tj) = pc ((si, ti, s−i, t−i) ,b,q). Without loss suppose that this event occurs at the bid

(bik, qik) , and that the quantity allocated to i after rationing is qRATi < qik. Let SR
π denote the

minimal level of the residual supply in the states leading to rationing at bik.

Consider a deviation to a bidpoint b
0
ik = bik + ε and q0ik = qik where ε is sufficiently small. This

deviation increases the probability of winning qik − qik−1 units. Most importantly in the states

that led to rationing under the original bid, type (si, ti) of bidder i will now obtain q∗ > qRATi ,

where q∗ ≥ min
©
qik, S

R
π

ª
. Notice that qik−1 = qRATi is ruled out since the market clearing price

has to be the highest price at which aggregate demand weakly exceeds aggregate supply and since

qik−1 = qRATi would imply that residual supply was vertical at qRATi , the market clearing price could

not have been bik. This holds of course also for the other bidder who is being rationed. Therefore,

in the states leading to rationing: limp↓bik S
R > qRATi = SR (bik) and hence there is indeed room for

a deviation. The probabilities of winning other units remain unchanged. Therefore the lower bound

on the increase in si’s expected gross surplus from such a deviation is π
¡
V (q∗, si)− V

¡
qRATi

¢¢
> 0.

The increased bid might also result in an increase in the market clearing price. This increase,

however, is bounded by ε, since at prices higher than bik + ε bidder i’s bid function stays the

same. Since the most bidder i wins is qi = 1, the maximum change in the expected payment is

ε. Comparing the upper bound on the change in expected payment with the lower bound on the
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change in expected gross utility, we obtain

ε < π
¡
V (q∗, si)− V

¡
qRATi , si

¢¢
(A-5)

Consider a sequence {εn}∞n=1 such that limn→∞ εn = 0 and εn > 0 ∀n. By definition of a limit
there must exist n∗ such that for all n ≥ n∗ we have:

εn < π
¡
V (q∗, si)− V

¡
qRATi , si

¢¢
Therefore setting ε = εn∗ , the inequality (A-5) will hold, and thus the proposed deviation would

indeed be strictly profitable for the type (si, ti). Since there can be only countably many prices

at which bidders may tie with positive probability, there can be only countably many types (si, ti)

with a profitable deviation (i.e., that can tie with positive probability at one of these prices) such

that no bidder j has a profitable deviation and thus for a.e. type (si, ti) ties have zero probability

in equilibrium for all bidders i. QED

A.3 Proof of Proposition 2

With a slight abuse of notation, I will summarize a state (Q, s−i, t−i) by s−i. In order to show

(local) optimality of a bidpoint (bk, qk), we would like to obtain:

lim
q0→qk

Es−iu (si|qk)−Es−iu (si|q0)
qk − q0

and show that if this limit equals zero, we get our optimality condition, since the bidder does not

have a profitable local deviation.

To begin define the following sets given a vector of bidpoints (p,q):

θ1k (qk) =
©
s−i : ∃p : bk+1 < p < bk : qk ∈ SR (p, s−i) ∧ qk /∈ SR (bk, s−i)

ª
θ2k (qk) =

©
s−i : ∃q ∈ SR (bk, s−i) : qk−1 < q ≤ qk

ª
θ3k (qk) =

©
s−i : ∃q ∈ SR (bk+1, s−i) : qk < q < qk+1 ∧ qk /∈ SR (bk, s−i)

ª
θ4k (qk) =

©
s−i : S

R (bk, s−i) ≤ qk−1
ª

θ5k (qk) =
©
s−i : S

R (bk+1, s−i) ≥ qk+1
ª

The first set includes all vectors s−i such that there is a market clearing price, which is in the interval

(bk+1, bk) and bidder i gets his full demand. The second set includes all vectors s−i such that the

market clearing price will be bk and player i will be rationed (except for the case qk ∈ SR (bk, s−i)).

The third set includes all s−i such that the market clearing price will be bk+1 and player i will

be rationed, in which case his payoff might be affected by perturbation of qk in case of rationing
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on-the-margin, since his share depends on his marginal demand qk+1 − qk. Notice though that i0s

payoff will be affected only in the case that someone else is being rationed as well, i.e., residual

supply is horizontal at bk+1, which is a zero probability event in equilibrium as shown in Lemma 1.

The fourth set includes all s−i such that the market clearing price will be strictly above bk and

perturbing qk does not affect the payoff. The last set includes all s−i such that the market clearing

price is weakly less than bk+1, and perturbing qk will not affect the payoff. Further denote S−i
as the set of all possible realizations of the vector of random variables including the signals of all

players other than player i.

Notice that ∪5j=1θjk (qk) = S−i and all sets are pairwise disjoint, i.e., any possible vector s−i
belongs to exactly one set.

To economize on space I will write Pr (θjk (qk)) for Pr (s−i ∈ θjk (qk)). By the law of total

probability, we can rewrite the Es−iu (si) as:

Es−iu (si) =
5X

j=1

Pr (θjk (qk))Es−i [u (si) |θjk (qk)] (A-6)

= Pr
¡
∪3j=1θjk (qk)

¢
Es−i

£
u (si) | ∪3j=1 θjk (qk)

¤
+

+
5X

j=4

Pr (θjk (qk))Es−i [u (si) |θjk (qk)]

Notice that Pr
³
∪3j=1θjk (qk)

´
is constant for any local perturbation of qk, since any such pertur-

bation only causes some reshuffling of states s−i between θ1k, θ2k, and θ3k. Since in states in θ4k

and θ5k bidder i actually obtains at most qk−1 or at least qk+1 respectively, perturbing qk will not

result in any change in (conditional) expected utility in these states.

The main point of the following long derivation is to show that the terms obtained by direct dif-

ferentiation of the expected payment bk
∂Es−i(q(s−i);p=bk)

∂qk
, bk+1

∂Es−i(q(s−i);p=bk+1)

∂qk
and qk

∂Es−i(p
c(s−i);bk+1<p<bk)

∂qk

can be combined into one term: qk
∂Es−i(p

c(s−i);bk+1≤p≤bk)
∂qk

and that this object exists in equilibrium

for a.e. type (si, ti).

For easier exposition, consider now a perturbation of qk down to q0 = qk − ε. Let q0 be the

perturbed quantity-bid vector, i.e., q0m = qm∀m 6= k and q0k 6= qk. Define the following subsets of

θ2k and θ3k:

ω1k
¡
q0
¢
=

©
s−i : s−i ∈ θ2k (qk) ∩ θ1k

¡
q0
¢ª

ω2k
¡
q0
¢
=

©
s−i : s−i ∈ θ2k (qk) ∩ θ3k

¡
q0
¢ª

ω3k
¡
q0
¢
=

©
s−i : s−i ∈ θ1k (qk) ∩ θ3k

¡
q0
¢ª

These subsets include all states that get transferred from one θ to another one. The set ω1k includes
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states in which bidder i was rationed at price bk originally, and after perturbing qk down to q0 he

gets his full demand. Set ω3k includes states in which he originally got qk, but after perturbation

the market is going to clear at bk+1 and bidder i will thus be rationed and obtains a higher quantity.

Finally set ω2k includes states in which he was rationed at bk and after perturbing his demand qk,

he will be rationed at bk+1 instead.

Notice that with these sets we can now express the probabilities of sets θjk (q0) as follows:

Pr
¡
θ1k

¡
q0
¢¢

= Pr (θ1k (qk)) + Pr
¡
ω1k

¡
q0
¢¢
− Pr

¡
ω3k

¡
q0
¢¢

Pr
¡
θ2k

¡
q0
¢¢

= Pr (θ2k (qk))− Pr
¡
ω1k

¡
q0
¢¢
− Pr

¡
ω2k

¡
q0
¢¢

Pr
¡
θ3k

¡
q0
¢¢

= Pr (θ3k (qk)) + Pr
¡
ω3k

¡
q0
¢¢
+Pr

¡
ω2k

¡
q0
¢¢

Now we have all the necessary notation. First some preliminary results and observations. We

have already shown in Lemma 1 that ties at the market clearing price are zero probability events in

equilibrium. In other words this implies that with probability one only one player has a bid exactly

at the market clearing price and thus under rationing pro-rata on-the-margin he is the only one

who is rationed if necessary. Now we will show that in equilibrium for a.e. type (si, ti) for every

step k (i) Pr (θjk (qk)) is continuous at qk and (ii) Es−i [p|θ1k (qk)] is continuous at qk, and hence
Es−i [p; bk ≥ p ≥ bk+1] is continuous at qk, thus locally differentiable a.e.

First, I begin with a helpful lemma, which guarantees that in equilibrium the probability of

residual supply having a common vertical segment with i’s bid at any qk (si, ti) such that qk (si, ti)

is a quantity bid submitted by type (si, ti) of bidder i with positive probability is zero for a.e. type

(si, ti).

Lemma 2 In equilibrium, Pr
©
s−i : ∃pL, pU such that pU ≤ bk (si, ti) and ∀p ∈ [pL, pU ] SR (p, s−i) = q̂

ª
=

0 for all bidpoints (bk, qk = q̂) that are submitted with positive probability by type (si, ti) of bidder

i, for a.e. (si, ti) and every step k.

Proof. Suppose for contradiction that in equilibrium residual supply can be vertical at qk with

probability π and let Π be the set of states leading to this event. Let pL be the lowest price such

that SR (p, s−i) = qk and let pc = E (p|Π). It follows from Lemma 1 and from residual supply being
non-decreasing in price that pL < bk (si, ti).

Suppose first that pU = bk (si, ti). Consider a deviation of type (si, ti) for all bid functions

such that qk (si, ti) is submitted by this type with positive probability at some step to bk (si, ti)− ε

with the same quantity bid qk (si, ti). This deviation decreases the probability of winning units in

(qk (si, ti) , qk−1 (si, ti)), but this decrease can be made arbitrarily small by a proper selection of

ε (by the same argument as in the proof of Lemma 1). For any ε this deviation leads to saving

in expected payment of at least πεqk. Therefore for ε sufficiently small this deviation is strictly
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profitable. Hence in equilibrium only zero measure of types of bidder i can have such a profitable

deviation.

Now suppose that pU < bk (si). But this implies that the residual supply is horizontal at pU
with probability π. Therefore there must be some bidder j and positive measure subset of his types

for whom the residual supply is vertical at his step qm (sj , tj) and pU = bm (sj , tj). Hence all such

types of bidder j would have a profitable deviation. Therefore in order for this to be an equilibrium

it must again be that no positive measure of types of bidder i submit a bid at qk (otherwise bidder

j would have a strictly profitable deviation).

For the following lemmas, we will make use of the fact that limq0→qk ωjk (q
0) = 0 ∀j, k which is

a direct corollary to the last lemma.

Lemma 3 In equilibrium, Pr (θjk (qk)) is continuous at qk (kth component of q) ∀k,j for a.e. type
(si, ti).

Proof. We will show this for θ1k. Pick ε > 0. Then we need to show that ∃δ such that ∀q0 ∈
[qk − δ, qk + δ], |Pr (θ1k (q0))− Pr (s−i ∈ θ1k (qk))| ≤ ε, where q0m = qm ∀m 6= k.

Let’s first consider qk−δ. Using our notation, Pr (θ1k (qk − δ)) = Pr (θ1k (qk))+Pr (ω1k (qk − δ))−
Pr (ω3k (qk − δ)). Therefore to prove continuity we need to show that |Pr (ω1k (qk − δ))− Pr (ω3k (qk − δ))| ≤
ε, which is implied if max {Pr (ω1k (qk − δ)) ,Pr (ω3k (qk − δ))} ≤ ε.

Consider first Pr (ω1k (qk − δ)).

Consider a decreasing sequence {δn}, such that lim δn = 0. Now we have a decreasing sequence

of sets: ω1k (qk − δ1) ⊃ ω1k (qk − δ2) ... ⊃ ω1k (qk). By the elementary theorem from probability

theory, the limit of the probabilities of the sets along the sequence is equal to probability of the

limiting set. The limiting set has zero measure by definition of θ’s and by Lemma 2, and hence

Pr (ω1k (qk − δn))→ 0. By definition of a limit, we must have: ∃m : ∀n ≥ m : Pr (ω1k (qk − δn))−
0 ≤ ε.

Now consider a similar argument for Pr (ω3k (qk − δ)) . The set ω3k (q0) includes all states that

cut the vertical part of i’s bid function under qk, but cut the horizontal part under q0. By the same
argument as above, this set becomes arbitrarily small as δ → 0, and therefore we can pick δm0 such

that Pr (ω3k (qk − δm0)) ≤ ε. Choosing δ = min {δm, δm0} concludes the proof since the case qk + δ

is analogous. A similar argument establishes continuity of Pr (s−i ∈ θjk|p,q) for j ∈ {2, 3}, and of
course since Pr (θjk (qk)) = Pr (θjk (q

0)) for j ∈ {4, 5} and any q0 continuity is satisfied for these

states as well.

Lemma 4 In equilibrium, Es−i [p
c (s−i, qk) |θ1k (qk)] is continuous at qk ∀k for a.e. type (si, ti).

Proof. By Lemma 3, Pr (θ1k (qk)) is continuous in qk. The conditional expectation is:

E (pc|bk > pc > bk+1, qk) =

Z
s−i∈θ1k(qk)

pc (s−i, qk)
dF (s−i)

Pr (θ1k (qk))
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where pc (s−i, qk) solves: supp p s.t. qk ∈ 1−
P

j 6=i qj (sj , p). Let’s fix ε > 0. Now we want to show

that there is δ > 0, s.t. ∀q ∈ B (qk, δ) : |E (pc|bk > pc > bk+1, qk)−E (pc|bk > pc > bk+1, q)| ≤ ε.

Perturbing q will have two effects on the conditional expectation: a direct effect through changing

pc (s−i, qk) and an indirect effect through changing the set θ1k (qk). We want to pick δ such that

neither of these effects is larger than ε
2 .

Consider first the direct effect. The change in the market clearing price for a state s−i can

happen only in the case that the residual supply corresponding to this state has at least one vertical

piece between q0 and qk, call the set of such states η1 (q
0, qk). But under the BNE hypothesis the

probability measure of a set of states s−i that lead to a vertical residual supply exactly at qk between

prices bk and bk+1 and must be zero by Lemma 2. η1 (q
0, qk) is therefore continuous by the same

argument as in Lemma 3 and in a neighborhood sufficiently close to qk the probability measure of

this set is arbitrarily small. Moreover, since the new market clearing price still has to fall between

bk (si, ti) and bk+1 (si, ti), the induced direct change is bounded by |bk (si, ti)− bk+1 (si, ti)|, and
therefore we can pick δ1 such that:

|bk (si, ti)− bk+1 (si, ti)|max [Pr (η1 (qk − δ1, qk)) ,Pr (η1 (qk + δ1, qk))] ≤
ε

2

Now consider the indirect effect. Changing qk to q0 can result in some states s−i that originally

led to market clearing price between bk (si, ti) and bk+1 (si, ti) to no longer satisfy this restriction.

Call the set of such states η2 (q
0, qk) . On the other hand there might be other states s−i which

originally did not lead to prices between bk (si, ti) and bk+1 (si, ti), which now do; call this set

η3 (q
0, qk). Again by the same argument as in Lemma 3, as q0 becomes arbitrarily close to qk the

probability measure of either of these sets is arbitrarily close to zero, and it is continuous and

limiting to 0 as δ → 0 on [qk − δ, qk] and on [qk + δ, qk]. Since the change in expectation cannot

exceed |bk (si, ti)− bk+1 (si, ti)|, we can pick δ2 and δ3 such that

|bk (si, ti)− bk+1 (si, ti)|max [Pr (η2 (q − δ2, qk)) , η2 (q + δ2, qk)] ≤
ε

4

|bk (si, ti)− bk+1 (si, ti)|max [Pr (η3 (q − δ3, qk)) , η3 (q + δ3, qk)] ≤
ε

4

Therefore we can pick δ = min {δ1, δ2, δ3} concluding the proof.

Lemma 5 In equilibrium, Es−i [p
c (s−i, qk) ; θ1k, θ2k, θ3k] = Es−i [p

c (s−i, qk) ; bk ≥ pc ≥ bk+1] is con-

tinuous at qk ∀k and thus locally differentiable a.e. for a.e. type.

Proof. We have:

Es−i

£
pc (s−i, qk) ;∪3j=1θjk (qk)

¤
= Pr (θ1k (qk))Es−i [p

c (s−i, qk) |θ1k (qk)]+Pr (θ2k (qk)) bk+Pr (θ3k (qk)) bk+1

By Lemma 3, Pr (θjk (qk)) is continuous in qk and by Lemma 4 Es−i [p
c (s−i, qk) |θ1k (qk)] is also
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Figure 6: Different Cell Partitions

continuous. Therefore the object of interest is a sum and product of continuous functions, and

hence is itself continuous.

With the preliminaries in hand, we are now ready for the main derivation.

Let us focus on Pr
³
∪3j=1θjk (qk)

´
Es−i

h
u (si) | ∪3j=1 θjk (qk)

i
. First Es−iu (si, ti) can further be

split into two parts: (i) the expected gross utility Es−iV (y (s−i, qk) , si) where y (s−i, qk) is either

qk in case of a state in θ1k, the rationed quantity qRAT (s−i, qk − qk−1) in case of a state in θ2k, or

qRAT (s−i, qk+1 − qk) in case of a state in θ3k; and (ii) the expected paymentEs−i [y (s−i, qk) p
c (s−i, qk)]

where both y (s−i, qk) and pc (s−i, qk) depend on the state: e.g., y (qk) = qk in θ1k, but pc (s−i, qk)

is random, in θ2k on the other hand pc (s−i, qk) = bk, but y (s−i, qk) is random due to rationing and

similarly for θ3k. Recall that

Pr
¡
θ1k

¡
q0
¢¢

= Pr (θ1k (qk)) + Pr
¡
ω1k

¡
q0
¢¢
− Pr

¡
ω3k

¡
q0
¢¢

Pr
¡
θ2k

¡
q0
¢¢

= Pr (θ2k (qk))− Pr
¡
ω1k

¡
q0
¢¢
− Pr

¡
ω2k

¡
q0
¢¢

Pr
¡
θ3k

¡
q0
¢¢

= Pr (θ3k (qk)) + Pr
¡
ω3k

¡
q0
¢¢
+Pr

¡
ω2k

¡
q0
¢¢

The difficulty we are facing is that y (s−i, qk) and pc (s−i, qk) are not continuous over the cells of

our partition - in particular they are different functions at each cell, and hence the usual Leibnitz

rule fails. To illustrate this, consider Figure 6. y (s−i, qk) and pc (s−i, qk) are the same functions on

A and A0 evaluated at qk and q0 respectively (for example if the set A is our θ1k, then y (·, x) = x).

But in states falling to set C under q0, these functions would be different under qk. We can, however,

always "pretend" that the same continuous function f that we are integrating on cell A under qk
is also valid on cell A under q0 and add to it the integral of the same function on cell C under q0.

Similarly we can pretend that the same function f that we are integrating on B under qk will hold

on B under q0 and then subtract the integral of the same function on set C under q0.

Let’s consider first the effect that a perturbation in qk would have on the expected gross utility.

Deriving it indirectly using the limit:
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lim
q0→qk

Es−iV (y (s−i, q
0) , si)−Es−iV (y (s−i, qk) , si)

q0 − qk

= lim
q0→qk

P3
j=1

£
Es−i [V (y (s−i, q

0) , si) ; θjk (q0)]−Es−i [V (y (s−i, qk) , si) ; θjk (qk)]
¤

q0 − qk

= lim
q0→qk

Es−i [V (q
0, si)− V (qk, si) ; θ1k (qk)] + [Pr (ω1k)− Pr (ω3k)]V (q0, si)

q0 − qk

+ lim
q0→qk

"
Es−i

£
V
¡
qRAT (q0 − qk−1, s−i) , si

¢
− V

¡
qRAT (qk − qk−1, s−i) , si

¢
; θ2k (qk)

¤
−

Es−i

£
V
¡
qRAT (q0 − qk−1, s−i) , si

¢
;ω1k

¤
−Es−i

£
V
¡
qRAT (q0 − qk−1, s−i) , si

¢
;ω2k

¤ #
q0 − qk

+ lim
q0→qk

"
Es−i

£
V
¡
qRAT (qk+1 − q0, s−i) , si

¢
− V

¡
qRAT (qk+1 − qk, s−i) , si

¢
; θ3k (qk)

¤
+

Es−i

£
V
¡
qRAT (qk+1 − q0, s−i) , si

¢
;ω3k

¤
+Es−i

£
V
¡
qRAT (qk+1 − q0, s−i) , si

¢
;ω2k

¤ #
q0 − qk

where the first equality follows by the law of total probability and the fact that on θ4k and θ5k

perturbing kth-step qk to q0 does not alter the gross utility and also not their respective probabil-

ities. The second equality results after plugging in the conditional gross utility before and after

the perturbation using the approach described above - extending the continuous functions to the

partition cells under qk and collecting terms.

Now invoking the definition of the derivative and noting that limq0→qk

£
qRAT (.) |ωjk

¤
= qk and

limq0→qk Pr (ωjk (q
0, q)) = 0 and hence after applying l’Hospital’s rule all terms involving ωjk vanish

in the limit, we can simplify the last expression above to:

Pr (θ1k (qk)) v (qk, si)+

+Es−i

∙
v
¡
qRAT (s−i, qk − qk−1) , si

¢ ∂qRAT (s−i, qk − qk−1)

∂qk
; θ2k (qk)

¸
+

+Es−i

∙
v
¡
qRAT (s−i, qk+1 − qk) , si

¢ ∂qRAT (s−i, qk+1 − qk)

∂qk
; θ3k (qk)

¸
= Pr (θ1k (qk)) v (qk, si)

where the last equality follows by Lemma 1 together with the fact that in the zero probability event

that qRAT might be responsive to changes in qk, this response is bounded (since it is the rationing

coefficient which is less than 1).

Now let us move to the key step in the proof - the effect of the perturbation in qk on the

expected payment. Again using the limit derivation:
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lim
q0→qk

Es−i

h
y (s−i, q0) pc (s−i, q0) ;∪3j=1θjk (q0)

i
−Es−i

h
y (s−i, qk) pc (s−i, qk) ;∪3j=1θjk (qk)

i
q0 − qk

= lim
q0→qk

P3
j=1

£
Es−i [y (s−i, q

0) pc (s−i, q0) ; θjk (q0)]−Es−i [y (s−i, qk) p
c (s−i, qk) ; θjk (qk)]

¤
q0 − qk

= lim
q0→qk

"
Es−i [q

0pc (s−i, q0) ; θ1k (qk)] +Es−i [q
0pc (s−i, q0) ;ω1k]

−Es−i [q
0pc (s−i, q0) ;ω3k]−Es−i [qkp

c (s−i, qk) ; θ1k (qk)]

#
q0 − qk

+

+ lim
q0→qk

"
Es−i

£
qRAT (q0 − qk−1, s−i) bk; θ2k (qk)

¤
−Es−i

£
qRAT (q0 − qk−1, s−i) bk;ω1k

¤
−Es−i

£
qRAT (q0 − qk−1, s−i) bk;ω2k

¤
−Es−i

£
qRAT (qk − qk−1, s−i) bk; θ2k (qk)

¤ #
q0 − qk

+

+ lim
q0→qk

"
Es−i

£
qRAT (qk+1 − q0, s−i) bk+1; θ1k (qk)

¤
+Es−i

£
qRAT (qk+1 − q0, s−i) bk+1;ω3k

¤
+Es−i

£
qRAT (qk+1 − q0, s−i) bk+1;ω2k

¤
−Es−i

£
qRAT (qk+1 − qk, s−i) bk+1; θ3k (qk)

¤ #
q0 − qk

where the second equality follows by the law of total probability after substituting in for the

probabilities of the different partition cells after perturbation and extending (or reducing) the

functions to the old partition cells as described earlier.

By adding and subtracting Es−i [qkp
c (s−i, q0) ; θ1k (qk)], collecting terms and using the definition

of a derivative, we can rewrite the last expression as:
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lim
q0→qk

Es−i [q
0pc (s−i, q0) ; θ1k (qk)]−Es−i [qkp

c (s−i, q0) ; θ1k (qk)]

q0 − qk
+

+ lim
q0→qk

"
Es−i [qkp

c (s−i, q0) ; θ1k (qk)] +Es−i [q
0pc (s−i, q0) ;ω1k]

−Es−i [q
0pc (s−i, q0) ;ω3k]−Es−i [qkp

c (s−i, qk) ; θ1k (qk)]

#
q0 − qk

+

+bkEs−i

∙
∂qRAT (s−i, qk − qk−1)

∂qk
; θ2k (qk)

¸
+ bk+1Es−i

∙
∂qRAT (s−i, qk+1 − qk)

∂qk
bk+1; θ3k (qk)

¸
+

+ lim
q0→qk

bk+1Es−i

£
qRAT (qk+1 − q0, s−i) ;ω3k ∪ ω2k

¤
− bkEs−i

£
qRAT (q0 − qk−1, s−i) ;ω1k ∪ ω2k

¤
q0 − qk

= Es−i [p
c (s−i, qk) ; θ1k (qk)] +

lim
q0→qk

"
qk
£
Es−i [p

c (s−i, q0) ; θ1k (qk)] +Es−i [p
c (s−i, q0) ; θ2k (qk)] +Es−i [p

c (s−i, q0) ; θ3k (qk)]
¤

−qk
£
Es−i [p

c (s−i, qk) ; θ1k (qk)] +Es−i [p
c (s−i, qk) ; θ2k (qk)] +Es−i [p

c (s−i, qk) ; θ3k (qk)]
¤ #

q0 − qk
+

+ lim
q0→qk

Es−i [q
0pc (s−i, q0) ;ω1k]−Es−i [q

0pc (s−i, q0) ;ω3k]

−qkEs−i [p
c (s−i, q0) ;ω1] + qkEs−i [p

c (s−i, q0) ;ω3k]

q0 − qk

= Es−i [p
c (s−i, qk) ; θ1k (qk)] + qk

∂Es−i

h
pc (s−i, q0) ;∪kj=1θjk (qk)

i
∂qk

where the first equality is the key step: (i) first term is obtained by simplification; (ii) using

Lemma 1 we eliminate the derivatives of the rationed quantity; (iii) we add and subtract terms

to complete the function qkp
c (s−i, q0) to full ∪3j=1θjk. In doing that we make use of the following

facts:

Es−i

£
pc
¡
s−i, q

0¢ ; θ2k (qk)¤−Es−i

£
pc
¡
s−i, q

0¢ ; θ2k ¡q0k¢¤
−Es−i

£
pc
¡
s−i, q

0¢ ;ω1k¤−Es−i

£
pc
¡
s−i, q

0¢ ;ω2k¤ = 0
Es−i

£
pc
¡
s−i, q

0¢ ; θ3k (qk)¤−Es−i

£
pc
¡
s−i, q

0¢ ; θ3k ¡q0k¢¤
+Es−i

£
pc
¡
s−i, q

0¢ ;ω3k¤+Es−i

£
pc
¡
s−i, q

0¢ ;ω2k¤ = 0
Therefore we can multiply all terms by qk and add them to our limit. Final expression following

the first equality obtains by rearranging terms. Finally the last equality then follows by definition
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of the derivative and because

lim
q0→qk

Es−i [q
0pc (s−i, q0) ;ω1k]−Es−i [q

0pc (s−i, q0) ;ω3k]− qkEs−i [p
c (s−i, q0) ;ω1] + qkEs−i [p

c (s−i, q0) ;ω3k]

q0 − qk

= lim
q0→qk

∂ Pr (ω1k)

∂q0
£
q0Es−i

£
pc
¡
s−i, q

0¢ |ω1k¤− qkEs−i

£
pc
¡
s−i, q

0¢ |ω1k¤¤
+ lim

q0→qk

∂ Pr (ω3k)

∂q0
£
q0Es−i

£
pc
¡
s−i, q

0¢ |ω3k¤− qkEs−i

£
pc
¡
s−i, q

0¢ |ω3k¤¤
+ lim

q0→qk
[Pr (ω1k)K1 +Pr (ω3k)K2]

= 0

where the first equality follows after first splitting the expectations, which can be done because q0

is constant on ωjk.

Es−i

£
q0pc

¡
s−i, q

0¢ ;ωjk¤ = q0 Pr (ωjk)Es−i

¡
pc
¡
s−i, q

0¢ |ωjk¢
and applying l’Hospital’s rule (note that Pr (ωjk) is a function of q0). Finally as we noted earlier

limq0→qk Es−i [q
0|ωjk] = qk and limq0→qk Pr (ωjk) = 0, and since both K1 and K2 are bounded

(
∂ Pr(ωjk)

∂q0 is also bounded since roughly speaking this is just an integral of some density of s−i
which is bounded by assumption), all terms vanish in the limit.

The last step is to note that the event {s−i ∈ θ1k} is equivalent to the event {bk > pc > bk+1}
and collecting terms our FOC becomes:

Pr [bk > pc > bk+1]
£
v (qk, si)−Es−i (p

c (s−i, qk) |bk > pc > bk+1)
¤
= qk

∂Es−i (p
c (s−i, qk) ; bk ≥ pc ≥ bk+1)

∂qk

The second part of the proposition, equation (3), follows from a much simpler argument. Notice

that expected payment can be written as

Es−i [p
c (s−i) q (s−i)]

= Pr (bk < p < bk−1) qk−1Es−i [p
c (s−i) |bk < p < bk−1] +

Pr (p = bk) bkEs−i [q (s−i) |p = bk] +

Pr (bk+1 < p < bk) qkEs−i [p
c (s−i) |bk+1 < p < bk] +

Pr (p ≤ bk+1 ∪ p ≥ bk)Es−i [p
c (s−i) q (s−i) |p ≤ bk+1 ∪ p ≥ bk]

= qk−1Es−i [p
c (s−i) ; bk < p < bk−1] + qkEs−i [p

c (s−i) ; bk+1 < p < bk]

+bkEs−i [q (s−i) ; p = bk] +Es−i [p
c (s−i) q (s−i) ; p ≤ bk+1 ∪ p ≥ bk−1]
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where the last term does not depend on bk. Taking the derivative w.r.t. bk delivers

qk−1
∂Es−i [p

c (s−i) ; bk < p < bk−1]

∂bk
+

qkEs−i [p
c (s−i) ; bk+1 < p < bk]

∂bk
+ (A-7)

+Es−i [q (s−i) ; p = bk] + bk
∂Es−i [q (s−i) ; p = bk]

∂bk

Notice that doing the same simple exercise w.r.t. qk would not lead directly to our FOC, since

the heart of the argument of the proof above involves combining the terms bk
∂Es−i(q(s−i);p=bk)

∂qk
,

bk+1
∂Es−i(q(s−i);p=bk+1)

∂qk
and qk

∂Es−i(p
c(s−i);bk+1<p<bk)

∂qk
into one term: qk

∂Es−i(p
c(s−i);bk+1≤p≤bk)

∂qk
. Com-

bining the derivative of the expected payment w.r.t. bk with the derivative of the gross utility

yields (3). Also notice that by similar arguments as in Lemmas 3 and 2 we can establish contiuity

and local differentiability a.e. of all expectations involved in (A-7) with respect to the bid bk. QED

Notice that we can also express the expected gross utility as

Es−i [V (q (s−i) , si)]

= Pr (bk+1 < p < bk)V (qk, si) + Pr (bk−1 < p < bk)V (qk−1, si) +

+Es−i [V (q (s−i) , si) ; p = bk]

But taking the derivative of this expression would not yield any simpler expression.

A.4 Proofs of identification results

For the proof of Proposition 4 see Hortaçsu (2002). Propositions 5 and 6 follow from application

of standard results in consistency of a nonparametric regression and kernel density estimators.
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