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Abstract

In the existing auction literature, an auction is designed as if its allocation were
final. Thus, resale may defeat the purpose for which an auction is designed. This paper
considers optimal auctions when resale among bidders cannot be banned. Here any
owner of a good can choose a mechanism to sell it to others, taking into account the
possibility that whoever buys the good can also choose a mechanism to resell it. This
paper finds an equilibrium that generates a tower of nested post-sale optimal auctions:
The initial owner labels the bidders by 1,...,n and auctions off the good to them via a
mechanism I design; the winner, say w, then auctions off the good to bidders w+1,...,n
via a similar mechanism; the process continues until an auction results in no sale or
when bidder n wins. The equilibrium gives the initial owner the same expected profit
as the highest level he could obtain in the corresponding environment where resale can
be costlessly banned.
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1 Introduction

Although auction design has recently become a leading field in economics, it assumes that
bidders cannot trade among themselves after an auction. Consequently, it is not clear
whether auction design has any significant impact when secondary markets are present. If
a bidder can obtain the good from resale, why would he care about winning in the auction?
If secondary markets will eventually deliver the good to a person who values it most, why
should a social planner care about auction design? It is difficult to fend off this criticism,
since resale occurs in many sectors (U.S. Treasury bill auctions, the trading of pollution
permits, the subcontracting of loans among banks, etc.). Even if a seller can impose legal
restrictions on resale, resale can take the form of post-auction mergers among the bidders.

Optimal-auction theory is perhaps the most significant part of auction design, and yet
the most vulnerable to resale. The theory is significant because it predicts that efficiency
is not guaranteed if a seller is free to choose a profit-maximizing auction mechanism. The
theory is vulnerable because resale causes a tension between a seller’s incentive to manipulate
the allocation of a good—as the theory has demonstrated—and the bidders’ ability to undo
the manipulation via resale.

We can see this tension from an example adopted from Ausubel and Cramton [1]: Bid-
ders A and B pursue an indivisible good; its dollar-value to bidder A is uniformly distributed
on [0,10], and that to bidder B is commonly known as $2. An auction that sells the good
to the highest bidder can generate only $2 as revenue. Alternatively, the seller can intensify
the bidding competition by subsidizing bidder B, i.e., selling him the good even when the
other bidder’s valuation is higher. According to the optimal-auction theory, a seller-optimal
mechanism is to sell the good to A at price $6 and, if rejected, sell it to B at price $2. If
resale were banned, then this mechanism would have generated a revenue $3.6. If resale
cannot be banned, however, this mechanism fails: Bidder A rejects, and bidder B buys the
good at price $2 and resells to A at price $6. The seller gets only a revenue $2. Due to
the resale option, subsidization fails to intensify bidding competition: Instead of competing
with each other, the bidders tacitly collude in the mechanism and trade subsequently. The
mechanism yields suboptimal revenue, since the seller could have received $2.5 from making
bidder A a take-it-or-leave offer at price $5.

Focusing on the aforementioned tension, this paper is aimed at providing a theory of
optimal auctions when resale cannot be banned. In order to concentrate on the impact of
resale, I change only the no-resale assumption in the mainstream framework and leave its
assumption about a seller’s commitment ability unchanged. The environment is a multistage
auction-resale game with one good and n bidders (n = 1,2,...). At each stage, the current
owner of the good commits to a mechanism to auction it off to the bidders. If the mechanism
does not sell the good, then the current owner becomes the final owner and the game ends.
(This captures the assumption of a seller’s commitment ability.) Otherwise, he trades with
the winner. Then the next stage begins, the winner becomes the owner, and he commits to
an auction mechanism to resell the good to the other bidders. (This captures the assumption



that resale cannot be banned.) The game continues until someone becomes the final owner
of the good. To focus on the impact of resale, I assume that bidders’ valuations (or types)
of being the final owner of the good are private and stochastically independent, so that
the common-value component that resale may endogenously induce can be easily identified.
To keep the environment closed, I assume that the information available to the economy is
constant throughout the process although individuals may update from the actions of others.

Difficulties arise from the dynamic aspect of the above auction-resale game. At every
stage of the game, the current owner chooses an optimal mechanism by anticipating how
subsequent owners will resell the good. The corresponding task of mechanism design in the
traditional framework is handled by the revelation principle and the no-resale assumption:
By the revelation principle, equilibrium-feasible mechanisms are effectly contained in the
set of Bayesian incentive-feasible direct revelation mechanisms (DRM), which turn out to be
tractable. By the no-resale assumption, any Bayesian incentive-feasible DRM is equilibrium-
feasible. In the auction-resale game, while the first half of the traditional approach remains
true, its second half does not follow, because equilibrium-feasibility in a dynamic game
requires stronger conditions than Bayesian incentive-feasibility.

My method is to identify a first-best allocation for a current owner and then con-
struct an equilibrium-feasible mechanism that implements the allocation. Finding a first-
best allocation for the initial owner is easy; it is the Myerson allocation, or the allocation,
characterized by Myerson [18], that optimizes for a seller among Bayesian incentive-feasible
allocations (Lemma 2.1). Implementing it by an equilibrium-feasible mechanism is hard.
This task would have been easy if an owner can implement the Myerson allocation within
the current stage and resale does not occurs at equilibrium. However, this is impossible (Re-
mark 3.1). Thus, at any equilibrium that implements the Myerson allocation, resale must
occur with a positive probability, and we must trace the updating of beliefs, which causes
the complication that the environment for a current mechanism-designer (the current owner)
is determined by the mechanisms and outcomes in earlier stages. (This fact in turn makes
it nontrivial to identify the first-best allocation for secondary sellers.)

With resale unavoidable, a seller designing an optimal mechanism needs to choose a
winner-selection rule such that a subsequent seller, after updating from his winning status,
will find it optimal to implement an allocation optimal from the viewpoint of the current
seller. If such a rule is available, then the current seller needs only to ensure (i) that a
winner learns nothing new other than his winning status (to cut off unwanted information
linkage between auction and resale) and (ii) that all players’ posterior beliefs are commonly
known (to avoid intractable continuation games with diverse beliefs or privately informed
mechanism-designers). The seller can ensure condition (i) by keeping a winner’s payment
independent of the bids submitted by those that will become the winner’s bidders. He can
ensure condition (ii) by publicly disclosing a winner’s bid at the end of the stage.

The result is an equilibrium demonstrating a tower of nested post-sale optimal auctions,
where middlemen arise from the final users of the good (Theorem 1). The initial seller
indexes the bidders by 1,...,n according the ranking induced by the Myerson allocation.



Starting from bidder 1, the seller successively asks each bidder i to compete with those
bidders j indexed above %; this leading bidder i is subsidized in the sense that he is regarded
as defeating j even if ¢’s bid is lower than j’s by a margin within a certain range. The first
leading bidder who defeats all the rivals indexed above him is picked as the winner. The
winner, say w, finds it optimal to resell the good only to bidders w + 1,...,n via a similar
mechanism, with the same indices and winner-selection rule. This process of auction and
resale continues until either a mechanism results in no sale or bidder n wins.!

Remarkably, this equilibrium gives the initial owner as much expected profit as the
highest level he could obtain in the corresponding environment where resale can be costlessly
banned, and the equilibrium implements the Myerson allocation despite resale. That is also
true for every subsequent owner on the equilibrium path. In fact, the Myerson allocation in
the environment for an owner is the same as the allocation resulting from selling the good
to the winner w and having w implement the Myerson allocation in the environment for w.

This paper contributes a reconciliation between auction design and resale, because it
shows that a seller’s first-best outcome when he can costlessly ban resale can be achieved
when he cannot ban resale at all. Since the received theory of optimal auction has demon-
strated that a seller’s first-best outcome is often inefficient, my result implies that, despite
bidders’ free access to resale, an auction designed by a sufficiently smart seller can still un-
dermine efficiency. Consequently, the identity of the initial owner of a good has a significant
impact on social welfare.

By constructing the equilibrium explicitly, this paper also contributes a new recipe of
seller-optimal auctions (Subsection 4.1). This recipe is the only discovered theoretical con-
struct that achieves optimality when resale cannot be banned; in this setting, the traditional
design of optimal auctions fails, as remarked previously. Being explicit, this recipe may be
a useful benchmark for auction-designers in sectors with secondary markets.

This paper is an attempt to extend the theory of auction design from static to dynamic
environments. To my knowledge, such extension efforts consist of three branches. The first
focuses on the possibility of pre-bidding collusion such as Laffont and Martimort [14]. A
second branch focuses on the possibility that a seller cannot commit to a selling mechanism,;
examples are McAfee and Vincent [15] and Jehiel and Moldovanu [10]; related to this branch
is the literature on mechanism design with renegotiation (e.g., Hart and Tirole [9]). The
third branch, to which this paper belongs, focuses on the resale among bidders. Another
paper in this branch is Ausubel and Cramton [1]. Constructing three interesting examples,
Ausubel and Cramton have initiated the question about optimal auction with resale. Their
paper assumes that resale always achieves Pareto efficiency. My paper studies resale by
solving the continuation game of all subsequent resales.

The other related analytical works have provided some positive analyses of auctions
followed by resales. Bikhchandani and Huang [2] analyze the information linkage between
auction and resale in a common-value model. Bose and Deltas [3] address the question

1 This feature of nested post-sale auctions somewhat resembles a real episode documented by Porter [19].



whether a seller would exclude the final consumers from an auction. Haile [5, 6] and Gupta
and Lebrun [4] analyze first- and second-price auctions by focusing on equilibria that fully
reveal private information before resale. Haile [7] and Jehiel and Moldovanu [11] prove that
resale can lead to the non-existence of such equilibria. Kamien, Li, and Samet [13] and
Kamien and Li [12] show that the revenue raised at an auction depends critically on who
has the bargaining power at resale. The analytical works based on complete-information
models include Milgrom [17], Kamien, Li, and Samet [13], Kamien and Li [12], and Jehiel
and Moldovanu [10]. Haile [8] provides an empirical analysis of the effects of resale. In most
of these papers, the allocation rule in the resale stage is assumed to be exogenous. The
exceptions are Milgrom [17], Jehiel and Moldovanu [10], and my paper.

The rest of the paper is organized as follows. Section 2 formulates the auction-resale
environment into a multistage game of mechanism-designers. As the players choose mech-
anisms, the equilibrium concept is complicated and hence spelled out in Subsection 2.1.
Subsection 2.3 contains all the assumptions about the distributions of players’ types. Sec-
tion 3 prepares for my construction of the equilibrium by sketching the main idea of the
construct (Subsections 3.3 and 3.4). Section 4 presents the main result. In Subsection 4.1, I
construct a mapping that assigns an optimal mechanism to every seller at every environment
on the equilibrium path. In Subsection 4.2 I construct an equilibrium for the entire auction-
resale game by induction. The appendix contains all the postponed proofs. The index of
symbols and words is in the last page.

2 The Model

I shall formulate the environment governing the choice of mechanisms and players’ actions
as the following multistage auction-resale game. It concerns the allocation of an indivisible
good, initially owned by one player and pursued by n other players (n = 1,2,...). At each
stage, the current owner of the good commits to a mechanism to auction it off to the current
bidders. If the mechanism does not sell the good, then the current owner becomes the final
owner and the multistage game ends. Otherwise, he trades with the winner and exits the
game. Then the next stage begins, the winner becomes the owner, and he commits to an
auction mechanism to resell the good to the other bidders. The game continues until someone
becomes the final owner of the good.

Mechanisms. At each stage of the auction-resale game, the current owner of the good is
allowed to choose any mechanism subject to three constraints. First, a bidder is allowed
not to participate. Second, the mechanism is feasible with respect to the indivisible good.
Third, no possible allocation is contingent on any event that may occur after the current
stage. This last constraint is important; it implies that a current owner cannot prohibit
resale among bidders after his trade with a winner of the current stage.

As usual, a mechanism can be viewed as a mapping from a profile of bidders’ actions in



the current stage to a mandate at the end of the stage. In our setup, such a mandate consists
of three items: (i) a lottery that may pick a winner among the bidders, (ii) a configuration of
monetary transfers, (iii) a public announcement of the actions taken by some players during
the current stage. Items (i) and (ii) are the same as those in the standard model of auction
design. Item (iii) is relevant due to the dynamic aspect of the auction-resale game. Since all
the three items are independent of the actions taken by the players after the current stage,
this formulation of mechanism captures the assumption that resale cannot be banned.

The above formulation is based on two crucial assumptions. One is that resale cannot be
banned, as already presented above. The other assumption is that sellers have commitment
ability: At each stage, the current owner chooses a mechanism; once chosen, the mechanism
is operated by a neutral guardian and no one can tamper with it; hence a current owner
can commit to withholding the good forever if his mechanism results in no sale. Combined
together, the two assumptions say that a seller can commit to his own action while he cannot
mandate the actions of others.

Information Structure. The auction-resale game is subject to the following exogenous
information structure. At each stage, a bidder’s action and his net payment to others are not
observed by the other bidders, unless the public announcement exposes them. At the end of
the current stage, the identity of the winner and the contents of the public announcement,
if any, are the only new common knowledge.

Preferences. As usual in the auction literature, I assume that a player is risk-neutral and
his utility is a quasi-linear function of his monetary payment and his consumption of the
good. Specifically, suppose a player i’s total net payment to others throughout the auction-
resale game is p (with —p denoting the net receipts from others), then his payoff is t; — p
if he is the final owner of the good, and is —p if otherwise. Here the level ¢; of his utility
from being the final owner of the good is a given constant to him and is called his type. At
the beginning of the auction-resale game, a bidder’s type is his private information and is
regarded as a random variable independently drawn from a commonly known distribution.
Different bidders’ types can be drawn from different distributions. The initial owner’s type
is assumed to be common knowledge at the beginning of the game.

2.1 The Notion of Equilibrium

We wish to analyze the auction-resale game by perfect Bayesian equilibrium (PBE). As
players choose mechanisms in our auction-resale game, however, the notion of PBE runs
into a technical difficulty: its condition of sequential rationality requires that a PBE specify
the consequence after a current owner has chosen a mechanism that has no continuation
equilibrium. One might consider ruling out such mechanisms when we model the auction-
resale game. Unfortunately, they cannot be identified a priori, because the existence of a



continuation equilibrium depends on the belief system of a PBE of the entire game.

To resolve this Catch-22 problem, I shall weaken the notion of sequential rationality
slightly. The idea is to identify a set of exceptional events exempt from the condition of se-
quential rationality. This resolution is analogous to the standard condition of belief-updating
in a PBE, which imposes no restriction on a belief system at a set of equilibrium-dependent
exceptional events. Roughly speaking, I will classify any event in which a player has chosen
an action whose continuation game has no “equilibrium” as an ezceptional event for sequen-
tial rationality. We need to be careful here because “equilibrium” and “exceptional event”
are intertwined notions. I therefore define them by recursion on the length of our multistage
game, which is the number n of bidders, since by assumption every seller exits after his
current stage.

Definition 1 If an auction-resale game is single-staged, then an equilibrium of the game 1s
defined to be any Bayesian Nash equilibrium (BNE) of the game, as the notion of BNE is
well-formed. Pick any natural number k and suppose that the notion of equilibrium is well-
formed for any auction-resale game whose number of stages is at most k. If such a game
does not have any equilibrium, then we say that it is equilibrium-infeasible. For any auction-
resale game G with k + 1 stages, the notion of equilibrium-infeasibility is hence well-formed
for its continuation games. An equilibrium of the game G is defined to be a pair of strateqy
profile S and belief system B with two properties: (a) B follows Bayes’s rule relative to S,
except at any history where the decision-maker can conclude that someone else has deviated
from S at the immediately preceding history; (b) S is sequentially rational relative to B,
except at any history where either (b1) a seller has chosen a mechanism whose continuation
game is equilibrium-infeasible or (b2) the current seller has deviated from S and the deviation
that gives him less expected payoff than his equilibrium move from the standpoint when the
deviation was made.

We have hence recursively defined a notion of equilibrium for the auction-resale game with
any finite number of bidders.? With this equilibrium concept, we do not need to specify the
consequence after an owner has chosen a mechanism whose continuation game is equilibrium-
infeasible (exceptional events (b1)), nor do we need to specify an owner’s optimal mechanism
if in the past he made a deviant and “dumb” move (exceptional events (b2)).

An allocation is defined to be a function that associates a final ownership to every
possible profile of bidders’ types, where a final ownership means a lottery that picks a final
owner of the good from the set of all players (including sellers). An allocation is said to be
equilibrium-feasible if there is a mechanism M at the initial stage of the auction-resale game
such that the continuation game of M has an equilibrium that generates the allocation. In
contrast, an allocation is said to be BNE-feasible if there is a mechanism M at the initial
stage of the auction-resale game such that the continuation game of M has a BNE that
generates the allocation.

20ne can refine the notion of equilibrium by putting restrictions on the exceptional events of sequential
rationality, say, by requiring that the configuration of beliefs at an exceptional event be commonly known
among all the involved players.



2.2 The Relation to the Received Theory of Auction Design

BNE-feasible allocations have been the focus of the received theory of auction design. My-
erson [18] has characterized the allocations that maximize the initial owner’s expected profit
among all the BNE-feasible allocations. I shall call any such profit-maximizing allocation
Muyerson’s allocation and the amount of expected profit for the initial owner in such an
allocation Myerson’s level.

In our auction-resale game, the fact that an allocation is BNE-feasible does not mean
that there is an equilibrium-feasible mechanism that generates it. To guarantee that such a
mechanism always exists, we need to remove all the resale stages of the auction-resale game;?
Removing the resale options means that resale can be costlessly banned. By assuming that
the stages for possible resale are exogenously available, I replace this traditional assumption
with the assumption “resale cannot be banned.” The next lemma relates the mainstream
framework to mine.

Lemma 2.1 Myerson’s level is an upper bound of the initial owner’s expected profits that
are equilibrium-feasible. A mechanism reaches Myerson’s level for the initial owner if its
continuation game has an equilibrium that generates Myerson’s allocation and gives zero
surplus to the lowest type of each bidder.

Both statements of this lemma follows from the fact that an equilibrium is a BNE, and the
second statement also uses the revenue equivalence theorem for BNE-feasible allocations.
An equilibrium is a BNE because the condition of sequential rationality in our equilibrium
concept (Definition 1) is stronger than the condition of rationality in BNE.

2.3 The Assumptions of the Distributions

Let us label the initial owner as player 0. For every bidder i € {1,...,n}, let F; denote the
distribution function of #’s type, f; denote the associated density function, and 7; denote the
support. The first assumption is standard.

Assumption 1 (Hazard Rate) For each i € {1,...,n}, the support T; is conver and
bounded from below and, if T; is a nondegenerate interval, the density function f; is positive
and continuous on T; and differentiable in its interior, and (1 — Fy(t;))/ fi(t;) is a decreasing
function of t; on T;.

For each bidder i € {1,...,n}, define the virtual utility of ¢ by

. 1 — Fi(t;)

3Equivalently, we can assume that the initial owner can stay after stage one and that all complete contracts
are available to him.




As well-known, Assumption 1 implies that the virtual utility function V; is strictly increasing
on T; if T; is a nondegenerate interval. In fact, we know more (proved in Appendix A):

Lemma 2.2 If (1 — Fi(z))/fi(x) is a decreasing function of z on T;, then for every a € T;
the expression (F;(a) — F;(x))/fi(z) is a decreasing function of x on T; N (00, al.

With V; strictly monotone, one can show that all Myerson’s allocations are identical for
almost all profile of bidders’ types, and these allocations can be defined by the property
that, for almost all profile (¢;)* ; of bidders’ types, the final owner is selected in descending
order of the virtual utilities V;(¢;) across 7. It is also well-known that, when the distributions
F; are different across 7, Myerson’s allocation may assign the good to a bidder who values
it less than another bidder. In this case, we can think of the allocation as subsidizing the
former bidder against the other bidder. In our auction-resale game, Myerson’s allocation is
difficult to implement, because a subsidized bidder may upset the allocation via resale.

Thus, there is a tension between a seller’s incentive to subsidize some bidders and
bidders’ ability to defeat the purpose of the subsidy via resale. To focus on this tension, I
make the next assumption so that Myerson’s allocation has a ranking over the bidders on
whom to subsidize against whom.

Assumption 2 (Uniform Ranking) The bidders can be indezed by 1,...,n so that for all
i,j€{l,...,n}, ifi >j and xz € Tj then x € T;, Vi(z) < Vj(z), and Vj(z) € V;[T}].

Thus, for any 4,5 € {1,...,n}, i > j means that Myerson’s allocation subsidizes bidder j
against bidder i: with a positive probability j is the final owner of the good while his type
is less than bidder ¢’s type. I will stick to the index system in Assumption 2 from now on.

For allé,j € {1,...,n} such that ¢ > j, define a mapping «;; : T; — T; by the equation
Fioaij(t;) = Fo Vil o Vilty) + fio Vit o Vi) [Vt o Vilty) — 15, VE € Ty (2)

Here the notation o denotes the composition between functions; the function V; * o V; exists
because of Assumption 1 and V;[T;| C V;[T;] (Assumption 2). The next lemma, proved in
Appendix A, asserts that the mapping o;; is well-defined.

Lemma 2.3 By Assumptions 1 and 2, for all i,5 € {1,...,n} such that ¢ > j, the function
ay; is well-defined by Eq. (2) and a;j(z) > V1 (V;(2)) for all x € Ty.

When there are more than two bidders, I will construct an equilibrium of the auction-
resale game consisting of a nested tower of optimal auctions. To facilitate this recursive
structure, I make the next three assumptions, whose roles will be clear later.

Assumption 3 For alli,j € {1,...,n} with i > j, the function oy; is strictly increasing.

9



Hence the inverse ozz-_jl of a;; exists, so the next assumption is well-formed.

Assumption 4 For all 3,5,k € {1,...,n} and for all t, € Ty, if i > k > j then a;; o
i (tr) > Vit o Vil(te).

Assumption 5 For any w € {1,...,n}, any i, € {w+1,...,n}, and any t, € T, if
Vi(ti) > (resp. =) Vj(t;) then fi(V; (Vu(tw)))/ filts) > (resp. =) f;(Vi (Vu(tw)))/ fi(t5)-

For example, suppose each bidder i’s type is uniformly distributed on [0, a;], with
ap <---<a,. Then we have:

Vitti) = ti—ay
VitoVity) = tj+(ai—a;)/2;

aij(t) = tj +ai—aj
aij ooy (te) = ty+ (a; — ax)/2.

It is easy to verify that this example satisfies all the above assumptions.

The following fact will be useful. It is proved in Appendix A.

Lemma 2.4 Suppose Assumptions 1 through 4. Pick any bidders i, j, k such that i >k > j.
If()éij(tj) < t; and ak]’(t]’) > tg, then V;(t,) > ‘/;c(tk) and t; > ty.

3 Preliminary Analyses

I shall construct an equilibrium of the auction-resale game. It will turn out that in this
equilibrium the initial owner receives an expected profit equal to Myerson’s level, which
we already know is an upper bound of the equilibrium-feasible welfare for the initial owner
(Lemma 2.1). This section prepares for the construction of this equilibrium.

3.1 Myerson’s Allocation Needs Resale

Since Myerson’s level is an upper bound of the feasible welfare for the initial owner, it would
be easy to construct an equilibrium if the initial owner could implement Myerson’s allocation
during stage one so that no resale occurs afterwards. However, that is impossible unless the
bidders’ virtual utility functions are identical, as the following remark asserts.

Remark 3.1 Suppose Assumption 1 and that for some distinct bidders i,j € {1,...,n}
there is an interior point x of V;"' o V;[T}] such that Vi(z) < Vj(z). Then it is impossible to
generate Myerson’s allocation such that the probability of resale is zero.

10



Proof. By the hypotheses, Remark 3.1 in Zheng [20] implies that there is a positive proba-
bility with which Myerson’s allocation picks bidder j as the final owner while his type is less
than bidder ¢’s type. Corollary 3.1 in [20] hence implies our remark here.* m

Here is the intuition for the above remark (paraphrased from [20]). Suppose that
there is a mechanism at stage one that has a continuation equilibrium generating Myerson’s
allocation with zero occurrence of resale. Then the allocation must have been implemented
by the end of stage one. By hypotheses of the remark, this allocation subsidizes some
bidder j against another bidder ¢. Consider the event that j wins at the end of stage one.
From his winning status j learns that there is a positive probability with which the gain
of trade between him and bidder 7 is positive. If winner j sticks to the equilibrium, there
would be no resale and his payoff is zero; if j deviates (say making a take-it-or-leave offer
to ¢ at a price of j’s type plus a tiny amount), he would get a positive expected profit from
resale, hence a contradiction. The only complication skipped by the above argument is that
winner 7 might have obtained additional news other than his winning status. The proof of
Lemma 3.1 in [20] has taken that possibility into account.

Remark 3.1 implies that, although Myerson’s allocation may be a first-best scenario
for a seller, the seller cannot use it as a recipe. If a seller chooses a mechanism that uses
Myerson’s allocation as the rule to select a winner, then at equilibrium the rule must be
violated with a positive probability.

3.2 Troubles with the Traditional Revelation-Principle Method

From the viewpoint of any current owner of the good, the task is to optimize on the set
of equilibrium-feasible allocations and find a mechanism to implement an optimum. The
corresponding task in the traditional framework is handled by the revelation principle and
the assumption of no resale: The traditional framework focuses on BNE-feasible allocations;
the revelation principle turns them into tractable mathematical objects; given any optimum
among them, the no-resale assumption allows the owner to implement the optimal allocation
by a direct revelation mechanism that uses the allocation as the winner-selection rule.

Applying this traditional method to our auction-resale environment, however, is dif-
ficult if not impossible. Since the resale option adds more incentive conditions than BNE-
feasibility, the usual version of the revelation principle may include allocations infeasible in
our environment. Furthermore, even if we have an equilibrium-feasible allocation, the cur-
rent owner still need not know how to implement it. For example, Myerson’s allocation is
equilibrium-feasible (shown later), but Remark 3.1 implies that a seller cannot implement it
without resorting to some bidders acting as middlemen.

4Zheng [20] assumes that there are only two bidders, but it is trivial to extend Remark 3.1 and Corol-
lary 3.1 there to the case with n bidders.
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3.3 The Main Idea for Constructing an Equilibrium

My method in this paper is to reach Myerson’s level by directly constructing a mechanism
that has a continuation equilibrium generating Myerson’a allocation and giving zero surplus
to the lowest type of each bidder. If such a mechanism exists, then Lemma 2.1 implies that
it is optimal for the owner.

Let me illustrate the main idea by the case with two bidders whose types’ supports
are [0,%;] for ¢ = 1,2. To avoid the trivial case where there is no gain of trade between
the initial owner (player 0) and the bidders, let us assume that ¢; > t, for each ¢ € {1,2}.
With Assumptions 1 and 2, one can calculate Myerson’s allocation, illustrated by Figure 1.
Here the rectangle OBDH is the space of possible profiles of bidders’ types. According to

t
l bzt V(1) Vi) te=0at)
T NG F, E
I > D
——————————— l/Wi’hs o
< 2 wins
Vi) - K : C
,né sale A 2 wins .
0" - b
Vi (to) f2

Figure 1: The Case with 2 bidders

Myerson’s allocation, the final owner should be the initial owner on the area OAK I, bidder 1
on the area IKF'H, and bidder 2 on the area KABDF'. The curve FK corresponds to the
equation Vi(t;) = Vi(ts), which is the dividing curve between the bidders conditional on
the initial owner’s selling the good. Notice that the allocation subsidizes bidder 1 against
bidder 2 on the region GJKF. As we have seen after Remark 3.1, it is this region that
makes it hard to implement Myerson’s allocation, for the subsidized bidder may resell the
good to the other bidder, thereby upsetting the allocation.

To implement Myerson’s allocation, we want to design a mechanism such that the
subsidized bidder would find it optimal to resell according to Myerson’s allocation in the
event that he wins. Let us try the winner-selection rule depicted in Figure 1: it is the
same as Myerson’s allocation except that the dividing curve F'K is replaced by the curve
EL to its right, so that bidder 1 wins on the bigger region HILE. The new curve EL is
represented by the equation ts = aw(t1) (recall ap; from (2)). When bidder 1 wins under
this winner-selection rule and if the only news he gets is that he has won, bidder 1’s updated
belief about bidder 2’s type is the conditional distribution Fy(-|ts < a91(t1)). Consequently,
if he is choosing a resale price as a take-it-or-leave offer to bidder 2 at stage two, bidder 1
will find it optimal to post the price V; ' o V;(t;), which one can show by the definition of
ai91. Then the final owner between bidders 1 and 2 is chosen according to the dividing curve
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F K of Myerson’s allocation!

Let us therefore consider the following mechanism: Both bidders bid independently.
If bidder 1’s bid #; is below his minimum bid V;!(¢;), bidder 1 loses and the initial owner
makes a take-it-or-leave offer to bidder 2 at price Vy !(¢y) (bidder 2’s minimum bid). If
the profile of bids lies on the region ELC D, bidder 1 loses and the initial owner makes a
take-it-or-leave offer to bidder 2 at price V, * o Vi(¢;). If the profile of bids lies on HILE,
then bidder 1 wins and makes a payment g;(#;). To ensure that the bidder-turned winner 1
learns no news other than his winning status, his payment gp;(¢;) depends only on his own
bid, and the public announcement at the end of stage one is silent about bidder 2’s bid.
To ensure that a winner’s resale mechanisms are confined to posting prices, we disclose his
bid in the public announcement of stage one, so that at equilibrium he is not a privately
informed principal at stage two. To ensure that the lowest type of bidder 1 gets zero surplus,
we construct his payment function gp; so that his equilibrium expected payoff, taking into
account his equilibrium profit from resale, is equal to his surplus in Myerson’s allocation.

Here is a continuation equilibrium of the above mechanism that generates Myerson’s
allocation: Each bidder ¢ reports his true type ¢;. If bidder 1 wins, he updates as de-
scribed above and posts a resale price at V, ' o V4(¢;). If bidder 2 wins, he updates that
his type is higher than bidder 1’s (t2 > as1(t;) > t1) and keeps the good. If a winner
posts any resale price, the loser accepts or rejects it truthfully. If a winner chooses any
other equilibrium-feasible resale mechanism, then the loser acts according to the associated
continuation equilibrium. If bidders follow this equilibrium, the final outcome is Myerson’s
allocation and the initial owner’s welfare reaches Myerson’s level.

To see why bidder 2 is truthful at stage one, notice that it is unprofitable for him to win
the good now and resell it to bidder 1, since, as one can show, 2’s payment upon winning is
more than his revenue from reselling the good to bidder 1. Thus, bidder 2’s decision at stage
one, if pivotal, is whether to be the final owner now or later; he is indifferent between these
options because his payments is the same across the stages. The demonstration of bidder 1’s
incentive requires a calculation of his expected payoff, so let us postpone it to the general
case. At this point let us just observe that at equilibrium bidder 1 will not be privately
informed when he chooses a resale mechanism after winning at stage one. The reason is that
at equilibrium he bids truthfully at stage one and his bid is disclosed in the stage-one public
announcement.

The above is a sketch of the main idea of how to implement Myerson’s allocation. In
the rest of the paper, I will formalize the idea for the general n-bidder case.

3.4 The Self-Replicating Auction-Design Environments

With more than two bidders, the design of a resale mechanism is more challenging, since
a posted-price resale mechanism may be suboptimal for a secondary seller. To solve his
mechanism-design problem, we need to know the environment given to a secondary seller.
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For a seller, the most essential structure of his environment is the ranking across his potential
buyers induced by their virtual utility functions. That is because this ranking determines
Myerson’s allocation, the first-best outcome for the seller. As a secondary seller’s environ-
ment depends on the auction mechanisms and their outcomes in earlier stages, as well as
the belief system of the entire auction-resale game, pinning down the law of motion for the
virtual utilities throughout the auction-resale game is obviously difficult. Fortunately, owing
to Assumptions 3, 4, and 5, this structure is preserved from one seller to another on an
equilibrium path. I will prove this recursive feature in this subsection.

Let us consider stage one of the auction-resale game and the following rule:

for any profile (#;); of bids
the winner is the lowest indexed bidder w such that #; < () for all i > w. (3)

Suppose that everyone has bid truthfully, a bidder w becomes the winner by the rule (3),
and his bid (hence type t,,) is disclosed in the current stage. Let us consider the environment
inherited by the winner w. We have:

Lemma 3.1 Suppose Assumptions 1 through 5. If bidder w is selected by the winner-
selection rule (8) and if every bidder has been truthful during the winner-selection process,
then w’s type (resp. virtual utility) is higher than the type (resp. virtual utility) of any bid-
der 1 < w.

Proof. The lemma is vacuously true if w = 1. If w > 1, then by the winner-selection rule (3),
there must be the lowest indexed bidder 4; such that a;,1(t1) < ty,. As ag,1(t1) > V7' (Va(th))
(Lemma 2.3) and V[ '(Vi(t1)) > t; (Assumption 2), we know that Vi (t;,) > Vi(t:) and
t;y > t;. For all k between 1 and 7;, the choice of i; implies that ay(t;) > tx, hence
Lemma 2.4 implies ¢;, > t; and V;,(¢;,) > Vi(tx). Thus, t;, > t; for all bidders k < 4.
If aji,(ti,) > t; for all j > 4;, then w = ¢; and the lemma is proved. Otherwise, we
pick the lowest indexed bidder i, such that o, (¢;,) < t;, and as before we have t;, > t;
and V;,(t;,) > Vj(t;) for all j between i; and iy, including ¢;; transitivity gives these two
inequalities for all j < 3. The lemma is therefore proved by induction. ®

Thus, a winner w wants to resell the good only to those bidders i > w. (Even if a
lower-indexed bidder is willing to pay more than his true type because of an expectation
of resale profit, the winner can obtain at least the same profit by being a reseller himself.)
Suppose that every such bidder learns only w’s type ¢, and his winning status. Then
for every bidder ¢ > w, the posterior belief about ¢’s type is commonly known among
the players {w,w + 1,...,n} and is represented by the conditional distribution function
Fi(-[t; < o4w(tw)). We can then define the posterior virtual utility function Vj, of every
bidder i € {w +1,...,n}: for all t; < a;y,(t,,), define

1 — Fi(tilt: < ain(tw))
filtilts < in(tw)) (4)

The next lemma says that across ¢ the ranking across ¢ induced by Vj, is the same as the
ranking across ¢ induced by V;. The proof is in Appendix A.

Vit (ts) = ti —
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Lemma 3.2 Suppose Assumptions 1 and 5. For any w € {1,...,n}, any t, € T, and any
hje{w+1,...,n},

a. Vi, (t;) > (resp. =) ty iff Vi(ti) > (resp. =) Vy(tw), and
b. Vi, (t:) > (resp. =) Vi, (8;) iff Vi(ti) > (resp. =) Vj(t;).

By Lemma 3.2, if all the prior virtual utility functions satisfy Assumption 2, then all
the posterior virtual utility functions satisfy the same assumption, with V;;, playing the role
of V;. By Lemma 2.2, every function Vj, is strictly increasing, hence its inverse V;‘_ti exists.
Thus, for every w € {1,...,n}, every t,, € Ty, and every 4,5 € {w + 1,...,n} such that
i > j, we can define oy, by Eq. (2), with Vi, playing the role of V; for all k. Moreover,
we have:

Lemma 3.3 By Assumptions 1 and 2, V;"ti oVjit, = V.ilo Vi and aij, = ai; for every
w e {l,...,n}, every t, € Ty, and every i,j € {w+1,...,n} such that i > j.

This lemma is proved in Appendix A. It follows that the functions ayj, satisfy Assump-
tions 3 and 4. Therefore, a secondary seller w’s mechanism-design environment has a similar
structure as the previous seller’s environment. Myerson’s allocations in both environments
have the same ranking across the bidders, and both sellers use the same a functions if they
select winners according to the rule (3). The next proposition summarizes the findings of
this subsection.

Proposition 3.1 Suppose that player k € {0,1,...,n — 1} is the current owner and that
among the players in {k,k + 1,...,n} the prior distribution of every i > k is commonly
known to be F;. Suppose that k sells the good to a winner w chosen from {k + 1,...,n}
by the rule (8) and suppose that everyone in {k + 1,...,n} has been truthful during the
selection and has publicly observed w’s type. Then the winner w wants to sell the good only
to those players j > w; further, if the prior distributions F; (Vi > k) satisfy Assumptions 1
through 5, then the posterior distributions of players j > w satisfy these assumptions, the
Muyerson allocation in k’s environment is the same as the allocation resulting from selling
the good to w and having w implement the Myerson allocation in w’s environment. The
winner-selection rule (3) for w’s case uses the same a functions as the rule for k’s case.

4 Equilibrium: A Tower of Nested Optimal Auctions

With the recursive structure discovered in the previous section, we are now ready to construct
an equilibrium of the auction-resale game. I will first construct a mechanism for each player
in the case that he becomes an owner of the good. I will then construct an equilibrium where
each owner uses this mechanism, each bidder is honest and obedient, and each owner’s welfare
is his first-best outcome—the Myerson level in the environment he inherits.
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4.1 The Mechanism

Let £ € {0,1,...,n — 1} denote a current owner of the good and suppose that among the
players in {k,k + 1,...,n} the prior distribution of every ¢ > k is commonly known to be
F; and it satisfies Assumptions 1 through 5. Hence the virtual utility function V; for each
i > k and the function oy; for every ¢,j € {k+1,...,n} with ¢ > j are well-defined. Let ¢,
denote k’s type (not necessarily commonly known). Denote the configuration of these data
by (k,tk, (F;)i 1) Let me first define a mechanism Z(k,ty, (F;)},.,) by the following
algorithm and then explain the design. Here [ denotes a “leading bidder” to be explained
later, and w denotes the player (k or a bidder) who wins the good at the end of the current
stage.

w = k; b, .= max{inf T;, V; 1 (t)} Vi=k+1,...,n);l:=k+1;
while [ < n do
secretly inform [ of b;;

each i € {l,...,n} bids #; independently across i and time;
ift; < b
then b; := max{b;, Vj_l(Vl(fl))} (V5 >1)
l:=1+1;
else if Oz“(fl) > i\z (VZ > l)
then

trade with [ at price ;(£]b;) by Eq. (7)

publicly announce %

w := [ and halt;
else

i1 := the lowest indexed 7 > [ with ay(#) < #;

b; = max{bj,max{l/}_l(‘/;(fi)) ci=1...,0 —1}} (V) > 1)
l: =1

4.1.1 The Winner-Selection Rule

In order to induce a recursive structure, we want to use the winner-selection rule (3). How-
ever, if we try to employ this rule by a one-shot procedure, a winner would need to beat
simultaneously those rivals indexed below him and those indexed above him, and his calcu-
lation would be complicated. The mechanism defined above hence employs this rule sequen-
tially: At each round, a leading bidder | € {k +1,...,n} is designated, with a pre-specified
minimum bid b, and a payment function ¢;(-|b;); bidders in {I,...,n} bid independently. If
I’s bid is below b;, then skip him and designate [ 4+ 1 as the leading bidder and repeat the
process, where a bidder #’s bid ¢; is allowed to be different from his previous ones. If I’s bid
> b, and ail(fl) > t; for all 4 > I, then sell the good to [ at the price pl(fl\bl) and publicly
announce his bid #,. If {;, > b, and yet ay(t;) < t; for some ¢ > [, then find such an i with
the lowest index, designate him as the leading bidder (skipping all bidders indexed below
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him), and repeat the process. Whenever a bidder ¢ is skipped, update the minimum-bid
requirement b; for each j > i by taking the higher number between b; and V;*(V;(#;)). The
updating of minimum bids is to ensure that a bidder wins in our mechanism only if he can
beat the bidders indexed below him in the Myerson allocation. That is explained by the
next lemma, which follows directly from the updating procedure:

Lemma 4.1 For any i € {k+1,...,n}, if every bidder j < i has been truthfully reporting
J’s type t; in the mechanism Z(k,ty, (F;)iy,,) up to the point when bidder i is designated
the leading bidder, then the minimum bid b; for i is pi((tj);.jc +1), where

i ((tj)';._:lkﬂ) := max{inf T}, Vi_l(tk), maX{X/;_l(I/}(tj)) cj=k+1,...,i—1}}.  (5)

4.1.2 The Payment Scheme

As we want owner k to obtain the Myerson level in his environment (k,tg, (F;)%,, ), the
payment scheme should ensure that every bidder’s equilibrium expected payoff—viewed at
the beginning of the current stage—be equal to his surplus in the Myerson allocation in the
environment (&, tx, (Fi)fp1)-

Let us therefore fix our attention to the Myerson allocation of this environment. For
every i € {k+1,...,n} and for every profile (z;)7_, , of objects, denote z; := (:cj);'-_:lkﬂ,
Tsi = (2j)}_;41, and T_; == (T4, ;). Denote g;((¢;)7_;,,) for the probability with which
bidder i becomes the final owner in this allocation given the profile (t;)7_, ,; of types. In this
allocation, to beat bidders indexed lower than him, bidder ¢’s type must be at least p;(t<;).

For any b, in the range of p; and for any ¢; € T;, define:

@ (tirtsilb;) = Eo1pc=b,(t<i)qi (tis t<ist>i);
t;
Ui (tilb) = / Ei..q; (2, tilb;)dz. (6)
inf T}

Here Ex denotes the expected-value operator of functions of the random variable X with
the probability measure induced by the priors F}, and 1y denotes the indicator function for
the event Y.

Pick any i € {k +1,...,n}, any b;, and any ¢; € T;. Let Q;(¢;|b;) be zero if t; < b; and
be the probability of the event {t-; : (Vj > 1) a;;(t;) > t;}. Notice that Q;(%;]b;) is bidder ’s
expected probability of winning in the mechanism given that he is the leading bidder, his
bid is ¢;, and the minimum-bid requirement is b,. Let 7}(t;) denote the Myerson level of
the environment inherited by ¢ if 7 has been selected by the rule (3) and everyone has been
truthful during the selection. The quantity 7} (¢;) is well-defined by Proposition 3.1. Let us
construct the payment scheme p;(-|b;) : T; — R by:

Qi (t:lb;) i (£ [b;) -= Qi(E:lby) [t: + m (£:)] — U (tilby)- (7)

The reason for such construction will be clear in Step 2 of the next section.

17



4.2 The Equilibrium

We are now ready for the main result.

Theorem 1 Suppose Assumptions 1 through 5. Then the mechanism Z(0,ty, (F;)!,) is
equilibrium-feasible, implements the Myerson allocation, and maximizes the initial owner’s
expected profit among all equilibrium-feasible mechanisms, with this mazimum profit equal to
the Myerson level of the environment.

Proof. The theorem will be proved by induction on the number n of bidders. The case for n =
1 is trivial, for the mechanism Z(0, ¢, (F;)™,) becomes posting a price max{V; '(¢,), inf T;}
to the bidder 7. Pick any N = 1,2,... and suppose that the theorem is true whenever
n < N. Let us prove the theorem when n = N + 1. By Lemma 2.1, it suffices to construct
a continuation equilibrium of the mechanism Z(0, ¢, (F;)N1") that (i) generates Myerson’s
allocation and (ii) gives zero surplus to the lowest type of each bidder. The rest of the
proof is organized as follows. First, I propose a strategy profile S* for such a continuation
equilibrium. Second, I show that both tasks (i) and (ii) are fulfilled if everyone follows this
S*. Then I prove that, if everyone has been truthful throughout stage one, following S*
thereafter constitutes a continuation equilibrium starting at stage two. One is then lead
to demonstrate a bidder’s incentive of truthful bidding in stage one, provided that others
abide to &*. The demonstration is done by analyzing a bidder’s incentive when he is a
leading bidder and his incentive when he is not. Once this analysis is done, the proof will
be complete.

Step 1 A strategy profile S* as a candidate for a continuation equilibrium of Z(0, o, (F;)N11):

Throughout stage one, each bidder bids truthfully. If a bidder k£ has been truthful
and won at the stage, then he auctions of the good to bidders k+1,..., N+1 via
the mechanism Z(k, tx, (Fi(-|t; < o (tr)))r ). If a winner k does choose this
resale mechanism, then every bidder in {k+1,..., N + 1} who was truthful acts
according to the strategy profile prescribed by the continuation equilibrium of
this resale mechanism in the environment (k, tx, (Fi(-|t; < cux(te)))rhs). (This
continuation equilibrium exists by the induction hypothesis.) If a winner chooses
a different and equilibrium-feasible mechanism, then every bidder behaves ac-

cording to the associated equilibrium.

Applying the equilibrium concept (Definition 1) to cases exempt from the sequential ra-
tionality condition, the above profile does not specify bidders’ actions if a seller chooses a
deviant equilibrium-infeasible mechanism; nor does &* specify a seller’s mechanism if he was
not truthful and won, since we will show that truth-telling yields a greater expected payoff
than lying.
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Step 2 Tasks (i) and (ii) are fulfilled if every player follows the strategy profile S*.

Given truth-telling at stage one, the mechanism Z(0, to, (F;)Y1") selects a winner w by (3),

who will use the resale mechanism Z(w, ty, (Fi(-[t; < qiw(tw)))r1) according to S*. By
Proposition 3.1, the posterior distributions (F(-|t; < i (tw)))ity.1 satisfy Assumptions 1
through 5. Thus, the induction hypothesis implies that this resale mechanism will imple-
ment the Myerson allocation in the posterior environment (w, ty, (Fi(-|t; < tiw(tw)))ripir)-
Proposition 3.1 then implies that selling the good to w implements the Myerson allocation

in the initial environment. Hence task (i) is fulfilled.

For task (ii), it suffices to prove that, calculated at the beginning of stage one, a type-t;
bidder ¢’s expected payoff U;(t;) when everyone follows the strategy profile S* is equal to
Ey U (ti]b;), where Uy is defined in (6). This is sufficient because U} (¢;|b;) = 0 if t; < b; (the
probability ¢F(¢;,t-|b;) = 0 in (6) if ¢; < b;) and the lowest type inf T} of i can never exceed
any b, taken from the range of p; (Eq. (5)). To calculate U;(¢;), let us first calculate a type-t;
bidder 7’s expected payoff u;(%;,¢;) from bidding #;, when he is leading and secretly informed
of his minimum bid requirement b;; this would give us U;(t;) because U;(t;) = Ep u;(ti, ti|b;),
as he learns nothing new until he is told to lead. Hence we calculate:

u,—(ﬂ-, ti|bi) = Qi(fimi) [ti - @z(ﬂbz) + Wi(fi,ti)] ) (8)

where wi(fi,ti) denotes 7’s optimal expected profit from possible resale conditional on his
winning at the current stage. Eq. (8) results from the fact that the bidder has zero payoff
if he does not win in the current stage when everyone else follows the strategy profile S*
(Proposition 3.1). Recall that 7*(¢;) denotes the Myerson level in the posterior environment
if ¢ wins and everyone has been truthful. The induction hypothesis implies 7*(t;) = m;(t;, t;)
for every t; € T;. Eq. (7) hence implies the desired claim

Ui(t:) = Ep,ui(ts, t:|b;) = By, U (ti]b;)-

Step 3 If every bidder has been truthfully throughout stage one, following the strategy profile
S* thereafter constitutes a continuation equilibrium starting at stage two.

Given truthful bidding, Proposition 3.1 implies that the bidder w who won in stage one
knows that his type is higher than the type of any bidder indexed below him and hence
wants to resell the good only to those indexed above him. The the amount of payment w
made upon winning is independent on the past bids of the bidders j > w, the only news
he learns is that ¢; < aj,(ty,) for all j > w. This is also the only news all such j learn,
since the public announcement in the stage-one mechanism has made w’s type t,, commonly
known. Thus, by Proposition 3.1, the secondary owner w faces an environment that satisfies
the condition of the induction hypothesis, which then implies that it is optimal for w to
choose a resale mechanism according to §* and that a continuation equilibrium of this resale
mechanism is that everyone follows S* thereafter.
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Step 4 If a bidder is truthful in Z(0,ty, (F;)N+") when he is the leading bidder, then he is
truthful when he is not the leading bidder.

As a bidder gets zero payoff if the current mechanism skips him and designates a higher-
indexed bidder to lead (and hence a higher-indexed bidder will win), under-reporting one’s
type cannot improve a non-leading bidder’s payoff. Thus, the only kind of deviations to
consider is over-reporting one’s type. Such a deviation is pivotal only when the bidder
wins in stage one by over-reporting while he should not have won in stage one had he been
truthful. To win, bidder ¢ must be able to lead and his bid ¢; when he is leading must be at
least his minimum bid p;(t-;) and must satisfy a;;(¢;) > t; (V5 > 4). Since within this step
he is assumed to be truthful when he is leading, his type t; must satisfy

(Vj > ’L) aji(t,-) > tj and t; > p,(t<,) (9)
in any pivotal case. Consequently, as long as his over-reporting is pivotal,
bidder ¢ will be a winner sooner or later whether he over-reports or not. (10)

By Eq. (9), he will win now if he gets to lead via over-reporting. Suppose that he does not
over-report and some bidder w indexed below him wins. With everyone else following the
strategy profile $*, the Myerson allocation in w’s posterior environment will be implemented
(induction hypothesis). That allocation is determined by the ranking of the posterior virtual
utility functions, which by Lemma 3.2a is equivalent to the ranking of the current virtual
utility functions. Thus, the good will go to one of the bidders j = 4,...,N + 1, since
t; > pi(t<;) implies that Vi(¢;) > Vi (ty) (Eq. (5)). But since whoever reselling the good to
these bidders is expected to follow &*, bidder ¢ must be the winner according the selection
rule (3), due to the fact that aj;(¢;) > ¢; (V4 > ¢) and that the the winner-selection rule in
that future stage will use the same o functions (Proposition 3.1). This proves (10).

It follows that bidder ¢’s decision on whether to over-report is equivalent to whether to
win now or to win later. I shall show that winning now cannot make him better-off. This is
done by showing that the bidder’s (a) expected profit from possible resale and (b) expected
payment upon winning are unchanged by the bidder’s decision. Let us handle item (a)
first. Notice that it is unprofitable for bidder 7 to resell the good to bidders indexed below
him. To see that, imagine that he is truthful and hence wins in a later stage. As the player
reselling the good to him is expected follow S* and hence to select 7 according to the rule (3),
Lemma 3.1 implies the fact that i’s type is higher than than the type of any bidder indexed
below him. This fact remains true whether bidder 7 is truthful or not. It follows from this
fact that item (a) is the maximum expected profit from reselling to bidders i +1,..., N + 1.
(Even if a bidder j < i is willing to pay more than j’s true type because of an expectation
of resale profit, bidder i can always obtain the same profit by being a reseller himself.) That
takes care of item (a). To prove that item (b) is also invariant to bidder ¢’s decision, notice
from Egs. (6) and (7) that 4’s payment g;(¢;|b;) upon winning remains the same conditional
on the same minimum bid b;, whether he wins now or later. Hence it suffices to prove that
his minimum bid is the same in both cases. If bidder ¢ wins now, then his minimum bid is
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pi(t<;) by Lemma 4.1. If he wins later from a reseller w (w < %) whose type is t,, then the
same lemma implies that his minimum bid is

b; := max{inf Tj, V;"ti (tw), maX{V;fti(Vmw(tj)) j=w+1,...,i—1}}

which is max{inf T}, V; "' (V,,(t,)), max{V; ' (V;(¢;)) : j = w+1,...,4 — 1}} by Lemma 1.
Thus, b, < pi(t<;). To show that b, > p;(t;), we need only V;I_ti(tw) > Vi7Y(V;(t;)) for
all j < w. Since Vz‘_ti (tw) = Vi ' (Va(ty)) for all j < w (Lemma 1 and Ve, (tw) = tw), it

suffices to show that V,,(t,) > Vj(¢;) for all j < w, which follows from Lemma 3.1. Thus,
b; = p;(t<;), as desired.

Step 5 A bidder i is truthful in Z(0,to, (F;)N1') when he is the leading bidder.

Let h}(%;,t;) denote the probability of the event “the leading bidder 7 wins at the current
stage and resells the good to some bidder with his optimal resale mechanism” given that his
type is ¢; and he has bid ; when he was leading. By the Envelope Theorem (Milgrom and
Segal [16, Theorem 3]), Appendix A proves: for all z,t,t' € T;,

tl
Qi(z|b,) [mi(z, t") — mi(z, )] = —/ hi(z,z)dz. (11)
t
Let us observe that, for any z,t,t' € T;,
t <t = hi(z,t) > hi(z,t). (12)

This follows from the definition of ~}: Given the same bid z, bidder ¢’s probability of winning
at the current stage and the posterior environment after his winning are each determined.
Thus, the only difference between hf(xz,t) and hf(z,t') is the probability of ¢ reselling the
good. To optimize for ¢, this probability is lower if ¢’s type is lower.

We are ready to verify that truthful bidding is optimal for the leading bidder i. Denote
q; (tilb;) == By, q; (ti, t>i|b;). For any t,t' € T;,
it t[b;) — wailt', t[by)

= U (tlbs) — U7 (t'10) + (¢ — )@i(t'[bs) + [Qu(t'by)mi(t', ) — Qi(#'|by)ms(t', )]

t t
=/$me—@—ﬂ@wm+/hmvmz
# o

t t
> [ @b - - Q) + [ wie o)
t #

/t, (@ (21bs) — @ (¢']b)) d2
0.

v

Here the second equality follows from Eq. (11); the first inequality follows from the fact (12);
the third equality comes from the fact that a leading bidder is the final owner of the good if
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and only if he wins now and cannot resell the good in the next stage; and the final inequality
is due to the BNE-feasibility of the Myerson allocation (hence the monotonicity of g (-|b;)).
Thus, truth-telling is optimal for a leading bidder.

All the steps of the proof have been completed. B

The equilibrium constructed in the above proof is worth noticing, because it exhibits a
tower of optimal auctions via optimal resale auctions, and during the equilibrium play, the
environment inherits by a secondary seller is similar to the environment of his immediate
predecessor. The next corollary summarizes these features.

Corollary 4.1 Suppose Assumptions 1 through 5. Then the auction-resale game has an
equilibrium where the initial owner uses the mechanism Z(0, to, (F;)?,) to sell the good and
every subsequent owner k € {1,...,n—1}, facing an environment that also satisfies Assump-
tions 1 through 5, uses the mechanism Z(k,ty, (Fi(-[t; < ax(tk)))iissq) to resell the good to
bidders in {k+1,...,n}.

When the number n of bidders is less than three, Assumptions 3, 4, and 5 are not
needed for our result. To see that, first notice that Assumptions 4 and 5 are vacuously true
when n < 2. Further, Assumption 3 is needed for only two purposes. One is to ensure the
existence of the inverse functions ai_jl, which in turn are needed only for Assumption 4 when
n > 2. The other role of Assumption 3 (strict monotonicity of ¢;;) is used by Lemma 2.4,
which is vacuously true when n < 2. Thus, we have:

Corollary 4.2 If the number of bidders is less than 3, then the conclusions of Theorem 1
and Corollary 4.1 are true if Assumptions 1 and 2 are satisfied.
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A Proofs

Lemma 2.2. With f; differentiable (Assumption 1), the hypothesis of this lemma implies
that

fi(@)* + (1= Fi(x)) fi(z) 2 0 (13)
for every z interior to T; and (Fj(a) — Fi(z))/fi(z) is differentiable for every z interior to
T;N (o0, a]. It suffices to show that the derivative of (F;(a) — F;(x))/ fi(z) with respect to z is
nonpositive for all such z. As f; is positive on T; (Assumption 1), the sign of this derivative is
the sign of —[f;(z)? + (Fi(a) — Fi(z)) f/(x)]. This is negative when f/(z) > 0. Thus, consider
the case f/(xz) < 0. Then

[Fi(a) — Fi(2)]fi(z) = —[Fi(a) — Fi(2)]| fi(z)| > —[1 = Fi(@)][ fi(z)| = [1 — Fi(=)]fi (),

hence —[f;(z)? + (Fi(a) — Fi(z))f!(z)] is at most —[fi(z)? + (1 — Fy(z))f!(z)], which is
nonnegative by Eq. (13), as desired. ®

Lemma 2.3. Pick any bidders 4,j € {1,...,n} such that ¢ > j. Let € T;. For any a € T;
with a > V;7!(V;(z)), define

Fy(a) — Fi(V;"'(Vi(2)))
£i(Vi 1 (Vi(2)))

To prove the lemma, it suffices to show that there is a unique ay;(z) € T; N [V, (V;(z)), 00)

such that ¢, (a;;(z)) =  (Eq. (2)). The uniqueness of a;;(x) follows from the fact that the

function ¢, is one-to-one (by its definition and the assumption that F; is strictly increasing on

T;). To prove the existence of a;;(x), we apply the Intermediate-Value Theorem to function
@, First, the function is continuous by Assumption 1. Second, by the definition of ¢,,

a(Vi 1 (Vi(2)) = Vi " (Vj(2)) > ,

with the inequality due to 7 > j (hence V;(z) > V;(z) by Assumption 2). Third,

Pa(a) =V} (Vj(2)) -

lim g,(a) = Vi (Vy(e))

a—sup T;

1 RV (V@) _
(

RV W (@)

with the inequality due to Eq. (1). Thus, o;;(z) exists. B

Lemma 2.4. With the notations of the lemma, we calculate:
ti > aij(t;) > quj o g (te) > Vit o Vilty) > Vit o Vilty) =t

Here the second inequality is due to Assumption 3, the third inequality is due to Assump-
tion 4, and the fourth inequality is due to the fact Vi (tx) > Vi(tx), which comes from 7 > k
and Assumption 2. Note that the third inequality implies V;(¢;) > Vi(tx). ®

23



Lemma 3.2. Pick any 4,j,w,t, specified by the hypothesis. By its definition, Vj, is
strictly increasing (which also uses Lemma 2.2 and Assumption 1). Also notice from Eqgs. (2)
and (4) that

Vi (Vi (Va(tw))) = tw

Thus, Vi, (t;) > (resp. =) t,, is equivalent to Vj, (t;) > (esp =) V|tw(V; Y(Vu(tw))), which,
t

by the strict monotonicity of Vjy,, is equivalent to t; > (resp. =) V; '(V,(t,)). This proves
part (a). For part (b), let us calculate from Eq. (4):

1- Fw(ta) 1= Fy(ojults)
filts) fi(t5)

[V (Va(te))) £V (Va(t)))

= Vi(t:) — V(&) + (tw — Va(tw)) : - = :

7 fi(ti) fi(t5)

where the second equality follows from Eq. (2) and the definition of V,,(V; ' 0V, (t,)). Notice

that t,, > Vi, (tw) by Eq. (1). Thus, the proved equality, coupled with Assumption 5, implies

part (b). m

Viitw (8) = Vi, (t5) = Vi(t) — V;(t5) +

Lemma 3.3. For any t; € Tj, let « := V;|t (Viitw (t5)). Then Vi, () = Vjp,(t;), which
implies V( ) = V;(t;) by Lemma 3.2b. The strictly monotonicity of V; gives z = V; ' (V;(t;)),
hence V;‘t (Vi (t4)) = Vi ' (V;(t;)). This fact, coupled with Eq. (2) that defines the «
functions, implies that a;;;, = a;;. B

Eq. (11). Denote i for a leading bidder, b € T; for his bid while leading, ¢ € T; for his type.
Denote F(b) for the set of equilibrium-feasible mechanisms for i to resell the good given that
he has won by bidding b. (Note that F(b) is independent of ¢, since equilibrium-feasibility
is relative to each player’s posterior belief, which results from the actions, instead of types,
of the players.) For any mechanism M € F(b) and given the fact that he has bid b and
his type is ¢, denote h;(M,b) for the probability of the event “bidder ¢ wins in the current
stage and resale occurs in his resale mechanism M,” and denote r;(M,b) for i’s expected
revenue conditional on a resale in the mechanism M. (Note that both h;(M,b) and r;(M,d)
are independent of ¢’s type t.) With these notations, we have

Qi(b[b;)mi(b, 1) = Mnel?_}(ib) hi(M, b)[ry(M,b) —1].

We shall apply the Envelope Theorem to this maximization, with ¢ being the parameter.
Denote ¢ (t) := hiy(M,b)[r;(M,b) —t]. By Milgrom and Segal [16, Theorem 3], the theorem
is applicable if two conditions are satisfied: (a) Mt(ﬂ converges as t' — t uniformly

across all M € F(b); (b) for every t € Tj, supyery) |#m(t)| is finite. Item (a) follows from

the fact that % = —h;(M,b). To prove Item (b), for every t € T;, we need upper
and lower bounds of ¢ (t) for all M. Since ¢ (t) < 7;(M,b), one upper bound is the
social surplus for the whole environment when all players are truthful. This surplus is finite
because there are finitely many players and the expected value of each player’s type is finite.
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Since ¢pr(t) > hi(M,b)[min;_y, w41 infT; — t], with h;(M,bd) € [0, 1] and inf T; assumed to
exist for each bidder j (Assumption 1), a lower bound of ¢y (t) exists for all M.

Thus, both items are satisfied. The Envelope Theorem then implies that Q;(b|b;)m;(b,t)—
Qi(b|b;)mi(b,t') is equal to the definite integral of the function —h;(M*(b,-),b) on the inter-
val [t',t], where M*(b,7) denotes an optimal resale mechanism given i’s bid b and type 7.
Recalling the notation h}, we have h;(M*(b,-),b) = h}(b,-) and hence Eq. (11) is proved. ®
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