
Asymmetric Contests with Interdependent Valuations

Ron Siegel∗

May 2011

Abstract

I show that a unique equilibrium exists in a two-player all-pay auction with asym-

metric independent discrete signal distributions and asymmetric interdependent val-

uations. The proof is constructive, and the construction is simple to implement as

a computer program. For special cases, which include some private value settings,

common value settings, and symmetric players, I derive additional properties and

comparative statics. I also characterize the set of equilibria when a reserve price is

introduced.

1 Introduction

This paper investigates a contest model in which two asymmetric contestants compete

for a prize by expending resources. Each contestant has some private information that

may affect both contestants’ valuation for the prize, and contestants are asymmetric in

that their private information may be drawn from different distributions and impact their

valuations differently. For example, consider a research and development race in which the

firm with the highest-quality product enjoys a dominant market position. Each firm may
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be informed about different attributes of the market, which together determine the value

of winning. This value may differ between the firms, because the profit associated with a

dominant market position may depend on firm-specific characteristics such as production

costs and marketing expertise.

Section 2 models the contest as an asymmetric all-pay auction with independent signals

and interdependent valuations. Each player’s signal is drawn from a finite set of ordered

signals according to a probability distribution with full support. The sets of signals and

corresponding probability distributions may differ between the players. After observing

his signal, each player decides how much to bid, and the player with the higher bid wins

the prize. The value of the prize is a player-specific function of both players’ signals.

The only restriction is that this function increase in the player’s own signal. This model

includes complete information, private values, common values, and one informed and one

uninformed player as special cases.

Section 3 contains the main result of the paper, which is a constructive characterization

of the unique equilibrium. This characterization uses the finiteness of players’ type spaces

to employ insights from the analysis of complete-information contest models. Each player,

for each of his types, chooses his bid from an interval, and higher types choose bids from

higher intervals. This ordering of intervals means that, by proceeding from the top, the

equilibrium can be constructed in a finite number of steps. In each step, one type of player

1 competes against one type of player 2. In the resulting interval of competition, players

compete as in a complete-information all-pay auction with valuations that correspond to

the competing types. Once one player has exhausted the probability mass associated with

his lowest type, any remaining probability mass of the other player is expended as an atom

at 0. This simple procedure is easy to implement as a computer program.1 Section 3.1

enumerates the possible equilibrium orderings of players’ bidding intervals, which depend

on players’ valuations and probability distributions.

Section 4 applies the construction result to examine a few special cases. First, a com-

plete characterization is provided when each player has one or two types (excluding the

1A Matlab implementation of this procedure is available on my website,

http://faculty.wcas.northwestern.edu/~rsi665/.
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case of complete information, which has been well studied by, for example, Hillman and

Riley (1989)). This characterization generalizes those of Konrad (2004, 2009) and Szech

(2010), who examined two-player all-pay auctions with private values and one or two types.

Second, a closed-form solution is provided when players have private values, one player is

known to be stronger than the other, and only one player has private information. When

the privately-informed player is the strong one, his low types enjoy a higher payoff increase

relative to the corresponding complete-information contest than do his high types. The

reverse inequalities hold weakly when the privately-informed player is the weak one, and

hold strictly when the probability of low types is sufficiently high. Thus, which types en-

joy higher “information rents” depends on whether the informed player is strong or weak.

Third, a partial characterization is provided when the value of the prize is common to

both players. This characterization shows that players’ equilibrium strategies are identical

from an ex—ante perspective. Players’ payoffs may differ, however, because each player

may condition his bid on his private information, which may differ between the players. A

closed form solution is provided when, in addition to common values, only one player has

private information. Fourth, a symmetric closed-form solution is provided when players

are “quasi-symmetric,” in that their ex-ante information structures are identical and their

valuations for winning are the same whenever they observe the same signals.

Section 5 uses the equilibrium construction result to derive a candidate equilibrium

when players’ types are drawn from continuous distributions. The continuous distribu-

tions are approximated by increasingly finer discrete distributions, and the limit of the

equilibria of the corresponding contests deliver a differential equation that identifies a

candidate equilibrium. When players have private values, the candidate equilibrium coin-

cides with that of Amann and Leininger (1996), who considered an asymmetric two-player

all-pay auction with private values and continuous type distributions. They characterized

the unique equilibrium candidate within the class of differentiable equilibria, and did not

consider discrete distributions or interdependent valuations.2

2They did not prove that the candidate equilibrium is indeed an equilibrium, or that it is unique within

the class of all equilibria. These lacunae can most likely be filled by the tools developed in Lizzeri and

Persico (2000).
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Section 6 extends the model by adding a reserve price, which corresponds to the mini-

mum investment necessary to win the contest. A player who bids below the reserve price

loses, regardless of what the other player bids. While the contest may have multiple equi-

libria, there exists a bid such that in any equilibrium, players’ bidding behavior above the

reserve price coincides with their bidding behavior above this bid in the contest without

a reserve price. I characterize the set of equilibria, which are payoff equivalent, and show

that players’ payoffs decrease in the reserve price. Any two equilibria differ in the behav-

ior of at most one type of each player, so when the probability of each type is small the

difference between any two equilibria is small. This is consistent with Lizzeri and Persico’s

(2000) result that with a continuum of types and a sufficiently high reserve price there

exists a unique equilibrium. In contrast to their analysis, I place no restrictions on the

reserve price, and provide a constructive procedure for characterizing the set of equilibria.

Another difference is that they require a non-atomic distribution, whereas I stipulate a

finite number of signals.

Beyond Lizzeri and Persico’s (2000) and Amann and Leininger’s (1996) work, few papers

have studied auction-like contests with incomplete information and asymmetries in players’

valuations and information structure, even though these features arise in many real-world

competitions with sunk investments. A notable exception is Parreiras and Rubinchik’s

(2010) work, which characterized some equilibrium properties in an asymmetric all-pay

auction with private values and more than two players. These and most other papers that

analyze auction-like contests assume a continuum of signals and non-atomic atomic distrib-

utions. The assumption of a finite number of signals made here shows that certain insights

and techniques used in the analysis of complete-information all-pay auctions apply when

there is incomplete information. This provides a novel connection between complete and

incomplete information all-pay auctions. The model also includes complete-information

all-pay auctions as a special case, in contrast to its usual treatment as a limiting case

in models with non-atomic distributions. The finiteness assumption is also useful for the

explicit analysis of examples and applications, and facilitates equilibrium characterization

with a non-restricted reserve price.3

3This characterization includes, of course, complete-information all-pay auctions with a reserve price,
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2 Model

There are two players and one prize. Each player i = 1, 2 observes a private signal si

in Si, where Si is a finite ordered set. The signals in Si are distributed according to a

commonly-known probability distribution Fi, where Fi (si) > 0 is the probability of signal

si. The distributions F1 and F2 are statistically independent. Player i’s valuation for the

prize is Vi : S1 × S2 → R++, which is strictly increasing in player i’s signal, but need not

be increasing or monotonic in the other player’s signal. After observing their signals, the

players compete in an all-pay auction: they simultaneously chooses how much money to

bid, forfeit their bid, and the player with the higher bid wins the prize (in case of a tie, any

procedure can be used to allocate the prize between the players). Thus, player i’s payoff if

he observes signal si and players’ bids are b1 and b2 is

ui (si, b1, b2) = Pi (b1, b2)
X

s−i∈S−i

(F−i (s−i)Vi (si, s−i))− bi,

where −i refers to player 3− i,

Vi (si, s−i) =

⎧⎨⎩ V1 (s1, s2) if i = 1

V2 (s1, s2) if i = 2
,

and

Pi (b1, b2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if bi > b−i,

0 if bi < b−i,

any value in [0, 1] if bi = b−i,

,

such that P1 (b1, b2) + P2 (b1, b2) = 1.

3 Equilibrium

Denote a mixed strategy of player i byGi : Si×R→ [0, 1], whereGi (si, x) is the probability

that player i bids at most x when he observes si (so Gi (si, ·) is a CDF for every signal

si). Abusing notation, I will sometimes treat Gi as a function of one variable, Gi (x) =P
si∈Si Fi (si)Gi (si, x), so Gi is also a CDF. An equilibrium is a pair G = (G1, G2), such

which, to the best of my knowledge, have not been previously studied.
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that given that player i plays the mixed strategy Gi, the CDF G−i (s−i, ·) assigns measure

1 to player −i’s set of best responses when he observes signal s−i, for every signal s−i. I

say that a player has an atom at x if the player bids x with positive probability when he

observes one of his signals.

One difficulty in solving for equilibrium is that a player’s valuation for the prize may

depend on the other player’s signal, which can be inferred (at least partially) from the

other player’s equilibrium bid. This does not happen in a private-value model. Of course,

even with private values a player’s probability of winning with a given bid depends on the

other player’s strategy. The additional complication here is that the player’s valuation for

the prize also depends on the other player’s strategy (through the equilibrium mapping

between the other player’s signal and his strategy). The key to solving for equilibrium is

to show that a simple structure governs this dependency.

The remainder of the section characterizes the unique equilibrium. I begin with a few

preliminaries.4

Lemma 1 In any equilibrium G, (i) there is no bid at which both players have an atom,

(ii) there is no positive bid at which either player has an atom, (iii) if x > 0 is not a best

response for player i for any signal, then no bid y ≥ x is a best response for either player

for any signal, and (iv) both players have best responses at 0 or arbitrarily close to 0.5

Proof. For (i), suppose that player 1 chose x with positive probability when he observed

s1, and player 2 did the same when observing s2. Because F1 (s1) > 0, player 2 could do

strictly better by choosing a bid slightly above x, so x cannot be a best response for player

2 when observing s2, a contradiction. For (ii), suppose that player i chose x > 0 with

positive probability when he observed si. By an argument similar to the one used to prove

(i), the other player would not have best responses on some positive-length interval with

upper bound x for any signal. But then player i could do strictly better by bidding slightly

below x, so x cannot be a best response for player i when observing si, a contradiction. For

4Similar equilibrium properties arise in many complete-information models of competition, such as

those of Bulow and Levin (2006) and Siegel (2009, 2010).

5Parts (iii) and (iv) rely on the assumption that there are two players.
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(iii), note that (ii) proved that each player’s CDF is continuous above 0 for any signal he

observes. Therefore, if x > 0 is not a best response for player i at any signal, the same is

true for all bids in a some maximal neighborhood of x. This implies that the other player

also does not choose any bids in this neighborhood. But then, again by continuity, no

player would have a best response at the top of this neighborhood. For (iv), suppose that

0 is not a best response for one of the players and that player does not have best responses

arbitrarily close to 0. This means that the player does not have best responses in some

interval with lower endpoint 0. By (iii), the player does not have any best-responses, so G

is not an equilibrium.

Denote by ui (si, x) player i’s expected payoff when he observes signal si and bids x

and the other player uses strategy G−i. Choose an equilibrium G, and denote by BRi (si)

player i’s best responses when he observes signal si and the other player uses strategy G−i.

Lemma 2 If s0i > si, then for any x in BRi (si) and y in BRi (s
0
i), we have y ≥ x.6

Proof. Choose x in BRi (si) and y in BRi (s
0
i). Suppose x > y. By part (ii) of Lemma 1,

neither player has an atom at x > 0. And player −i does not have an atom at y, otherwise

y would not be in BRi (s
0
i). Therefore,

ui (si, x)−ui (si, y) =
X

s−i∈S−i

(F−i (s−i)Vi (si, s−i) (G−i (s−i, x)−G−i (s−i, y)))−(x− y) ≥ 0,

(1)

where the last inequality follows from ui (si, x) ≥ ui (si, y), because x is in BRi (si). This

last inequality and x−y > 0 imply that G−i (s−i, x)−G−i (s−i, y) > 0 for at least one signal

s−i. This shows that the value of (1) strictly increases if si is replaced with s0i, because

Vi (s
0
i, s−i) > Vi (si, s−i) for every signal s−i. Therefore, ui (s0i, x) > ui (s

0
i, y), which means

that y is not in BRi (s
0
i), a contradiction.

The following corollary of Lemmas 1 and 2 describes the structure of players’ best

response sets in any equilibrium.

Corollary 1 For every player i and every signal si, BRi (si) is an interval. For any two

consecutive signals s0i > si, the upper bound of BRi (si) is equal to the lower bound of

6The lemma relies on the assumption that players’ signal distributions are statistically independent.
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BRi (s
0
i). Moreover,

sup∪s1∈S1BR1 (s1) = sup∪s2∈S2BR2 (s2) and inf ∪s1∈S1BR1 (s1) = inf ∪s2∈S2BR2 (s2) = 0.

(2)

Proof. By part (iii) of Lemma 1 and Lemma 2, BRi (si) is an interval. By part (iii) of

Lemma 1, BRi (si)∩BRi (s
0
i) is not empty, and Lemma 2 shows that this intersection can

include only the boundaries of the best-response sets. Parts (iii) and (iv) of Lemma 1

imply (2).

Figure 1 depicts an equilibrium structure consistent with Corollary 1, where T denotes

the common upper bound of players’ best response sets.7

0 T

Pl 1

Pl 2
s1

2s2
2s3

2s4
2

s2
1 s1

1

0 T

Pl 1

Pl 2

0 T

Pl 1

Pl 2

0 T

Pl 1

Pl 2
s1

2s2
2s3

2s4
2

s2
1 s1

1s2
1 s1

1

Figure 1: A possible equilibrium structure of players’ best response sets when player 1

has two signals, player 2 has four signals, and player 2 has an atom at 0

This structure shows that the equilibrium can be found by using an iterative procedure.

To see this, let ski be the k
th signal in Si when signals are ordered from highest to lowest,

so sk+1i < ski . Consider the coarsest partition of [0, T ] that includes both partitions of [0, T ]

into players’ best response sets (henceforth: the joint partition). In Figure 1, the joint

partition is depicted on the bottom line. Consider two bids x < y in the top interval of this

partition. Both x and y are best responses for player 1 when his type is s11, and therefore

7Note that because T > 0 (at most one player has an atom at 0) and players’ strategies are continuous

above 0 (part (ii) of Lemma 1), T is a best response for both players’ highest types.
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lead to the same expected payoffsX
s2<s12

F2 (s2)V1
¡
s11, s2

¢
+ F2

¡
s12
¢
G2

¡
s12, y

¢
V1
¡
s11, s

1
2

¢
− y (3)

=
X
s2<s12

F2 (s2)V1
¡
s11, s2

¢
+ F2

¡
s12
¢
G2

¡
s12, x

¢
V1
¡
s11, s

1
2

¢
− x,

which can be rewritten as

G2 (s
1
2, y)−G2 (s

1
2, x)

y − x
=

1

F2 (s12)V1 (s
1
1, s

1
2)
.

Taking y − x to 0 shows that in the top interval G2 (s
1
2, ·) is differentiable with density

g2
¡
s12, x

¢
=

1

F2 (s12)V1 (s
1
1, s

1
2)
.

Similarly, in the top interval G1 (s
1
1, ·) is differentiable with density

g1
¡
s11, x

¢
=

1

F1 (s11)V2 (s
1
1, s

1
2)
.

(Note that these densities generalize the ones that arise in the equilibrium of the complete-

information all-pay auction (Hillman and Riley (1989)), which are, respectively, 1/V1 and

1/V2, where Vi is player i’s commonly-known valuation for the prize.)

Having identified the densities of players’ strategies in the top interval of the joint

partition, we can find the length of this interval. For this, note that because BRi (si) is an

interval, the top interval of the joint partition ends when one of the two players exhausts

the probability mass associated with his highest signal. Therefore, the length of the top

interval is

min
©
F2
¡
s12
¢
V1
¡
s11, s

1
2

¢
, F1

¡
s11
¢
V2
¡
s11, s

1
2

¢ª
, (4)

with the player whose density determines the length of the interval exhausting the prob-

ability mass associated with his highest signal. Players’ densities in the next interval are

calculated in a similar fashion, with the player(s) who has exhausted the probability mass

associated with his highest signal “moving” to his second highest signal. This process

is iterated, calculating the length of each interval and players’ densities in each interval.

Suppose we are at the kth interval of the joint partition, after player 1 has exhausted the

probability mass associated with his k1 highest signals and player 2 has exhausted the
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probability mass associated with his k2 highest signals. The equivalent of Equation 3 is

then X
s2<s

k2+1
2

F2 (s2)V1
¡
sk1+11 , s2

¢
+ F2

¡
sk2+12

¢
G2

¡
sk2+12 , y

¢
V1
¡
sk1+11 , sk2+12

¢
− y

=
X

s2<s
k2+1
2

F2 (s2)V1
¡
sk1+11 , s2

¢
+ F2

¡
sk2+12

¢
G2

¡
sk2+12 , x

¢
V1
¡
sk1+11 , sk2+12

¢
− x,

which leads to densities

g2
¡
sk2+12 , x

¢
=

1

F2
¡
sk2+12

¢
V1
¡
sk1+11 , sk2+12

¢ and g1
¡
sk1+11 , x

¢
=

1

F1
¡
sk1+11

¢
V2
¡
sk1+11 , sk2+12

¢ .
(5)

When computing the length of this interval, the probability mass associated with the

signals sk1+11 and sk2+12 expended on higher intervals must be taken into account (at most

one of these signals will have probability mass expended on higher intervals, by definition

of the joint partition).

When one of the players has exhausted the probability mass associated with his lowest

signal, the remaining mass of the other player must be an atom, and this atom must be

at bid 0 (part (ii) of Lemma 1). This atom may include the mass associated with several

signals. If both players exhaust their probability mass simultaneously, then the point of

exhaustion is also 0 (part (iv) of Lemma 1). By going from 0 upwards, the equilibrium can

be constructed from players’ densities on each interval. The following result shows that

the resulting pair of strategies is the unique equilibrium.

Proposition 1 There is a unique equilibrium, constructed by the procedure above. In this

equilibrium, each player’s strategy is continuous above 0 and piecewise uniform. At most

one player has an atom 0.

Proof. Because the procedure described above relies on necessary conditions for equi-

librium, the pair of strategies resulting from the procedure is the unique candidate for

an equilibrium. To show that it is indeed an equilibrium, it suffices to show that every

type of each player chooses best responses with probability 1. Suppose that player 1 ob-

serves sk1, and denote by lk and tk the upper and lower bounds of the interval on which

10



g1
¡
sk1, ·

¢
> 0 (as identified by the procedure above). By construction, player 2’s strat-

egy is continuous at all positive bids and player 1 obtains the same payoff at every bid

(lk, tk]. Moreover, if player 2 does not have an atom at lk, then player 1 obtains the same

payoff at lk as well. If player 2 does have an atom at lk, then lk = 0 is not a profitable

deviation for player 1. To complete the proof, therefore, it suffices to show that player 1

does not have profitable deviations lower than lk or higher than tk. To this end, denote by

0 = lK , tK , . . . , lk+1, tk+1, lk, tk, . . . , l2, t2, l1, t1 = T the partition of [0, T ] identified by the

procedure that corresponds to player 1’s types. That is, g1
¡
sji , x

¢
> 0 for every j ≤ K and

x in (lj, tj). Suppose that player 1 has a profitable deviation below lk when he observes

ski , and let [li, ti] be the highest interval below [lk, tk] that contains a profitable deviation

y. Because ti = li−1, y < ti. By construction, player 1 obtains the same payoff at y and ti

when he observes si1.
8 Therefore, because sk1 > si1, player 1 obtains strictly more at ti = li−1

than at y when he observes ski (this follows from (1) and the argument that follows it in the

proof of Lemma 2). If i−1 = k, this shows that y is not a profitable deviation. If i−1 < k,

then [li−1, ti−1] contains a profitable deviation, contradicting the definition of [li, ti]. This

shows that there are no profitable deviations below [lk, tk]. A similar argument shows that

there are no profitable deviations above tk, by considering the lowest interval above [lk, tk]

that contains a hypothesized profitable deviation, and noting that bids above T are strictly

dominated by slightly lower bids. Therefore, player 1 does not have profitable deviations.

The same argument shows that player 2 chooses best responses with probability 1 as well.

3.1 Equilibrium Ordering

The procedure for constructing the equilibrium shows that players’ types exhaust their

probability masses in an order that depends on their valuation functions and probabil-

ity distributions. That is, if player 1 has n1 types and player 2 has n2 types, then the

equilibrium induces an ordering (s1, . . . , sn1+n2) of the elements in S1 ∪ S2, such that the

probability mass associated with sj is expended on an interval of bids whose lower bound

8If y = 0 and player 2 has an atom at 0, then choose a slightly higher y as the profitable deviation.
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is (weakly) lower than those of the intervals of bids that correspond to types s1, . . . , sj−1.

And if the last type in the ordering, sn1+n2, is a type of player i, then the lower bound

of the interval of bids of the last type of player −i in the ordering is 0. The equilibrium

payoff of this last type of player −i is 0, as is the equilibrium payoff of all the types that

appear later in the ordering (all of whom belong to player i). For example, the ordering

that corresponds to Figure 1 is (s12, s
2
2, s

1
1, s

3
2, s

2
1, s

4
2), the lower bound of the interval of bids

of type s21 of player 1 is 0, and equilibrium payoff of type s21 of player 1 and type s
4
2 of

player 2 is 0.

In any such ordering, and for any pair of types of a player, the higher type appears

before the lower type. Thus, the number of equilibrium ordering of players’ types that

can be generated by varying players’ valuation functions and probability distributions is at

most (n1 + n2)!/ (n1!n2!): this is the number of orderings of n1 + n2 elements, n1 of which

are identical and the other n2 of which are identical. Conversely, it is easy to see that each

ordering of n1 identical elements and n2 identical elements corresponds to an equilibrium

ordering of players’ types for some valuation functions and probability distributions.9

4 Special Cases

4.1 Two Types for Player 1, One Type for Player 2

The (2 + 1)!/2!1! = 6/2 = 3 possible equilibrium orderings are (i) (s11, s
2
1, s

1
2), (ii) (s

1
1, s

1
2, s

2
1),

and (iii) (s12, s
1
1, s

2
1).

In (i), player 1 exhausts the mass associated with both his types before player 2 exhausts

the mass associated with his single type. Therefore, starting from the top, player 1’s type

s11 exhausts his mass before player 2’s type s
1
2, so we must have

g1
¡
s11, ·

¢
=

1

F1 (s11)V2 (s
1
1, s

1
2)

>
1

V1 (s11, s
1
2)
= g2

¡
s12, ·

¢
,

9If signal si of player i immediately follows signal s−i of player −i in the ordering (so the probability
mass associated with s−i is exhausted before that associated with si), then by increasing Vi (si, s−i) the

order of the two signals can be reversed.
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or

V1
¡
s11, s

1
2

¢
> F1

¡
s11
¢
V2
¡
s11, s

1
2

¢
. (6)

The length of the top interval is therefore

1

g1 (s11, ·)
= F1

¡
s11
¢
V2
¡
s11, s

1
2

¢
.

In the second interval, player 1’s type s21 exhausts his mass before player 2’s type s
1
2 exhausts

his remaining mass of

1− F1 (s
1
1)V2 (s

1
1, s

1
2)

V1 (s11, s
1
2)

.

Together with (5) this implies thatµ
1− F1 (s

1
1)V2 (s

1
1, s

1
2)

V1 (s11, s
1
2)

¶
V1
¡
s21, s

1
2

¢| {z }
The reciprocal of player 2’s density

≥ F1
¡
s21
¢
V2
¡
s21, s

1
2

¢| {z }
The reciprocal of player 1’s density

. (7)

Fixing player 1’s probability distribution and player 2’s valuation function, (6) and (7) are

satisfied when V1 (s
1
1, s

1
2) and V1 (s

2
1, s

1
2) are large enough.

In (ii), player 2 exhausts the mass associated with his single type after player 1 exhausts

the mass associated with his high type, so (6) holds, but before player 1 exhausts the mass

associated with his low type, so the reverse of (7) holds. Fixing player 1’s probability

distribution and player 2’s valuation function, this happens when V1 (s11, s
1
2) is large enough

and V1 (s
2
1, s

1
2) is small enough.

In (iii), player 2 exhausts the mass associated with his single type before player 1

exhausts the mass associated with his high type. Therefore, the reverse of (6) holds,

and the length of the top (and only) interval is V1 (s11, s
1
2). Fixing player 1’s probability

distribution and player 2’s valuation function, this happens when V1 (s11, s
1
2) is small enough.

The three possible equilibrium configurations are illustrated in Figure 2.
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Figure 2: The possible equilibrium configurations when player 1 observes one of two

signals and player 2 has one signal as a function of V1 (s11, s
1
2) and V1 (s

2
1, s

1
2), fixing player

1’s probability distribution and player 2’s valuation function

4.2 Two Types for Each Player

The (2 + 2)!/ (2!2!) = 24/4 = 6 possible equilibrium orderings are (i) (s11, s
2
1, s

1
2, s

2
2), (ii)

(s11, s
1
2, s

2
1, s

2
2), (iii) (s

1
1, s

1
2, s

2
2, s

2
1), (iv) (s

1
2, s

2
2, s

1
1, s

2
1), (v) (s

1
2, s

1
1, s

2
2, s

2
1), and (vi) (s

1
2, s

1
1, s

2
1, s

2
2).

In (i), player 1 exhausts the mass associated with both his types before player 2 exhausts

the mass associated with his high type. Therefore, starting from the top, player 1’s type

s11 exhausts his mass before player 2’s type s
1
2, so we must have

F2
¡
s12
¢
V1
¡
s11, s

1
2

¢
> F1

¡
s11
¢
V2
¡
s11, s

1
2

¢
, (8)

and the length of the top interval is F1 (s11)V2 (s
1
1, s

1
2). In the second interval, player 1’s

type s21 exhausts his mass before player 2’s type s
1
2 exhausts his remaining mass of

1− F1 (s
1
1)V2 (s

1
1, s

1
2)

F2 (s12)V1 (s
1
1, s

1
2)
.

This implies thatµ
1− F1 (s

1
1)V2 (s

1
1, s

1
2)

F2 (s12)V1 (s
1
1, s

1
2)

¶
F2
¡
s12
¢
V1
¡
s21, s

1
2

¢
≥ F1

¡
s21
¢
V2
¡
s21, s

1
2

¢
. (9)

Fixing players’ probability distributions and player 2’s valuation function, (8) and (9) are

satisfied if V1 (s11, s
1
2) and V1 (s

2
1, s

1
2) are large enough.

In (ii), player 2 exhausts the mass associated with his high type after player 1 exhausts

the mass associated with his high type, so (8) holds, but before player 1 exhausts the mass

14



associated with his low type, so the strict reverse of (9) holds. The length of the second

interval of the joint partition is thereforeµ
1− F1 (s

1
1)V2 (s

1
1, s

1
2)

F2 (s12)V1 (s
1
1, s

1
2)

¶
F2
¡
s12
¢
V1
¡
s21, s

1
2

¢
,

and player 1 exhaustsµ
1− F1 (s

1
1)V2 (s

1
1, s

1
2)

F2 (s12)V1 (s
1
1, s

1
2)

¶
F2 (s

1
2)V1 (s

2
1, s

1
2)

F1 (s21)V2 (s
2
1, s

1
2)

< 1 (10)

of the mass associated with his low type in the second interval. In the third interval, player

1 exhausts the remaining mass associated with his low type before player 2 exhausts the

mass associated with his low type. This implies thatµ
1−

µ
1− F1 (s

1
1)V2 (s

1
1, s

1
2)

F2 (s12)V1 (s
1
1, s

1
2)

¶
F2 (s

1
2)V1 (s

2
1, s

1
2)

F1 (s21)V2 (s
2
1, s

1
2)

¶
F1
¡
s21
¢
V2
¡
s21, s

2
2

¢
< F2

¡
s22
¢
V1
¡
s21, s

2
2

¢
.

(11)

Fixing players’ probability distributions and player 2’s valuation function, (8) and the

strict reverse of (9) are satisfied when V1 (s
1
1, s

1
2) is large enough and V1 (s

2
1, s

1
2) is small

enough. And (10) and (11) are satisfied when V1 (s
2
1, s

1
2) is small enough and V1 (s

2
1, s

2
2) is

large enough.

In (iii), players 1 and 2 behave as in (ii) in the first two intervals, but in the third interval

player 2 exhausts the remaining mass associated with his low type before player 1 exhausts

the remaining mass associated with his low type. Therefore, (8), the strict reverse of (9),

(10), and the reverse of (11) hold. Fixing players’ probability distributions and player

2’s valuation function, this happens when V1 (s
1
1, s

1
2) is large enough and V1 (s

2
1, s

1
2) and

V1 (s
2
1, s

2
2) are small enough.

The orderings (iv), (v), and (vi) are the symmetric counterparts of (i), (ii), and (iii).

That is, (iv), (v), and (vi) are obtained from (i), (ii), and (iii) by switching the indices of

players 1 and 2. The equilibrium configurations that correspond to (i), (ii), and (iii) are

illustrated in Figure 3.
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Figure 3: The equilibrium configurations that correspond to orderings (i), (ii), and (iii)

when each player observes one of two signals, as a function of V1 (s11, s
1
2), V1 (s

2
1, s

1
2), and

V1 (s
2
1, s

2
2), fixing players’ probability distributions and player 2’s valuation function

4.3 Private Values, Only the Strong Player Is Informed

Suppose that players have private values, player 2 has no private information (so he only

has one type, s2), and player 1 is “stronger,” in that his valuation for the prize is always

higher than that of player 2. Without loss of generality, let each player’s type equals his

valuation for the prize, so si = Vi (si, s−i). That player 1 is stronger means that s1 ≥ s2

for any signal s1 of player 1.

The equilibrium can be described in closed form. The number of intervals in the joint

partition is n, the number of player 1’s possible signals. Denote by sj1 player 1’s j
th signal

when his signals are ordered from high to low. When player 1 observes signal sj1, he

chooses a bid from an interval of length F1
¡
sj1
¢
s2 according to a uniform distribution with

density 1/F1
¡
sj1
¢
s2. On the same interval, player 2 chooses a bid according to a uniform

distribution with density 1/sj1. Because
Pn

k=1 F1
¡
sk1
¢
s2 = s2, the equilibrium bidding

range is [0, s2]. The equilibrium densities are

g1
¡
sj1, x

¢
=

⎧⎨⎩
1

F1(sj1)s2
if x is in

h
s2
Pn

k=j+1 F1
¡
sk1
¢
, s2
Pn

k=j F1
¡
sk1
¢i

0 otherwise

and

g2 (s2, x) =

⎧⎨⎩
1

sj1
if x is in

h
s2
Pn

k=j+1 F1
¡
sk1
¢
, s2
Pn

k=j F1
¡
sk1
¢i

0 otherwise
.
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In addition, player 2 chooses 0 with probability 1− s2
Pn

k=1 F1
¡
sk1
¢
/sk1 ≥ 0.10

Compare this equilibrium to the one of the complete-information all-pay auction in

which player 2’s valuation is s2 and player 1’s valuation is s
j
1 for some j ≤ n. In the

complete-information contest, player 1 mixes uniformly on [0, s2] with density 1/s2, and

player 2 bids 0 with probability 1− s2/s
j
1 and mixes uniformly on [0, s2] with density 1/s

j
1.

In both contests, players choose bids from [0, s2], player 1’s unconditional bid distribution

is the same (it is uniform with density 1/s2), and player 2’s payoff is 0. Denote by ∆j
1

the difference between player 1’s payoff in the incomplete-information contest when he

observes signal sj1, and his payoff in the complete-information contest when his valuation

is sj1. This difference is non-negative, because by bidding s2 in the incomplete-information

contest player 1 can obtain sj1−s2, which is his payoff in the complete-information contest.

Moreover, ∆1
1 = 0, because s2 is a best response for player 1 in the incomplete-information

contest when he observes signal s11. But ∆
j
1 strictly increases in j and, in particular, is

positive for j > 1. To see why, denote by s̄j1 = s2
Pn

k=j F1
¡
sk1
¢
the upper bound of the

bidding interval of player 1’s type sj1 in the incomplete-information contest. By bidding s̄
j
1 in

the incomplete-information contest, player 1 wins with probability 1−s2
Pj−1

k=1 F1
¡
sk1
¢
/sk1.

By bidding s̄j1 in the complete-information contest, player 1 wins with probability

1− s2

sj1
+

s̄j1
sj1
= 1− s2 − s̄j1

sj1
= 1−

s2
³
1−

Pn
k=j F1

¡
sk1
¢´

sj1
= 1−

s2
Pj−1

k=1 F1
¡
sk1
¢

sj1
.

The difference between these probabilities is

1− s2

j−1X
k=1

F1
¡
sk1
¢

sk1
−
Ã
1− s2

j−1X
k=1

F1
¡
sk1
¢

sj1

!
= s2

j−1X
k=1

F1
¡
sk1
¢µ 1

sj1
− 1

sk1

¶
,

and this difference multiplied by sj1 equals ∆
j
1, so

∆j
1 = s2

j−1X
k=1

F1
¡
sk1
¢Ã
1− sj1

sk1

!
. (12)

10The inequality follows from

s2

nX
k=1

F1
¡
sk1
¢

sk1
≤ s2

sn1

nX
k=1

F1
¡
sk1
¢
=

s2
sn1
≤ 1.

If player 1 has at least two types (so the first inequality is strict) or sn1 > s2 (so the second inequality is

strictly), then the atom is of positive measure. (Equivalently, if player 1 has a type strictly higher than

s2.)
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The right-hand side of (12) increases in j (because sj1 decreases in j), so the increase in

payoff relative to the complete-information contest is higher for lower types of player 1.

This increase in payoff can be interpreted as the information rent that type sj1 of player 1

obtains in excess of the “economic rent” that accrues to him because of his higher valuation.

Figure 4 depicts the unique equilibrium when player 1’s valuation is 3 or 5 with equal

probabilities, and player 2’s valuation is 2.
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Figure 4: Equilibrium densities and player 2’s atom

The equilibrium bidding range is [0, 2], just like in the complete-information contest. Player

1’s payoff when his valuation is 5 is 3, just like in the complete-information contest, but his

payoff when his valuation is 3 is 7/5, higher than his payoff of 1 in the complete-information

contest. Player 2’s payoff is 0, just like in the complete-information contest.

4.4 Private Values, Only the Weak Player Is Informed

Suppose that players have private values, player 2 has no private information (so he only

has one type, s2), and player 1 is “weaker,” in that his valuation for the prize is always

lower than that of player 2. Without loss of generality, let each player’s type equals his

valuation for the prize, so si = Vi (si, s−i). That player 1 is weaker means that s1 ≤ s2 for

any signal s1 of player 1.

The equilibrium can be described in closed form. Denote by sj1 player 1’s j
th signal

when his signals are ordered from high to low, and by n the number of player 1’s signals.

Suppose that when the equilibrium is constructed player 1 exhausts his probability mass

first. This implies that when player 1 observes signal sj1, he chooses a bid from an interval

of length F1
¡
sj1
¢
s2 according to a uniform distribution with density 1/F1

¡
sj1
¢
s2. On this

interval, player 2 chooses a bid according to a uniform distribution with density 1/sj1.
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Because s2
Pn

k=1 F1
¡
sk1
¢
= s2, the equilibrium bidding range would be [0, s2], on which

player 2 would expend mass s2
Pn

k=1 F1
¡
sk1
¢
/sk1 ≥ 1, with equality only if player 1 has

one type and this type is s2.11 Therefore, player 2 exhausts his probability mass before

player 1 does (so player 2 does not have an atom at 0). The equilibrium bidding range

is determined by the type of player 1 in whose interval player 2 exhausts his probability

mass. This is type m, which is given by

m = 1 +max

(
j : s2

jX
k=1

F1
¡
sk1
¢

sk1
< 1

)
.

Every type sj1, j = 1, . . . ,m − 1 of player 1 exhausts his density on an interval of length

F1
¡
sj1
¢
s2, as described above. On these intervals player 2 expends mass s2

Pm−1
k=1 F1

¡
sk1
¢
/sk1 <

1. Let μ = 1−s2
Pm−1

k=1 F1
¡
sk1
¢
/sk1. Type s

m
1 chooses bids from an interval on which player

2 exhausts his remaining mass of μ. Therefore, the length of this interval is μsm1 , so the

equilibrium bidding range is
£
0, μsm1 + s2

Pm−1
k=1 F1

¡
sk1
¢¤
. The equilibrium densities are

g1
¡
sj1, x

¢
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

F(sm1 )s2
if j = m and x is in [0, μsm1 ]

1

F(sj1)s2
if x is in

h
μsm1 + s2

Pm−1
k=j+1 F1

¡
sk2
¢
, μsm1 + s2

Pm−1
k=j F1

¡
sk2
¢i

0 otherwise

and

g2 (s2, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
sm1

if x is in [0, μsm1 ]
1

sj1
if x is in

h
μsm1 + s2

Pm−1
k=j+1 F1

¡
sk2
¢
, μsm1 + s2

Pm−1
k=j F1

¡
sk2
¢i

0 otherwise

.

In addition, type m of player 1 chooses 0 with probability 1 − μsm1 /F1 (s
m
1 ) s2, and types

j > m of player 1 choose 0 with probability 1.

Compare this equilibrium to the one of the complete-information all-pay auction in

which player 2’s valuation is s2 and player 1’s valuation is s
j
1 for some j ≤ n. In the

11The inequality follows from

s2

nX
k=1

F1
¡
sk1
¢

sk1
≥ s2

s11

nX
k=1

F1
¡
sk1
¢
=

s2
s12
≥ 1.

If player 1 has at least two types (so the first inequality is strict) or s11 < s1 (so the second inequality is

strictly), then the inequality is strict. (Equivalently, if player 1 has a type strictly lower than s2.)
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complete-information contest, player 2 mixes uniformly on
£
0, sj1

¤
with density 1/sj1, and

player 1 bids 0 with probability 1 − sj1/s2 and mixes uniformly on
£
0, sj1

¤
with density

1/s2. In both contests, player 1’s unconditional bid distribution above 0 is the same (it

is uniform with density 1/s2). But in the incomplete-information contest the equilibrium

bidding range is
£
0, μsm1 + s2

Pm−1
k=1 F1

¡
sk1
¢¤
, and the upper bound of this range is in (sn1 , s

1
1]

(because the density of player 2’s bid distribution is 1/s11 on some interval, and may be

higher elsewhere, but nowhere higher than 1/sn1). Therefore, player 2’s payoff in the in-

complete information contest is at least as high as in the complete-information contest in

which sj1 = s11, but lower than in the complete-information contest in which s
j
1 = sn1 . Player

1’s payoff in the complete-information contest is 0. Denote by ∆j
1 player 1’s payoff in the

incomplete-information contest when he observes signal sj1. Clearly, ∆
j
1 = 0 for j ≥ m.

Moreover, ∆j
1 strictly decreases in j for j ≤ m and, in particular, is positive for j < m.

This is because by bidding the top of type sj1’s bidding interval, type s
j−1
1 obtains a strictly

higher payoff than type sj−11 does (he wins with the same probability, but his valuation

for the prize is higher). This increase in payoff can be interpreted as the information rent

that type sj1 of player 1 obtains in excess of his “economic rent” of 0. In contrast to the

case analyzed above, in which the strong player was informed, here higher types have only

weakly higher information rents - for types to make strictly positive information rents, the

probability of lower types has to be sufficiently high.

Figure 5 demonstrates this by considering two contests, which differ in the probability

that player 1’s type is low.
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Figure 5: Equilibrium densities and player 1’s atom

The left-hand side of Figure 5 depicts the unique equilibrium when player 1’s valuation is 2

or 3 with equal probability, and player 2’s valuation is 5. The equilibrium bidding range is

[0, 17/6], larger than that of the complete-information contest in which player 1’s valuation
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is 2, [0, 2], and smaller than that of the complete-information contest in which player 1’s

valuation is 3, [0, 3]. Player 1’s payoff when his valuation is 2 is 0, just like in the complete-

information contest, but his payoff when his valuation is 3 is 1/6, higher than his payoff of 0

in the complete-information contest. The probability that player 1’s valuation is low is high

enough for his high type to obtain a positive information rent. Player 2’s payoff is 13/6,

higher than his payoff in the complete-information contest in which player 1’s valuation

is 3, and lower than his payoff in the complete-information contest in which player 1’s

valuation is 2. The right-hand side of Figure 5 depicts the unique equilibrium when player

1’s valuation is 2 with probability 1/3 and 3 with probability 2/3, and player 2’s valuation

is 5. The equilibrium bidding range is [0, 3], just like in the complete-information contest

in which player 1’s valuation is 3. Player 1’s payoff is 0 regardless of his valuation. The

probability that player 1’s valuation is low is not high enough for his high type to obtain

a positive information rent. Player 2’s payoff is 2, just like in the complete-information

contest in which player 1’s valuation is 3.

4.5 Common Values

Suppose that the value of the prize is common to both players, and denote this common

value function by V (·) = V1 (·) = V2 (·). In equilibrium, the unconditional distribution of

players’ bids is the same, regardless of the information structure and the function V . To

see why, note that for almost any x in (0, T ] we have

Gi (x) =
X
si∈Si

Fi (si)Gi (si, x)⇒ gi (x) = Fi (si (x)) gi (si (x) , x) ,

where gi is the density of Gi, and si (x) is the signal of player i for which x is a best

response. In conjunction with (5), this means that for almost any x in (0, T ] we have

g1 (x) = g2 (x) =
1

V (s1 (x) , s2 (x))
.

In particular, both players exhaust the same unconditional probability mass on (0, T ]. And

since at most one player has an atom at 0, this mass must be 1, so no player has an atom

at 0. Therefore, the lowest type of each player has a payoff of 0. However, other types’

payoffs, and therefore the ex-ante expected payoffs, may differ between the players.
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That players’ strategies are identical from an ex-ante perspective is reminiscent of

Engelbrecht-Wiggans, Milgrom, and Weber’s (1983) result, who showed that this property

also holds in the equilibrium of a common-value first-price auction in which only one bidder

is informed about the value of the object.

4.6 Common Values, One Informed Player

Suppose that the prize is of common value, that player 1 knows the common value, and

that player 2 only knows it’s distribution. This means that player 2 has only one type.

Without loss of generality, let player 1’s type equal the common value, so sj1 = V1
¡
sj1, s

1
2

¢
=

V2
¡
sj1, s

1
2

¢
. In this case, the equilibrium can be described in closed form. The number of

intervals in the joint partition equals the number of player 1’s possible signals, n, and no

player has an atom at 0. When player 1 observes signal s1, he chooses a bid from an interval

of length F1 (s1) s1 according to a uniform distribution with density 1/F1 (s1) s1. On the

same interval, player 2 chooses a bid according to a uniform distribution with density 1/s1.

Denote by sj1 player 1’s j
th signal when his signals are ordered from high to low. The

equilibrium densities are

g1
¡
sj1, x

¢
=

⎧⎨⎩
1

F1(sj1)s
j
1

if x is in
hPn

k=j+1 F1
¡
sk1
¢
sk1,
Pn

k=j F1
¡
sk1
¢
sk1

i
0 otherwise

and

g2
¡
s12, x

¢
=

⎧⎨⎩
1

sj1
if x is in

hPn
k=j+1 F1

¡
sk1
¢
sk1,
Pn

k=j F1
¡
sk1
¢
sk1

i
0 otherwise

.

Player 2’s payoff is 0 (no player has an atom at 0). Because G1 = G2 (as explained in

Section 4.5), both players win the prize with the same probability. Player 1’s payoff is

positive, however, because he places higher bids, and therefore wins more often, when the

prize is more valuable.
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4.7 Quasi-Symmetric Players

A contest is quasi-symmetric if S = S1 = S2, F = F1 = F2, and V1 (s, s) = V2 (s, s) for

every s in S.12 In a quasi-symmetric contest the equilibrium is symmetric and can be

described in closed form. The number of intervals in the joint partition equals the number

of signals in S, n, and no player has an atom at 0. Let V (s) = V1 (s, s) = V2 (s, s). Then,

when a player observes signal s, he chooses a bid from an interval of length F (s)V (s)

according to a uniform distribution with density 1/F (s)V (s). Denote by sj the jth signal

when signals are ordered from high to low. The equilibrium density g = g1 = g2 is

g
¡
sj, x

¢
=

⎧⎨⎩
1

F (sj)V (sj)
if x is in

hPn
k=j+1 F

¡
sk
¢
V
¡
sk
¢
,
Pn

k=j F
¡
sk
¢
V
¡
sk
¢i

0 otherwise
.

The equilibrium is efficient, because higher types choose bids from higher intervals and the

equilibrium is symmetric.

5 Approximating Continuous Type Distributions

5.1 Private Values and Uniform Distributions

To approximate private values drawn independently from the uniform distribution on [0, 1],

suppose that for some n > 1 each player’s valuation is independently drawn from the set

Sn = {j/n}nj=1 according to a uniform probability distribution. For every n, the equilibrium

is symmetric, and the joint partition is comprised of n intervals. The density of each player’s

strategy in the jth interval is
1
1
n
j
n

=
n2

j
,

so the length of the jth interval is j/n2. Type j/n chooses bids from the interval"
j−1X
k=1

k

n2
,

jX
k=1

k

n2

#
=

∙
j (j − 1)
2n2

,
j (j + 1)

2n2

¸
=

∙
j2 − j

2n2
,
j2 + j

2n2

¸
.

12For a quasi-symmetric contest to be symmetric we must have that V1 (s, s0) = V2 (s
0, s) for every s and

s0 in S.
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For any x in [0, 1], consider a sequence {jn/n}∞n=1 with jn/n in Sn and jn/n→ x. We have

that
j2n − jn
2n2

,
j2n + jn
2n2

→ x2

2
,

which is the equilibrium bid of type x in the limiting all-pay auction (see, for example,

Krishna (2002) and Amann and Leininger (1996)).

5.2 Connection to Amann and Leininger (1996)

Using an approximation similar to the one in Section 5.1, we can heuristically derive a

candidate equilibrium for the asymmetric all-pay auction with independent private values

and a continuum of signals, which was analyzed by Amann and Leininger (1996). Consider

distributions on [0, 1], H1 for player 1 and H2 for player 2, with corresponding positive

continuous densities h1 and h2. For any n > 1, consider a sequence of n values in (0, 1],

αn < αn−1 < . . . < α1 = 1 such that αj − αj+1 < 1
n
for any j ≤ n− 1. To approximate H1

with a finite distribution, let player 1’s valuation be αj with probability
R αj
αj+1

h1 (x) dx. For

player 2, consider a sequence of n values in (0, 1], k (αn) < k (αn−1) < . . . < k (α1) = 1, and

approximate player 2’s distribution by letting player 2’s valuation be k (αj) with probabilityR k(αj)
k(αj+1) h2 (x) dx. Given α1, . . . , αn, choose the sequence k (α1) , . . . , k (αn) such that in

equilibrium type αj of player 1 and type k (αj) of player 2 choose bids from the same

interval. This is useful because then each type of each player chooses bids using one

density (whenever one player exhausts the mass associated with one of his types so does

the other player). To do this, it suffices to choose k (αj) such that the length of the intervals

from which type αj of player 1 and type k (αj) of player 2 choose bids are the same. for

this, it suffices that the densities according to which the players choose their bids are the

same. From (5), these densities are

1

k (αj)
R αj
αj+1

h1 (x) dx

for player 1 and
1

αj
R k(αj)
k(αj+1)

h2 (x) dx
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for player 2. Equating these densities, we obtain

k
¡
αj
¢ Z αj

αj+1
h1 (x) dx = αj

Z k(αj)

k(αj+1)

h2 (x) dx. (13)

The equality (13) shows how to uniquely identify k (α1) , . . . , k (αn) by proceeding induc-

tively from 1 to n: set k (α1) = α1 = 1 and, given αj, αj+1, and k (αj), use (13) to solve

for k (αj+1). Now, (13) implies thatR αj
αj+1

h1 (x) dxR k(αj)
k(αj+1)

h2 (x) dx
=

αj

k (αj)
,

so
αj

αj+1
h1(x)dx

αj−αj+1
k(αj)
k(αj+1)

h2(x)dx

k(αj)−k(αj+1)

=
αj (k (αj)− k (αj+1))

k (αj) (αj − αj+1)
. (14)

As n grows large, fixing αj as an element in the sequence of player 1’s types, (14) heuris-

tically “becomes”
h1 (α

j)

h2 (k (αj))
=

αj

k (αj)
k0
¡
αj
¢
,

which is precisely (1) in Amann and Leininger’s (1996). As in Amann and Leininger (1996),

in the limit, k (αj) is the type of player 2 that submits a bid equal to that of type αj of

player 1.13

We can say more about the limiting bid of type αj of player 1. For simplicity, assume

that for any n player 1’s lowest type does not have an atom at 0. Then, the length of the

bidding interval of type αj of player 1 is k (αj)
R αj
αj+1

h1 (x) dx, so the lower endpoint of the

bidding interval of type αj is
j+1X
l=n

k
¡
αl
¢ Z αl

αl+1
h1 (x) dx. (15)

As n grows large, fixing αj as a point in the sequence of player 1’s types, by definition of

the Lebesgue integral (15) heuristically “becomes”Z αj

0

k (x)h1 (x) dx,

13With interdependent valuations, a similar heuristic derivation leads to the expression

h2 (k (x))

h1 (x)
=

1

k0 (x)

V2 (x, k (x))

V1 (x, k (x))
.

Interdependent values were not considered by Amann and Leininger (1996).
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which is precisely the formula in Amann and Leininger (1996) that describes the bid of

type aj of player 1 (on page 8, following (2)).14

In particular, if H1 = H2, then k (αi) = αi (directly from (13)), soZ αj

0

k (x)h1 (x) dx =

Z αj

0

xh2 (x) dx = E
£
x|x < αj

¤
H2

¡
αj
¢
.

6 Equilibrium with a Reserve Price

Suppose that a reserve price r > 0 is introduced. That is, a player loses if he bids below

r, regardless of what the other player bids. In this case, an equilibrium is comprised of

two regions. Up to r, the players bid 0 or r, and at most one player bids r. Above r,

much of the previous analysis applies: for each player’s type that bids above r, the set of

best responses above r is an interval, these intervals are higher for higher types, and the

union of these intervals for each player across his types is also an interval. Therefore, an

equilibrium with a reserve price can be obtained from the one without a reserve price by

identifying a bid b, such that any higher bid b+ x without a reserve price corresponds to

the bid r + x with a reserve price, and bids below b without a reserve price correspond

to 0 or r with a reserve price. The bid b is unique,15 but the mapping of bids lower than

b may lead to multiple equilibria. These equilibria differ only in that some of the bids

lower than b correspond to to bidding 0 in one equilibrium and r in another equilibrium.

All equilibria are, however, payoff equivalent. The bottom part of Figure 6 depicts an

equilibrium structure consistent with the introduction of a reserve price to the contest

whose equilibrium structure is depicted in the top part of Figure 6.

14With interdependent valuations, a similar heuristic derivation leads to the expressionZ x

0

V2 (y, k (y))h1 (y) dy.

15It is the highest bid such that in the equilibrium without a reserve price, for at least one player, the

gross winnings at that bid of the (lowest) type for whom the bid is a best response are no higher than r.
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Figure 6: A possible equilibrium configuration of players’ atoms and best response sets

when player 1 has two signals and player 2 has four signals, without a reserve price (top),

and with a reserve price (bottom)

I now describe players’ equilibrium strategies in greater detail. Denote byG0 = (G0
1, G

0
2)

the unique equilibrium of the contest with a reserve price of 0, i.e., without a reserve price.

For a bid x in (0, T 0], where T 0 is the common supremum of players’ best responses in G0,

denote by si (x) player i’s type for which x is a best response in G0.16 Let

v0i (x) =
X

s−i∈S−i

F−i (s−i)G
0
−i (s−i, x)Vi (si (x) , s−i)

denote player i’s expected (gross) winnings without a reserve price if his type is si (x), he

bids x, and the other player plays G0
−i. Note that v

0
i (·) strictly increases on (0, T 0],17 and

v0i
¡
T 0
¢
=

X
s−i∈S−i

F−i (s−i)Vi
¡
s1i , s−i

¢
,

16If x is a best response for two types of player i, which happens only if x is an endpoint of the interval

of bids for some type of player i, denote by si (x) the lower of the two types.

17v0i (x) is piecewise differentiable with slope 1 wherever it is differentiable, and jumps upward wherever

it is not differentiable.
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where s1i is player i’s highest signal. Let

bi = max
©
x ∈

¡
0, T 0

¤
: v0i (x) ≤ r

ª
if this set is non-empty, and bi = 0 otherwise.18 Note that bi weakly increases in r, and

bi = T 0 if and only if v0i (T
0) ≤ r. In addition, bi ≤ r.19 Also, b1 > 0 or b2 > 0, because at

least one player does not have an atom at 0. The following lemma characterizes the set of

equilibria when r is large.

Proposition 2 Suppose that bi = T 0. Then, for every p in [0, 1], the following pair of

strategies is an equilibrium. Every type of player i bids 0. Type s−i of player −i bids 0 ifX
si∈Si

Fi (si)V−i (si, s−i)− r < 0, (16)

and bids r if the reverse inequality holds. If (16) holds with equality (which happens for

at most one type s−i), then type s−i of player −i bids 0 with probability p, and r with

probability 1− p. All these equilibria are payoff equivalent. Moreover, every equilibrium is

such a pair of strategies for some i for which bi = T 0.

Proof. First, note that in any equilibrium both players choose bids only from {0, r}.

Indeed, because bi = T 0 implies that v0i (T
0) ≤ r, and since v0i (T

0) is the highest possible

(gross) winnings for player i, he does not bid more than r. Therefore, player −i does not

bid more than r (for any such bid a slightly lower bid is better). Clearly, neither player

chooses bids from (0, r). To see that the proposed pairs of strategies are optimal, note

that player i obtains at most 0 by bidding r, so bidding 0 is optimal for him. Therefore,

player −i wins with probability 1 when bidding r, so the left hand side of (16) describes his

payoff when he bids r. This implies that the proposed strategies for player −i are optimal

and lead to the same payoffs. To see that every equilibrium is such a pair of strategies,

note that in equilibrium at most one player bids r with positive probability (as in part

18Because si (·) is left continuous, bi is well defined.
19If bi > r, then r < T 0 (because bi ≤ T 0), so v0i (bi) ≤ r implies that v0i (r) < r (because v0i (·) strictly

increase on
¡
0, T 0

¤
). But v0i (x) − x ≥ 0 for any x in

¡
0, T 0

¤
, because x is a best response for type si (x)

of player i.
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(i) of Lemma 1). Therefore, in any equilibrium in which player −i bids r with positive

probability, every type of player i bids 0, and any such equilibrium is a pair of strategies

as specified above. In any equilibrium in which player i bids r with positive probability,

every type of player −i bids 0, so b−i = T 0 (otherwise bidding slightly above r would be

a profitable deviation for the highest type of player −i). The pairs of strategies described

above, with −i instead of i, describe all the equilibria in which every type of player −i bids

0.

Proposition 2 describes the set of equilibria when b = T 0, where b = max {b1, b2} > 0.

I now turn to the case b < T 0.

Lemma 3 If b < T 0, then in any equilibrium the union of each player’s best response sets

across his types includes bids higher than r.

Proof. If the claim is false, then in any equilibrium both players choose bids only from

{0, r}, and at most one player chooses r with positive probability (as in part (i) of Lemma

1). Therefore, every type of some player i has a payoff of 0. But because bi < T 0, we have

v0i (T
0) > r, so by bidding slightly above r player i’s highest type can win with certainty

and obtain a positive payoff, a contradiction.

Choose an equilibrium Gr = (Gr
1, G

r
2) of the contest with a reserve price. Denote by

BRr+
i (si) player i’s best responses higher than r when he observes signal si and the other

player uses strategy Gr
−i. Denote by Sr+

i the set of player i’s signals for which BRr+
i (si)

is not empty. The next lemma shows that the set of players’ best responses higher than r

have a structure similar to that of the best response sets in the equilibrium of the contest

without a reserve price.

Lemma 4 Suppose that b < T 0. For every player i and every signal si in Sr+
i , BR

r+
i (si)

is an interval. Also, if si is in Sr+
i and s0i > si, then all of player i’s best responses when

he observes signal s0i are higher than r. For any two consecutive signals s0i > si in Sr+
i , the

upper bound of BRr+
i (si) is equal to the lower bound of BRr+

i (s0i). Moreover,

sup∪s1∈Sr+1 BRr+
1 (s1) = sup∪s2∈Sr+2 BRr+

2 (s2) and

inf ∪s1∈Sr+1 BRr+
1 (s1) = inf ∪s2∈Sr+2 BRr+

2 (s2) = r.
(17)
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Proof. A proof similar to that of Lemma 1 shows that no player has atoms above r, at

most one player has an atom at r, the union of each player’s set of best responses higher

than r across his types is an interval, and these intervals have the same upper bound and

the same lower bound of r. A proof similar to that of Lemma 2 shows that for any two

signals s0i > si, such that si is in Sr+
i , and any x in BR

r+
i (si) and y that is a best response

for s0i, we have y ≥ x. This implies the remainder of the claim, as in the proof of Corollary

1.

Denote by T r the common supremum in (17). Lemma 4 shows that the construction

procedure described in Section 3 applies to bids in (r, T r]. Therefore, above r any equilib-

rium coincides with the equilibrium without a reserve price starting from some point. The

next lemma shows that this point is b, as in Figure 6.

Lemma 5 For every player i, every signal si in Si, and every x ≥ 0, we have

Gr
i (si, r + x) = G0

i (si, b+ x) . (18)

Proof. Because the construction procedure described in Section 3 applies to bids in (r, T r],

the statement of the lemma holds with some y in place of b in (18). Suppose that y < b,

so that y < bi for some player i. Because y < bi and v0i (·) strictly increases on (0, T 0], we

have that v0i (y + ε) < r for small ε > 0. Consider type si of player i, who bids slightly

above y inG0. By bidding slightly above r inGr, this type’s (gross) winnings are less than

r, so his payoff is negative. Therefore, Gr is not an equilibrium. Now suppose that y > b.

Because y > b1 and y > b2, we have v01 (y) > r and v02 (y) > r. Therefore, the payoffs in

Gr of types s1 (y) and s2 (y) (the lowest types that bid y in G0) are positive. And because

Gr (s1 (y) , r) = G0 (s1 (y) , y) > 0 (where the inequality follows from y > b > 0 and the

definition of s1 (y)) and, similarly, Gr (s2 (y) , r) > 0, types s1 (y) and s2 (y) each have an

atom at 0 and/or r. But because at most one player has an atom at r, either type s1 (y)

or type s2 (y) (or both) have an atom at 0, leading to a payoff of 0 in Gr, a contradiction.
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Lemma 5 pins down Gr above r. To completely characterize the set of equilibria, it

remains to specify how players choose bids from {0, r}, as in Proposition 2.

Proposition 3 Suppose that b < T 0, and bi = b for player i. Then, for every p in [0, 1],

the following pair of strategies is an equilibrium. Every type si < si (b) of player i bids 0,

and type si (b) of player i bids 0 with probability G0
i (si (b) , b). Every type si ≥ si (b) of

player i chooses bids higher than r according to (18). Type s−i < s−i (b) of player −i bids

0 if X
si∈Si

Fi (si)G
0
i (si, b)V−i (si, s−i)− r < 0, (19)

and bids r if the reverse inequality holds. If (19) holds with equality (which happens for

at most one type s−i), then type s−i of player −i bids 0 with probability p, and r with

probability 1− p. Type s−i (b) of player −i chooses with probability G0
i (si (b) , b) bids from

{0, r} according to (19), as specified above for lower types. Every type s−i ≥ s−i (b) of

player −i chooses bids higher than r according to (18) (with −i in place of i). All these

equilibria are payoff equivalent. Moreover, every equilibrium is such a pair of strategies for

some i for which bi = b.

Proof. Similarly to the proofs of Propositions 1 and 2, it is straightforward to verify that

the proposed pairs of strategies are equilibria. To see that every equilibrium is such a

pair of strategies, recall that Lemma 5 pins down players’ equilibrium behavior above r,

and at most one player bids r with positive probability. Therefore, similarly to the proof

of Proposition 2, any equilibrium in which player −i bids r with positive probability is a

pair of strategies as specified above. If there is an equilibrium in which player i bids r

with positive probability, then b−i = b. This is because b−i < b implies that type si (b) of

player 2 can obtain a positive payoff by bidding slightly above r, but because at most one

player has an atom at r, type si (b) of player −i must bid 0 (and get 0) with probability

G0
i (si (b) , b) > 0, a contradiction. Therefore all the equilibria in which player i bids r with

positive probability are given by the pairs of strategies described above, with −i instead

of i.

Propositions 2 and 3 imply that introducing a reserve price makes both players weakly

worse off. This is because bi ≤ r, as stated above, so b ≤ r, which means that above
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r players’ strategies are “higher” versions of their strategies without a reserve price, as

depicted in Figure 6. Thus, players face tougher competition with a reserve price, which

lowers their payoffs. The next corollary generalizes this observation.

Corollary 2 The equilibrium payoff of every type of every player weakly decreases in the

reserve price r ≥ 0.

Proof. It suffices to show that the payoff of every type of every player at any given bid

decreases in r when the other player plays his equilibrium strategy. For bids in [0, r) this

is true, because the payoff there is 0. For bids x ≥ r, it suffices to show that Gr
i (si, x)

weakly decreases in r for every si in Si and i = 1, 2, because this implies that the (gross)

winnings at x for player −i weakly decrease in r. Because the equilibrium above r is given

by (18), it suffices to show that T r weakly increases in r or, equivalently, that the increase

in b resulting from an increase in r is no higher than the increase in r. But this follows

from the definitions of v0i (x) and bi: v
0
i (x) is piecewise differentiable with slope 1 wherever

it is differentiable, and jumps upward wherever it is not differentiable, so an increase in r

leads to a weakly lower increase in bi, and therefore to a weakly lower increase in b.

Propositions 2 and 3 show that multiple equilibria may exist. This occurs when (16)

or (19) hold with equality, which happens for at most one type of each player (because

every player’s valuation for the prize strictly increases in his type). The equilibria differ

only in the probabilities with which that particular type bids 0 and r. Therefore, when the

probability of each type is small (so the number of types is large), the difference between

any two equilibria is small.20 This observation is consistent with Lizzeri and Persico’s

(2000) result, which implies that with a continuum of types, each of which occurs with

probability 0, and a sufficiently high reserve price there is a unique equilibrium.21 Their

result does not apply when there is no reserve price, or when the reserve price is low. In

contrast, Propositions 2 and 3 characterize the set of equilibria for any reserve price.

20For example, the distance between any two equilibria is small according to the metric induced by the

sup norm.

21The reserve price must be high enough to exclude a positive measure of types from bidding, regardless

of the other bidder’s type.

32



To gain some intuition for the effects of a reserve price, consider a complete-information

all-pay auction for a prize of common value V . Without a reserve price, T 0 = V and each

player mixes uniformly with density 1/V on [0, V ]. Suppose a reserve price is introduced.

Because v0i (x) = x for x ≤ V , we have bi = b = min {r, V }. If r > V , then both players

bid 0 (in this case b = V , so Proposition 2 and (16) hold). If r = V , then one player bids

0 and the other player mixes between 0 and V (Proposition 2 holds and (16) holds with

equality). If r < V , then on (r, V ) both players mix uniformly with density 1/V ; one of

the players bids 0 with his remaining probability, r/V , and the other player bids 0 with

probability pr/V and V with probability (1− p) r/V , for some p in [0, 1] (Proposition 3

holds and (19) holds with equality).

In a complete-information all-pay auction with asymmetric valuations, there is a unique

equilibrium even with a reserve price, as long as the reserve price is not equal to the

higher of the two players’ valuations. To see this, denote by Vi player i’s valuation for the

prize, and let V1 > V2. Without a reserve price, T 0 = V2, player 1 mixes uniformly with

density 1/V2 on [0, V2], and player 2 chooses 0 with probability (V1 − V2) /V1 and mixes

uniformly with density 1/V1 on (0, V2). For the equilibrium with a reserve price, note that

v01 (x) = V1 − V2 + x and v02 (x) = x for x ≤ V2. Therefore, b1 = max {0, r − (V1 − V2)}

for r < V1 and b1 = V2 for r ≥ V1, and b2 = r for r < V2 and b2 = V2 for r ≥ V2. This

implies that b = b2. If r > V1, then both players bid 0 (Proposition 2 and (16) hold). If

r = V1, then player 2 bids 0 and player 1 mixes between 0 and V1 (Proposition 2 holds

and (16) holds with equality for i = 2). If r is in [V2, V1), then player 2 bids 0 and player

1 bids r (Proposition 2 holds and (16) holds with the reverse inequality for i = 2). If

r < V2, then on (r, V2) both players mix uniformly with their respective densities, 1/V2

and 1/V1; player 1 bids r with his remaining probability, r/V2, and player 2 bids 0 with

his remaining probability, (r + V1 − V2) /V1 (Proposition 3 holds and (19) holds with the

reverse inequality for i = 2).

In contrast to the complete information case, when players have private information it

may be that b < r, even when b < T 0, as depicted in Figure 6. To see this, consider a private

value setting in which each player’s valuation for the prize is 1 or 2 with equal probabilities.

Without a reserve price, T 0 = 3/2, the low type of each player mixes uniformly with density
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2 on [0, 1/2], and the high type of each player mixes uniformly with density 1 on [1/2, 3/2].

This implies that v0i (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if x ≤ 1/2

x+ 1/2 if 1/2 < x ≤ 3/2

2 if x > 3/2

. Therefore, for r ≤ 1/2 we have

b = bi = r, as in the complete-information case. But for r in [1/2, 1], we have b = 1/2, and

for r in (1, 2] we have b = r − 1/2.

7 Conclusion

This paper has investigated an asymmetric two-player all-pay auction. The novel features

are a finite number of signals for each player, asymmetric distributions and interdependent

valuations, and a non-restricted reserve price. The constructive characterization of the set

of equilibria has shown that there is a unique equilibrium without a reserve price, and that

with a reserve price all equilibria are payoff equivalent and differ in the behavior of at most

one type for each player. A closed-form equilibrium characterization has been given for

some special cases.

One direction for future research is to apply the equilibrium construction results to

additional special cases in order to derive comparative statics and closed-form equilibrium

characterizations. These can be used to investigate models of real-world competitions, such

as the research and development setting described in the Introduction. Another direction

is to extend the model to more than two players and signals that are not independent.

This seems to be a non-trivial task, because much of the equilibrium construction is driven

by these assumptions.
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