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Abstract

We propose a simple model of competition between a thermal station and a hydrostation
for the production of energy. We show that, despite the static characteristics of the thermal
cost function, the thermal output is determined by intertemporal considerations. This results
from the scarcity of the water resource which is storable at zero operating cost. We analyze
the combination of these technologies in the case of a social planner who maximizes the net
total utility from electricity, in the case of private monopoly either regulated or not and,
finally, in the case of duopolistic competition in quantities where each private firm operates
either a hydraulic power station, or a thermal power station.  2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The liberalization of the electricity industry started at the beginning of the
nineties in some pioneer countries such as Argentina and England, and has been
adopted more recently in an increasing number of countries, for example in New
Zealand (October 1996) and Spain (January 1998). This movement towards more
competition is currently accelerating in Europe, since at the end of 1996 the
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1European Parliament promulgated a directive on common rules for the internal
market in electricity stating that ‘‘ . . . electricity undertakings are operated . . .
with a view to achieving a competitive market . . . ’’ (chapter II, article 3). The
deadline for the transposition of this directive into the national law systems was
February 19, 1999.

Because transmission and distribution of electricity have common features of
natural monopolies, most economists consider that active competition can work
only for generation. How competition can be effective in generation has recently
been an active research field. For instance, based on a theoretical model by
Klemperer and Meyer (1989), Green and Newbery (1992) study supply-function

2competition in the duopoly-like English market. The models (of either Cournot or
Klemperer-Meyer type) are static, where the generation technology is summarized
by a short-run cost function. Even if not explicitly specified, the static framework
and the hypothesis of an increasing marginal cost suggest that the generation

3technology these authors have in mind is thermal.
In several countries concerned with the liberalization process, a significant

4percentage of generation capacity is based on hydrotechnology. The basic
problem of most hydroelectric plants is to allocate a scarce resource among several
uses at different dates, which means that their problem is intrinsically dynamic.
But the management of hydro reservoirs used to be based on dynamic program-
ming techniques that do not include market or strategic considerations. The result
is that the economic analysis of the interrelation between heterogeneous tech-
nologies devoted to power generation remains to be developed.

The objective of this paper is to build a model that includes thermal technology
and hydro technology in order to emphasize how the presence of a hydroelectric
station drastically changes the optimal as well as the market equilibrium outputs of
the thermal station: despite an a priori static technology, the thermal plant facing
an hydroplant has to be managed as if it were dynamically connected. The
conclusion is that most standard models used so far to analyse competition in
generation need to be improved by the addition of intertemporal features in order
to give an accurate representation of the market mechanisms in countries where
hydrogeneration is important.

At this stage, it is worthwhile insisting on the peculiar characteristics of the

1 Directive 96/92/EC, available on line at http: / /www.europa.eu.int
2 For instance see Borenstein and Bushnell (1997).
3 The other main references on the economic analysis of competition in power generation are Von der

Fehr and Harbord (1993), Wolak and Patrick (1997) and Wolfram (1998). They all are static models.
For exceptions, see Scott and Read (1996) who refer to a Cournot equilibrium concept to optimize the

˜management of reservoirs and Ocana and Romero (1998) who incorporate hydrogeneration capacity in
an oligopolistic market to analyse the potential performance of the Spanish spot electricity market.

4 In New Zealand 80% of production is from hydro, in Brazil, 97% and in Norway, 98%.
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water resource. First, it can be stored in dams and second, it has an exogenous
annual profile, intrinsically random but with a rather good predictability.

Regarding the first quality, in this paper we deal exclusively with water kept in
dams, that is a scarce resource for which any unit used today means one unit less
available tomorrow. This is obviously not the case when the power station uses the
water flow of a river that cannot be stored. Some other energy flows are storable:
for instance solar energy can be stored in biomass. But it is not competitive at all
with hydrostations or with hydrocarbons.

Regarding now the second quality, water is very different from hydrocarbons
for electricity generation for two reasons. The first reason is that the hydrocarbon
stocks are so huge that it would be irrelevant to consider the possibility to exhaust
them in the short term. On the contrary, the water stored in a dam can be
provisionally exhausted since it is renewable according to a forecast cycle. The
second reason is that there exist markets for hydrocarbons so that their spot and
forward prices are exogenous at the level of individual thermal power stations,

5while for each individual hydroplant the price of the resource is endogenous.
Obviously, any plant used for power generation, thermal or otherwise, is to be

managed taking account of its depreciation, which means that its management
should always be dynamic. But since this is not specific to one technology and also
because most firms use accounting rules that allow them to limit the management
horizon to one single period, we will disregard the capital depreciation dimension.
Rather, we focus on the competition between an intrinsically static technology,
named thermal technology, and an intrinsically dynamic one, named hydroelectric
technology.

In this paper, we explore the first-best dispatching and the monopoly and
duopoly equilibria in an economy where the two technologies compete. We
consider only short run decisions, which means that both the thermal capacity and
the hydro equipment are given.

The paper is organized as follows. In Section 2, we set up the model. Then, in
Section 3 we determine the outputs of thermal and hydro energy that maximise
welfare. In the same section, we study the circumstances under which it is optimal
to stop generation in one of the stations for some time interval. Section 4 is
devoted to the analysis of the operation of both plants by a private monopoly,
either regulated or not. In Section 5, we analyze a model of competition in
quantities between the two types of producers. In Section 6, we show that if the
producers cannot commit at the outset to quantities to supply at both periods, the
relevant competitive setting is no longer the standard Cournot competition, but a
more dynamic one. We show that in this no-commitment case, the Markov
subgame-perfect equilibrium is significantly different from the static Cournot
outcome. We briefly conclude in Section 7.

5 We do not know any country in which water itself is charged to the hydropower producers.
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2. Thermal and hydraulic generation

We consider a discrete intertemporal model where electric power can be
generated by means of two plants, one using a hydraulic technology and the other
one using a thermal technology. Operations are planned for two periods labelled
t 5 1,2.

Let u (q ) be the total utility from consuming the quantity of electricity qt t t

ˆduring period t. This function is assumed strictly concave with a maximum at q .t
Electricity is a perfectly standardized commodity so that the outputs from any

plant are perfect substitutes for the purpose of consumption. This hypothesis of
substitutability is reasonable as long as consumption is measured only in terms of
quantity of energy, without any reference to another dimension, for instance to
quality measured by the reaction lag of the generators. The demand for energy is
highly variable during a year. The main part of this variability is easy to forecast
and one can for instance distinguish peak demand (winter working day) and
off-peak demand (holiday). The remaining variable part results mainly from
changes in the weather. Therefore, the level of demand randomness is highly
dependent on the accuracy of weather forecasts. In this paper, we assume that
demand in each period is perfectly known.

TThe technical characteristics of the thermal plant are the following. Let q standt
T Tfor the thermal output during period t and c (q ) for the cost of producing q . Wet t t

assume that c is increasing and convex:t

T T T T¯9 99c (q ) . 0, c (q ) > 0 ;q [ (0,q )t t t t t

T¯where q is the installed capacity. These hypotheses include the standard
framework of a total cost which is linear up to the limit of the generation capacity

6and then becomes infinite. As our analysis focusses on the heterogeneity of
generation means, we assume that transmission costs are zero in any case: there is
neither transport loss nor any congestion of the lines. Finally, we assume first that
the thermal plant has a positive net social utility in the absence of water resource,

9 9that is u (0) . c (0), t 5 1,2, and second that the installed capacity is large enought t

so that the thermal capacity constraint is never binding.
Now, let us consider the hydro-plant. Let us denote by S the exogenous stock of

water that can be used between the beginning of period 1 and the end of period 2.
This stock is perfectly known and measured in electricity generation units so that

7we can directly write the water resource constraint as:

6 See for instance Williamson (1966).
7 An alternative modelling of this constraint is presented in the Appendix of Crampes and Moreaux

(1999).
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H Hq 1 q < S. (1)1 2

Hwhere q stands for the hydroelectric output during period t.t

In order to keep the model as simple as possible, we assume that the generation
of electricity in the hydroplant incurs no variable cost. The cost, if any, does not
change with the taking of water. We also assume that there is no technical limit in
terms of water turbine capacity: during each period t, the turbines are sufficient to

ˆgenerate at least q . Finally, discounting between periods 1 and 2 is neglected.t

3. The first best allocation

We first characterize the optimal use of the two generation processes. Then, we
discuss various possible corner solutions.

3.1. Optimal use of the generation processes

i*The first best outcome is the combination of outputs hq , i 5 H,T, t 5 1,2j thatt

maximizes the net social surplus:

T H T(P.1) max O [u (q 1 q ) 2 c (q )] (2)t t t t t
iqh j t51,2t

H H is.t. S 2 q 2 q > 0 and q > 0, i 5 H,T, t 5 1,2. (3)1 2 t

iDenoting by m the multiplier of the resource constraint and by g thet

multipliers of the non-negativity constraints, labelling by a star their optimal
8values, the first order conditions are:

T H T T9 * * 9 * *u (q 1 q ) 2 c (q ) 1 g 5 0t t t t t t

T H H9 * * * *and u (q 1 q ) 2 m 1 g 5 0 (4)t t t t

together with the complementary slackness conditions.
We will discuss in some detail the various possible types of solutions in

Subsection 3.2. Before this, in order to get some intuition of the problem, we
examine graphically the case where both processes are used in both periods. This
case is illustrated in Fig. 1.

The central box of Fig. 1 provides a geometric illustration of the allocation of
the water resource amongst the two periods. The breadth is equal to S, the global
amount of the scarce natural resource that can be used over the two periods.

Let us assume that the sole available process is the hydroplant and that water is

8 They are sufficient since the objective function is concave and the feasible set convex.
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Fig. 1. The optimal assignment of plants.
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sufficiently scarce to be exhausted at the end of period 2. Then the marginal utility
H H9 9of the resource use is u (q ) for the first period and u (q ) for the second one.1 1 2 2

H9The decreasing function u (q ) is plotted taking 0 as origin and from the left to1 1 1
H H9the right for increasing values of q , whereas u (q ) is drawn by taking 0 as1 2 2 2

Horigin, and from the right to the left for increasing values of q . Since the marginal2

cost of using the hydroplant is equal to zero, the optimal allocation of the whole S
H Hbetween q and q makes the marginal values of consumption equal, resulting in1 2

H H˜ ˜point A and consumptions q and q in Fig. 1.1 2

The use of the thermal plant in period 1 is illustrated in the left quadrant of the
Tfigure, q being plotted from the right to the left starting from 0 . Were the thermal1 1

plant the sole available generation process in period 1, the marginal utility of the
T 9 T9thermal energy would be given by u (q ). Equating the marginal utility of q to1 1 1

T T˜9its marginal cost c (q ) results in A , implying an optimal consumption q . The1 1 1 1

right part of Fig. 1 is illustrating the use of the thermal plant in period 2. Were the
thermal plant the sole production process available in the second period the

T˜optimal use of the plant would occur at A for a production level q . The2 2

combination of the two production processes in both periods results in point B for
the hydraulic output and points B and B for the thermal outputs. At each period1 2

H*t 5 1,2, the marginal utility of using the thermal process given the use q oft
H T T9 * 9hydraulic energy, u (q 1 q ), must be equal to its marginal cost c (q ), hence:t t t t t

H T T H T T9 * * 9 * 9 * * 9 *u (q 1 q ) 5 c (q ) and u (q 1 q ) 5 c (q ). (5)1 1 1 1 1 2 2 2 2 2

Simultaneously the allocation of the water resource S must be such that its
H T9 *marginal utility in period 1, u (q 1 q ), given the use of the thermal energy1 1 1

T H T* 9 *q , is equal to its marginal utility in period 2, u (q 1 q ), given the use of the1 2 2 2
T*thermal energy q , resulting in:2

H T H T9 * * 9 * * *u (q 1 q ) 5 u (q 1 q ) 5 m . (6)1 1 1 2 2 2

Putting together (5) and (6) gives:

H T H T T T9 * * 9 * * * 9 * 9 *u (q 1 q ) 5 u (q 1 q ) 5 m 5 c (q ) 5 c (q ), (7)1 1 1 2 2 2 1 1 2 2

which is the fundamental characterization of the optimal use of the two types of
processes when both are active in every period. The water resource which may be
stored has a smoothing effect on the use of the thermal plant. Without hydraulic
resources, the marginal costs and utilities of consumption in periods 1 and 2 may
be different. By adequately allocating the water resource, this discrepancy is
eliminated. More precisely, introducing water into the picture has two effects. The
first one is that a new, but finite, resource is now available at low (zero) marginal

9 T H9 9 `Note that u (q ) and u (q ) are symmetrical vis-a-vis the vertical axis through 0 .1 1 1 1 1
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cost. Clearly this low marginal cost resource has to be used first, thus reducing the
H T T9 9marginal utility of the thermal energy in every period: u (q 1 q ) , u (q ),t t t t t

H Twhatever q . 0, for all q > 0. Thus, even if the water resource were nott t

optimally allocated amongst the two periods, the thermal production of at least one
Hof the periods (this period t for which q . 0) would have to be decreased and thet

marginal cost of consumption would decrease as well. Simultaneously by
optimally allocating the water resource, the discrepancy between the marginal cost
of the thermal supplies is eliminated. This is the exact meaning of the arbitrage
equation (7). Arbitrage is feasible at zero cost because water is storable at zero
operating costs. The common value of the thermal marginal costs in both periods
is the marginal value of water. A marginal increase in water supply dS could be

T T H9 * 9 * *used either in period 1 permitting a saving of c (q )dS 5 u (q 1 q )dS or in1 1 1 1 1
T T H9 * 9 * *period 2 permitting a saving of c (q )dS 5 u (q 1 q )dS. By (6) these two2 2 2 2 2

opportunity costs must be the same to result in an optimal allocation of water and
*they give the marginal value of the water resource, m .

In the case illustrated in Fig. 1, the marginal thermal cost in period 1 decreases
T T˜9 9 *from c (q ) to c (q ) and the marginal thermal cost in period 2 decreases from1 1 1 1

T T T T˜ ˜9 9 * 9 * *c (q ) to c (q ) 5 c (q ) 5 m . Both thermal quantities decrease, from q to2 2 2 2 1 1 1
T T T T H˜* * 9 * *q in period 1 and from q to q in period 2. But since u (q 1 q ) ,1 2 2 1 1 1

T T H T 10˜ ˜9 9 * * 9u (q ) and u (q 1 q ) , u (q ), consumption increases in every period.1 1 2 2 2 2 2

3.2. Corner solutions

So far, the solution we have analyzed assigns a positive output to each station at
each period. A priori, this is only one among sixteen possibilities since each output
can be zero or strictly positive. Actually not all these solutions are feasible. For

T H Hinstance, q . 0 and q 5 q 5 0 cannot be a solution since the hydrogeneration ist 1 2
11costless while the thermal generation is costly. Consequently, there remains a set

Hof 12 solutions. But there is an obvious symmetry between the case (q . 0,1
H H Hq 5 0) and the case (q 5 0, q . 0) so that only eight cases deserve further2 1 2

inspection, half with positive hydrogeneration at both periods, half with zero
hydrogeneration at one period.

H* 9 9Consider first the latter case and assume that q 5 0. Since u (0) . c (0) we1 1 1
T T T* * *9 9deduce that q . 0 is defined by u (q ) 5 c (q ) which is strictly positive.1 1 1 1 1

10 The implementation conditions of the first best as well as an example using a quadratic
specification for cost and utility are given in Crampes and Moreaux (1999).

11 H T9Formally, suppose that q 5 0 at both periods when S . 0. Consequently m 5 0 and u (q ) < 0 byt t t
T T9ˆthe second condition in (4). Then q > q . 0 which means c (q ) . 0 and the first condition in (4)t t t t

cannot be satisfied.
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H**Consequently, m . 0 so that q 5 S by the complementary slackness condition.2

This means that when the utility from consumption is much higher and/or thermal
generation is more costly in period 2 than in period 1, then the whole water
resource should be used in the peak period and during the off-peak period power
should be exclusively generated by the thermal station. During period 2, the peak

T*period, additional power can be produced from the thermal unit (q . 0) or, on2

the contrary, the thermal station can generate nothing. The special case where the
H H T T* * * *solution is q 5 0, q 5 S, q . 0, q 5 0 is characterized by:1 2 1 2

T T* *9 9 9 * 9u (q ) 5 c (q ) , u (S) 5 m , c (0) (8)1 1 1 1 2 2

The last inequality in (8) means that the thermal marginal cost of any kilowatt at
*period 2 is higher than the (dual) marginal cost of water m , which results in

T*q 5 0. The first inequality says that the needs in period 2 are so high that it is2

efficient to devote the whole stock of water to period 2 and to produce at period 1
H H* *with the thermal station (q 5 0, q 5 S).1 2

This type of corner solution may be counterintuitive for those who view water
as a zero cost resource. But its value arises from its scarcity as compared to the
needs at both periods. In the case we consider here, one may say that with respect
to the low utility and thermal cost characteristics of period 1, water is scarce: the
cheapest technology is the thermal plant. On the contrary, the thermal technology
is very expensive at period 2 so that the allocation of the whole stock of water to
this period is the best solution. Keeping the case of peak valuation in period 2, if
the thermal cost were the same at both periods an additional output of electricity
from the thermal equipment should be generated to complement the hydroelectrici-
ty generation. Consequently, the scarcity of the resource explains why it must be
devoted to the peak period: water can have a very low (even zero) technical cost
but a very high economic value.

H*Let us now consider the second set of corner solutions where q . 0 at botht

periods. This is because, given the utility functions and the thermal cost functions,
the water resource is plentiful and can be allocated among both periods. Then the
energy from the power station is only a residual source of consumption. If S is

12very large, the thermal station is useless in both periods. A sufficient condition
ˆ ˆfor this to occur is S . q 1 q . In this case the social dual value of water is zero1 2

T* ˆ9 *since the stock is not exhausted with optimal planning: u (q 5 q ) 5 m 5 0.t t t

Under less extreme conditions, the thermal unit is idle only at one period because
9of a high set-up cost c (0) and a low utility of energy at that period.t

12 H H H H T* * * * *9 9 * 9 9Actually, if u (q ) 5 u (q ) 5 m , min(c (0) , c (0)) and, if q 1 q 5 S, then q 51 1 2 2 1 2 1 2 1
T*q 5 0.2
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4. The monopoly

We consider in this section the most output restricting institutional setting, a
private monopoly maximizing its profits. Before examining the problem of the
combined use of both types of generation processes, we first determine what would
be the monopoly policy, were the hydraulic generation the sole available
production process. Second, we analyze the private monopolist decisions when
both technologies are available. Last we examine the case of a public monopoly
constrained by the obligation to pay all costs, including the fixed costs of

`infrastructure, a la Boiteux-Ramsey.

4.1. The management of the water resource by a private monopoly

The problem of an hydro-monopolist is to determine the values of the qt

variables, t 5 1,2, that solve:

9(P.2) max O u (q )q (9)hq j t t tt
t51,2

s.t. S 2 q 2 q > 0 and q > 0, t 5 1,2. (10)1 2 t

Labelling by superscript m the optimal values of the multipliers m and
g , t 5 1,2, as well as the optimal values of the decision variables q , the first ordert t

conditions of the hydro-monopolist problem are:
Hm Hm Hm m Hm99 9u (q )q 1 u (q ) 2 m 1 g 5 0, t 5 1,2 (11)t t t t t t

together with the usual complementary slackness conditions.
HmAssuming first that q , t 5 1,2, are both strictly positive, and denoting byt

99 9Rm (q ) 5 u (q )q 1 u (q ) the marginal revenue function in period t, the abovet t t t t t t

conditions imply that:

Hm m HmRm (q ) 5 m 5 Rm (q ). (12)1 1 2 2

Since under a zero marginal cost assumption the marginal receipt is nothing but
the marginal profit, the marginal receipt in period 1 must be equal to the marginal

mreceipt in period 2, their common value being the marginal value of the stock, m .
Note that these equalities have to be satisfied whether the stock constraint is

mbinding or not, the marginal value m being equal to zero in the latter case. The
case of a binding resource constraint is illustrated in Fig. 2.

Equating the marginal revenues results in point M and the allocation of water
Hm Hm(q , q ). Except when utility functions u ( ? ) are identical in periods 1 and 2,1 2 t

m Hm9equating marginal revenues leads to different values of prices p 5 u (q ) and1 1 1
m Hm Hm Hm9p 5 u (q ). It is interesting to compare the allocation (q ,q ) with the2 2 2 1 2

H H* *optimal allocation (q ,q ), point A in Fig. 2, obtained by equating the marginal1 2
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Fig. 2. Allocation of a scarce resource by a monopolist.

utilities in both periods. Under the present assumption of sufficiently high demand
functions, the monopoly uses the whole resource stock S so that the sole effects of
a switch from optimal management to monopoly management are:

– first, a change in the allocation of S between the two periods;
13– second, the disappearance of the unicity of prices, and since the total

quantity sold is the same, S, there must exist some period t during which the
m m H* 9 * * *monopoly price p is higher than the optimal price p ( p . u (q ) 5 p 5 mt t 2 2 2 2

in Fig. 2), while it is lower than the optimal price during the other period
m H9 * * *( p , u (q ) 5 p 5 m in Fig. 2);1 1 1 1

13 Except in the very special case where demand functions are identical in both periods.
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– third, the marginal value of the resource stock S for the private monopoly
m(m ) is lower than its marginal social value; this is a direct outcome of the

monopoly behaviour driven by marginal revenues rather than by marginal utilities,
since marginal revenues are lower than marginal utilities for all the quantities in
every period.

mWhen the whole stock S is not used by the monopoly, the private value m is
m mequal to zero. Note that now both prices p and p are higher than the unique1 2

* * *optimal price p 5 p 5 m > 0.1 2

Finally note that the problem of corner solutions is, to some extent, independent
of the tightness of the resource constraint. If the demand in period t is very high

9and the demand in period t9 very low, so that Rm (S) . u (0), then the wholet t9

stock S has to be used in period t and the resource constraint is binding. But
clearly if the water resource is in excess, the quantities sold by the monopolist in
every period have to be both strictly positive, even if the demand function of some
period is very low, but positive.

4.2. Managing the two technologies

Taking into account the thermal process leads to the following problem:

T H T H T9(P.3) max O u (q 1 q )[q 1 q ] 2 c (q ) (13)h jt t t t t t t
iqh j t51,2t

H H is.t. S 2 q 2 q > 0 and q > 0, i 5 H,T, t 5 1,2 (14)1 2 t

The first order conditions are:

Tm Hm Tm Tm9Rm (q 1 q ) 2 c (q ) 1 g 5 0, t 5 1,2 (15)t t t t t t

Tm Hm m HmRm (q 1 q ) 2 m 1 g 5 0, t 5 1,2 (16)t t t t

and the complementary slackness conditions.
imLet us consider the case q . 0, i 5 H,T, t 5 1,2. From the above conditionst

we obtain:

Tm Hm Tm Hm m Tm Tm9 9Rm (q 1 q ) 5 Rm (q 1 q ) 5 m 5 c (q ) 5 c (q ).1 1 1 2 2 2 1 1 2 2

Both marginal revenues and marginal thermal costs in every period must be
mequal to the private marginal value m of the resource stock S. Were the thermal

process the sole available process, the marginal revenues and thermal costs in
periods 1 and 2 could be different. The only maximizing profit condition would be:

Tm Tm9Rm (q ) 5 c (q ), t 5 1,2.t t t t
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As in the welfare maximising case the effect of the water resource, storable at a
zero marginal cost, is to reduce the discrepancy between marginal values in
periods 1 and 2, here marginal revenues rather than marginal utilities or prices as
in the case of optimal management.

Since the thermal marginal cost is positive, equating marginal revenue rather
than price to the marginal cost results in an output restriction even if the whole
resource stock is used by the monopolist. Beside this first effect, the second effect
is to reallocate the use of the water stock among the two periods. Note also that as
in the pure water case, the prices in periods 1 and 2 take generically different
values.

4.3. The regulated monopoly
Now, we consider the case of a monopoly that controls the use of both

techniques but with the special statute of ‘‘public firm’’ obliged to balance its
budget, taking account of the fixed costs.

The problem is:

H T T(P4) Ohu (q 1 q ) 2 c (q )j (17)t t t t t
ihq jt

H T H T T H T9s.t. O hu (q 1 q )[q 1 q ] 2 c (q )j 2 F 2 F > 0 (18)t t t t t t t
t51,2

H H iS 2 q 2 q > 0 and q > 0, i 5 H,T, t 5 1,2 (19)1 2 t

where (18) is the break-even constraint taking into account the hydraulic fixed
H Tcosts F and the thermal fixed costs F .

Denoting by l the multiplier of the constraint (18), the first order conditions of
(P4) are:

H H T T H H9wrt q : u (q 1 q ) 2 m 1 lRm (q 1 q ) 1 g 5 0, t 5 1,2t t t t t t t t

T H T T T H T T9 9 9wrt q : u (q 1 q ) 2 c (q ) 1 l[Rm (q 1 q ) 2 c (q )] 1 g 5 0,t t t t t t t t t t t t

t 5 1,2

together with the complementary slackness conditions.
Let us examine the case where all the second best production levels are positive.

H TDenoting by e . 0 the demand elasticity in period t at point q 1 q , from thet t t
TFOC’s with respect to q we obtain:t

H T T9 9u (q 1 q ) 2 c (q ) l 1t t t t t
]]]]]] ]] ]5 , t 5 1,2. (20)H T 1 1 l e9u (q 1 q ) tt t t

Thus the relative mark-up over the thermal marginal cost, in each period t, must
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be proportional to the inverse of the demand elasticity in the corresponding period,
14 Hthe usual Boiteux-Ramsey rule. The FOC’s wrt q lead to:t

H T9u (q 1 q ) 2 m /(1 1 l) l 1t t t
]]]]]]] ]] ]5 , t 5 1,2. (21)H T 1 1 l e9u (q 1 q ) tt t t

The above conditions (20) and (21) imply that:
mT T]]9 9c (q ) 5 5 c (q ),1 1 2 21 1 l

that is the thermal marginal costs must be the same in both periods. Again this is
the result of the smoothing effect of the zero cost storability of water.

T9The marginal value of the water stock is now m 5 (1 1 l)c (q ), t 5 1,2. Thet t

effects of a marginal increase dS . 0 of the water stock, are twofold. The direct
T9effect, c (q )dS, is to save operating costs. But there is a second effect due to thet t

very fact that, having a zero operating cost, this increase of the water stock may be
T9seen as relaxing the break-even constraint by c (q )dS. Since l is the multipliert t

T9associated to this constraint, the users’ welfare can be increased by lc (q )dS.t t

This second effect is specific to the Boiteux-Ramsey context.

5. Cournot competition: the open-loop game

Let us now suppose that the industry has a duopolistic structure, each duopolist
controlling one process. We examine in the present section an open-loop setting.

T H T H9Note that the inverse demand function in period t, p (q 1 q ) 5 u (q 1 q ), ist t t t t t

99decreasing since u , 0. Moreover, we assume that the revenue functions,t
H H T H T H T T H H T TR (q ,q ) 5 p(q 1 q )q and R (q ,q ) 5 p(q 1 q )q , of the hydro-t t t t t t t t t t t t

Hproducer and thermal producer, respectively, are strictly concave, the first in qt
Tand the second in q .t

5.1. Open-loop strategies and equilibrium

In the open-loop setting, the strategy of operator x, x [ H,T is a pair ofh j
x x x Hc Tcquantities q 5 q ,q , one for each period. A pair of strategies (q ,q ) is anh j1 2

equilibrium if each one is the best response to the other.
HThe thermal operator solves the following problem, where q , t 5 1,2, is takent

as given:
T H T T T(P.5.T ) max O p (q 1 q )q 2 c (q ), s.t. q > 0, t 5 1,2 (22)Thq j t t t t t t tt

t51,2

The first order conditions are:

14 Except if the fixed costs are sufficiently low and/or the marginal cost sufficiently increasing for the
break-even constraint not to be binding. In this case, l 5 0 and (20) gives the first best allocation.
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T H T H T T T9 9p (q 1 q ) 1 p (q 1 q )q 2 c (q ) 1 g 5 0, t 5 1,2 (23)t t t t t t t t t t

associated with the complementary slackness conditions.
These first order conditions define the thermal operator’s best response

T Hfunctions, denoted by Q (q ), t 5 1,2. Since the revenue functions are strictlyt t

concave and the cost function strictly convex, this best response is uniquely
Hdefined and strictly decreasing with q .t

TConsider now the hydro-manager’s problem, where q , t 5 1,2, is given:t

T H H(P.5.H ) max O p (q 1 q )q (24)Hhq j t t t tt
t51,2

H H Hs.t. S 2 q 2 q > 0 and q > 0, t 5 1,21 2 t

The first order conditions are:

T H T H H H9p (q 1 q ) 1 p (q 1 q )q 2 m 1 g 5 0, t 5 1,2 (25)t t t t t t t t

If the resource constraint is binding with positive hydro-output in both periods,
the operator of the hydro-station equates the marginal revenues in both periods,
where the common value is the marginal value m of the stock S. The allocation of
the water stock among periods is determined on the basis of the thermal outputs in
both periods. This means that the best response functions are:

H H T Tq 5 Q (q ,q ), t,t9 5 1,2, t ± t9 (26)t t t t9

HIf the hydro-outputs are strictly positive, since Q ( ? ) is the solution oft
H9 H T H9 H TR (q ,q ) 5 R (S 2 q ,q ), from the concavity of the revenue function it ist t t t9 t t9

easy to check that:

H H0 H H0
≠Q R ≠Q Rt t t t
]] ]]] ]] ]]]5 2 , 0 and 5 . 0T TH0 H0 H0 H0
≠q ≠qR 1 R R 1 Rt t9t t9 t t9

`As for any standard competition model ‘‘a la Cournot’’ with substitutes, the best
Hresponse function Q is a decreasing function of the output of its competitor in thet

same period t. But although demand in period t does not depend upon prices in
Hperiod t9, Q is also positively parametered by the output of the thermal producert

Tin the other period q .t9
Tc HcThe open-loop Cournot equilibrium is that pair of strategies (q ,q ) satisfying:

Tc T Hc Hc H Tc Tcq 5 Q (q ), q 5 Q (q , q ), t,t9 5 1,2, t ± t9.t t t t t t t9

As this solution is somewhat unusual, we devote the next subsection to a
graphic analysis of the equilibrium according to the value of S.
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5.2. Graphic illustration of the open-loop Cournot equilibrium

A Cournot duopolist is nothing but a monopolist that extracts profits from its
residual demand. We showed in section 4 above how the hydro-monopoly
quantities are determined as a function of S or equivalently as a function of m, the
costate variable associated to the stock constraint. In Fig. 3, the 0dcba line

H Hillustrates the allocations of water among q and q for alternative values of either1 2

S or m, for given exogenously determined values of the quantities sold by the
thermal supplier, quantities defining the residual hydro-producer’s demands. Point

Ha Ha aa corresponds to m 5 0 and (q ,q ) is the allocation of S , the maximum stock1 2
T T athe hydro-duopolist would like to possess given q and q . For any S9 . S , this1 2

a bpart DS9 5 S9 2 S of the stock would not be used. S corresponds to a lower stock
a b T T9 9than S , hence to a higher dual value m . 0. Now, assume that u (q ) . u (q )1 1 2 2

T99and that the absolute value of u (q 1 q) is significantly lower than the absolute1 1
T c99value of u (q 1 q). Then there must exist some critical low stock S , at and2 2

below which the hydro-duopolist is supplying the sole period 1 market because for

Fig. 3. The allocation of water by the hydro-duopolist.
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c T T 159 9values such that S < S , R (S 1 q ) . R (q ). Alternatively there exists some1 1 2 2

critical high value of m for which and over which the hydro-producer will serve
T T H T T H T Tonly period 1. Thus, given (q ,q ), (Q (q ,q ), Q (q ,q )) is located at the1 2 1 1 2 2 1 2

H Hintersection of the line 0dcba and the resource constraint line q 1 q 5 S. Clearly1 2
T Tfor alternative values of (q ,q ) we have alternative 0dcba curves, hence different1 2

H T T H T T H Hpoints (Q (q ,q ),Q (q ,q )) on the curve S 5 q 1 q , and also, alternative1 1 2 2 1 2 1 2
16values of m. In what follows, we shall call the curves like the 0dcba curve

H T T‘‘quasi-best response curves’’ and they will be denoted by B (N;q ,q ) 51 2
H T T H T T T T(B (N;q ,q ) , B (N;q ,q )),where (q ,q ) selects a curve and N selects the point1 1 2 2 1 2 1 2

on this curve corresponding to an amount N of natural resource. Under our
regulatority assumptions:

H H H
≠B ≠B ≠Bt t t
]] ]] ]]< 0, > 0 and > 0, t,t9 5 1,2 and t9 ± t,T T ≠N≠q ≠qt t9

Hwith strict inequalities if the water constraint is binding and B . 0, t51,2.t

Fig. 3 is inserted in Fig. 4 (northwest quadrant) in order to show the complete
duopolist equilibrium. In the northeast quadrant we have drawn the best reply

T Hfunction Q (q ) of the thermal producer in period 1 and in the southwest quadrant1 1
T H Tc Tcits best reply function Q (q ) in period 2. For (q ,q ) determining the quasi2 2 1 2
Tc Tcbest response curve B(N;q ,q ), the allocation of water by the hydro-duopolist is1 2

H Tc Tcgiven by C at the intersection of the B(N;q ,q ) curve and the resource1 2
H H Hcconstraint curve S 5 q 1 q given q , t 5 1,2. The thermal duopolist’s supplies1 2 t

are read on the corresponding reaction curves in the northeast quadrant for t 5 1
Tc Tcand the southwest quadrant for t 5 2. The q and q quantities must be those1 2

Hc Hcquantities parametering the B(N;.) curve from which (q ,q ) has been obtained.1 2

This is the fixed point aspect of the drawing, illustrating the very fact that the
4open-loop equilibrium is a fixed point in R .1

5.3. Alternative types of equilibria

H T TAt the equilibrium (C ,C ,C ) shown in Fig. 4, the thermal plant is active in1 2

both periods 1 and 2. But it must be clear that, with a large enough stock of water,
9and provided that c (0) be positive at t 5 1,2, the thermal plant can be idle in onet

H~or both periods. Let q be the hydro-supply over which the thermal duopolist ist
H H T H~excluded from the period t market: q > q ⇒ Q (q ) 5 0, t 5 1,2 (point b int t t t

Fig. 4).

15 Remember that the hydro-duopolist is a monopolist on the demand that is not served by the
thermal plant. Then it is easy to check the assertion of the text using a box like in Fig. 2.

16 Provided that the thermal supply be not too high. If the thermal supply were very high, some water
could be in excess. For such high thermal supply, the extremal point a of the 0dcba line is located

H Hunder the resource constraint curve S 5 q 1 q .1 2
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Fig. 4. The open-loop Cournot equilibrium.

In Fig. 4, we have drawn an equilibrium (M,M ,M ) where the hydro-producer1 2

is a true monopolist selling quantities so large that the thermal-producer is
excluded from the market in both periods. The B(N;0,0) curve corresponds to what
the hydro-supplier would produce, were the thermal duopolist producing nothing,

Ha9 Ha9in period 1 and in period 2. The non-zero terminal point, a9 5 (q , q ), of the1 2
Ha9 Ha Ha HaB(N;0,0) curve must be such that q . q , t 5 1,2, where a 5 (q ,q ) is thet t 1 2

Tc Tc Tcnon-zero extremal point of the B(N;q ,q ) curve since q . 0 , t 5 1,2.1 2 t

Note also that, since the marginal operating cost of the hydro-producer is equal
to zero whereas the marginal operating costs of the thermal producer are positive

Ha9 H~and non-decreasing, we must have q . q , t 5 1,2. This implies that for at t

sufficiently high natural resource stock, the hydro-producer excludes the thermal
producer from both markets. The sufficient condition for this exclusion is that the

H Hresource constraint line S9 5 q 1 q intersect the B(N;0,0) curve over the sub-1 2
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segment [b,a9]. At the intersection point M in Fig. 4, the quantities that the
Hm Hm H~hydro-producer would sold, q and q , are higher than, respectively, q and1 2 1

H~q .2

For the hydro-producer, the possibility of excluding its thermal competitor is
9strongly dependent upon the marginal start-up costs c (0) which determine thet

H~critical values q , solutions of the equations:t

H9 9u (q ) 5 c (0), t 5 1,2. (27)t t t

6. Cournot competition: the closed-loop game

The open-loop set-up is the right one either when the duopolists cannot observe
the actions taken by their competitor during period 1, or when both duopolists can
credibly commit at the outset of competition.

Since there is no uncertainty on the demand side, each duopolist may infer the
action chosen by the other one from the observation of the price and its own
action. Hence, except for the case where all the quantities had to be determined at
the beginning for institutional reasons, more sophisticated strategies are to be
considered.

The second period action of the hydro-operator is constrained by the stock of
water at the end of period 1. Assuming that the initial stock is common knowledge
and period 1 actions are observable, it is a matter of indifference to retain either
the remaining stock of water or the first period action of the hydro-operator as the
decisive variable determining period 2 actions by the competitors. Hence, in a

17markovian perspective, since the actions of the thermal operator during period 2
are not constrained by its actions during period 1, the only pertinent variable for
choosing the actions during period 2 is, for both the thermal operator and the
hydro-operator, the action taken during period 1 by the hydro-competitor.

T T T T¯ ¯ ¯ ¯A Markov strategy of the thermal operator is a pair q 5 (q ,q ) where q is1 2 1
T¯the quantity chosen for period 1 and q is a function determining, for any2

H T H¯q [ [0,S], the quantity q (q ) he will put on the market during period 2; and a1 2 1
H H H H¯ ¯ ¯ ¯Markov strategy for the hydro-operator is a pair q 5 (q ,q ) where q (0 <1 2 1

H H¯ ¯q < S) is the quantity sold during period 1 whereas q is a function giving, for1 2
H H H H¯any q , the quantity q (q ) [ [0,S 2 q ] he will sell during period 2. The pair1 2 1 1

H T¯ ¯(q ,q ) is a subgame perfect equilibrium if first it is an equilibrium and second,
H H H T H¯ ¯for any period 2 subgame starting from q ,(q (q ) , q (q )) is an equilibrium of1 2 1 2 1

the subgame.
Proceeding backward, let us first consider the period 2 subgame. The thermal

operator maximizes the same objective function as in the second period of the
T Hopen-loop case (see (22)), which gives the reaction function Q (q ).2 2

17 See Maskin and Tirole (1996).
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The hydroelectric producer solves the problem:

H T H H Hmax p (q 1 q )q s.t. q < S 2 qHq 2 2 2 2 2 12

H T Hˆresulting in a reaction function Q (q ) parametered by S 2 q . According to the2 2 1H HH T H Tˆ ˆvalue of S 2 q , Q (q ) may be constrained or not. If S 2 q . Q (q ), we have1 2 2 1 2 2

a usual asymmetric one-period Cournot game since the hydro station is working at
zero operating costs.

HH TˆLet us assume that S 2 q 5 Q (q ) in period 2. Then the period 2 equilibrium1 2 2

is:
H H T T Hq 5 S 2 q , q 5 Q (S 2 q ),2 1 2 2 1

so that the period 1 game appears as follows:

– for the hydroelectric producer:

H T H H T H Hmax p (q 1 q )q 1 p (S 2 q 1 Q (S 2 q ))(S 2 q )Hq 1 1 1 1 2 1 2 1 11

– and for the thermal producer:
H T T T H T H T Hmax p (q 1 q )q 2 c (q ) 1 p (S 2 q 1 Q (S 2 q ))Q (S 2 q )Tq 1 1 1 1 1 1 2 1 2 1 2 11

T H
2 c (Q (S 2 q )).2 2 1

The first order conditions of these problems are:

H– for the hydroelectric duopolist, if q . 0,1

TdQ 2H T H H T H T H]]9 9p (q 1 q )q 1 p (q 1 q )2 11 p (S2q 1Q (S2q ))S D1 1 1 1 1 1 1 H 2 1 2 1dq2

H H T H
3(S2q )2p (S2q 1Q (S2q ))50. (28)1 2 1 2 1

T– for the thermal duopolist, if q . 0,1

H T T H T T9 9p (q 1 q )q 1 p (q 1 q ) 2 c (q ) 5 0 (29)1 1 1 1 1 1 1 1 1

The difference between the open loop and the closed-loop Markov equilibria is
that in the closed-loop setting when equating its period 1 and period 2 marginal
revenues, the hydroelectric producer takes into account, the reaction of the thermal

T H 18producer in period 2, dQ /dq , whereas it does not in the open-loop setting.2 2
T HThis additional effect puts more weight on period 2 because dQ /dq , 0. Hence2 2

18 H HSuppose that g 5 g 5 0 in (25) and substitute m for the marginal revenue of the other period.1 2

Then compare this first order condition with (28).
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Hconsidering a transfer of water from period 1 (dq , 0) toward period 2, the1

relevant marginal revenue is greater in the closed-loop setting since the increase of
H T Hsupply dq . 0 will be partially compensated by the production decrease dQ /dq2 2 1

Hdq of the thermal producer. In the closed-loop equilibrium, this would result in a2

lower period 1 supply and a higher period 2 supply as compared with the
open-loop equilibrium, as far as the resource constraint is effective and the
hydro-producer is active at both periods.

7. Concluding remarks

In the electricity industry, the same output can be obtained from very
heterogeneous equipment: gas or coal burning, nuclear reaction, wind or water

19turbine, etc. The thermal stations where fossil minerals are burnt to produce
steam have an intrinsic static feature at the individual level: the fuel is a flow that
can be bought on upstream markets so that an increase in generation today does
not burden future power generations. This is not true for hydro stations using water
resource accumulated in dams: it is renewable only on a yearly basis but non
renewable within the year so that any use of water to produce a kilowatt today is
lost for tomorrow’s consumption. Consequently, when thermal plants are compet-
ing with technologies that are intrinsically nonstationary, they should be dy-
namically planned. Yet, so far the economic models of competition in power
generation have static characteristics. To challenge this lack of dynamism, we have
proposed a simple model where a thermal station faces an hydro station. With this
technical setting, we have shown analytically and geometrically that despite its
static characteristics, the optimized output from the thermal station is determined
by the intertemporal specification of costs and utility. We have proved it in the case
of a social planner who maximizes the net total utility from electricity consump-
tion as well as in the case of a private monopolist and when two private firms
compete in quantities.

Various extensions of this model can be considered but none seems likely to
change the main points of the paper:

(i) First, the introduction of uncertainty (on the demand, or on the fuel price, or
on the water inflows) would make the model more realistic. Nevertheless,
uncertainty in the demand for electricity is more a long term problem (investment
decision) than a short term one (production decision). Therefore, it would not
affect drastically our short term modelling.

(ii) Other types of competition (in prices or in supply functions) and a larger
number of markets (futures) should be tested. One can also consider more intricate
market structures, for instance with at least two thermal generators and/or two
hydro-producers. A structure with a fixed number of hydro incumbents and a lot of

19 See Boyd (1996) and Johansson et al. (1993) for a catalogue of the techniques.
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thermal generators is more likely to be what will occur in the medium term, since
entry is a very long term decision in the hydroelectric sector while it is very easy
to enter with gas turbines.

(iii) To take into account the capacity constraint of the thermal station would
have an effect on our model only if its residual demand were so high that the
thermal station would produce at full capacity at each period: its short run
generation planning would be obviously static. But in this case, the owner of the
thermal plant has strong incentives to develop his capacity and the model should
be extended to long run decisions.

(iv) Water has various alternative uses that appear as competitors when there
exists a limited volume of resource. Consequently, the utility from water should be
redefined to include agricultural, domestic and industrial usages other than electric
generation. Our model sheds some light on what the opportunity cost of using
water may be in these alternative activities. However, note that the problem of the
opportunity cost is not a simple one. For instance, in most cases, water for
agricultural uses is turbined before release, which means an additional time
constraint for the hydrogenerator(s) rather than a mere decrease in the stock of
water available for electricity generation. Hence, the dual value of water, as
determined in this paper, is an upper bound of the true opportunity cost since the
water is not totally lost after power generation.

(v) One interesting extension of the model is the introduction of pollution as a
byproduct of the thermal generation. With this environmental cost, the less
polluting hydro technology should be encouraged and the optimal dispatching
should be biased in its favour in a way that depends on the pollution damages and
on the discount rate. As for the other extensions, long term and short term effects
must be carefully distinguished. For given capacities of both thermal and
hydrogeneration, the corrective effects of pollution come from the smoothing of
polluting damages within the year. At some latitudes, the environmental smoothing
effect and the energy cost smoothing effect work in the same direction because
more hydroelectric generation allows to reduce the smog during winter. But
environmental and energy cost effects can conflict, for instance because the
development of air conditioning can change the peak demand season from winter
to summer. In this case most of the water resource will be used in summer while
the polluting thermal plants will worsen the smog in winter.

(vi) We end this list with the problem of designing an institutional framework
able to implement the first best or, at least, to limit the market power of generators.
In the countries where a spot market for electricity has been installed, the hydro
electric generators do not behave in the same way as their competitors: for
instance they buy cheap electricity at night to restore their stock of water by
pumping it upstream; sometimes, they propose electricity at zero cost when the
resource is superabundant. For these reasons and those presented in (iv), it would
be necessary to compare the efficiency of alternative institutional settings, for
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example with a public firm in charge of the allocation of water while the other
types of resources can be managed on private grounds.
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