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Abstract

We study monopolistic and competitive pricing in a two-sided market where agents have in-

complete information about the quality of the product provided by each platform. The analysis

is carried out within a global-game framework that offers the convenience of equilibrium unique-

ness while permitting the outcome of such equilibrium to depend on the pricing strategies of

the competing platforms. We first show how the dispersion of information interacts with the

network effects in determining the elasticity of demand on each side and thereby the equilibrium

prices. We then study "informative" advertising campaigns that increase the agents’ability to

estimate their own valuations and/or the distribution of valuations on the other side of the

market.
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1 Introduction

Many markets feature platforms mediating the interactions among the various sides of the mar-

ket. Examples include media outlets mediating the interactions between readers/viewers on one

side and content providers and advertisers on the other side, video-game consoles mediating the

interactions between gamers and video-game developers, operating systems mediating the interac-

tions between end-users and software developers, employment agencies mediating the interactions

between employers and job seekers, and dating agencies mediating the search of partner-seekers.

Following the initial work of Caillaud and Jullien (2001,2003), Rochet and Tirole (2003), and

Armstrong (2006), the two-sided market literature has studied the role of prices in implementing

such mediated interactions (See Rysman (2009) and Weyl (2010) for excellent overviews and for

recent developments).

The assumption that is commonly made in this literature is that preferences on each side of the

market are common knowledge. This assumption implies that, given the prices set by the platforms,

each agent can perfectly predict the participation decisions of any other agent. In equilibrium, such

predictions are accurate and coincide with the platforms’predictions.

While a convenient modelling shortcut, the assumption that preferences are common knowledge

does not square well with most markets. Preferences over the products and services of different

platforms typically reflect personal traits, making it diffi cult for an agent to predict the behavior

of other agents. Due to network externalities, predicting how many agents from the opposite

side will choose a given platform is key to an agent’s own decision about which platform to join.

Furthermore, because preferences are typically positively correlated among agents from the same

side (albeit, possibly negatively correlated with the preferences of those agents from the opposite

side), agents may experience diffi culty in predicting not just individual actions but also the entire

distribution of actions in the cross-section of the population. In other words, agents from each side

face nontrivial uncertainty about how many agents from the opposite side will choose one platform

over the other.

Because such uncertainty impacts the elasticity of the demand that the platform faces on each

side, it is bound to impact the equilibrium prices and thereby the allocations they induce. In

addition, the platforms themselves may face uncertainty about the distribution of preferences in

the cross-section of the population and hence about the demand they face on each side, which also

contributes to their pricing strategies.

In this paper, we develop a tractable, yet rich, model of platform competition under dispersed

information, where the distribution of preferences in the cross-section of the population is unknown

to both the platforms and to each individual agent, and where each agent has private information

both about his own preferences as well as about the distribution of preferences in the cross-section of

the population. Part of the contribution is in showing how such dispersion of information interacts

with the network effects that are typical of multi-sided markets in determining the elasticity of
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demand on each side. We then use such a characterization to examine the effects of the dispersion

of information on the equilibrium prices and on the allocations they induce. Finally, we examine

the platforms’incentives to change the information available to each side of the market through

informative advertising campaigns, as well as their incentive to innovate by changing the way their

product is likely to be perceived relative to those of the competitors.1

Model preview. Two platforms compete on two sides of a market populated by a continuum

of agents on each side. Each agent derives a direct utility from each platform’s product or services,

hereafter referred to as the agent’s "stand-alone valuation" (other terms favored in the literature

include "intrinsic benefit" or "membership benefit"). In addition, each agent derives an indirect

utility from interacting with the other side that is proportional to the number of agents from the

other side who join the same platform; hereafter, we will refer to this component of the agent’s

payoff as "network effect" (other expressions favored in the literature include "usage valuation",

"cross-side externality" and "interaction benefit"). Each agent is uncertain about the distribution

of stand-alone valuations in the cross section of the population. In addition, we allow for the

possibility that each agent faces uncertainty about his own stand-alone valuations for the two

platforms, reflecting the idea that agents need not know which products and services serve best

their needs (think of an agent choosing over competing technologies).

For simplicity, we assume that all agents from the same side attach the same value to interacting

with the opposite side. However, because agents differ in their expectation about how many agents

from the opposite side will join, de facto, agents are heterogeneous not only in their true (and

estimated) stand-alone valuations, but also in their estimation of the network effects from joining

each of the two platforms.2

We allow for the possibility that the network effects be negative on one side but assume that

there is always one side where they are positive (for example, in the case of a media outlet com-

peting for readers, or viewers, on one side and for advertisers on the other side, it is reasonable to

assume that network effects are negative on the readers’side– most readers dislike advertisement–

but positive on the advertisers’side). We also assume that stand-alone valuations are positively

correlated between any two agents from the same side but possibly negatively correlated between

two agents from opposite sides (Think of the market for operating systems; a system that appeals

to software developers need not necessarily appeal to end-users, for the latter typically value the

various features of the operating system differently from the developers—e.g., they may value the

simplicity of the key tasks more than the flexibility and sophistication of the code).

We build on the global-game literature (Carlsson and Van Damme (1993), Morris and Shin

(2003)) by assuming that the cross-sectional distribution of the stand-alone valuations can be

parametrized by a bivariate state-variable drawn from a known distribution which constitutes the

1See Anderson and Renault (2006, 2009) for recent models of advertising along this line.
2We do not expect any significant change to the nature of the results coming from the introduction of heterogeneity

in the importance the agents assign to the network effects.
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common prior. Each agent then receives a noisy signal of his own stand-alone valuations for the

products of the two platforms which he uses to decide which platform to join. Because of network

effects, agents use their signal not only to estimate their own stand-alone valuations, but also to

predict the distribution of stand-alone valuations on the other side of the market. In other words,

agents use their appreciation of each platform’s product and services to form an opinion about

the preferences on the other side of the market. This inference problem creates new subtle effects

that are missing under complete information and that are reflected in the determination of the

equilibrium allocations (prices and participation decisions).

Implications for equilibrium prices. As in most of the literature, we abstract from price

discrimination and assume that platforms compete by setting access fees to each side of the market.

By paying the fee, an agent is granted access to the platform’s product and thereby also obtains

access to the other side of the market. To isolate the effects mentioned above, we assume that

platforms do not possess any private information relative to the rest of the market. This permits us

to abstract from the signaling role of prices and instead focus on how prices respond to the agents’

extrapolation from their own preferences to the distribution of preferences in the cross-section of

the population.3

The advantage of casting the analysis within a global-game framework is twofold: (i) it permits

us to investigate the implications of the dispersion of information on equilibrium prices, and (ii)

it guarantees that the equilibrium demand functions are unique (thus avoiding the usual "chicken

and egg" problem of many models of competition in two-sided markets– e.g., Caillaud and Jullien

(2003)): For any given vector of prices there is a unique continuation equilibrium in the subgame

where agents choose which platform to join (note that this is true despite the fact that platforms

in our model compete in simple access fees– as they do in many markets– that do not condition

on participation rates from the opposite side).4

One difference relative to the complete-information case is that the beliefs of the "marginal

agent" on each side about the participation decisions on the opposite side depend on the marginal

agent’s own estimated stand-alone valuation (the marginal agent is the one who is indifferent

between joining one platform or the other). As the platform changes its price on one side, the

marginal agent’s beliefs also change (note that, under complete information, the marginal agent’s

expectation of the participation rate from the opposite side always coincides with the platform’s

expectation).

This observation has important implications for equilibrium prices. Suppose, for example, that

network effects are positive on each side (meaning that all agents benefit from a higher participation

3We also abstract from within-side externalities and heterogeneity in users’attractiveness. See Damiano and Li

(2007), Gomes and Pavan (2011), and Vega and Weyl (2012) for models that accommodate a certain form of price

discrimination and heterogeneity in attractiveness.
4 In the baseline version of the model we do not allow agents to multi-home (that is, to join both platforms). Later

in the paper, however, we relaxed this assumption and show that multihoming does not obtain under reasonable

parameter configurations if one assumes that platforms cannot set negative prices.
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rate on the opposite side) and that tastes are positively correlated between the two sides (so that

a high perceived stand-alone valuation is "good news" about participation from the opposite side).

Suppose then that a platform were to raise its price on, say, side 1. Because the marginal agent

who is excluded is the most "pessimistic" about side 2’s participation, among those who are joining

the platform, the drop in expected demand is smaller than in a world where all agents share the

same beliefs about the other side’s participation (as in complete-information models). In other

words, when preferences are positively correlated between the two sides and network effects are

positive on both sides, this new effect contributes to a reduction in the own-price elasticity of the

demand functions. As a result of this new effect, the equilibrium price on each side increases with

the intensity of the network effects on that side when preferences are positively correlated between

the two sides, and decreases otherwise. This is in contrast to the complete-information case where

the equilibrium price on each side i decreases with the intensity of the network effects on side j,

but is independent of the intensity of the network effects on side i (see, e.g., Armstrong, 2006, and

Rochet and Tirole, 2006).5 ,6

A second insight is that, holding fixed the ex-ante distribution of estimated stand-alone val-

uations, the equilibrium prices depend on the distribution of information over the two sides only

through the coeffi cient of mutual forecastability, which is an increasing transformation of the cor-

relation coeffi cient between the signals of any two agents from opposite sides. Indeed what matters

for the impact of network effects on equilibrium prices is the ability of each side to predict the

change of demand on the other side triggered by a variation in prices. Suppose that the quality of

information is very high on one side but not on the other. Then, the less-informed side will not

respond much to variations in the distribution of stand-alone valuations, making the information

of the other side of limited value. Fixing the ex-ante distribution of estimated stand-alone valu-

ations (which amounts to fixing the ex-ante degree of horizontal differentiation between the two

platforms), what matters for equilibrium prices is not so much the ability of each side to forecast

the distribution of true stand-alone valuations on the opposite side but its ability to predict how

the distribution of estimated stand-alone valuations on the opposite side changes with the under-

lying "state". As a result, equilibrium prices respond to variations in the information structure

only through the impact that these variations have on the two sides mutual ability to forecast each

other, as captured by the coeffi cient of mutual forecastability. In the special case of a market that is

5The pricing formulae obtained in these papers can be understood as monopoly pricing adjusted for the fact that

a platform can leverage an increase of demand on one side by increasing the price it charges to the other side. This

means that the relevant opportunity cost for losing the marginal agent on one side must incorporate the revenue

loss stemming from the lower utility enjoyed by all agents who participate on the opposite side, thus explaining why

prices depend negatively on the intensity of the other-side network effects.
6Note that if agents differed in the importance they assign to network effects, then equilibrium prices would depend

on the intensity of own-side network effects also under complete information. The effect of own-side network effects

on equilibrium prices would then depend on the correlation between network effects and stand-alone valuations.

Surprisingly, the effect of such correlation on equilibrium prices has received little attention in the literature.
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perfectly symmetric under complete information (meaning that the intensity of the network effects

is the same on the two sides and so is the ex-ante distribution of stand-alone valuations), the fact

that prices depend on the information structure only through the coeffi cient of mutual forecasta-

bility implies that the equilibrium prices remain perfectly symmetric under dispersed information,

despite possible asymmetries in the distribution of information over the two sides.

Implications for advertising campaigns and product selection. Having characterized

how equilibrium prices depend on the prior distribution of stand-alone valuations and on the dis-

persion of information, we then proceed by investigating the platforms’ incentives to engage in

advertising campaigns that provide information (possibly in an asymmetric way) to each of the two

sides. In our model, firms are uninformed about the true distribution of stand-alone valuations.

This implies that advertising campaigns cannot change the mean of the distribution of estimated

stand-alone valuations but only the agents’ability to predict their own stand-alone valuations as

well as their ability to predict the distribution of (true and estimated) stand-alone valuations in

the cross-section of the population.7

We show that campaigns that increase the agents’ability to estimate their own stand alone

valuations (holding fixed the agents’ability to predict the behavior of the other side) always raise

profits by increasing the sensitivity of individual demands to information which amounts to in-

creasing the ex-ante degree of differentiation between the two platforms (equivalently, reducing the

elasticity of the residual demand functions), thus softening competition.

On the other hand, campaigns that help the agents predict the behavior of the other side,

without affecting the agents’ability to estimate their own stand-alone valuations, increase profits

if and only if the correlation of tastes between the two sides is of the same sign as the sum of the

intensity of the network effects. In particular, this means that such campaigns increase profits when

network effects are positive on both sides and tastes are positively correlated (as is probably the

case for most video-games consoles). On the contrary, they decrease profits when either tastes are

negatively correlated and network effects are positive (as is possibly the case for some operating

systems), or tastes are (weakly) positively correlated but one side suffers from the presence of the

other side more than the other side benefits from its presence.

To understand this last result, assume that preferences are positively correlated between the

two sides and consider a campaign that increases the ability of, say, side-1’s agents to forecast

side-2’s preferences. An increase in such ability reduces the own-price elasticity of demand on side

1 by making the marginal agent’s beliefs more sensitive to his private information (Recall that,

as explained above, a higher sensitivity to private information implies a lower drop in demand in

response to an increase in price due to the fact that the marginal agent is less optimistic about

participation from the opposite side than any of the infra-marginal agents). Interestingly, when

7The reason why advertising campaigns cannot change the mean of the distribution of estimated stand-alone

valuations is the same that makes hidden actions ineffective in the signal-jamming literature (see e.g., Fudenberg and

Tirole (1986)).
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preferences are positively correlated, an increase in the precision of information on side 1 about side-

2’s preferences also reduces the own-price elasticity of the side-2 demand by making the behavior

of side-1’s agents more predictable in the eyes of side-2’s agents. These effects unambiguously

contribute to a higher equilibrium price on each side.

At the same time, more precise information on side 1 also implies a higher sensitivity of both

demands to variations in prices on the opposite side, which contributes negatively to the equilibrium

prices. While the net effect on the equilibrium price on each side then depends on the relative

importance that the two sides attach to interacting with one another, the net effect on total profits

is always unambiguously positive when the sum of the network effects is positive (more generally,

of the same sign as the correlation of preferences between the two sides). This is because, holding

constant the ex-ante distributions of estimated stand-alone valuations, the equilibrium price on

each side depends on the dispersion of information only through the index of mutual forecastability,

which measures the two sides’ability to forecast each other and which is increasing in the quality

of information on each of the two sides. When the sum of the network effects is positive, then any

possible loss of revenues on one side must necessarily be more than compensated by an increase in

revenues on the opposite side, making the equilibrium total profits unambiguously increase with

each side’s ability to forecast the distribution of preferences on the other side.

We conclude by investigating how equilibrium profits change with variations in the prior dis-

tribution from which stand-alone valuations are drawn. These comparative statics, contrary to the

ones pertaining the quality of information, are meant to shed light on a platform’s incentives to

differentiate its product and services from the competitor’s, without knowing the exact distribution

of preferences on either side of the market. For instance, we show that raising the similarity with

the opponent’s product (which amounts to a prior that concentrates more measure around zero)

always reduces the equilibrium profits by intensifying competition. On the other hand, aligning

the preferences of the two sides by favoring dimensions that are appealing to both sides increases

profits for positive network effects but reduces them when the sum of the network effects is negative

(that is, when one side suffers from the presence of the other side more than the other side benefits

from its presence).

Outline. The rest of the paper is organized as follows. Section 2 presents the model and

introduces some preliminary results concerning the ability of each side to forecast its own preferences

and the cross-sectional distribution of preferences on the other side of the market. Section 3 then

characterizes optimal prices for a monopolistic platform. Section 4 contains the main results for the

duopoly case. Section 5 contains implications for product positioning and advertising campaigns.

Section 6 contains a few concluding remarks. All proofs are in the Appendix.
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2 Model

Players. Two platforms, indexed by k = A,B, compete on two sides, i = 1, 2. Each side is

populated by a measure-one continuum of agents, indexed by l ∈ [0, 1].

Actions and payoffs. Each agent l ∈ [0, 1] from each side i = 1, 2 must choose which platform

to join, if any.8. The payoff Ukil that agent l from side i derives from joining platform k is given by

Ukil = ukil + γim
k
j − pki

where ukil is the idiosyncratic stand-alone valuation
9 of joining platform k, mk

j ∈ [0, 1] is the mass

of agents from side j 6= i that join platform k, γi ∈ R is a parameter that controls for the intensity
of the network effects10 on side i and pki is the access fee (equivalently, the uniform price) charged

by platform k to side i.

We assume the network effects are positive on at least one of the two sides but allow them to

be negative on the opposite side; that is, we assume that there is i ∈ {1, 2} such that γi > 0.

The payoff that each agent l ∈ [0, 1] from each side i = 1, 2 obtains from not joining any

platform is assumed to be equal to zero.

Each platform’s payoff Πk is the total revenue from collecting the access fees from the two

sides:11

Πk = pk1m
k
1 + pk2m

k
2.

All players are risk-neutral expected-utility maximizers.

Horizontal differentiation and information. We assume that the stand-alone valuations

are given by

uAil = si −
1

2
zi[θi + εil]

uBil = si +
1

2
zi[θi + εil]

i = 1, 2, k = A,B, l ∈ [0, 1], where si ∈ R and zi ∈ R+ are scalars whose role is to control for
the agents’payoff relative to their outside options and for the importance the agents assign to the

quality of the products and services provided by the two platforms, θi is the realization of a Normal

random variable with mean zero and variance α−1i (αi is thus the precision of the distribution) and

εil is the realization of a Normal random variable with mean zero and variance (βui )−1. The above

specification is chosen so that the difference in stand-alone valuations

vil ≡ uBil − uAil = zi[θi + εil]

8Below we will also discuss the possibility that the agents may choose to join both platforms (multihoming).
9Also referred to in the literature as "intrinsic benefit" – see, e.g., Armstrong and Wright (2007) – - and "mem-

bership benefit" – see e.g., Weyl (2010).
10Also referred to in the literature as "usage value" (e.g., Rochet and Tirole (2006)), "cross-side externality" (e.g.,

Armstrong (2006)) and "interaction benefit" (e.g., Weyl, (2010)).
11All results extend to the case where the platforms incur costs to provide access to the users. Because these costs

do not play any role, we disregard them to facilitate the exposition.
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is Normally distributed with mean zero and variance z2i (αi + βui )/αiβ
u
i .

The random variable θ̃i captures the common-value component in the stand-alone valuations

whereas the random variable ε̃il captures the idiosyncratic component.12

We assume that agent l does not necessarily know his own stand-alone valuations. Instead, he

receives a signal

xil = θi + ηil

where ηil is drawn from a Normal distribution with zero mean and variance (βxi )−1.

Nature first draws θ ≡ (θ1, θ2) from a bivariate Normal distribution with zero mean and

variance-covariance matrix

Σθ =

[
α−11

ρθ√
α1α2

ρθ√
α1α2

α−12

]

where the parameter ρθ is the coeffi cient of linear correlation between θ̃1 and θ̃2.

For each agent l ∈ [0, 1] from each side i = 1, 2, Nature then draws a pair (εil, ηil) from a

bivariate Normal distribution with zero mean and variance-covariance matrix

Σi =

 (βui )−1 ρi√
βui ·βxi

ρi√
βui ·βxi

(βxi )−1


where the parameter ρi ≥ 0 is the coeffi cient of linear correlation between ε̃ and η̃. The pairs

(εil, ηil)l∈[0,1] are drawn independently across agents from the above distribution and independently

from (θ̃1, θ̃2).

Platforms are assumed not to possess any private information.

Timing.

• At stage 1, platforms simultaneously set access prices on each side.

• At stage 2, after observing the prices (pki )
k=A,B
i=1,2 , and after receiving the private signal xil,

each agent l ∈ [0, 1] from each side i = 1, 2, chooses which platform to join, if any.

• Finally, at stage 3, payoffs are realized.

Remark. The above specification has the advantage of being tractable, while at the same

time rich enough to capture a variety of situations. Thanks to Normality, the "aggregate state"

(i.e., the cross-sectional distribution of preferences and information) is uniquely pinned down by

the bivariate variable θ = (θ1, θ2). The information about θ is dispersed so that different agents

have different beliefs about θ. The pure common-value case where agents on side i have identical

preferences over the two platforms but different information about the quality differential θi is

captured as the limit in which βui → ∞ in which case vil = ziθi all l. The parameter αi is then

12Throughout, we will use tildes "~" to denote random variables.
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a measure of uncertainty over the degree of horizontal differentiation between the two platforms,

as perceived by side i. Letting α1 = α2 and ρθ = 1 while allowing βx1 6= βx2 then permits us to

capture situations where the quality differential between the two platforms is the same on each side

but the two sides have different information. Letting zi = 0 on one of the two sides then permits

us to capture situations where agents on side i do not care about the intrinsic quality differential

between the two platforms but nonetheless have information about the distribution of preferences

on the opposite side (as in the case of advertisers who choose which media platform to place ads

on entirely on the basis of their expectation of the platform’s ability to attract readers and viewers

from the opposite side).

More generally, allowing the correlation coeffi cient ρθ to be different from one permits us to

capture situations where the quality differential between the two platforms differs across the two

sides (including situations where it is potentially negatively correlated), as well as situations where

one side may be able to perfectly predict the behavior of each agent from that side but not the

behavior of agents from the opposite side (which corresponds to the limit where, βxi =∞).
The model can also capture situations in which different users from the same side have different

preferences for the two platforms. This amounts to letting the variance of εil be strictly positive,

or equivalently, βui < ∞. Depending on the degree of correlation ρi between εil and ηil users may
then possess more or less accurate information about their own preferences. For example, the

case where each agent perfectly knows his own preferences but is imperfectly informed about the

preferences of other users (from either side) is captured as the limit in which ρi → 1. Lastly, the

case of independent private values in which users’ valuations are independent of one another is

captured as the limit in which αi →∞ and βui <∞.
Useful estimations. Having illustrated the flexibility of the model, we now show how its key

parameters determine the agents’ability to forecast their own stand-alone valuations, as well as

the distribution of such valuations on the other side of the market.

Let

Vil ≡ E [ṽil | xil]

denote the estimated differential in stand-alone valuations for an agent l from side i with information

xil. Observing that E[x̃il | θi] = θi, var[x̃il | θi] = 1/βxi , E [x̃il] = 0 and var[x̃il] = (αi + βxi )/αiβ
x
i ,

from standard projection results, we then have that

Vil = κixil where κi ≡
cov[ṽil, x̃il]

var[x̃il]
= zi

βxi + ρiαi
√
βxi /β

u
i

αi + βxi
(1)

Because Vil = E[zi(θ̃i + ε̃il) | xil] uniquely pins down not only the differential but also the agent’s
estimated stand-alone valuation for each of the two platforms, throughout we will refer to Vil as to

the estimated stand-alone valuation.

Given the aggregate state θ, the cross-sectional distribution of estimated stand-alone valuations
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Vil on side i is then given by a Normal distribution with mean κiθi and variance

var[Ṽil | θi] =
κ2i
βxi

Because (κi, αi, β
x
i , β

u
i )i=1,2 are known, we then have that the entire cross-sectional distributions of

true stand-alone valuations vil, as well as the entire cross-sectional distribution of estimated stand-

alone valuations Vil, i = 1, 2, are entirely pinned down by the “aggregate state”θ = (θ1, θ2). Also

note that, from an ex-ante perspective (and hence also from the perspective of the two platforms),

the distribution of estimated stand alone valuations Ṽil on each side i is Normal with mean zero

and variance

var[Ṽi] = κ2i var[x̃il] = z2i
(βxi + ρiαi

√
βxi /β

u
i )2

(αi + βxi )αiβxi
(2)

As one can expect, this variance will play a prominent role in determining the elasticity of the

demand functions (and hence the level of the equilibrium prices).

Hereafter, we will measure the agents’ability to forecast their own stand-alone valuations by

the variance of their forecast errors about ṽil, which is given by

var[ṽil − Ṽil] = var[ṽil|xil] =

(
1− cov (ṽil, x̃il)

2

var (ṽil) var (x̃il)

)
var (ṽil) (3)

= z2i
αi + βui
αiβui

− κ2i
[αi + βxi ]

αiβxi
= z2i

αi + βui
αiβui

− z2i

(
βxi + ρiαi

√
βxi /β

u
i

)2
(αi + βxi )αiβxi

Not surprisingly, the agents’ability to forecast their own stand-alone valuations increases with ρi
and decreases with zi and is not necessarily monotone in αi, βxi and β

u
i . This is because, holding

constant the correlation coeffi cient ρi between ε̃il and η̃il, an increase in βxi or in βui implies a

reduction in the covariance between ε̃il and η̃il.

Next, consider the agents’ability to forecast the distribution of preferences on the other side of

the market. Observe that each agent l from side i observing a signal xil believes that θ̃j is Normally

distributed with mean

E[θ̃j | xil] = χixil where χi ≡
cov(θ̃j , x̃il)

var (x̃il)
= ρθ

βxi
αi + βxi

√
αi
αj

and variance

var[θ̃j | xil] =

(
1− cov(θ̃j , x̃il)

2

var(θ̃j)var (x̃il)

)
var(θ̃j) =

(
1− ρ2θ

βxi
αi + βxi

)
1

αj
(4)

Because the entire cross-sectional distribution of true and stand-alone valuations on side j 6= i is

pinned down by θj , hereafter, we will measure the ability of each agent l (from side i) to forecast the

cross-sectional distribution of preferences on side j 6= i (without distinguishing between the true

preferences vil and the estimated ones Vil) with the variance of the agent’s forecast errors about θ̃j ,

which is given by

var[θ̃j − E[θ̃j |x̃il]] = var(θ̃j |xil) =

(
1− ρ2θ

βxi
αi + βxi

)
1

αj
(5)
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Not surprisingly, the agent’s ability to forecast θ̃j increases with |ρθ| , βxi , and αj , and decreases
with αi.

Now observe that, fixing the prior distribution of stand-alone valuations as parametrized by

(α1, α2, ρθ, β
u
1 , β

u
2 , z1, z2, s1, s2), and holding constant the parameters (βx1 , β

x
2 ) while varying the

parameters (ρ1, ρ2), one can then capture variations in the agents’ability to estimate their own

stand-alone valuations, holding constant the agents’ability to forecast the distribution of true (and

estimated) stand-alone valuations on the other side of the market. Conversely, by varying the

parameters (βx1 , β
x
2 ) and adjusting the parameters (ρ1, ρ2) accordingly, one can capture variations

in the agents’ability to forecast the distribution of true (and estimated) valuations on the other side

of the market, while holding constant their ability to estimate their own stand-alone valuations.

Summarizing, the key parameters of the model are (α1, α2, ρθ, β
u
1 , β

u
2 ) which, together with

(z1, z2, s1, s2) define the prior distribution of the individual stand-alone valuations, and the scalars

(βx1 , β
x
2 , ρ1, ρ2), which parametrize the agents’information.

Remark. The scalars (z1, z2) only serve the purpose of parametrizing the quality of the agents’

information about their own stand-alone valuations relative to the quality of their information about

the distribution of stand-alone valuations on the other side of the market. These parameters are

not crucial and could have been dispensed with by introducing two separate signals for each agent,

one for θ̃1, the other for θ̃2. This, however, would have made the subsequent analysis significantly

more complicated by essentially requiring that we describe the equilibrium strategies in terms of

semi-planes as opposed to simple cut-off rules. The remaining parameters (s1, s2) play a role only

for the agent’decision to opt out of the market by not joining any platform.

3 Monopoly

As a useful step towards the characterization of the equilibrium in the game with competing plat-

forms, we start by considering the case of a monopolistic market, in which only platform A is active.

Given the prices (pA1 , p
A
2 ), each agent l on each side i then finds it optimal to join the platform only

if

E[ũAil | xil] + γiE[m̃A
j | xil]− pAi ≥ 0.

Now let γ−i ≡ min{γi; 0}, γ+i ≡ max{γi; 0}. It is immediate to see that any agent whose expected
stand-alone valuation E[ũAil | xil] is less than (pAi − γ+i ) finds it dominant not to join, whereas any

agent whose expected stand-alone valuation E[ũAil | xil] is greater than pAi − γ
−
i finds it dominant

to join. Using E[ũAil | xil] = si − κixil/2, we then have that iterated deletion of strictly dominated
strategies leads to a pair of thresholds xi = xi(p

A
1 , p

A
2 ) and x̄i = x̄i(p

A
1 , p

A
2 ) on each side i = 1, 2

such that it is iteratively dominant for each agent l from each side i to join for xil < xi and not

to join for xil > x̄i. These observations also suggest existence of a continuation equilibrium in

thresholds strategies whereby each agent l from each side i joins if and only if xil ≤ x̂i. In any such

11



continuation equilibrium, the measure of agents from side j 6= i who join is given by

mA
j (θj) = Pr (x̃jl ≤ x̂j | θj) = Φ(

√
βxj (x̂j − θj)),

where Φ denotes the c.d.f. of the standard Normal distribution and φ its density. This implies that

the thresholds (x̂1, x̂2) must jointly solve the following system of conditions

Gi (x̂1, x̂2) = pAi i = 1, 2 (6)

where

Gi (x1, x2) ≡ si − κixi/2 + γiE
[
Φ(
√
βxj (xj − θ̃j)) | xi

]
. (7)

Note that the function Gi (x1, x2) represents the payoff, gross of payments, of joining platform A

for an agent on side i whose signal is equal to the threshold signal xi when he expects all users on

side j 6= i to join if and only if their signal is smaller than xj .

Next, note that

E
[
Φ(
√
βxj (xj − θ̃j)) | xi

]
= Pr

(
η̃j < xj − θ̃j | xi

)
= Pr

(
η̃j + θ̃j < xj | xi

)
= Φ

(√
βxj αj(αi + βxi )

α1α2 + βx1α2 + βx2α1 + (1− ρ2θ)βx1βx2
(xj − χixi)

)

where we used the fact that, given xi, η̃j + θ̃j follows a Normal distribution with mean χixi and

variance
1

βxj
+

(
1− ρ2θ

βxi
αi + βxi

)
1

αj
=
α1α2 + βx1α2 + βx2α1 + (1− ρ2θ)βx1βx2

βxj αj(αi + βxi )
.

Now, for any i, j = 1, 2, i 6= j, let

Xji(x1, x2) ≡

√
βxj αj(αi + βxi )

α1α2 + βx1α2 + βx2α1 + (1− ρ2θ)βx1βx2
(xj − χixi)

= Ω

(
1

ρθ

√
αj (αi + βxi )

βxi
xj −

√
αiβxi
αi + βxi

xi

)

where

Ω ≡ ρθ

√
βx1β

x
2

α1α2 + βx1α2 + βx2α1 + (1− ρ2θ)βx1βx2
.

Denote by ρx ≡ corr(x̃1, x̃2) the correlation coeffi cient between any pair of signals from the two

sides. Then we have

Ω ≡ ρx√
1− ρ2x

Hereafter, we will refer to the term Ω as to the coeffi cient of mutual forecastability, for one can

show that this term is increasing in each side’s ability to forecast the distribution of signals on the

12



opposite side. As one can expect, this term will play an important role in determining both the

monopolist’s and the competitive prices.

With the notation introduced above, the function Gi (x1, x2) can then be rewritten as

Gi (x1, x2) = si − κixi/2 + γiΦ (Xji(x1, x2)) .

To ensure that, for any vector of prices, a continuation equilibrium in threshold strategies

exists, we assume that the function Gi is decreasing in xi. This is the case, for all xi, if and only if

the following condition holds, which we assume throughout:

Condition M: The parameters of the model are such that

κi/2 + γiΩ

√
αiβxi
αi + βxi

φ (0) > 0.

Note that the above condition imposes that, when side i values interacting with the other

side– namely, when γi > 0, the preferences between the two sides be not too negatively correlated.

Symmetrically, the condition requires the correlation between θ̃1 and θ̃2 to be suffi ciently small

when side i dislikes the presence of the other side, that is when γi < 0. This is intuitive. Consider

the case where γi > 0; if θ̃1 and θ̃2 were strongly negatively correlated, then an increase in the

appreciation of agent l from side i of platform A’s product could make the agent less willing to

join if he expects a significant drop in the participation by agents from side j due to the negative

correlation in the preferences of the two sides.

We then have the following preliminary result:

Lemma 1 For any vector of prices p = (pA1 , p
A
2 ), there exists at least one solution to the system of

conditions given by (6), which implies that a threshold continuation equilibrium always exists.

Now, to guarantee that the continuation equilibrium is unique, for all possible prices, we assume

that the strength of the network effects is not too large, given the distribution of the stand-alone

valuations, in the sense of Condition Q below, which we assume throughout the rest of the analysis.

Condition Q. The parameters of the model are such that

γ1γ2

√
α1α2βx1β

x
2

(α1 + βx1 ) (α2 + βx2 )
φ (0)2 − 1

2

(
κ1γ2

√
α2βx2
α2 + βx2

+ κ2γ1

√
α1βx1
α1 + βx1

)
Ωφ (0)− κ1κ2

4
< 0.

We then have the following result:

Lemma 2 For any vector of prices (pA1 , p
A
2 ), the continuation equilibrium is unique.

The proof in the Appendix first shows that, when conditions M and Q hold, then, for any

vector of prices, there exists a unique pair of thresholds x̂i = x̂i(p
A
1 , p

A
2 ), i = 1, 2, that solve

the system of equations defined by the indifference conditions (6). Standard arguments from the
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global-games literature based on iterated deletion of strictly dominated strategies then imply that

the unique monotone equilibrium defined by the thresholds x̂i, i = 1, 2, is the unique equilibrium

of the continuation game.

The above result implies that there exists a unique pair of demand functions. For any vector of

prices (pA1 , p
A
2 ), the demand on side i in state θ = (θ1, θ2) is given by mA

i (θ) = Φ(
√
βxi (x̂i − θi)),

while the (unconditional) demand is Φ
(√

αiβxi
αi+βxi

x̂i

)
, where the thresholds x̂i = x̂i(p

A
1 , p

A
2 ), i = 1, 2,

are the unique solution to the system of equations given by (6).13

Then consider the choice of prices by the monopolist. For any pair of prices (pA1 , p
A
2 ), the

monopolist’s profits are equal to

ΠA(pA1 , p
A
2 ) =

∑
i=1,2

pAi Φ

(√
αiβxi
αi + βxi

x̂i(p
A
1 , p

A
2 )

)
.

Notice that the system of demand equations (6) defines a bijective relationship between
(
pA1 , p

A
2

)
and (x̂1, x̂2) . The monopolist’s problem can thus also be seen as choosing a pair of thresholds

(x̂1, x̂2) so as to maximize

Π̂A (x̂1, x̂2) ≡
∑
i=1,2

Gi (x̂1, x̂2) Φ

(√
αiβxi
αi + βxi

x̂i

)
(8)

where

Gi (x̂1, x̂2) = si − κix̂i/2 + γiΦ (Xji(x̂1, x̂2))

= si − κix̂i/2 + γiΦ

(
Ω

(
1

ρθ

√
αj (αi + βxi )

βxi
x̂j −

√
αiβxi
αi + βxi

x̂i

))

denotes the gross surplus of the marginal agent on side i, whose signal is equal to the threshold x̂i.

Next, for i = 1, 2, let

gi(x) ≡
[
si −

κi
2
x+ γ−i

]
Φ

(√
αiβxi
αi + βxi

x

)

where recall that γ−i ≡ min{γi; 0}, γ+i ≡ max{γi; 0}. Throughout, we will assume that the following
condition also holds, which guarantees that the optimal prices will be interior.

Condition (W). The parameters of the model are such that, for any i, j = 1, 2, j 6= i,14

max
x∈R

gi(x) > |γj |.

13Here we used again the property that E
[
Φ(
√
βxi (x̂i − θ̃i))

]
= Pr

(
η̃i < x̂i − θ̃i

)
where η̃i and θ̃i are independent

Normal random variables both with zero mean and precisions βxi and αi respectively.
14That the function gi has a maximum follows from the fact that it is continuous, positive for x̂i < 2(si + γ−i )/κi,

negative for x̂i > 2(si + γ−i )/κi and such that limx̂i→−∞ gi(x̂i) = 0.
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Note that Condition (W) is trivially satisfied when si are large enough. The condition simply

guarantees that it is always optimal to induce a strictly positive participation rate on both sides,

despite the possibility that one side may suffer from the presence of the other side. We then have

the following result:

Lemma 3 There exists a unique vector of prices
(
pA1 , p

A
2

)
that maximize firm A’s profits. These

prices are given by pAi = Gi (x̂1, x̂2) , i = 1, 2, where (x̂1, x̂2) is the unique solution to the system of

conditions given by

Gi (x̂1, x̂2)

√
αiβxi
αi + βxi

φ

(√
αiβxi
αi + βxi

x̂i

)
+
∂Gi (x̂1, x̂2)

∂xi
Φ

(√
αiβxi
αi + βxi

x̂i

)
(9)

+
∂Gj (x̂1, x̂2)

∂xi
Φ

(√
αjβxj
αj + βxj

x̂j

)
= 0.

To shed light on what lies underneath the first-order conditions for the monopolist’s profit-

maximizing prices, note that the latter are equivalent to

pAi ·
dQAi

(
pA1 , p

A
2

)
dpAi

∣∣∣∣∣
QAj =cont

+QAi
(
pA1 , p

A
2

)
+
dpAj

dpAi

∣∣∣∣∣
QAj =cont

QAj
(
pA1 , p

A
2

)
= 0 (10)

where QAi
(
pA1 , p

A
2

)
= E[m̃A

i ] is the demand on side i, as expected by the platform. These first-order

conditions are the incomplete-information analogs of the familiar complete-information optimality

conditions according to which, at the optimum, profits must not vary when the monopolist changes

infinitesimally the price on side i and then adjusts the price on side j so as to maintain the demand

on side j constant.

What is interesting here is how incomplete information affects the slope of the demand functions

on the two sides and thereby the prices. In particular, while, with complete information, these slopes

are the same irrespective of whether they are computed by the platform or by any other agent, this

is not the case with dispersed information. To see this, observe that

dQAi
(
pA1 , p

A
2

)
dpAi

∣∣∣∣∣
QAj =cont

=
dE[m̃A

i ]

dx̂i

dx̂i

dpAi

∣∣∣∣
x̂j=cont

where
dE[m̃A

i ]

∂x̂i
=

√
αiβxi
αi + βxi

φ

(√
αiβxi
αi + βxi

x̂i

)
(11)

and where
dx̂i

dpAi

∣∣∣∣
x̂j=cont

=
1

∂Gi(x̂1,x̂2)
∂xi

=
1

−κi/2 + γi
∂E[m̃Aj |x̂i]

∂x̂i

with
dE
[
m̃A
j | x̂i

]
dx̂i

= −Ω

√
αiβxi
αi + βxi

φ (Xji(x̂1, x̂2)) (12)
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The conditions above highlight a key difference with respect to complete information. Even if

the platform adjusts the price on side j in response to a variation in the price on side i so as to

maintain the expected demand from side j constant, the slope of the side-i’s demand curve naturally

depends on the intensity of the side-i’s network effects γi. The reason is that, when changing pAi ,

the platform changes the value of the marginal agent x̂i. Because of dispersed information, the

marginal agent’s expectation of the participation rate on side j then also changes, despite the fact

that, from the platform’s perspective, participation on side j has not changed. This effect, of

course, will play an important role for equilibrium prices.

There is a second difference with respect to complete information. The variation in the side-i

demand that the platform expects to trigger by changing the price pAi and then adjusting the price

pAj to keep the expected side-j demand constant need not coincide with the variation expected by

the marginal agent from side j. That is,

∂E
[
m̃A
i

]
∂x̂i

6=
∂E
[
m̃A
i | x̂j

]
∂x̂i

.

This effect in turn impacts the adjustment in the side-j price that the platform must undertake

to compensate for the variation in the side-i’s demand, as it can be observed from the following

decomposition:

dpAj

dpAi

∣∣∣∣∣
QAj =cont

=
∂Gj (x̂1, x̂2)

∂xi

dx̂i

dpAi

∣∣∣∣
x̂j=cont

where
∂Gj (x̂1, x̂2)

∂xi
= γj

dE
[
m̃A
i | x̂j

]
dx̂i

with

dE
[
m̃A
i | x̂j

]
dx̂i

=
1

ρθ
Ω

√√√√αi

(
αj + βxj

)
βxj

φ (Xij(x̂1, x̂2)) (13)

The following proposition combines the above observations into a formula for the equilibrium

prices that will turn useful when considering competition between the two platforms (the proof

follows from the arguments above):

Proposition 1 The monopolist’s profit-maximizing prices, expressed as a function of the demand

thresholds they induce, satisfy the following conditions:

pAi =

κi
2

E[m̃A
i ]

dE[m̃Ai ]
dx̂i

− γi
dE

[
m̃A
j | x̂i

]
dx̂i

E[m̃A
i ]

dE[m̃Ai ]
dx̂i

− γj
 dE[m̃Ai |x̂j]

dx̂i
dE[m̃Ai ]
dx̂i

E[m̃A
j ]

 i = 1, 2 (14)

with x̂1 and x̂2 implicitly defined by the system of equations given by (6).
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One way one can relate the price formula in (14) to its familiar complete-information counter-

part is by rewriting it as

pAi =

(
κi
2 − γi

dE[m̃Aj |x̂i]
dx̂i

)
dE[m̃Ai ]
∂x̂i

E[m̃A
i ]−

γj dE[m̃Ai |x̂j]
dx̂i

dE[m̃Ai ]
dx̂i

E[m̃A
j ]

and then noticing that the latter is equivalent to

pAi = −


dpAi
dx̂i

∣∣∣
x̂j=cont

dE[m̃Ai ]
∂x̂i

E[m̃A
i ]−

 dpAj
dx̂i

dE[m̃Ai ]
∂x̂i

E[m̃A
j ]

which is the familiar two-sided-market optimality condition

pAi = − dpAi
dQAi

∣∣∣∣
QAj =cont

QAi −
dpAj

dQAi

∣∣∣∣∣
QAj =cont

QAj (15)

according to which the monopolist’s price is equal to the usual one-sided-market inverse semi-

elasticity (the first term in (15)) adjusted by the effect of a variation in the side-i’s participation

on side-j’s revenues (the second term in (15))– see, for example, Weyl (2010).

The first term in (14) is thus the inverse semi-elasticity of demand in the absence of network

effects, expressed in terms of thresholds as opposed to prices. This term is completely standard and

entirely driven by the distribution of the estimated stand-alone valuation. In our model it depends

on the information structure only because the latter also affects the distribution of the estimated

stand-alone valuations.

The third-term in (14) captures the familiar extra cost of raising prices in a two-sided market

due to a reduction of demand (or equivalently of price) on the other side. When side j benefits from

the presence of side i, that is, when γj > 0, this term is known to contribute negatively to the price

charged by the monopolist (see e.g., Armstrong, 2006). As discussed above, the novelty relative to

complete information comes from the fact that the variation in the side-i demand that the platform

expects to trigger by raising pAi now differs from the variation expected by the marginal agent on

side j.

The second term in (14) is the most interesting one, for it is absent under complete information.

As explained above, this term originates in the fact that a variation in the side-i demand now

implies a variation in side-i’s expectation about side-j’s participation, despite the fact that, from

the platform’s perspective, the side-j’s expected demand does not change, given the adjustment

in the side-j price. Whether this new term contributes positively or negatively to the side-i’s own

price elasticity (and thus ultimately to on the monopolist’s profit-maximizing price) depends on the

interaction between the sign of the side-i network effect, γi, and the sign of the correlation between

the two sides’preferences. To understand this, recall that, by lowering the price pAi , the monopolist

raises the threshold x̂i. Equivalently, it lowers the expected stand-alone valuation of the marginal
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agent who is just indifferent between joining and staying home. When valuations are positively

correlated between the two sides, this means that the new marginal agent will also expects that

fewer agents from the opposite side will like the platform’s product and thus join. When side i

values participation from side j, this new effect thus reduces the elasticity of the demand on side i

and thus contributes to a higher optimal price.

4 Competition

We now reintroduce platform B and examine the outcome of the duopoly game where platforms

simultaneously compete in prices on each side. Consider the continuation game starting in stage

2 given the prices (pA1 , p
A
2 , p

B
1 , p

B
2 ). Assuming full participation (that is, each agent who does not

choose platform A chooses platform B),15 we have that each agent l from each side i = 1, 2 chooses

platform A when

−Vil + γiE[m̃A
j − m̃B

j | xil]− pAi + pBi > 0 (16)

and platform B when the inequality is reversed. Using mA
i +mB

i = 1, i = 1, 2, and (1), Condition

(16) can be rewritten as

−κixil + 2γiE[m̃A
j | xil]− γi − pAi + pBi > 0.

Now suppose that each agent l from side j 6= i follows a threshold strategy according to which

he chooses A if xjl < x̂j and B if xjl > x̂j . When this is the case, the measure of agents from side

j on platform A is a decreasing function of θj and is given by

mA
j (θ) = Pr (x̃jl ≤ x̂j |θj) = Φ(

√
βxj (x̂j − θj)).

Notice that mA
j (θj) decreases with θj , since a higher θj means more users with higher stand-alone

values for platform B than for platform A. Given the expectation that each agent from side j 6= i

follows such a strategy, each agent l from side i chooses platform A if

−κixil + 2γiE[Φ(
√
βxj (x̂j − θ̃j)) | xil]− γi − pAi + pBi > 0 (17)

Under Condition (M), the left hand side in (17) is decreasing in xil. Applying the same logic

to each side, we then conclude that a monotone continuation equilibrium is characterized by a pair

of thresholds (x̂1, x̂2) that jointly solve

−κix̂i + 2γiE
[
Φ(
√
βxj (x̂j − θ̃j)) | x̂i

]
− γi = pAi − pBi i, j = 1, 2, j 6= i. (18)

Note that the left-hand side of (18) is the gross payoff differential of joining platform A relative to

platform B for the marginal agent x̂i on side i when users on both sides follow threshold strategies

with respective cutoffs x̂1 and x̂2.
15As it will become clear below, full participation can be justified by assuming that the stand-alone valuations are

suffi ciently high– see Proposition 3.
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Recognizing that

−κix̂i + 2γiE
[
Φ(
√
βxj (x̂j − θ̃j)) | x̂i

]
− γi = 2Gi (x̂1, x̂2)− 2si − γi

where Gi are the functions defined above for the monopolist case, we then have that many of the

properties identified above for the monopolist case carry over to the duopoly case. In particular, for

any vector of prices p = (pA1 , p
A
2 , p

B
1 , p

B
2 ), there always exists a solution to the system of conditions

given by (18), which implies that a threshold continuation equilibrium always exists. Furthermore,

under Condition (Q), this continuation equilibrium is the unique continuation equilibrium, which

implies that we can associate to any vector of prices a unique system of demands given, in each

state θ = (θ1, θ2) by

mA
i (θ) = Φ(

√
βxi (x̂i − θi)) = 1−mB

i (θi) i = 1, 2.

Thus consider the choice of prices by the two platforms. For any p = (pA1 , p
A
2 , p

B
1 , p

B
2 ), the two

platforms’profits are equal to

ΠA(pA1 , p
A
2 , p

B
1 , p

B
2 ) =

∑
i=1,2

pAi Φ

(√
αiβxi
αi + βxi

x̂i

)
and

ΠB(pA1 , p
A
2 , p

B
1 , p

B
2 ) =

∑
i=1,2

pBi

(
1− Φ

(√
αiβxi
αi + βxi

x̂i

))
with the thresholds (x̂1, x̂2) uniquely defined by the system (18).

Now fix
(
pB1 , p

B
2

)
and consider the choice of prices by platform A. Given the bijective relation-

ship between
(
pA1 , p

A
2

)
and (x̂1, x̂2) given by

pAi = pBi − κix̂i + 2γiE
[
Φ(
√
βxj (x̂j − θ̃j)) | x̂i

]
− γi

= pBi + 2Gi (x̂1, x̂2)− 2si − γi

we have that the prices
(
pA1 , p

A
2

)
constitute a best-response for platform A if and only if the corre-

sponding thresholds (x̂1, x̂2) solve the following problem:

max
(x̂1,x̂2)

Π̂A (x̂1, x̂2) ≡
∑
i=1,2

[
pBi + 2Gi (x̂1, x̂2)− 2si − γi

]
Φ

(√
αiβxi
αi + βxi

x̂i

)
(19)

Arguments similar to those for the monopolist case then easily permit us to verify that, under

Condition (Q), for any vector of prices
(
pB1 , p

B
2

)
there exists a unique vector of prices

(
pA1 , p

A
2

)
that

maximizes platform A’s profits. These prices are the unique solution to the system of first-order

conditions given by[
pBi + 2Gi (x̂1, x̂2)− 2si − γi

]√ αiβxi
αi + βxi

φ

(√
αiβxi
αi + βxi

x̂i

)
+ 2

∂Gi (x̂1, x̂2)

∂xi
Φ

(√
αiβxi
αi + βxi

x̂i

)
(20)

+2
∂Gj (x̂1, x̂2)

∂xi
Φ

(√
αjβxj
αj + βxj

x̂j

)
= 0.
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The above conditions are the duopoly analogs of the optimality conditions (10) for the monopoly

case; they describe the relation between the profit-maximizing thresholds and the corresponding

prices. Following steps similar to those in the previous section, we can then show that the combi-

nation of optimal prices and thresholds for platform A must satisfy the following conditions

pAi = κi
E[m̃A

i ]
dE[m̃Ai ]
dx̂i

− 2γi

dE
[
m̃A
j | x̂i

]
dx̂i

E[m̃A
i ]

dE[m̃Ai ]
dx̂i

+ 2γj

 dE[m̃Ai |x̂j]
dx̂i

dE[m̃Ai ]
dx̂i

E[m̃A
j ]

 (21)

along with pAi = pBi + 2Gi (x̂1, x̂2)− 2si− γi, i = 1, 2. The advantage of the above representation is

that it highlights the analogy with the monopolist’s case (the only difference is that the optimality

conditions now apply to the residual demands). It also permits us to identify the unique equilibrium

prices that are sustained in equilibrium.

Proposition 2 There exists a unique symmetric equilibrium. In this equilibrium, the prices that

both platforms charge on each side i = 1, 2 are given by

p∗i =

√
var[Ṽi]

2φ(0)
+ γiΩ− γj

√
1 + Ω2 (22)

where

var[Ṽi] =
(βxi + ρiαi

√
βxi /β

u
i )2

(αi + βxi )αiβxi

is the ex-ante dispersion of estimated stand-alone valuations and where

Ω ≡ ρθ

√
βx1β

x
2

α1α2 + βx1α2 + βx2α1 + (1− ρ2θ)βx1βx2
=

ρx√
1− ρ2x

is the coeffi cient of mutual forecastability between the two sides, with ρx = corr(x̃1, x̃2).

As in the monopolist’s case, the first term in (22) is the inverse semi-elasticity of the component

of the demand on side i that comes from the stand-alone valuations, accounting for the relation

between information and estimated valuations. The last two terms in (22) capture the interaction

between the network effects and the dispersion of information. In particular, the term γiΩ, which is

absent under complete information, captures the effects of dispersed information on side-i own-price

elasticity. As in the monopolist’s case, whether this term contributes positively or negatively to

the equilibrium prices depends on the sign of the network effects γi on side i and on the correlation

ρθ between the preferences on the two sides (recall that sign(Ω) = sign(ρθ)). Finally, the third

term in (22) captures the cost of increasing the price on side i due to the effect that this has on

the platform’s profits on the other side of the market. As in the case of complete-information, this

effect contributes to a lower equilibrium price when side j benefits from the presence of side i, i.e.,

when γj > 0, and to a higher price when γj < 0.

We summarize the above findings in the following corollary.
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Corollary 1 As in the complete-information case, equilibrium prices under platform competition

(i) increase with the inverse-semi-elasticity of the component of the demand that comes from the

estimated stand-alone valuations and (ii) decrease with the intensity of the network effect from the

opposite side. However, contrary to the complete-information case, equilibrium prices under dis-

persed information (a) increase with the intensity of the own-side network effects when preferences

between the two sides are positively correlated, and (b) decrease when they are negatively correlated.

A second important observation is that, holding constant the ex-ante distribution of the esti-

mated stand-alone valuations (that is, the first term of the price equation (22)), the equilibrium

price on each side depends on the properties of the information structure only through the coeffi cient

of mutual forecastability

Ω ≡ ρx√
1− ρ2x

.

This property suggests that equilibrium prices need not be too sensitive to the specific way the

information is distributed across the two sides. Fixing the distribution of the estimated stand-alone

valuations, any two information structures resulting in the same coeffi cient of mutual forecastability

result in the same equilibrium prices.

This observation is particularly sharp in the case of a market whose primitives are perfectly

symmetric under complete information. That is, consider a market where both the intensity of the

network effect and the distribution of the stand alone valuations is the same between the two sides,

i.e., γ1 = γ2 = γ and var[Ṽi] = var[Ṽ ], i = 1, 2. The complete-information equilibrium prices are

then given by16

pci =

√
var[Ṽ ]

2φ(0)
− γ, i = 1, 2,

which, not surprising, are the same across the two sides.

Perhaps more surprising, under dispersed information, the equilibrium prices continue to be

the same across the two sides, even when the distribution of information is not symmetric. This is

because, holding constant the distribution of the estimated stand-alone valuations, and assuming

that the intensity of the network effect is the same across the two sides, a variation in the quality

of information on side i has an identical effect on the elasticity of demand on each of the two sides.

To gauge some intuition, consider the case where preferences are perfectly correlated between the

two sides so that θ̃1 = θ̃2 almost surely (in which case α1 = α2 and ρθ = 1). Now suppose that

information is very precise on side 1, while very imprecise on side 2, so that βx1 →∞ while βx2 → 0.

Because the agents’ behavior on side 2 does not vary much with the state θ2, the value of the

information held by the side-1 agents is pretty much the same as if side-1 was uninformed about

the distribution of the side-2 valuations.

More generally, the result in Proposition 2 implies that shocks that affect the agents’s ability to

forecast the cross-sectional distribution of valuations in an asymmetric way across the two sides have
16The formula can be obtained from (22) by taking the limit where α1, α2 →∞.
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nonetheless a symmetric effect on the equilibrium prices, as long as the intensity of the network effect

is the same across the two sides. This is because, holding fixed the ex-ante distribution of estimated

stand-alone valuations, the value that each side assigns to being able to predict the distribution of

preferences on the opposite side comes entirely from its ability to predict the participation decisions

on the opposite side. When the importance that the two sides assign to the presence of the opposite

side is the same (that is, when γ1 = γ2), in equilibrium the two platforms then equalize the prices

over the two sides, despite possibly asymmetries in the distribution of information.

We summarize the above observations, and combine them with a few other comparative statics

results for the symmetric case, in the following corollary.

Corollary 2 Consider a market that is perfectly symmetric under complete information in the

sense that the distribution of the stand-alone valuations and the importance of the network effects

are the same across the two sides (var[Ṽ1] = var[Ṽ2] and γ1 = γ2 > 0). Then, holding constant

the ex-ante distributions of estimated stand-alone valuations (equivalently, the degree of horizontal-

differentiation between the two platforms),

1. the equilibrium prices are the same on the two sides, despite possible asymmetries in the

distribution of information;

2. the equilibrium prices are increasing in each side’s ability to forecast the distribution of val-

uations on the opposite side if the correlation of preferences over the two sides is positive

and are decreasing otherwise (That is, ∂p∗/∂βxi > 0 if ρθ > 0 and ∂p∗/∂βxi < 0 if ρθ < 0,

i = 1, 2).

Turning to the comparative statics with respect to the ex-ante distribution of estimated stand-

alone valuations, observe that the dispersion of estimated stand alone valuations on each side

i = 1, 2 is given by

var[Ṽi] = κ2i var[x̃i] = z2i
(βxi + ρiαi

√
βxi /β

u
i )2

(αi + βxi )αiβxi

Because equilibrium prices are increasing in var[Ṽi], it is immediate to see that shocks that increase

the agents’ ability to estimate their own valuations (through an increase in ρi) or shocks that

increase the cross-sectional dispersion of true valuations (through a reduction in βui ) always con-

tribute to higher equilibrium prices. This makes sense, for such shocks contribute to making the two

platforms more horizontally differentiated from an ex-ante standpoint, thus softening competition.

We conclude this section with two results that show that, under plausible additional assump-

tions, the equilibrium prices characterized above (along with the participation decisions they induce)

continue to remain equilibrium outcomes when agents can choose to "opt out" of the market, or

to multihome by joining both platforms. These results should be interpreted as (minimal) robust-

ness checks aimed at showing that the above characterization results are not unduly driven by the
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choice of simplifying the analysis by abstracting from these possibilities. In future work, it would

be interesting to extend the analysis to markets where multihoming and partial market-coverage

occur in equilibrium.

We start with the following result that pertains our assumption of full market-coverage:

Proposition 3 There exist finite (si)i=1,2 such that, for any (si)i=1,2 with si > si, i = 1, 2, the

equilibrium in the game where agents must join one of the two platforms is also an equilibrium in

the game where agents can "opt out" of the market by choosing not to join any platform.

The reason why the equilibrium prices in the game with compulsory participation need not

remain equilibrium prices in the game where agents can opt out of the market is the following. First,

when platforms set the prices at the level of Proposition 2, some agents may experience a negative

equilibrium payoff and hence prefer to opt out. Because the equilibrium prices p∗i in Proposition

2 are independent of s1 and s2, this possibility can be ruled out by assuming that the marginal

agents’equilibrium payoffs are positive, which amounts to assuming that si + γi/2 ≥ p∗i . Under

this condition, no agent finds it optimal to opt out, for any agent’s equilibrium payoff is at least as

high as that of the marginal agents. This condition, however, does not suffi ce. In fact, platforms

may have an incentive to raise one of their prices above the equilibrium levels of Proposition 2

if they expect that, by inducing some agents to opt out, their demand will fall less than that of

the other platform, relative to the case where non-participation is not an option. Consider, for

example, a deviation by platform A to a vector of prices (pA1 , p
A
2 ) with pA1 > p∗1. Now suppose that,

in the unique continuation equilibrium of the game where participation is compulsory, the payoff

of the marginal agent x̂1(pA1 , p
A
2 , p

∗
1, p
∗
2) on side 1 is negative (that is, below his outside option).

This means that, in the game where participation is voluntarily, some agents in a neighborhood of

x̂1(p
A
1 , p

A
2 , p

∗
1, p
∗
2) may now decide to opt out. Note that some of these agents were joining platform

B in the game with compulsory participation. When network effects are positive, this in turn

implies that such a deviation may now be profitable for firm A if the measure of agents on side

1 who would have join platform B in the game with compulsory participation and now decide to

opt out is larger than the measure of agents who would have joined platform A and now drop out.

That is, when the platform expects a larger drop in the rival’s demand than in its own (relative to

the case where participation is compulsory), then a deviation that was not profitable in the game

where participation is compulsory may now become profitable. For this to be the case, however, it

must be that the intensity of the network effects is suffi ciently strong to prevail on the direct effect

coming from the stand-alone valuations. The proof in the Appendix shows that this is never the

case when si are suffi ciently large.

Next, consider the possibility that agents multihome by choosing to join both platforms. We

assume that, by doing so, each agent l from each side i obtains a gross payoff equal to 2si+γi(m
A
j +

µBj ), where 2si = uAil +uBil is the sum of the stand-alone valuations and where µBj is the measure of

agents from side j who join platform B without joining platform A (to avoid double counting).
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We then have the following result:

Proposition 4 Consider the variant of the game where agents from each side of the market can

multihome, as described above. For any vector of prices (pA1 , p
A
2 , p

B
1 , p

B
2 ) such that pAi +pBi ≥ 2si+γi

i = 1, 2, there exists a continuation equilibrium where each agent from each side singlehomes.

Conversely, such a continuation equilibrium fails to exist for any vector of prices for which pAi +pBi <

2si + γi, for some i ∈ {1, 2}.

Note that the condition in the Proposition simply says that an agent who expects all other

agents to singlehome and who decides to multihome experiences a negative payoff. The proof in the

Appendix then shows that, when this is the case, then no agent from either side finds multihoming

optimal. Note that the result is not trivial, for it also applies to price profiles for which some agents

do experience a negative payoff in the unique continuation equilibrium where all agents singlehome.

Conversely, when the net utility 2si+γi−pAi −pBi that an agent obtains by multihoming is positive,
then there is no continuation equilibrium where all agents singlehome. Again, this is true even when

the payoffs in the continuation game where all agents singlehome may well be strictly positive for

all agents.

The following corollary is then an immediate implication of the above result:

Corollary 3 Let (p∗1, p
∗
2) be the equilibrium prices in the game where multihoming is not possible,

as defined in (22), and assume that p∗i ≥ γi + 2si, i = 1, 2. Assuming that platforms cannot set

negative prices, we then have that the equilibrium in the game where agents are not allowed to

multihome continues to be an equilibrium in the game where multihoming is possible.

Because equilibrium prices are increasing in the ex-ante dispersion of the estimated stand-alone

valuations and because the latter measures the degree of horizontal differentiation between the two

platforms, the result in Corollary 3 is consistent with the finding in Armstrong and Wright (2007)

that strong product differentiation on both sides of the market implies that agents have no incentive

to multihome when prices are restricted to be non-negative (As argued in that paper, and in other

contexts as well, the assumption that prices must be non-negative can be justified by the fact that

negative prices can create moral hazard and adverse selection problems).

Together, the results in Proposition 3 and Corollary 3 imply that, when the stand-alone valu-

ations of the marginal agents are neither too high nor too low (intermediate si) and when the two

platforms are seen as suffi ciently differentiated on both sides of the market (the ex-ante distribution

of estimated stand-alone valuations is suffi ciently diffuse), then the unique symmetric equilibrium

of the baseline game is also an equilibrium in the more general game where agents can multihome

and can opt out of the market.
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5 Implications for advertising and product selection

We now turn to the effects on equilibrium prices of variations in (i) the prior distribution from

which stand-alone valuations are drawn and (ii) the quality of the agents’information. The results

in this section have implications for various advertising campaigns, as well as for the platforms’

incentives to differentiate their products from those of the competitors.

5.1 Advertising campaigns

Think of a software firm entering the market with a new operating system. The firm must decide

how much information to disclose to the public about the various features of its operating system.

We think of these disclosures as affecting both the developers’and the end-users’ability to estimate

their own stand-alone valuations (both in absolute value and relative to the operating system pro-

duced by the rival incumbent firm), as well as their ability to forecast the distribution of valuations

on the other side of the market.

Formally, we think of these disclosure and advertising campaigns as affecting the information

available to the two sides of the market, for fixed distribution of true stand-alone valuations. That

is, fix the parameters (α1, α2, ρθ, β
u
1 , β

u
2 ) defining the prior distribution of the individual stand-alone

valuations and consider the effects on profits of variations in (i) the agents’ability to estimate their

own stand-alone valuations (as captured by variations in ρi) and (ii) in their ability to forecast

the distribution of true (and estimated) stand-alone valuations on the other side of the market (as

captured by joint variations in (βxi , ρi)i=1,2 that leave var[Ṽi] unchanged but that affect the variance

of the forecast errors of θ̃j , as measured by (5)).

We then have the following result:

Proposition 5 Informative advertising campaigns that increase the agents’ability to estimate their

own stand-alone valuations (as measured by (3)) without affecting their ability to forecast the dis-

tribution of such valuations on the other side of the market (as measured by (5))always increase

profits.

Conversely, campaigns that increase the agents’ability to forecast the distribution of (true or

estimated) stand-alone valuations on the other side of the market without affecting their ability to

estimate their own valuations increase profits if ρθ(γ1 + γ2) > 0 and reduce profits otherwise.

The result is quite intuitive. Consider first campaigns that increase the agents’ ability to

understand their own needs and preferences, without affecting their ability to forecast other agents’

preferences. By making agents more responsive to their own idiosyncrasies, such campaigns increase

the ex-ante dispersion of estimated stand-alone valuations, thus reducing the semi-price elasticity of

the part of the demand on each side that comes from the stand-alone valuations. These campaigns

are thus similar to those that increase the degree of horizontal differentiation between the two

platforms under complete information. By reducing the intensity of the competition between the
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two platforms, such campaigns thus unambiguously contribute to higher prices and hence to higher

profits.

Next, consider campaigns whose primary effect is to make agents more informed about what

is "hip". That is, while these campaigns do not help agents understand their own needs, they help

them better predict the distribution of preferences on the other side of the market. As we show

in the Appendix, mathematically, these campaigns impact the coeffi cient of mutual forecastability

Ω, without affecting the ex-ante distribution of estimated stand-alone valuations var[Ṽi]. From the

equilibrium price equation (22), one can then see that, depending on the intensity of the network

effects, such campaigns may either increase or decrease the equilibrium prices. Their total effect

on equilibrium profits, which in a symmetric equilibrium are given by

Π∗ =
1

2
(p∗1 + p∗2) =

1

2


√
var[Ṽ1] +

√
var[Ṽ2]

2φ(0)
+ (γ1 + γ2)

(
Ω−

√
1 + Ω2

) , (23)

is then determined by (i) the sign of the total network effects γ1+γ2 and (ii) by whether increasing

the agents’ ability to forecast the distribution of preferences on the other side (which, by (5),

corresponds to an increase in the precision βxi of the agents’information) increases or decreases the

coeffi cient of mutual forecastability Ω. Because the latter is increasing in the quality of the agents’

information βx1 and β
x
2 if and only if preferences are positively correlated between the two sides

(that is, if and only if ρθ > 0), we then have that the effect of such campaigns on profits is positive

if and only if the correlation of tastes between the two sides of the market is of the same sign as

the sum of the intensity of the network effects (that is if and only if ρθ(γ1 + γ2) > 0).

To better understand this result, recall that the term γiΩ in the price equation captures the

effect of the dispersion of information on side-i’s own-price elasticity. From the discussion in the

previous section, when network effects are positive and preferences are positively correlated between

the two sides, then γiΩ increases in either of the two sides’quality of information (that is in either

βx1 and β
x
2 ). This effect comes from the fact that more precise information on side i makes the

marginal agent on both sides more responsive to his private information. When preferences are

positively correlated and network effects are positive, this effect in turn contributes to a higher

equilibrium price on each side by making each side’s demand function less elastic.

At the same time, more precise information also implies a higher sensitivity of both demand

functions to variations in prices on the opposite side. These effects, which are captured by the

terms γj
√

1 + Ω2 in the price equations, contribute negatively to the equilibrium prices. While

the net effect on the equilibrium prices on each side then depends on the relative strengths of the

network effects γ1 and γ2, the net effect on total profits is unambiguously positive when the sum

of the network effects is positive (more generally, when it is of the same sign as the correlation of

preferences between the two sides). This is because any loss of profits on one side is more than

compensated by an increase in profits on the opposite side, as one can see from (23).

What is interesting about the results in the proposition is that they identify two fairly general
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channels through which information affects profits, without specifying the particular mechanics by

which the campaigns operate. In reality, most campaigns operate through both channels. That

is, they impact both the agents’ability to understand their own preferences and their ability to

understand what other agents are likely to find attractive. The results in the proposition then

indicate that such campaigns unambiguously increase profits in markets where (i) preferences are

positively correlated between the two sides and (ii) the sum of the network effects is positive

(which is always the case when each side benefits from the presence of the other side). In contrast,

in markets where the sum of the network effects is positive but where preferences are negatively

correlated between the two sides (or, vice versa), profits may decrease with the agents’ ability

to forecast other agents’ preferences and platforms may find it optimal to conceal part of the

information they have.

Note that the above results refer to informative campaigns. They do not apply to campaigns

that distorts the average perception the agents have about the quality differential between the

two products. These campaigns could be modelled in our framework by allowing the platforms to

manipulate the mean of the distributions from which the signals xil are drawn. However, note that,

in our environment where platforms do not possess any private information and where agents are

fully rational, the effect of such campaigns on profits is unambiguously negative, for each agent can

always “undo”the manipulation by adjusting the interpretation of the information he receives. As

discussed in the "signal-jamming" literature (e.g., Fudenberg and Tirole (1986)), platforms may

then be trapped into a situation where they have to invest resources in such campaigns, despite

the fact that, in equilibrium, such campaigns have no effect on the agents’decisions.

5.2 Product selection

We conclude by considering campaigns that impact the distribution from which the true stand-alone

valuations are drawn. As anticipated in the Introduction, such campaigns– formally captured by a

change in the parameters (α1, α2, ρθ, β
u
1 , β

u
2 )– should be interpreted as the choice of how to position

a product relative to the one offered by the other platform. For example, an increase in α1 and α2
should be interpreted as the choice to enter the market with a product similar to the one provided

by the incumbent platform. We then have the following result:

Proposition 6 Fix the quality of the information on each side of the market (that is, fix (βxi , ρi),

i = 1, 2). An increase in the similarity between the two products (as captured by an increase in

(α1, α2)) always reduces the equilibrium profits. The same is true for a reduction in the cross-

sectional heterogeneity of individual preferences (as captured by an increase in (βu1 , β
u
2 )).

Conversely, an increase in the alignment of preferences between the two sides (as captured by

an increase in ρθ) increases profits if γ1 + γ2 > 0 and reduces them if γ1 + γ2 < 0.

That both a higher similarity in the products and a smaller relevance of dimensions that are

responsible for idiosyncratic appreciations contribute negatively to profits is immediate, for they
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both contribute to fiercer competition on prices.

The result about the effect of aligning the preferences of the two sides is less obvious. Observe

from the price equation (22) that an increase in the alignment of preferences (which amounts to

an increase in the coeffi cient Ω of mutual forecastability) may increase prices on one side while

decreasing prices on the other side. This is true even if each side benefits from the participation of

the other side. The net effect of profits is however always positive if the sum of the network effects is

positive, while it is negative otherwise. For example, in a market for media outlets, more alignment

in the preferences of viewers and advertisers over the features of competing outlets can be profit-

enhancing if the viewers’ tolerance towards advertising is high, while it may be profit-reducing

otherwise.

6 Conclusions

We examined the effects of dispersed information on prices and equilibrium profits in a simple,

yet flexible, model of platform competition with horizontally differentiated products. The analysis

identified a novel channel through which the dispersion of information interacts with the network

effects in determining the elasticity of the demands functions. We then showed how equilibrium

profits are affected by variations in the prior distribution from which valuations are drawn and

by the quality of information available to the two sides. We used these results to shed light on

the platforms’ incentives to align the preferences of the two sides and to engage in advertising

campaigns that affect the agents’ability to predict their own preferences and/or the distribution

of preferences on the other side of the market.

In future work, it would be interesting to extend the analysis to accommodate the possibility

of price discrimination, whereby each platform grants differential access to the participating pop-

ulation from the opposite side. It would also be interesting to extend the analysis to a dynamic

setting with switching costs and investigate the platforms’incentives to price aggressively at the

early stages so as to build a user base as a barrier to entry and to future competition. It would also

be interesting to investigate how the platforms’pricing strategies affect the dynamics of learning

and the speed of technology adoption.

7 Appendix

Proof of Lemma 1. Fix (pA1 , p
A
2 ). Under Assumption M, Gi (x1, x2) is a continuous decreas-

ing17 function onto R of x̂i. Thus for any x2 there exists a unique value x1 = ξ1 (x2) that solves

17To see this note that

∂Gi (x1, x2)

∂xi
= −κi/2− γiΩ

√
αiβxi
αi + βxi

φ (Xji(x1, x2)) .
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G1 (ξ1 (x2) , x2) = pA1 . Thus consider the function

F (x2) ≡ G2 (ξ1 (x2) , x2)− pA2 .

This is a continuous function, positive for x2 small enough and negative for x2 large enough. Thus

a solution to F (x2) = 0 always exists, which establishes the result.

Proof of Lemma 2. To fix ideas, we assume here that γ1 ≥ 0. The proof for the case where

γ1 < 0 ≤ γ2 is symmetric to the one for the case where γ2 < 0 ≤ γ1 which is covered below.

Consider again the function F (x2) ≡ G2 (ξ1 (x2) , x2) introduced in the proof of Lemma 1, where

ξ1 (x2) is the unique solution to G1 (ξ1 (x2) , x2) = pA1 . From the implicit function theorem, and

given that ∂Gi (x1, x2) /∂xi < 0, we have that

sign

(
dF (x2)

dx2

)
= sign

(
∂G2 (ξ1 (x2) , x2)

∂x1

∂G1 (ξ1 (x2) , x2)

∂x2
− ∂G2 (ξ1 (x2) , x2)

∂x2

∂G1 (ξ1 (x2) , x2)

∂x1

)
.

Using

∂Gi (x1, x2)

∂xi
= −κi/2− γiΩ

√
αiβxi
αi + βxi

φ (Xji(x1, x2))

∂Gi (x1, x2)

∂xj
= γi

1

ρθ
Ω

√
αj (αi + βxi )

βxi
φ (Xji(x1, x2))

after some algebra, we obtain that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(24)

=

(
γ1γ2

√
α1α2βx1β

x
2

(α1 + βx1 ) (α2 + βx2 )
φ (X12(x1, x2))−

κ2
2
γ1Ω

√
α1βx1
α1 + βx1

)
φ (X21(x1, x2))

− κ1
2
γ2Ω

√
α2βx2
α2 + βx2

φ (X12(x1, x2))−
κ1κ2

4
.

Now we claim that, under Condition Q, the expression in (24) is strictly negative for any

(x1, x2). To see this, suppose, on the contrary, that there exists (x1, x2) for which the sign of

the expression in (24) is nonnegative. Consider first the case where γ1, γ2,Ω ≥ 0. Then for the

expression in (24) to be nonnegative, it must be that

γ1γ2

√
α1α2βx1β

x
2

(α1 + βx1 ) (α2 + βx2 )
φ (X12(x1, x2))−

κ2
2
γ1Ω

√
α1βx1
α1 + βx1

> 0

Hence, when γiΩ ≥ 0, ∂Gi(x1,x2)
∂xi

< 0 while for γiΩ < 0,

∂Gi (x1, x2)

∂xi
≤ −κi/2− γiΩ

√
αiβxi
αi + βxi

φ (0)

which is again negative by Assumption M.
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which in turn implies that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(25)

≤
(
γ1γ2

√
α1α2βx1β

x
2

(α1 + βx1 ) (α2 + βx2 )
φ (X12(x1, x2))−

κ2
2
γ1Ω

√
α1βx1
α1 + βx1

)
φ (0)

− κ1
2
γ2Ω

√
α2βx2
α2 + βx2

φ (X12(x1, x2))−
κ1κ2

4
.

Because the right-hand side of (25) can also be rewritten as(
γ1γ2

√
α1α2βx1β

x
2

(α1 + βx1 ) (α2 + βx2 )
φ (0)− κ1

2
γ2Ω

√
α2βx2
α2 + βx2

)
φ (X12(x1, x2)) (26)

− κ2
2
γ1Ω

√
α1βx1
α1 + βx1

φ (0)− κ1κ2
4

for the sign of the expression in (26) to be nonnegative, by the same reasoning as above, it must

be that the sign of the first term in (26) is also strictly positive. It must then be that(
γ1γ2

√
α1α2βx1β

x
2

(α1 + βx1 ) (α2 + βx2 )
φ (0)− κ1

2
γ2Ω

√
α2βx2
α2 + βx2

)
φ (0) (27)

− κ2
2
γ1Ω

√
α1βx1
α1 + βx1

φ (0)− κ1κ2
4
≥ 0

which is impossible when Condition Q holds.

Next assume that γ1, γ2 ≥ 0 > Ω. Then, by the same arguments as above, the existence of a

pair (x̂1, x̂2) for which the sign of the expression in (24) is nonnegative contradicts the assumption

that Condition Q holds.

Next, assume that γ1,Ω ≥ 0 > γ2. It follows that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
≤ (28)

− κ1
2
γ2Ω

√
α2βx2
α2 + βx2

φ (X12(x1, x2))−
κ1κ2

4

For the expression in the right-hand-side of (28) to be nonnegative, it must then be that

−γ2Ω
√

α2βx2
α2 + βx2

φ (0)− κ2
2
≥ 0

which is impossible under condition (M).

Next consider the case where γ1 ≥ 0 > Ω, γ2. We then have that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(29)

≤ −κ2
2
γ1Ω

√
α1βx1
α1 + βx1

φ (0)− κ1κ2
4

< 0
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where the last inequality is again by Condition (M).

We conclude that the function F (·) is strictly decreasing which implies that the threshold
continuation equilibrium of Lemma 1 is unique. Standard global-game arguments then imply that

there do not exist continuation equilibria other than the threshold one, which establishes the result.

Proof of Lemma 3. Existence. Because of the bijective relation between
(
pA1 , p

A
2

)
and

(x̂1, x̂2) it suffi ces to show that there exists a vector of thresholds (x̂1, x̂2) that maximize (8). To

see this, note that, for any pair (x̂1, x̂2) ,

Π̂A (x̂1, x̂2) ≡
∑
i=1,2

[
si −

κi
2
x̂i + γiΦ (Xji(x̂1, x̂2))

]
Φ

(√
αiβxi
αi + βxi

x̂i

)
which means that∑
i=1,2

[
si −

κi
2
x̂i + γ−i

]
Φ

(√
αiβxi
αi + βxi

x̂i

)
≤ Π̂A (x̂1, x̂2) ≤

∑
i=1,2

[
si −

κi
2
x̂i + γ+i

]
Φ

(√
αiβxi
αi + βxi

x̂i

)
(30)

Next, consider the function

fi(xi) ≡
[
si −

κi
2
xi + γ+i

]
Φ

(√
αiβxi
αi + βxi

xi

)
and note that this function is bounded from above but not from below.18 By looking at the right-

hand side of (30), it is then immediate that, for any i = 1, 2, there exists a finite x̄i such that

Π̂A (x̂1, x̂2) < 0 for any (x̂1, x̂2) such that x̂i ≥ x̄i. Because the platform can always guarantee itself
zero profits by setting prices equal to zero, this means that, to find a maximizer of Π̂A (x̂1, x̂2), one

can restrict attention to pairs (x̂1, x̂2) such that x̂i ≤ x̄i, i = 1, 2.

Next, note that limxi→−∞ fi(xi) = 0. This means that for any i = 1, 2, j 6= i and ε > 0

arbitrarily small, there exists a finite xi such that, for any (x̂1, x̂2) with x̂i ≤ xi,

Π̂A (x̂1, x̂2) ≤ ε+
[
sj −

κj
2
x̂j + γ+j

]
Φ

(√
αjβxj
αj + βxj

x̂j

)
(31)

Now take any x̂#i ∈ arg maxx gi(x) and note that any such x̂#i is such that x̂
#
i > xi. This means,

for any (x̂1, x̂2) with x̂i ≤ xi, the inequality in (31) holds whereas the following inequality

Π̂A (x̂1, x̂2) > gi(x̂
#
i ) +

[
sj −

κj
2
x̂j + γ−j

]
Φ

(√
αjβxj
αj + βxj

x̂j

)
(32)

holds for (x̂#i , x̂j). By Condition (W), we then have that, for any i = 1, 2, any pair (x̂1, x̂2) with

x̂i ≤ xi, there exists a pair (x̂′1, x̂
′
2) with x̂

′
i = x̂#i and x̂

′
j = x̂j such that

Π̂A
(
x̂′1, x̂

′
2

)
> Π̂A (x̂1, x̂2) .

18This follows from the fact that the standard Normal distribution satisfies the property that limx→−∞ xΦ(x) = 0.
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Together with the result above, this means that, when looking for maximizers of Π̂A(x̂1, x̂2) one

can restrict attention to pairs (x̂1, x̂2) such that xi ≤ x̂i ≤ x̄i, i = 1, 2. Because the above is a

compact set, and because the function Π̂A(x̂1, x̂2) is continuous and differentiable, this proves that

a maximizer to Π̂A(x̂1, x̂2) always exists. Moreover, by construction of the intervals [xi, x̄i], any

maximizer is necessarily interior and thus satisfies the first-order conditions in (9).

Uniqueness. To be added.

Proof of Proposition 2. By definition, in a symmetric equilibrium, pAi = pBi , i = 1, 2. Under

Conditions (M), (Q) and (W), the unique continuation equilibrium is then a threshold equilibrium

with thresholds x̂1 = x̂2 = 0 and expected demands E[m̃A
i ] = 1/2, i = 1, 2. Substituting x̂i = 0 and

E[m̃A
i ] = 1/2, i = 1, 2, into the the formulas for dE[m̃A

i ]/dx̂i, dE[m̃A
j | x̂i]/dx̂i, and dE

[
m̃A
i | x̂j

]
/dx̂i

(as given by (11), (12) and (13), respectively) and replacing these formulas into the optimality

conditions (21), we then have that the equilibrium prices are given by

p∗i =
κi

2
√

αiβxi
αi+βxi

φ (0)
+ γiΩ− γj


1
ρθ

Ω

√
αi(αj+βxj )

βxj√
αiβxi
αi+βxi


Noticing that

κi√
αiβxi
αi+βxi

=

√
var[Ṽi]

and that 
1
ρθ

Ω

√
αi(αj+βxj )

βxj√
αiβxi
αi+βxi

 =
√

1 + Ω2

then gives the result.

Proof of Proposition 3. First note that, when si > p∗i − γ−i , in the proposed equilibrium
where participation to one of the two platforms is compulsory, each agent obtains more than his

outside option (normalized to zero). Now suppose that platform B offers the equilibrium prices

and consider the problem faced by platform A (the problem faced by platform B is symmetric).

Clearly, for any deviation entailing a reduction in the price offered to each side, one can construct

a continuation equilibrium where each agent behaves exactly as in the game where participation is

compulsory, in which case the deviation is unprofitable. Next, for any i = 1, 2, let x#i be implicitly

defined by

si +
1

2
κix

#
i + γ−i = p∗i

and observe that, no agent from side i receiving a signal xi > x#i will ever opt out, irrespective of

the prices charged by platform A, for, irrespective of the other agents’decisions, he can obtain a

positive surplus by joining platform B.
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Now observe that the equilibrium prices p∗i , i = 1, 2, are independent of si and that x
#
i is

strictly decreasing in si, going to −∞ as si goes to +∞. Suppose now that there exists a vector of
prices (pA1 , p

A
2 ) such that, in any of the continuation equilibria that follow the selection of the prices

(pA1 , p
A
2 , p

∗
1, p
∗
2), platform A is strictly better off than under the monotone equilibrium that follows

the selection of the equilibrium prices (p∗1, p
∗
2, p
∗
1, p
∗
2). Clearly, for this to be possible, there must

exist i ∈ {1, 2} such that x̂i(pA1 , pA2 , p∗1, p∗2) ≤ x#i , where x̂i(p
A
1 , p

A
2 , p

∗
1, p
∗
2)i=1,2 are the thresholds

defined by (18) in the game where participation is compulsory. Finally, let x+i (pA1 , p
A
2 , p

∗
1, p
∗
2) be

implicitly defined by

si −
1

2
κix

+
i + γ+i = pAi

and observe that no agent from side i with signal xi > x+i (pA1 , p
A
2 , p

∗
1, p
∗
2) will ever join platform A,

irrespective of his beliefs about the other agents’participation decisions. Now, letting side i be the

one for which x̂i(pA1 , p
A
2 , p

∗
1, p
∗
2) ≤ x

#
i , observe that, necessarily,

x+i (pA1 , p
A
2 , p

∗
1, p
∗
2) < x̂i(p

A
1 , p

A
2 , p

∗
1, p
∗
2) + 2|γi|/κi. (33)

To see this, let q(·) and r(·) be the function defined by

q(xi) ≡ si −
1

2
κixi + γ+i − p

A
i and

r(xi) ≡ si −
1

2
κixi + γiE

[
Φ(
√
βxj (x̂j − θ̃j)) | xi

]
− pAi

where, again, x̂i(pA1 , p
A
2 , p

∗
1, p
∗
2)i=1,2 are the thresholds defined by (18) in the game where participa-

tion is compulsory. Note that, for any xi,

0 ≤ q(xi)− r(xi) ≤ |γi|.

Because r(x̂i) < 0, it follows that q(xi) ≤ |γi|. Given the linearity of q(·) in xi, we then have that
the unique solution x+i to q(x

+
i ) = 0 must necessarily satisfy (33).

Having established that x#i , x
+
i , x̂i all converge (uniformly) to −∞ as si → +∞, we then

have that, in the limit as si → +∞, mA
i (pA1 , p

A
2 , p

∗
1, p
∗
2) → 0 and mB

i (pA1 , p
A
2 , p

∗
1, p
∗
2) → 1, exactly

as in the game where participation is compulsory. This means that, when si goes to infinity,

i = 1, 2, platform A’s payoff given the prices (pA1 , p
A
2 , p

∗
1, p
∗
2) under any continuation equilibrium in

the game where participation is voluntarily must converge to its’payoff in the unique continuation

equilibrium of the game where participation is compulsory. Because the latter is necessarily less

then the platform’s payoff under the equilibrium prices, and because, by quasiconcavity of payoffs,

there exists K,M > 0 such that, in the game where participation is compulsory

ΠA(p∗1, p
∗
2, p
∗
1, p
∗
2)−ΠA(pA1 , p

A
2 , p

∗
1, p
∗
2) > K

for any (pA1 , p
A
2 , p

∗
1, p
∗
2) for which there exists i ∈ {1, 2} such that pAi > M , we conclude that, no

matter the selected continuation equilibrium, any deviation resulting in partial participation is

necessarily unprofitable. This completes the proof.
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Proof of Proposition 4. Recall that each agent l from each side i prefers to join platform A

to joining platform B if and only if

E
[
zi(θ̃i + ε̃il) | xil

]
+ γiE

[
m̃B
j − m̃A

j | xil
]
≤ pBi − pAi . (34)

The same agent then prefers joining platform A to multihoming if and only if

si +
1

2
E
[
zi(θ̃i + ε̃il) | xil

]
+ γiE

[
m̃B
j | xil

]
− pBi < 0. (35)

Note that Condition (35) is implied by Condition (34) if and only if

2γiE
[
m̃B
j | xil

]
− pAi − γiE

[
m̃B
j − m̃A

j | xil
]
≤ pBi − 2si (36)

In any continuation equilibrium where all agents singlehome mB
j = 1 − mA

j , in which case the

inequality in (36) becomes equivalent to γi ≤ pAi + pBi − 2si. The same conclusion applies to those

agents that prefer platform B to platform A. From the results above, we know that the game

where multihoming is not possible always admits a continuation equilibrium. We then conclude

that, when pAi + pBi ≥ γi + 2si, such a continuation equilibrium is also a continuation equilibrium

in the game where agents can multihome.

Conversely, when pAi + pBi < γi + 2si, there exists no continuation equilibrium where all agents

singlehome, for, if such equilibrium existed, then it would satisfy mB
j + mA

j = 1. Inverting the

inequalities above, we would then have that some agent from side i would necessarily prefer to

multihome.

Proof of Proposition 5. Recall that the agents’ability to forecast their own stand-alone

valuations is measured by the variance of the forecast errors of ṽil, which is given by

var[ṽil − Ṽil] = z2i
αi + βui
αiβui

− z2i

(
βxi + ρiαi

√
βxi /β

u
i

)2
(αi + βxi )αiβxi

(37)

whereas their ability to forecast the distribution of true (as well as estimated) stand-alone valuations

on the other side of the market is measured by the variance of the agents’ forecast errors of θ̃j ,

which is given by

var[θ̃j − E[θ̃j |x̃il]] =

(
1− ρ2θ

βxi
αi + βxi

)
1

αj
.

Finally, recall that the ex-ante distribution of estimated stand-alone valuations on each side of the

market is Normal with zero mean and variance

var[Ṽi] = z2i
(βxi + ρiαi

√
βxi /β

u
i )2

(αi + βxi )αiβxi
(38)

Now observe that the equilibrium profits are given by

ΠA = ΠB = Π∗ ≡ 1

2
(p∗1 + p∗2)

34



with

p∗i =

√
var[Ṽi]

2φ(0)
+ γiΩ− γj

√
1 + Ω2

where

Ω ≡ ρθ

√
βx1β

x
2

α1α2 + βx1α2 + βx2α1 + (1− ρ2θ)βx1βx2

is the coeffi cient of mutual forecastability. Because the prior distribution is fixed, so are the parame-

ters (α1, α2, ρθ, β
u
1 , β

u
2 , z1, z2). It is then immediate from (37) and (38) that campaigns that increase

the agents’ability to forecast their own stand-alone valuations increase the ex-ante dispersion of

estimated stand-alone valuations. From the formula for the equilibrium prices, it is then easy to

see that, when such campaigns do not affect the agents’ability to forecast the distribution of true

(and estimated) stand-alone valuations on the other side of the market (that is, when they leave

βx1 and β
x
2 unchanged), they necessarily increase equilibrium prices and hence equilibrium profits.

Next consider campaigns that leave unchanged the agents’ability to forecast their own stand-

alone valuations (and hence the ex-ante dispersion of estimated stand-alone valuations). Then such

campaigns increase profits if and only if they increase

(γ1 + γ2)
(

Ω−
√

1 + Ω2
)

which is the case if and only if
∂Ω

∂βxi
(γ1 + γ2) ≥ 0.

Using the fact that Ω is increasing in βx1 and β
x
2 if and only if ρθ ≥ 0, we then have that such

campaigns increase profits if and only if ρθ(γ1 + γ2) ≥ 0, thus establishing the result.

Proof of Proposition 6. The results concerning the comparative statics with respect to

(α1, α2, β
u
1 , β

u
2 ) follow directly from inspecting the formula for the equilibrium prices and observing

that the ex-ante dispersion of estimated stand alone-valuations var[Ṽil] on each side i = 1, 2 de-

creases with (αi, β
u
i ) and is independent of (αj , β

u
j ), whereas the coeffi cient of mutual forecastability

Ω is independent of (α1, α2, β
u
1 , β

u
2 ).

Next, consider the comparative statics with respect to the coeffi cient of correlation ρθ. The

result then follows from observing that

∂Π∗

∂ρθ
=

1

2
(γ1 + γ2)

∂Ω

∂ρθ

{
1− Ω√

1 + Ω2

}
which is positive if and only if γ1 + γ2 ≥ 0.
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