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Abstract

Innovation competitions between firms and personnel tournaments within firms are
both examples of contests where competitors are eliminated over successive stages of
play. In this paper, we consider how match outcomes in elimination tournaments are
shaped by past, current, and future competition. We present a two-stage model that
yields the following results: (a) a shadow effect of future competition—the weaker the
expected competitor in the next stage, the greater the probability that the stronger
player wins in the current stage; (b) an effort spillover effect—with negative (positive)
spillover, more effort in earlier rounds leads to a lower (higher) probability of winning
in later stages; (c) noise around effort increases the probability that the weaker player
wins; (d) under certain conditions, the weaker player is more likely to win in the final
stage, relative to earlier stages; and (e) a steeper prize structure improves the stronger
player’s probability of success in all stages. We test our theory predictions using data
from professional tennis matches and betting markets. We find evidence that negative
spillover and the shadow of a tough future opponent increases the probability that a
weak competitor wins.
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1 Introduction

Competition for employment and education, innovation funding, and design opportunities
can all be framed as multi-stage elimination tournaments in which players are knocked out
over successive stages of the event. These contests are often designed to increase player
effort—indeed, much of the theoretical and empirical literature focuses on contests as incen-
tive mechanisms. Yet, tournaments may also serve as selection mechanisms, identifying the
“best” candidates as overall winners. In labor tournaments where employees’ latent talents
are not directly observable, firms may organize contests to reveal workers’ relative abilities.
For example, in searching for a CEQO, a firm may use a tournament to identify and promote
the highest-ability candidate, not simply the one who puts forth the most effort.

In this paper, we study how the strategies of heterogeneous players in match-pair elimi-
nation tournaments are shaped by past, current, and future competition. More specifically,
we examine how these intertemporal effects influence a tournament’s ability to reveal the
strongest player as the winner. Negative spillover from past stages may make current effort
more costly and depress performance, while the shadow of tough future competition decreases
a player’s expected future payoffs and also may lead to lower current effort. The differential
impact of past and future competition across players in a given match changes the effec-
tiveness of tournaments as a selection mechanism—both negative spillover and tough future
competition increase the probability that a weak candidate wins overall. Our results have
practical implications; whether the contest aims to encourage effort, select a strong winner,
or both, we find evidence suggesting that firms, educators, and other contest designers may
need to consider the role of past and future competition in structuring incentives.

In personnel tournaments, workers risk elimination as they advance through corporate
management levels. Employees who perform relatively well in each stage are promoted,
awarded progressively larger compensation, and have the opportunity to advance even higher
in the firm. Employees who perform relatively poorly are passed over in promotions or, in
some cases, demoted or fired. In most contexts, retention of the highest quality worker is
most desirable. For example, GE’s former CEO, Jack Welch, designed an explicit elimination
tournament to select his successor (Konrad 2009).

Competition between firms may also take on an elimination tournament structure. For
example, GE announced in 2010 that it would award $200 million to the winning firm in a
three-stage elimination contest, the Ecomagination Challenge, to develop smart grid tech-
nologies. More commonly, architectural firms may compete for large contracts; a university
might invite initial ideas for a new classroom building and then select a small fraction of

those applicants to submit more detailed designs to determine the final winner. Competition



among investment banks for clients may involve similar stages of proposals and commitments.

For students, the stages are levels of education—only students who perform well in high
school are admitted to well-ranked colleges; students who top their collegiate classes advance
to prestigious graduate programs; and only the best Ph.D. students from those elite univer-
sities are rewarded with selective academic positions. While not the rule, individuals who
have been eliminated in early stages are unlikely to rejoin the competition at more advanced
stages.

Some sporting events are also structured as elimination tournaments. Professional tennis
is likely the most familiar and is the setting for the empirical tests in this paper. Combative
sports and competitive bridge and poker contests are also often multi-stage knock-out events.
Political races also may involve elimination stages—a candidate must win his party’s primary
election to compete in the general election to hold office.

In each of these examples, effort is clearly important; firms want to hire designers, bankers
and innovators who will invest heavily in the activity at hand, voters want their represen-
tatives to work hard on their behalf, and spectators enjoy high action games. However,
selection may also be a prime objective of the contest organizer—a client may desire the
most creative design firm, voters may value the most skilled politician, and a board may
want the smartest executive to lead the company.

We explore elimination tournaments formally with a two-stage match-pair model. Our
analysis yields five main results: First, we identify a shadow effect of future competition—
the weaker the expected competitor in the next stage, the greater the probability that the
stronger player wins in the current match. Second, we find an effort spillover effect—with
negative (positive) spillover, more effort in earlier stages leads to a lower (higher) probability
of winning in later stages, holding the opponent’s effort fixed. When both players experience
equal degrees of negative spillover, the weaker player has an increased probability of winning.
Third, we show that noise around effort increases the probability that the weaker player wins.
Fourth, we identify an underdog advantage, showing the conditions under which the weaker
player is more likely to win in the final stage, relative to earlier stages. Finally, we show a
prize spread effect, where a steeper structure improves the stronger player’s probability of
success in all stages.

We test our theoretical predictions using data from professional tennis matches and bet-
ting markets. Examining the effect of changes in the skill of the expected competitor in the
next round, we find evidence of a shadow effect in all but the last rounds of play. Spillover in
tennis tournaments appears to have a negative impact—more effort exertion in the previous
rounds is associated with less success in the current round. Comparing best-of-three and

best-of-five events, we find evidence supporting the prediction that increased noise around



effort positively impacts the probability that the weaker competitor wins. We do not find
support for an underdog advantage in the final tournament stage, suggesting that the prize
conditions for this hypothesized phenomenon may not be satisfied in the data. Examining
tennis betting markets, we find evidence that bookmakers’ prices reflect both spillover from
past competition and the shadow of future opponents.

In early work on knock-out tournaments, Rosen (1986) models a multi-stage contest
where forward-looking players have Tullock-style contest success functions. Similar to the
model presented below, players’ strategies in his model depend on the anticipated behavior
of current and future opponents. Rosen’s main result explains the skewed compensation
distributions found in many firms—extra rewards are required in late stages of these elim-
ination tournaments to maintain equal levels of effort across stages. Searls (1963) studies
single- and double-elimination contests and finds that best-of-three single-elimination events
are most likely to select the highest ability player as the winner. Groh et al. (2008) describe
the optimal seeding of heterogeneous players according to the contest designer’s objective.
Modeling contests as all-pay auctions, they find that common seeding rules that match weak-
est to strongest players in the semifinals maximize the probability that the strongest player
wins overall.

Ryvkin (2009) considers the elasticities of a player’s equilibrium effort with respect to
his own ability and the abilities of his opponents across several tournament formats. In
elimination tournaments with weakly heterogeneous players, he finds that the abilities of
opponents in the more distant future have a lower impact on a player’s equilibrium effort
than does the ability of the current opponent. Ryvkin also shows that, when players’ relative
abilities are uniformly distributed, a “balanced” seeding can eliminate the dependence of a
player’s equilibrium effort on his opponents’ abilities.

Sunde (2009) tests the incentive effect of player heterogeneity using data from selected
professional tennis tournaments. He finds that heterogeneity impacts the effort choice of
the stronger player more than it changes the effort of the weaker player in a match. In
his analysis, this means that the weaker player wins fewer games per set and the stronger
player wins more games per set as heterogeneity increases. However, these effects are not
symmetric: for an equal change in rank disparity, the increase in the number of games won
by the stronger player is smaller than the decrease in the number of games lost by the weaker
player. In contrast to Sunde’s work, we study the role of skill heterogeneity across multiple
stages of an event—that is, we examine the incentive impact of ability differences with past,
current, and (expected) future opponents. The effects of player heterogeneity on effort in
one-shot tournaments has been studied both theoretically (e.g. Baik, 1994; Moldovanu and
Sela, 2001; Szymanski and Valletti, 2005; Minor, 2011) and empirically (e.g. Knoeber and



Thurman, 1994; Brown, 2011).

Data from professional tennis has been used in other research: Walker and Wooders
(2001) used video footage and data from the finals of 10 Grand Slam events to identify
mixed strategies. Malueg and Yates (2010) study best-of-three contests using four years of
data from professional tennis matches with evenly-skilled opponents. They find that the
winner of the first set of a match tends to exert more effort in the second set than does the
loser and, in the event of a third set, players exert equal effort. Forrest and McHale (2007) use
professional tennis tour and bookmaking data and find a modest long-shot bias. Gonzalez-
Diaz et al. (2010) use data from US Open tournaments to assess individual players’ abilities
to adjust their performance depending on the importance of the competitive situation—that
is, trade off better performance in high-stakes situations for worse performances in low-stakes
situations. They identify heterogeneity in players’ ability to make this trade-off and suggest
that this heterogeneity drives differences in players’ long-term success. Using detailed data
from the men’s and women’s professional tennis circuits, Gilsdorf and Sukhatme (2008a and
2008b) find that larger marginal prizes increase the probability that the stronger player wins.

The paper is organized as follows: Section 2 presents a two-stage model of an elimination
tournament. We derive several propositions and outline the testable hypotheses. In Section
3, we describe our data and empirical strategy for testing the empirical predictions of the
model. Section 4 describe the results. In Section 5, we discuss spillover and shadows in the
context of betting markets. We conclude in Section 6 and discuss the implications of our

findings for contest designers.

2 Theory

Rosen (1986) uses a probabilistic Tullock-style contest model to study elimination tourna-
ments, while Lazear and Rosen (1981) use an additive noise structure in their foundational
work on one-shot labor tournaments. Distinctly, we use Lazear and Rosen’s original addi-
tive noise model to focus on the dynamics of a multi-stage elimination tournament. This
specification gives us some of the familiar results from Rosen (1986) and also allows us to
identify conditions that reverse these predictions. In addition, we draw further comparative
static results related to the strategic effort exertion of players across multiple stages based
on the future and the past.
We study a new theoretical version of knockout tournaments that we describe as “sequentially-

resolved elimination tournaments.” In this setting, matches occur sequentially in a given
stage. That is, in each stage of competition, matches between pairs of players are staggered

across time. As a consequence, players in later matches of the same stage learn the identity



of their potential future opponent when their future opponent’s match is over. This structure
is in contrast with other models of elimination tournaments where all matches in a given
stage occur simultaneously (for example, see Stracke (2011)). The sequential play is often
found in practice; for example, in firm-level tournaments, it is rare for multiple promotions
to division vice-president to occur simultaneously. Instead, the identity of the new appointee
is known to other workers still competing for a parallel executive spot—the hopeful workers
now know their future opponent for advancement beyond vice-president. To our knowledge,

we are the first to consider such a format both theoretically and empirically.

2.1 Model Set-Up

Consider a two-stage elimination tournament with four players, where the players who win
in the first stage advance to the final stage. The overall tournament winner receives a prize
of Vi, while the second-place competitor receives a prize V. Let Vi > V; > 0 and define
the prize spread AV = Vi — V. Let player i’s total cost be a function of his effort x; and
his cost type ¢;. We denote player i’s costs as ¢;y (z;), where ' (z;) > 0, 7/ (0) = 0 and
v (z;) > 0.

Matches in the first-stage are sequential. Assume that players 3 and 4 compete first.
Then, player 1 faces player 2 knowing the outcome of the previous match. Without loss of
generality, we assume that player 3 won his match against player 4. We also assume cost

type, c;, varies across all players.

2.1.1 Final Stage

Assume that player 1 won his first-stage match. To find the equilibrium of the multi-stage
game, we begin by analyzing the strategies of player 1 and his opponent player 3 in the final
stage. Define player 1’s expected payoff function as

1, final = P1 (21, 23) AV — 1y (x1) + Vi (1)
where his probability of winning takes the following form:

lifxy +e1 > 23+ €3
P1 (.Tl,l‘g): %ifZL’l—Fél = x3+ €3 (2)

0 otherwise

where x; +¢; is player ’s level of output. Note that output is a function of both effort x; and

a random noise term ¢;. In definition (2), the probability that player 1 wins is increasing in



his own effort and decreasing in the effort of his opponent.
Define € = €3 — €1 and let € be distributed according to some distribution G' such that

probability (2) can be written as
Py (x1,23) = Py (17 — 23 > €) = G (v1 — x3) (3)
Now, player 1’s payoff function (1) can be written as
1, final = G (11 — x3) AV — 1y (21) + V4, (4)

and his first order condition is

aﬂ—l,fz'nal _ G/

B, (x1 —x3) AV — 17 (1) = 0 (5)

Following Konrad (2009) and Ederer (2010), we assume that G is distributed uniformly
with the following support!

1 1
G ~ U |:—§CL7 5(1/:|
and, therefore,
¢ =1
a

The assumption that G is uniformly distributed removes the strategic interdependence
of players’ current period effort choices (Konrad, 2009). This allows us to isolate the conse-
quences of past effort choices and potential future competition on current-stage effort.

Rewriting the first order condition (5) yields:

871' ina AV
st = o) <o

which we can rearrange as the following expression:

AV
"(z;) = fori=1,3 6
7 () = o (6
We can think of 7/ (z;) as player i’s marginal cost and % as his marginal benefit. Assume for
the remainder of the analysis that player 1 is the stronger player (¢; < ¢3) . Then, expression
(6) implies player 1 exerts more equilibrium effort in the final stage (z} > 273) .
In the final round, since both players are guaranteed at least second prize V, increasing

the first prize amounts to increasing the stakes of the contest. As expected, higher stakes

ISee the Appendix for conditions on the primitives of the model that assure that G is well-defined.
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leads to more effort from both players, though the stronger player increases his effort more
than the weaker player. Also, increasing the noise around effort reduces equilibrium effort,
particularly for the stronger player. Finally, as expected, effort choices are increasing in

ability.

2.1.2 First Stage

Define z; and z; as the efforts of players 1 and 2 in the first stage. Player 1’s expected payoff

function in the first stage is

1, first = P (2’17 22) ‘71 — 7 (21) (7)

where V; is the continuation value of player 1. Define player 1’s continuation value as the

equilibrium payoff in the final stage:
Vi =m (27,25 (c3)) -
Equation (7) yields the first order condition

871'1 first ‘71 /
e e = O
92, 4 ey’ (z1)

which we can rearrange, for either player, as the following expression

, Vi .
Y (zi):a—Ciforzzl,Z (8)
As in the final stage, equilibrium effort is increasing in ability and the continuation value.
Increasing noise has an adverse effect on first stage effort.
Recall that, at the start of their match, players 1 and 2 already know the outcome of the
other first-stage match between players 3 and 4. Of course, this means that players 3 and
4 did not know exactly the identity of their future opponent. Instead, we assume that they

formed an expectation of their continuation value as follows:
E [‘71} = puiVi (zf,23) + (1 — p1p) Vi (2], 23) fori=3,4

where py|; is the equilibrium probability that player 1 wins knowing that he will face player

i in the final stage.? Note that player ¢ cannot influence this probability p;; because it is a

2When player 1 is stronger than player 2, V; (zF, z}) < E[VL} < Vi (7, 25) for i = 3, 4.
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function of the realized outcome of the completed, first-stage match between players 3 and
4. This simplifies our analysis because player i’s first-stage effort z; does not change this
probability p,;. Thus, for players 3 and 4, we can restate the expression of their equilibrium
effort (8) as
e[
v (%) = for i = 3,4

ac;

and the analysis described above for players 1 and 2 applies similarly.

Now, we can compare the difference in effort choices between the stronger and weaker
player across stages to determine differences in their probabilities of winning, holding fixed
the skill differential between players. For example, we can compare the outcome of a final-
stage match between players of cost types 1 and 3 with the outcome of a first-stage match
where players of cost types 1 and 3 compete.

Assume that a player of cost type 1 is stronger than a player of cost type 3 (¢; < ¢3). As
long as the final-stage losing prize V7, is large enough relative to AV, then effort disparity
across stages is ordered: =7 — x5 < 27 — 23. Since effort disparity is greater in the first stage
than in the final stage, expression (3) necessarily means that the stronger player has a greater
probability of winning in the first stage relative to the final stage. That is, when certain prize
conditions are satisfied, the weaker player has a lesser probability of losing against a stronger
player in the final stage relative to his probability of losing against that same opponent in the
first stage of an otherwise identical tournament. The intuition is as follows: As we increase
the losing prize V; while holding prize spread AV constant, the difference in first-stage
efforts (27 — z%) increases because the stronger player is more sensitive to changes in the
continuation value. In contrast, the difference in final stage efforts (] — x%) remains the
same, since the losing prize does not enter the first order condition for the final stage. This
result is in contrast to Rosen (1986) who finds that there is always an “underdog advantage”
in his Tullock-style contest.

This leads to our first proposition:

Proposition 1 P fina (25, 25 (c3)) < Py first (27, 25 (c2)) when ¢a = c3 and V, > AV +

CoY (h (%)) . With a sufficiently large second place prize relative to the first place prize,
the probability that the weaker player wins in the final stage is greater than the probability

that he wins in the first stage, holding opponent skill constant.

Proof. See Appendix 7.2. =



2.2 Shadow of Future Competition

The model can also be used to understand the impact of known (or expected) future com-
petition on current effort decisions. Consider a decrease in the skill of the future opponent,
player 3 (i.e. ¢z increases). This change has the effect of increasing the continuation value
for both players 1 and 2 in the first stage. Since player 1 has a lower cost of effort than
player 2, player 1 will increase his first-stage effort more than player 2 since his return to a
change in the continuation value is greater than for player 2.

From the final-stage first order condition, equation (6), it follows that x3 decreases as c3
increases.

To understand the effect of decreasing z3 on the final stage payoff 71 finq,we take the
derivative of equation (4)

_5‘7;1;;@1 =G (2} —23) AV = —%
That is, as the final stage opponent’s effort decreases, the player 1’s final stage equilibrium
payoff increases. A ghange in the final round opponent’s skill will have an equal effect on
WI,firLul W;,final

0
player 2: e = o

Since the change in the continuation value is the same for players 1 and 2, the stronger

player will increase his effort (z{) more than player 2 will increase his effort (25).We can add

a term, W, to represent the (equal) change in the continuation value to equation (8)

Vit w

/ .
Y (zz) ac;

Note that the impact of the increase in the continuation value is larger for player 1’s effort

C%) . Thus, if 7/ (z;) is not too convex

relative to the effect on the effort of player 2 <;VTI >
(e.g., quadratic costs), the effort disparity is increased, and this further improves the stronger
player’s probability of winning in the first stage.?> This analysis gives us the following

proposition:

"

Proposition 2 Assuming v" <0 (e.g. quadratic costs), as the skill of the future competitor
i the final stage declines, the stronger player becomes even more likely to win in the first

stage (and the weaker player becomes even less likely to win in the first stage).

3Marginal benefit increases more for the stronger player than for the weaker player because c¢; < cs.
However, if the marginal cost of effort is too convex, the stronger player may not increase his effort as much
as the weaker player. Conditions on the third derivative, namely "/ < 0, ensure that the stronger player
increases his effort more than the weaker player for a given change in the strength of the future competitor.
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2.3 Prize Effect

We can explore how changes in the prize structure affects equilibrium effort choice. In par-
ticular, we study the effect of increasing the spread, AV, between first and second prize. To
simplify our analysis, we assume that participants’ costs are quadratic and hold constant the

skill level of players in each stage.

2.3.1 Prize Effect - Final Stage

From equation (6), we know that final period effort is

*

AV
xTr. =
Y 2ac

Since ¢; < ¢y, increasing AV increases the effort of the stronger player more than for the
weaker player. That is, the effort disparity between players increases as the relative stakes
increase.

2.3.2 Prize Effect - First stage

From our analysis above, we can write out player i’s continuation value when he faces

quadratic costs and player j:

AV AV a
~ (e " 2aq; T2 AV?
v,~=<2’ 2ac, 2>M_Ci< )WL
a 2ac;

Using equation (8) and our expression for ‘N/z-,we can solve explicitly for first-stage equilibrium

effort:
ot ;T8 2
(#) AV — ¢ (M) LV

a 2ac;

2c;a

The following expression describes the change in equilibrium effort resulting from a change
in AV:

Av (1 1 + 1_ AV
82: a? \ ¢ ¢ 2 2a?c;
OAV 2¢c;a
1
AV (32 _ 1 1
a? (cl cj-> + 2
2c;a

This leads to the following proposition:
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Proposition 3 With quadratic costs, for a given prize spread increase, the stronger player
is even more likely to win in either stage (and the weaker player is even less likely to win in

either stage).

Proof. See Appendix 7.2. m
This proposition suggests that tournaments with steeper prize structures will experience

fewer upsets.

2.4 Effort Spillover

We can also examine effort spillover between stages of the tournament.* Spillover can take
either a positive or negative form. Positive spillover might reflect learning (by doing), skill
building or momentum within a firm. For example, an innovation team whose proposal
advances to a second stage of funding might benefit from its first-stage experience, both
technical and relational. With positive spillover, second-stage effort is less costly than first
stage effort. In contrast, negative spillover might reflect fatigue or reduced resources in
later stages. For example, architects competing in design competitions might exhaust their
creative resources in early stages and have only limited energy for second-stage proposals.
In this case, second-stage effort is more costly than first-stage effort.

Consider a scenario where effort expended by a player in the first stage influences his

effort in the final stage. We can rewrite player 1’s final-stage payoff as
71, final = G (£1 — 23) AV — ey (21, 21) + Vi,

where the cost function reflects current and past effort.

First, consider the case where a player’s marginal cost of effort in the final stage is

O (x1,21)
311 821

only as a fixed cost in the final stage, we would expect no change in final-stage effort. For

unaffected by previous stage effort: = 0. For example, if previous effort appears

example, a design team that submits an innovative proposal in the first stage might require

specialized equipment to complete the building phase in the second stage.

To study a negative spillover effect, we let a player’s marginal cost of effort in the final

0y(z1,21)
0x1021

see that final stage equilibrium effort is strictly decreasing in first stage effort because the

stage be increasing in first-stage effort: > 0. Consider again expression (6).We

marginal cost of final-stage effort is increasing in first-stage effort. With positive spillover, a

Dlez) <,

player’s marginal cost of effort in the final stage is decreasing in first-stage effort: =5—5=

4Different notions of spillover have been explored in the literature in settings where players with exoge-
nous, fixed resources make effort allocation decisions over multiple periods of play. For recent examples, see
Sela and Erez (2011) and Harbaugh and Klumpp (2005).
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Now, from expression (6), final-stage equilibrium effort is strictly increasing in first-stage
effort.

We can re-write player 1’s marginal cost of effort with spillover as v/ (x1,21) = 7' (21,0) k
where k£ > 1 for net negative spillover and £ < 1 for net positive spillover. Revisiting
expression (6),we can rewrite marginal cost as

V() k=gF or o (x1) = 4

aci aci

where ¢; = c¢1k. Straightforward calculations show that 87”8’-—2"‘” < 0.5 Therefore, when
¢1 > ¢, final period profit V] is less than when there was no effort spillover. Similarly, when
¢ < 1, final period profit V; is greater than when there was no spillover.

The presence of the negative (positive) spillover also reduces (increases) first-stage effort;
in expression (8), lower (higher) V; leads to lower (higher) effort.

Since negative spillover decreases final-stage equilibrium effort, an increase in first-stage
effort implies a lower probability of success in the final stage, holding the opponent’s effort
and skill constant. Of course, the opposite is true for positive spillover. The direction and
impact of spillover depends on the context and, thus, is an empirical question.

Proposition 1 considers the underdog advantage across rounds within an event, but we can
also consider it across events. In particular, the degree of noise in determining the winner

and the amount of spillover between stages within an event changes the weaker player’s

probability of success.

Proposition 4 G (2 — 25) — 0.5 and G (25 — x%) — 0.5, when (i) a — oo or (ii) k — oo
where player i’s effective cost type is kc; for all i. In any stage, an increase in noise or a
common proportional increase in effective cost type increases the probability that the weaker

player wins.

Proof. For Proposition 4i, from expressions (6) and (8),we can see that as the support
of G goes to infinity, equilibrium effort converges to zero. That is, as the noise around

effort increases, the marginal return to effort declines. In the limit, effort has no impact

®We can see this from the following:

AV AV a 2
8 ~ 6 2ac; 2ac; + 2 AV
5civi T g < a ) AV —a <2aci> + VL)
o (avy? N (AV)?
o 2a2c? 4a3c?

AV®
N _(2aci) <0
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on a player’s probability of success and, therefore, no effort is exerted. For Proposition 4ii,
a similar logic applies—as cost types converge to infinity, effort becomes so costly that no
effort is exerted. Thus, the weaker player should fare better in events that are noisier or
proportionally more costly for all players in every round. m
This proposition suggests that weaker players might support costlier competitive conditions—

for example, a weaker player might advocate for more stringent standards or more difficult
tasks. Of course, the two effects outlined in Propositions 4 might yield an ambiguous pre-
diction if we compared a very noisy event with limited spillover to an event with less noise

but very costly spillover.

2.5 Combined Shadow and Spillover Effects

The previous analysis has considered separately the effects of effort spillover and the shadow
of future competition. Next, we present an analysis when both effects are at play. Com-
bining the effects does not change the general predictions of the previous analysis—spillover

continues to even the playing field, while weaker future competition does the opposite.

2.5.1 Spillover and Shadow - Final Stage

We begin with the final stage and fix players’ abilities across the stages (i.e. the pairs of
opponents in both stages have the same set of cost types). For illustration purposes and
computational ease, we again assume quadratic participant costs. Our first order condition

for the final stage yields equilibrium effort choice

ot AV
e 2(ICZ1€1(ZZ)

where k; (-) reflects the degree of spillover from the previous stage and is an increasing func-
tion of first stage effort z;. As expected, greater first-stage effort results in lower equilibrium
effort in the final stage. Further, this effect is amplified for the stronger type since ¢; < cs.

The final stage spillover effect is therefore

Jz; AV

1

= 0
8/{:1(2'1) 2&62'1{7@'(21')2 <

Therefore, a given level of spillover (k; = ks = k) reduces the disparity between participants’

efforts in the final stage, since % < % < 0.
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2.5.2 Spillover and Shadow - First Stage

Next, we consider effort decisions in the first stage and write player i’s payoff as’

AV AV a 2
acik;  2acjk; +3 AV
T = Gfirst(‘) <(2 ki Z ik 2) AV — Ciki <2ack> + VL) - CZ'Z,?

The first order condition for the first stage is

TR WA (UN R
07@- a — Gk 2ac;k; L

0z B a
—AV? AV? Ok;
+ Grirst () ( + < >) —2¢;2; =0

2a2c;k? 4ac;k? 0z

which then gives us the following expression for first-stage equilibrium effort:

<2ff5‘i/fw_2aAc;/kj+;) AV — ¢k ( AV )2 +V AV? AV? Ok
a = Lilv 2(lciki L G 3 ° ( — + ( >) L
* fWSt( ) 2a20ik1-2 4a201-ki2 0z;

zf = + (9)
! 2¢;a 2¢;
N 7 N 7
shadow effect spillover effect

With no spillover (k= 1), the left term is precisely the shadow effect we described in
Section (2.2). The right term reflects spillover. When k& = 1, this spillover term is greater
for the stronger player and, thus, the stronger player reduces his effort more than the lesser
player (since G first(-) > % and ¢; < ¢g). Since the stronger player exerts more equilibrium
effort in the first stage, he will necessarily suffer more spillover in the final stage (assuming
players face a common k (z;) function). Thus, spillover has the effect of evening the playing

field in both stages. That is, ceteris parabus, spillover increases the chance of an upset.

2.6 Model Predictions

The theory model outlined above provides the following predictions:

1. Shadow of Future Competitors: The worse-ranked the expected competitor in the
next stage, the greater the probability that the stronger player wins in the current

stage.

2. Effort Spillover between Stages: In contests exhibiting negative spillover, more

effort exertion decreases the probability that a player wins in the next stage, holding

SWe write k; (2;) as k; to simplify the notation in this section.
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his opponent’s effort fixed. In equilibrium, increased negative spillover decreases the
probability that the stronger player wins in the final stage. With positive spillover,
more first stage effort increases the probability that the stronger player wins in the

final stage.

3. Noise in Effort: The noisier the effort-to-output relationship, the more likely the

weaker player wins in either stage.

4. Underdog Advantage in Final Stage: Fixing the competitors and given a suffi-
ciently large second-place prize, the probability of winning is greater for the weaker

player in the final stage, relative to his probability of winning in the first stage.

5. Prize Spread: A steeper prize structure improves the stronger player’s probability of

success in all stages.

A strength of this particular model is that, while these hypotheses emerge from differences
in the abilities and efforts of players, the testable implications can be framed in terms of
outcomes. That is, while effort is notoriously difficult to assess in field data, we can test the
predictions of the model by observing players’ wins and loses under different scenarios. In

the following sections, we describe our data and empirical analysis.

3 Data

Professional tennis offers an ideal environment in which to test the empirical implications
of the theory. Tennis events are single-elimination tournaments—only winning players ad-
vance to successive stages until two players meet in the final stage to determine the overall
winner. Prizes increase across stages with the largest prize going to the overall winner. The
distribution of prizes is known in advance of all tournaments. The financial stakes are sub-
stantial and vary across events—for example, the total purse for the 2009 US Open singles
competition was $16 million with a $1.7 million prize for first place, while the total purse
for the 2009 SAP Open was $531,000 and the winner received $90,925.

The structure of tennis tournaments is particularly conducive to studying the shadow
of future competition—both players (and the econometrician) know the competitors in the
parallel match. In some cases, players can know exactly who they would face in the next
round; in other cases, they can make reasonable predictions about upcoming opponents.
Moreover, player ability is also observable to players and researchers—past performance,
as well as world rankings statistics, are widely available. For example, in the 2007 Swiss

Indoors tournament in Basel, players in the first round, Del Potro and Russell, knew that
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their next opponent would be either Roger Federer or Michael Berrer. Of course, given the
ability difference between these possible future opponents, Del Potro and Russell were likely
predicting that their second-round opponent would be Federer.

Two distinct formats are used in professional tennis events—the winner of most matches
is determined through the best of three sets, while select events are best-of-five.” This
variation allows us to consider the role of noise in elimination contests—the best-of-three
format is expected to produce noisier outcomes than best-of-five events. Intuitively, more
sets is analogous to more draws from a distribution, leading to a more “precise” overall

effort-to-output return.

3.1 Professional Tennis Match Data

To test the predictions outlined in the theory, we examine the behavior of professional tennis
players in 615 international tournaments on the ATP World Tour between January 2001
and June 2010. The data include game-level scores and player attributes for men’s singles
matches (available at http://www.tennis-data.co.uk). The four “Grand Slam” events—the
Australian, French, and US Opens, and Wimbledon—are included in the data. All of the
tournaments are multi-round, single-elimination events played over several days.

Tournament draws are organized by seeds; in general, seeding is determined by players’
official world rankings in the week before the event. Draws include 28, 32, 48, 56, 96 or
128 players. Of the 615 events in the data, 433 tournaments consist of five rounds of play—
rounds 1 and 2, quarterfinals, semifinals, and the final. Six rounds are played in 128 events.
Fifty-four tournaments, including the Grand Slam events, consist of seven rounds of play—
rounds 1 to 4, quarterfinals, semifinals, and the final. Most ATP events are best-of-three
sets, while the Grand Slam events are best-of-five sets.

Figure 1 is a typical draw for a five-round, 32-player tournament. The placement of seeded
players is determined by ATP rules—in general, in the first round, the highest-ranked players
face the lowest-ranked players. Depending on the number of competitors and the tournament
draw structure, first-round byes may be awarded to the top-ranked players.®

World rankings (officially called the South African Airways ATP Rankings) are based on
points that players accumulate over the previous 12 months. The ATP points directly reflect
the pyramid structure of tournaments. More points are awarded to players who advance in

top tournaments; for example, a Grand Slam winners earns the maximum points awarded

"To win a set, a player must win at least six games and at least two games more than his opponent.
A game is won by the player who wins at least four points and at least two more than his opponent. Set
tie-break rules vary by tournament.

8Byes automatically advance a player to the next round.
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for a single event.” ATP rankings are simply a rank-order of all players by their accumulated
points. In our analysis, we use the ATP rankings to account for players’ skill levels.!?
Table 1 presents summary statistics from over 28,000 men’s professional tennis matches.
On average, matches are decided after 23 games; however, players play more games on average
in the final round than in the first or semifinal rounds (p-value< 0.01). Match winners are
significantly more skilled than losers (p-value< 0.01). Tournament winners typically rank
30th in the world, while second-place finishers are 45th in the rankings. Tournaments’
seeding formats generally pair the weakest players against the strongest players in the first
round. Consequently, the disparity in rankings decreases as players advance. To consider
the competitive balance of matches across rounds, we also report the rankings ratio (worse
rank divided by better rank). While mean rankings ratios remain relatively stable across
rounds, the variance appears to decline. The skill-related summary statistics suggest that
while high-skill players do not always win their matches, on average, opponents become

closer in ability as tournaments progress.

4 Results

In this section, we use a series of empirical tests to examine the predictions of the theory
model in Section 2.6. For each hypothesis, the discussion of the results is organized as follows:
First, we outline the prediction to be tested. Then, we describe the econometric specification
that allows us to test this hypothesis. We estimate all equations using OLS with a robust
variance estimator; results are quantitatively very similar for a probit specification and are

not reported. Finally, we describe and interpret the findings.

4.1 The Shadow of Future Competition

Proposition 2 states that weaker future competition will increase the stronger competitor’s
probability of success in the current stage. This prediction follows from the observation that,
while weaker future competition will cause both players to increase their effort in the current
period, the current effort of the better-ranked player increases even more than the current

effort of his worse-ranked opponent.

9For details of the world ranking system, see the 2011 ATP World Tour Media Guide, available online
at www.atpworldtour.com.

10Klaassen and Magnus (2003) suggest a transformation of rankings to account for differences in ability
between high- and low-skilled players. They calculate a player’s ability as R = K + 1 —log, (ranking) ,where
K is the total number of rounds in the tournament and ranking is the player’s tournament seed. All of
our analyses are robust to this alternative measure of skill heterogeneity—results with the Klaasen-Magnus
transformation are qualitatively very similar to the results using ATP rankings and are not reported.
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The following specification tests this hypothesis:
strongwins,, = P+ fiFuture, + BoCurrent,,; + v X + € (10)

where strongwins,,; is a binary indicator of whether the better-ranked player of match m
won in a stated round of tournament ¢, Future,, represents the expected ability of the
opponent in the next round, Current,,, represents the heterogeneity of players’ skills in the
current match, X; is a matrix of tournament-level controls, and ¢,,; is the error term.

In the reported regression, C'urrent,,; is the ratio of the rank of the worse player and
the better player. Future,,; is the rank associated with the stronger player in the parallel
match. For example, for the 2007 Swiss Indoors tournament (see Figure 1), the expected
future opponent for the match between Del Potro and Russell would be Roger Federer. For
the Del Potro-Russell match, Current,,; = Z—é and Future,,; = 1. Note that this construction
of Future,,; is a conservative one—we are assuming that the future competitor will always be
the better of the two potential opponents in the next round.!! This means that, on average,
we are understating the continuation value for players in the current round. Consequently,
our coeflicient estimates on Future,,; will understate the actual shadow effect. Results are
qualitatively similar if we instead use an average of future opponents’ rankings.

Tournament-specific fixed effects capture average event-level characteristics and control
for differences between tournaments (e.g. media attention). Total purse size for any given
event has not varied substantially across time. For example, the purse for the US Open has
grown by an average of 3% each year from 1997 to 2011. Over the same period, the inflation
rate was roughly the same. Therefore, real purse size was relatively stable and the purse
effect is captured by tournament dummies. Additionally, because some tournaments have
changed venues over time, we include additional controls for surface and court type.

Results: Table 2

Table 2 reports the estimated coefficients for regression (10) by tournament round using
rankings to measure player skill. In all rounds before the quarterfinals, the coefficient on
the shadow effect (Future,,) is positive and statistically significant (p-value < 0.01). That
is, the weaker the future opponent (i.e. a larger rank value), the greater the probability
that the stronger player wins in the current round, controlling for current players’ skills.
The estimated effects for the quarterfinals and semifinals are also positive, although not
statistically significant at conventional levels—this may reflect both small sample sizes and
limited variation in opponents’ skills at advanced stages of these tournaments.

The magnitude of the coefficients may also be interpreted—we include mean and standard

' Unfortunately, our data do not report match start and end times. That is, we cannot determine the
exact sequence of matches in a round.
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deviation values of future opponent rank in the table. For a one standard-deviation increase
in future opponent’s rank (decrease in ability), we estimate that the probability that the
stronger player wins in the current round increases by 2.3 to 5.5 percentage points. Given
that the average probability that the stronger player wins is approximately 65%, on average,
the shadow effect represents a 5% increase in the probability of winning.

As expected, the coefficient on skill disparity in the current match is also positive and
statistically significant (p-value < 0.01), indicating that increased heterogeneity between the
players increases the probability that the stronger player wins.

We estimate, but do not report, results for regression (10) using ATP points as a measure

of player skill. Estimates are qualitatively similar to results using ATP rankings.

4.2 Effort Spillover Across Rounds

Proposition 4 considers the role of spillover in effort choice. The direction of the spillover
effect is often an empirical question; however, one might expect negative spillover in events
that require intense effort exertion over a short period of time. In professional tennis, players
may face a higher cost of effort if their total exertion in previous matches induced lasting

fatigue. To identify an empirical spillover effect, we estimate the following equation:
winsy; = By + P PastGames;; + B4 RelativeStrength,, + v X; + €i (11)

where wins;; is a binary indicator of whether player ¢ won the match in a stated round
of tournament t, PastGames; is the number of games played in previous round(s) of the
tournament by player i (either all previous rounds or just the most recent previous round),
RelativeStrength;; reflects player i’s relative skill compared to his current opponent, X, is a
matrix of tournament-level controls similar to those in regression (10), and & is the error
term.

In the reported regressions, RelativeStrength;; is the ratio of player i’s current opponent’s
rank and player i’s own rank. Therefore, RelativeStrength;; < 1 when player ¢ is weaker than
his opponent and RelativeStrength;; > 1when player ¢ is the stronger player.

Results: Tables 3 and 4

Table 3 reports regression results for specification (11) by tournament round using rank-
ings and accounting for the number of games played in all previous rounds. Here, we identify
a cumulative spillover effect. Coefficient estimates for PastGames;; are negative and statis-
tically significant (at p-values from < 0.01 to < 0.1), suggesting a negative spillover. The
magnitudes of the coefficients suggest that, on average, a one standard-deviation increase in

the number of previous games (over all previous rounds) is associated with a 7 percentage
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point decline in the probability of winning in the current match.!? For the stronger player
in an average match, this represents a 11% decline in the probability of winning; for weaker
players, this reflects a 20% decline in success.

We estimate, but do not report, a similar regression using ATP points to control for
players’ relative skills. Again, coefficient estimates for PastGames; are negative and sta-
tistically significant (at p-values from < 0.01 to < 0.05). In fact, the magnitudes of the
coefficients are remarkably similar and lead to the same interpretation as in Table 3.

Coeflicient estimates for RelativeStrength;, are statistically significant at conventional lev-
els in almost all rounds in Tables 3; the positive estimates suggest that a player’s probability
of winning increases with improvements in his relative skill.

Tables 4 reports results when PastGames;; reflects only the number of games played in
the most recent round. While the coefficient on PastGames;; is negative and statistically
significant in early rounds, we find little period-to-period effort spillover between quarterfi-
nal, semifinal and final rounds. This (non) result is not surprising given that tournament
schedules often give competitors days of rest between the last few rounds. As expected, for
early rounds, the period-to-period spillover is smaller than the cumulative spillover estimates
in Tables 3. Here, a one standard-deviation increase in the number of games in a player’s
previous match is associated with a 3 percentage point decline in the probability of winning
in the current match.

The estimates for RelativeStrength; in the period-by-period analysis take on the same
sign and significance as in the cumulative spillover regressions. Using rankings and ATP
points (not reported), the coefficients indicate that a player is more likely to win as he

improves relative to his opponent.

4.3 Combined Spillover and Shadow Effects

Section 2.5 studies the knock-out tournament model with both spillover from past effort and
the shadow of a future competitor. Overall, our analysis reveals that the combined effects
produce the same predictions that we identified when we explored shadow and spillover inde-
pendently. In theory, the weaker the expected future competitor, the greater the probability
that the stronger player wins in the current round. In contrast, effort spillover from the
previous round actually levels the playing field by reducing the probability that the stronger
player wins in the current round.

The following specification allows us to study the effects of shadow and spillover simul-

12This is a conservative estimate, calculated using only summary statistics for best-of-3 matches.
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taneously:

strongwins,: = o+ BiFuture,,; + BoCurrent,, (12)
+54SPastGames;, + ,W PastGamesy + v Xy + ey

where strongwins,, is a binary indicator of whether the better-ranked player in match m
won in a stated round of tournament ¢, Future,, represents the expected ability of the
opponent in the next round, Current,,; represents the heterogeneity of players’ skills in the
current match, SPastGames; is the number of games played in all previous rounds of the
tournament by the better-ranked player, W PastGames;; is the number of games played
in all previous rounds of the tournament by the worse-ranked player, X; is a matrix of
tournament-level controls, and ¢,,; is the error term.

Results: Table 5

Overall, results in Table 5 provide further support for the empirical existence of spillover
and shadow effects. Note that the first and last columns of the tables omit estimates for
spillover and shadows, respectively—there is no spillover for players in the first round of a
tournament and players face no shadow in the final round.

As in Table 2, coefficient estimates for the shadow of the future competitor are positive
and statistically significant in all rounds before the quarterfinals. Indeed, the coefficients on
Future,,; are very similar in magnitude in Tables 2 and 5. For a one standard-deviation
increase in the next-round opponent’s rank, the probability that the stronger player wins in
the current round increases by approximately 4 percentage points.

Coefficient estimates for the two spillover variables take on predicted signs—more pre-
vious games for the stronger player decreases the probability he wins in the current match,
while in general more previous games for the weaker player increases the chance that the
stronger player wins.

The history of the stronger player appears to drive his current success more than the
history of his opponent—from expression (9) of our model, we expect the stronger player to
be more adversely affected than the weaker player for a given increase in spillover. Indeed,
in the data, the effect of previous games played by the stronger player is often larger than
the effect of the weaker player’s previous games. T-tests comparing the magnitude of the
spillover estimates (H, : 83 = —[3,) reject equality in the 2nd round, 4th round, quarter- and
semi-finals (p-values < 0.05). We cannot reject the null of equal effects in the final round,
perhaps because players tend to be relatively well-matched in terms of ability.

Comparing across rounds, the effects of spillover from both stronger and weaker players’

histories are smaller in the final periods of tournaments relative to early rounds. This may
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be because many events provides additional rest periods for players between the later rounds

of play, while early-round schedules often have players competing on consecutive days.

4.4 Noise around Effort

Proposition (4) also states that an increase in the noise around effort will benefit the weaker
player. Intuitively, an increase in the noisiness of effort pushes the contest towards a lottery
where each player has equal probability of success. Clearly, this improves the odds of the
weaker playing winning. To test this hypothesis, we compare best-of-three and best-of-five
matches, where we expect best-of-three matches to be noisier than matches with more sets.

We use the following specification:
strongwins,,; = Ao + A\iCurrent,,; + Ao BestO f Five, + nY; + €

where Current,, reflect the heterogeneity of players (as above), BestO f Five, is a binary
indicator that equals 1 if the tournament has a best-of-five format and 0 otherwise, and
Y, is a matrix of controls for surface and court type. In this regression, we do not include
tournament-specific fixed effects since the “best-of” format does not vary across years for a
given tournament. Also, because the best-of-five format is only used in tournaments with
four rounds of play before the quarterfinals, we limit the analysis to tournaments with seven
rounds total.

Results: Table 6

Coefficient estimates in Table 6 suggest that stronger players are more likely to win in
best-of-five events (p-value < 0.01)—in the reported specification, the stronger player has
nearly 6 percentage points greater probability of winning a best-of-five match.

Since best-of-five events have substantially higher prizes and larger prize spreads than
best-of-three tournaments, one might worry that the results in Table 6 reflect the prize spread
effect in Proposition 3. To test this hypothesis, we examine only best-of-3 tournaments and
compared Master Series events to other ATP tournaments. The typical spread between first
and second place prizes in the Masters Series is nearly four times the prize gap of other
events. While Gilsdorf and Sukhatme (2008b) find that larger marginal prizes increase the
probability that the stronger player wins in women’s tennis (where all matches are best-of-
three), we find little evidence of this prize effect in men’s events. In other work by Gilsdorf
and Sukhatme (2008a) examining men’s tennis, they find again that larger marginal prizes
increase the likelihood of a win by the better player. However, our model would suggest
that this effect could be a result of both prize spread and noise effects, since high-stakes

tournaments are also less noisy—Grand Slam events are both high prize and best-of-five.
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4.5 Underdog Advantage

Rosen (1986) predicts that the weaker competitor’s likelihood of success should always be
higher in the final round relative to the probability that he wins earlier in an elimination
tournament. Our proposition 1 provides a similar prediction, but requires that the second-
place prize be sufficiently large relative to the gap between first and second-place prizes.

In the ATP match data, the weaker competitor (underdog) wins 34.1% of the matches
in final rounds and 32.6% of matches in earlier rounds. However, this difference is not
statistically significant at conventional levels. For robustness, we also ran a comparison
while controlling for player skill and tournament-level heterogeneities. Again, we failed to
find statistically-significant differences between the weaker players’ probability of winning in
final and non-final rounds. Although not conclusive, our analysis suggests that the losing
prizes may not be sufficiently large (relative to the winning prizes) to induce an underdog

advantage in the final round.

5 Betting Markets, Spillover and Shadows

The efficiency of prediction and betting markets has been studied extensively in the literature;
for examples, see the survey by Vaughn Williams (1999). Prediction markets are founded
on the argument that by aggregating information, competitive markets should result in
prices that reflect all available information (Fama 1970). Therefore, driven by aggregated
information and expectations, prediction market prices may offer good forecasts of actual
outcomes (Spann and Skeira 2003).

Similarly, betting odds reflect bookmakers’ predictions of future outcomes. Betting odds
may change as new public or private information becomes available to the bookmaker and
with changes in the volume of bets that may be driven by individual bettors’ private infor-
mation. As with formal prediction markets, we might expect betting odds to provide good
forecasts.

Spann and Skeira (2008) compare forecasts from prediction markets and betting odds
using data for German premier soccer league matches. They find that prediction markets
and betting odds provide equally accurate forecasts. This result seems reasonable, since
betting companies with inaccurate and inefficient odds should not survive.

Although we cannot account for all information available to the market, our findings
are consistent with the claim that the tennis betting market exhibits a form of information
efficiency. In the discussion below, we provide statistical evidence that prices in the tennis

betting market reflect information about spillover from players’ past exertion and the shadow
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of future competition.

5.1 Shadow and Spillover in Betting Odds

To examine whether betting markets incorporate information about the effects of shadow
and spillover, we estimate a regression similar to equation (12). Now, instead of a binary
indicator of the actual outcome, the dependent variable is the probability that the stronger
player wins the match as implied by betting markets.

Our data include closing odds from professional bookmakers for pre-match betting.!?
Woodland and Woodland (1999) note that bookmakers adjust odds based on the volume of
bets, making the odds available as the betting market closes particularly rich in information.
In our analysis, we use the median of the available odds data since the data from no single firm
covered all matches.!* Overall, there was little variation between odds posted by different
bookmakers for the same match, perhaps because participants in tennis betting markets tend
to be specialists and there is little casual betting (Forrest and McHale 2007).

The accuracy of odds market predictions suggests that information beyond simple rank-
ings are being priced in the market. Between 2001 and 2010, predictions from the market
are correct for 69% of the 25,633 matches for which betting data are available. Given that
the stronger player actually wins in 65% of matches, one might not be surprised by this
accuracy if the market always predicted that the stronger player wins. However, in 18% of
the matches, the betting odds imply that the weaker player is expected to win. Interest-
ingly, these market predictions are accurate nearly 63% of the time. That is, these betting
markets do almost as well predicting an upset as they do predicting a win by the stronger
player. This is particularly notable since a naive assessment of the ATP rankings in these
matches might suggest that the odds are still solidly against the weaker player—on average,
the weaker player’s rank is 2.1 times higher (worse) than his opponent.

Results: Table 7

Table 7 reports results for round-level regressions where the dependent variable is the

probability that the stronger player wins as implied by the betting market. Overall, coeffi-

3Data from 11 betting firms (Bet365, Bet&Win, Centrebet, Expekt, Ladbrokes, Gamebookers, Inter-
wetten, Pinnacles, Sportingbet, Stan James, and Unibet) are included in our main dataset obtained from
www.tennis-data.co.uk. Several betting firms also offer in-play betting, but we focus our analysis on pre-
match bets only.

14We calculate the probability odds from the the decimal odds in the original data. Probability odds are
1/(decimal odds-1).

15 A positive long-shot bias—where the market undervalues the true favorite and overvalues the long-
shot—has been documented in tennis odds by Forrest and McHale (2007). However, the authors find this
small bias is consistent over a broad range of match-ups. In contrast to some markets, they do not find any
range with a negative long-shot bias.
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cient estimates suggest that the betting predictions incorporate information about players’
past and expected future competition.

Coefficient estimates for the effect of a stronger future opponent are positive and statis-
tically significant for all rounds except for the shadow of the final round on the semifinals
(p-values range from < 0.01 to 0.1). It is not surprising that we do not identify the effect
of the shadow of the final on the semifinal, given the compressed distribution of skill at the
end of the tournament.

Since the betting market closes only at the start of the match (and after the end of
earlier rounds), players’ past exertion information is readily available. Indeed, coefficient
estimates for the stronger and weaker players’ previous number of games are statistically
significant (p-values < 0.01) and take on the expected signs. More previous games played by
the stronger player is associated with a decrease in expectations of his success, while more
previous games played by the weaker player is associated with an increase in expectations
that the stronger player wins. As in Section 4.3 and as predicted by theory, the magnitude
of these coefficients suggests that stronger players are more adversely affected by a given
level of spillover relative to weaker players.

Greater heterogeneity in players’ abilities may increase the market’s expectation that the
stronger player wins—the coefficient on rank ratio is positive and statistically significant in
all rounds (p-values < 0.01).

Overall, we find strong evidence that prices in tennis betting markets reflect both the
shadow and spillover effects predicted by our model. Interestingly, we again find no evidence
of an underdog advantage—higher predicted odds for the weaker player in the final relative

to earlier rounds—in the betting data.

6 Conclusion

In this paper, we explore a class of contests we call “sequentially-resolved elimination tourna-
ments.” We present a two-stage, match-pair tournament model that provides several sharp
results: (a) a shadow effect of future competition—the weaker the expected competitor in
the final stage, the greater the probability that the stronger player wins in the first match;
(b) an effort spillover effect—with negative (positive) spillover, more effort in the first stage
leads to a lower (higher) probability of winning in final stage; (c) a noise effect—noise around
effort increases the probability that the weaker player wins in either stage; (d) an underdog
advantage—we describe the conditions under which the weaker player is more likely to win
in the final stage, relative to the probability he wins in the early stage; and (e) a prize spread

effect—increasing stakes improves the stronger player’s probability of success in both stages.
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We test our theoretical hypotheses using data from professional tennis matches and bet-
ting markets. We find evidence of a substantial shadow effect, where a weaker future com-
petitor increases the probability that the stronger player wins the current match. We also
identify negative spillover in tennis tournaments—more effort exertion in the previous rounds
is associated with significantly less success in the current round. Comparing best-of-three
and best-of-five events, we find evidence supporting the prediction that the noise around ef-
fort impacts the probability that the weaker competitor wins. We do not find support for an
underdog advantage in the final tournament stage, suggesting that the prize conditions for
this hypothesized phenomenon may not be satisfied in the data. Moreover, we are not able
to identify an empirical prize-spread effect. In a supplemental analysis, we use probability
odds data from bookmakers to show that betting markets also recognize and price in the

spillover and shadow effects.

6.1 Discussion

Our findings have implications in terms of the structure of elimination tournaments. Tour-
naments are often designed to identify high-ability candidates in environments where the
contest organizer cannot readily observe innate talent. Our results suggest ways by which a
contest designer can improve the likelihood that the strongest candidate succeeds. Limiting
negative spillover by allowing competitors opportunities to refresh their resources between
stages increases the probability that the stronger type wins. Firms may also want to encour-
age positive spillover through learning. For example, in an innovation contest, firms should
be given adequate time between stages to raise additional funds and pursue more advanced
technology improvements. Similarly, a firm may wish to institute “work-life balance” pro-
gram that promotes employee wellness, discourages career-related burnout, and improves the
probability that the firm’s labor tournament promotes the strongest workers.

Contest organizers may also wish to avoid “noisy” competition where the effort-to-output
technology is less precise; for example, a larger panel of decision-makers in innovation, design
or personnel tournaments may yield more discriminating selection.

Higher powered prizes also enhance selection across stages—large prize spreads, as well
as small loser prizes, will reduce the chance of selecting the lower-ability candidate.

In contrast, if a contest designer is concerned with the unevenness of competition, it
can design a more balanced contest with more negative spillover, noisier effort-to-output
activities, and a flatter prize structure. Some contest designers may want to maximize
individual or total effort across some or all stages. The study of these objectives is beyond

the scope of our current paper and is left to future research.
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7 Appendix

7.1 Conditions for G (-)

To ensure that probabilities are well-defined, we require two conditions on the primitives:

o MEHED | g M)

a a

where h = [y (-)] ' . These conditions ensure that G(-) € (0, 1) for both stages in equilibrium.
Depending on the model parameters, one condition will determine the upper bound of G(-)

and the other condition will determine the lower bound.

7.2 Proofs

Proposition 1: Py fina (27,25 (c3)) < Py pirst (27,25 (c2)) when co = c3 and Vi, > AV +

CoY (h (%)) . With a sufficiently large second place prize relative to the first place prize,

the probability that the weaker player wins in the final stage is greater than the probability
that he wins in the first stage, holding opponent skill constant.

Proof. Proposition 1 identifies an underdog advantage in the final stage—that is, the weaker
player has a greater probability of winning in the final stage over the first stage. This occurs

when Ggermi > G fina Where

Gina
final a
V; V a
h(a) —n () +3
Gsemi -
a

in other words,
) (1) o (1) - (A0) (A 13)
acy aco acy aco

Assume that the skill level of opponents in the first and final stages are equal, ¢; = cs.
We must show that V, > AV. This will prove the inequality in expression (13) since the

difference in the pairs of h functions is increasing in that stage’s prize and we know that
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Vi > V.
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The final inequality provides a sufficient condition for an underdog advantage. Note that
when we fix AV the value of the RHS of the inequality is also fixed. Then, holding AV fixed,
we can find some V; > 0 that satisfies the inequality. However, recall that G.,,; must be
less than 1;yet, Gen; is increasing in Vy. To see that some values satisfy G, < 1, we allow
the prize levels to converge: V;, — Vj. In this case, as AV — 0, the RHS of the inequality
approaches 0 and the inequality is then easily satisfied since V;, > 0. =

For a simple example, set: ¢; = 0.7;¢c0 = 1;V, = 0.1; AV = 1;a = 1.5. With quadratic
costs, our inequality fails—i.e., the weaker player is even less likely to win in the final stage.
However, with V;, = 0.5, the weaker player is more likely to win in the final stage. Thus,
given a large enough second-place prize relative to the first-place prize, the weaker player is

more likely to win against the same opponent in the final stage relative to earlier stages.

Proposition 3: With quadratic costs, for a given prize spread increase, the stronger
player is even more likely to win in either stage (and the weaker player is even less likely to

win in either stage).

Proof. Let player 1 be the stronger player and player 2 be the weaker player so that ¢; < cs.
The result for the final stage effort follows immediately from equation (6). To compare the
effect of changing the prize spread AV on players’ first stage equilibrium efforts, we consider

the following expression:

Av (3 1 1 Aav (s 1 1
0zr 0% a—z(ﬁ—a)ﬁ a—z(é—a)ﬂ
IAV  OAV 2c1a 2co0
AV (51 LAV ;1 1
203 \&E e dera 203 \ 3 cieo desa
AV (12
> — (2 -2)>0
2a3 (C% 2

The final inequality is always met, since ¢; < c¢o by assumption. Therefore, the stronger

player increases his effort more than the weaker player for a given increase in AV. Conse-

31



quently, this increased effort disparity increases the probability that the stronger player wins

in the either stage. m
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Table 1 - Summary Statistics for ATP World Tour Events January 2001 to May 2010

All Rounds 1st Round 2nd Round 3rd Round 4th Round Quarterfinals Semifinals The Final

# of Matches Played 28370 14497 7237 1897 433 2461 1230 615

Average # of games played 23.1 21.6 24.6 26.7 31.7 233 23.5 253
(10.4) (11.4) (8.6) (10.1) (11.5) 7.7 (7.6) (8.7

Average Rank of Winner 58.6 71.7 52.5 325 21.5 43.8 37.0 29.7
(73.2) (83.4) (61.1) (55.0) (57.3) (53.4) (49.6) (39.2)

Average Rank of Loser 95.5 119.7 90.9 54.9 39.9 62.0 50.5 43.9
(121.0) (147.7) (97.0) (64.4) (58.1) (65.3) (56.3) (55.2)

Average Rank Ratio 6.8 5.7 8.2 8.9 10.4 6.7 6.6 6.7
(Worse / Better by Rank) (20.9) (21.5) (20.6) (18.9) (20.1) (24.3) (12.8) (13.4)

Note: Data contain player and performance information for 615 tournaments. Values in parentheses are standard deviations.



Table 2 - Shadow of (Potential) Future Opponent on Probability of Winning

Dependent Variable: Stronger Player Wins in Current Period (0 or 1)
2nd on Ist 3rd on 2nd Qfinals on 2nd 4thon3rd  Qfinals on 3rd Qfinals on 4th Sfinals on Final on
Round Round Round Round Round 50 Qfinals Sfinals
Expected Future Opponent Rank ~ 0.08% *** 0.10% *** 0.07% *** 0.15% *** 0.16% *** 0.41% *** 0.06% 0.07%
(0.0001) (0.0003) (0.0002) (0.0008) (0.0006) (0.0016) (0.0004) (0.0007)
Current Rank Ratio 0.16% *** 0.30% *** 0.21% *** 0.39% *** 0.31% *** 0.36% *** 0.10% ** 0.60% ***
(Worse / Better Rank) (0.0002) (0.0004) (0.0003) (0.0008) (0.0006) (0.0011) (0.0004) (0.0011)
# of observations 12575 3759 4891 858 1461 432 2450 1220
Mean Future Opponent Rank 47.1 25.2 36.0 17.6 18.5 11.8 28.5 23.5
Std. Dev. Future Opponent Rank 42.4 23.4 32.6 18.8 20.9 13.5 28.3 25.9

Notes: "Expected Future Opponent Rank" is the rank of the stronger player in the parallel event. That is, it is the rank of the stronger of the potential
opponents in the next round. Values in parentheses are robust standard errors. ***, ** and * denote statistical significance at p-values of 1%, 5%

and 10%, respectively. Regressions include tournament-level fixed effects.



Table 3 - Effort Spillover from All Previous Tournament Periods

Dependent Variable: Winning in Current Period (0 or 1)
2nd Round 3rd Round 4th Round Quarterﬁnals Quarterﬁnals Quarterﬁnals Semifinals The Final
(2 previous) (3 previous) (4 previous)

All Previous Games -0.74% *** -0.58% *** -0.38% *** -0.36% *** -0.64% *** -0.23% * -0.14% *** -0.16% ***

(0.0005) (0.0006) (0.0010) (0.0009) (0.0011) (0.0012) (0.0003) (0.0004)
Rank Ratio 0.50% *** 0.63% *** 0.75% *** 0.95% *** 0.10% * 1.35% *** 0.91% *** 0.91% ***
(Opponent / Player Rank) (0.0007) (0.0011) (0.0017) (0.0017) (0.0006) (0.0044) (0.0017) (0.0031)
# of observations 14462 3792 866 3454 1032 432 2460 1230
Mean # of Previous Games 18.9 34.9 49.9 438 56.2 68.5 130.4 149.5
Std. Dev. of Previous Games 9.8 13.7 15.9 9.7 15.5 16.4 50.8 48.7

Notes: Values in parentheses are robust standard errors. *** ** and * denote statistical significance at p-values of 1%, 5% and 10%, respectively.
Regressions include tournament-level fixed effects. Summary statistics from previous games include only best-of-three matches.



Dependent Variable:

Games in Previous Period
Rank Ratio

(Opponent / Player Rank)
# of observations

Mean # of Previous Games
Std. Dev. of Previous Games

Table 4 - Effort Spillover from Previous Tournament Period Only

Winning in Current Period (0 or 1)

Ist to 2nd 2nd to 3rd 3rd to 4th Qfinals to Sfinals to

Round Round Round 2nd to Qfinals  3rd to Qfinals  4th to Qfinals Sfinals Final
-0.74% *** -0.44% *** -0.20% -0.32% ** -0.47% ** -0.15% -0.18% -0.22%
(0.0005) (0.0010) (0.0017) (0.0013) (0.0024) (0.0025) (0.0015) (0.0022)

0.50% *** 0.71% *** 0.80% *** 0.97% *** 0.12% * 1.43% *** 0.98% *** 0.95% ***
(0.0007) (0.0013) (0.0018) (0.0017) (0.0007) (0.0044) (0.0017) (0.0032)
14462 3792 866 3454 1032 432 2460 1230
18.9 22.6 22.9 22.4 22.4 22.1 22.5 22.6
9.8 6.4 6.7 6.6 6.7 7.2 6.6 6.6

Notes: Values in parentheses are robust standard errors. *** ** and * denote statistical significance at p-values of 1%, 5% and 10%, respectively.
Regressions include tournament-level fixed effects. Summary statistics from previous games include only best-of-three matches.



Dependent Variable:

Expected Future
Opponent Rank

Stronger Player's
Previous Games

Weaker Player's
Previous Games

Current Rank Ratio

Table 5 - Combined Spillover and Shadow Effects

Stronger Player Wins in Current Period (0 or 1)

(Worse / Better Rank) (0.0005)

# of observations

2nd on Ist 3rdon2nd Qfinalson2nd  4thon3rd  Qfinals on 3rd Qfinals on 4th Sfinals on Final on The Final
Round Round Round Round Round 50 Qfinals Sfinals (no shadow)
0.079% ***  0.084% ***  0.071% ***  0.165% ** 0.150% ***  0.421% *** 0.057% 0.077%
(0.0001) (0.0003) (0.0002) (0.0008) (0.0006) (0.0015) (0.0004) (0.0006)
-0.350% ***  -0.435% ***  -0.442% *** -0.513% *** -0.581% * -0.310% ***  -0.158% *** -0.132% **
(0.0009) (0.0008) (0.0013) (0.0011) (0.0031) (0.0008) (0.0004) (0.0007)
0.219% ** 0.175% * 0.110% 0.094% 0.163% 0.139% * 0.062% * 0.087% *
(0.0009) (0.0009) (0.0011) (0.0010) (0.0021) (0.0008) (0.0004) (0.0005)
0.161% ***  0.281% ***  0.194% ***  0.340% ***  0.265% ***  0.338% *** 0.089% ** 0.543% ***  0.363%
(0.0004) (0.0003) (0.0006) (0.0005) (0.0008) (0.0004) (0.0012) (0.0032)
12575 3759 4891 858 1461 432 2450 1220 615

Notes: "Expected Future Opponent Rank" is the rank of the stronger player in the parallel event. That is, it is the rank of the stronger of the potential
opponents in the next round. Values in parentheses are robust standard errors. ***, ** and * denote statistical significance at p-values of 1%, 5%
and 10%, respectively. Regressions include tournament-level fixed effects.



Table 6 - Noise around Effort

Dependent Variable: Stronger Player Wins (0 or 1)
Rankings

Current Skill Ratio 0.22% ***
(0.0004)

Best-of-5 Dummy 5.90% ***
(0.0078)

# of observations 26545

Notes Values in parentheses are robust standard
errors. *** ** and * denote statistical significance at
p-values of 1%, 5% and 10%, respectively.
Regressions include tournament-level fixed effects.



Dependent Variable:

Expected Future
Opponent Rank

Stronger Player's
Previous Games

Weaker Player's
Previous Games

Current Rank Ratio

Table 7 - Predicting Betting Probability Odds by Spillovers and Shadows (Rankings)

Implied Probability the Stronger Player Wins (%)

(Worse / Better Rank) (0.0005)

# of observations

2nd on Ist 3rd on 2nd Qfinals on 4thon3rd  Qfinals on 3rd Qfinals on 4th Sfinals on Final on The Final (no
Round Round 2nd Round Round Round 50 Qfinals Sfinals shadow)
0.083% ***  0.095% ***  0.041% ***  0.075% ***  0.075% ***  0.054% 0.021% * 0.020%
(0.0001) (0.0001) (0.0001) (0.0003) (0.0002) (0.0006) (0.0001) (0.0002)
-0.312% ***  -0.340% ***  -0.363% *** -0.369% ***  -0.508% ***  -0.291% ***  -0.102% *** -0.094% ***
(0.0003) (0.0003) (0.0004) (0.0003) (0.0011) (0.0003) (0.0001) (0.0002)
0.116% ***  0.114% ***  0.084% ***  0.091% ***  0.116% 0.069% ***  0.036% ***  0.053% ***
(0.0003) (0.0003) (0.0004) (0.0003) (0.0008) (0.0002) (0.0001) (0.0002)
0.147% ***  0.249% ***  0.178% ***  0318% ***  0.248% ***  (0.329% *** 0.117% 0.415% ***  0.338% ***
(0.0004) (0.0002) (0.0006) (0.0005) (0.0007) (0.0007) (0.0009) (0.0009)
11983 3617 4586 834 1414 425 2339 1169 591

Notes: "Expected Future Opponent Rank" is the rank of the stronger player in the parallel event. That is, it is the rank of the stronger of the potential
opponents in the next round. Values in parentheses are robust standard errors. ***, ** and * denote statistical significance at p-values of 1%, 5%
and 10%, respectively. Regressions include tournament-level fixed effects.



