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1.  Introduction

For most, if not all, non-durable consumer products prices tend to be at a modal level with

occasional short-lived price reductions, namely, sales.  Unsurprisingly, during a sale the quantity sold

increases significantly.  However, in those instances where the duration of the sale is longer than the

standard duration, we find that the quantity sold decreases over time, holding the discount and other



2 See, for example, Warner and Barsky (1995), Chevalier, et al. (2000) and MacDonald (2000), for papers
studying the relation between seasonality and sales.
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promotional activities fixed.  While sales are often present in markets for fashion goods or markets

where demand is seasonal, or follows some predictable pattern, our focus is on goods where

seasonality and fashion play less of a role. In particular, our empirical analysis will focus on laundry

detergents where we believe that fashion and seasonality play no role.2 Motivated by the price and

quantity patterns, observed in the data, we focus on intertemporal price discrimination. Specifically,

we examine heterogeneity in consumers storage costs and its implications for the consumers’

willingness to purchase products when prices are low, store them as inventory and consume them

later when the prices are higher.

There are several reasons, beyond pure academic curiosity, why we should care about sales

and  their effects.  First, when a good is storable, there is a distinction between the short run reaction

to a price change during a sale and the long run reaction to the same price change.  This has direct

implications for demand estimation that relies on data with this pattern, and affects analysis based

on these estimates, whether it is merger analysis or computation of welfare gains from introduction

of new goods and services.  Second, understanding the impact of sales allows us to study the issue

of optimal sales. Finally, the way in which data with this pattern are used to construct price indexes

depends on our interpretation of what is driving sales (Feenstra and Shapiro, 2001).

We consider a consumer's dynamic problem when she has an expected stream of future

demands, is able to store a consumption good and faces uncertain future prices. In each period the

consumer decides how much to buy,  which brand to buy and how much to consume.  These

decisions are made to maximize the present expected value of future utility flows.  Optimal behavior

is a function of the current price, the current inventory and a stochastic shock. In any period quantity
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purchased that is not consumed is stored as inventory.  The quantity consumed can exceed the

quantity purchased that period, but cannot exceed purchases plus current inventories.  In this model

the consumer will purchase for two reasons: for current consumption and to build inventories.

Consumers increase inventories when the difference between the current price and the expected

future price is lower than the cost of holding inventory.

In order to test the model we use weekly store-level price and quantity scanner data on

laundry detergents.  This data set was collected using scanning devices in nine supermarkets,

belonging to different chains, in two sub-markets of a large mid-west city.  Besides the price charged

and quantity sold we know other promotional activities that took place.  In addition to these data we

use a household-level data set.  We follow the purchasing patterns of over 1,000 households over

a period of 104 weeks.  We know exactly which product was bought, where it was bought, how

much was paid and  whether  a coupon was used.  In addition we know when the households visited

a supermarket but decided not to purchase  laundry detergent.

We use these data in several ways.  First, we test the implications for household and

aggregate behavior derived from the model.  In the process we provide evidence on the difference

between sale and non-sale purchases, both across households and within a household over time.

Second, in order to further test the theory we examine household behavior directly by structurally

estimating the model. The major difficulty in estimating the model is that while purchases are

observed, consumption decisions, and therefore inventory holdings, are not.  As described in Section

4 we propose to use the structure of the model, to construct the unobserved household decisions. 

Results of our preliminary analysis suggest the following.  First, in line with the model’s

prediction, we find that, all else constant, a longer duration from previous sale, has a positive effect

on the aggregate quantity purchased.  In order to find this effect we have to properly control for the
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effect of other promotional activity.  Furthermore, as predicted, this effect is larger during  sale

periods than during non-sale periods.  

Second, standard household demographics are not powerful in explaining the difference

across households in the fraction of purchases on sale.  However, in support of our theory, we find

that two indirect measures of storage costs are positively, and significantly, correlated with a

household’s tendency to buy on sale.  We also find that the difference across households in the

fraction of purchases on sale is positively correlated with number of different stores visited, number

of brands bought, and frequency of going to store.

Third, when comparing both purchases for a given household over time, and across

households, we find that purchases on sale tend to be of more units and larger sizes.  We find a

difference between sale and non-sale purchases in both duration from previous purchase and duration

to next purchase. The difference is smaller within a household than the difference across, or between,

households. 

Fourth, assuming constant consumption over time we construct an inventory for each

household.  We find, as predicted by the model, that this variable is negatively correlated with the

quantity purchased (conditional on a purchase) and with the probability of buying conditional on

being in a store.  Also, as predicted, the size of the effect varies depending if the purchase was on

sale or not.

In summary, we find evidence that is consistent with our model.  Some of the effects we find,

while statistically significant are smaller than we expected.  Our analysis suggests that this is driven

by a combination of measurement error and a non-linear effect.  Both of these will be handled, at

least partly, in the structural model.  Furthermore, the structural model will allow us to perform some

counterfactual experiments, which will address the questions we used to motivate the analysis.
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1.1 Literature Review

There are several theoretical papers that offer explanations for sales.  Varian (1980) develops

a model in which there are two types of consumers: those that have a low cost of search for

information, and are informed about prices, and those that have high search costs, and are therefore

uninformed.  He assumes that uninformed consumers choose a store at random and buy if the price

is below their reservation, while the informed consumers go to the store with the lowest price.  In

equilibrium, firms  randomize over prices.  Randomization is important in order to justify why the

uninformed do not become informed after finding a single low price.  Several papers have used

similar models, but rather than informed and uninformed consumers they use switchers and non-

switchers (for example, see Narasimhan, 1988, and Rao, 1991).

Sobel (1984) presents a model of a competitive industry selling a durable good. He assumes

that two types of consumers –high valuation and low valuation– arrive in the market over time, and

that low valuation consumers are willing to postpone their purchases if the price is above their

valuation.  He demonstrates that sellers will periodically, and randomly,  find it optimal to lower

prices to clear out low valuation consumers. Conlisk, Gerstner and Sobel (1984) and Sobel (1991)

present a monopolistic version of this model.  Equilibrium involves cyclical prices, although, in

contrast to Sobel (1984) the cycle is deterministic.

Salop and Stiglitz (1982) present a competitive industry model with price dispersion. Firms

randomize between two prices. Low prices generate higher sales, as consumers purchase to store an

extra unit when they find a lower price. High prices generate higher per unit profits but lower sales,

as buyers facing a high price only buy for current consumption. Hong, McAfee and Nayyar (2000)

also present a storable good model that generates demand dynamics, namely, a (negative) link
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between current prices and future demand. As in Varian there are shoppers and non-shoppers, and

as in Salop and Stiglitz consumers, the shoppers, can keep up to one unit of inventories. It is shown

that there exist equilibria where firms use random pricing. Moreover, prices are negatively correlated

over time. This is the only model that allows for storage in a dynamic set up. Price randomness, in

this model, is driven by two assumptions. Consumers are assumed to chose a store based on the price

of a single item and firms are informed about other firms’ prices and hence sales. We analyze the

complementary case where supermarkets cannot monitor the rival prices’, due to the number of

products sold, and consumers decision of where to shop is exogenous.

There are not many empirical studies of sales in the economics literature. Hosken et al.

(2000) study the probability of a product being put on sale as a function of its attributes. Papers

closer to our approach are Pesendorfer (forthcoming), which studies sales in the ketchup market

using similar, but not identical, regressions to the indirect evidence we consider below, and Erdem

et al (2000), who construct a structural model.  Besides several modeling assumptions we differ from

the latter paper in the focus.  Erdem et al focus on the demand side while our ultimate interest lies

in the supply side.

There are numerous studies in the marketing literature that examine the effects of sales, or

more generally the effects of promotions (for example, see Blatteberg and Neslin, 1990, and

references therein). Closest to our approach are the papers that examine the effect of sales on

household stockpiling.  Several papers3 use household-level data to show that when purchasing

during a promotion households tend to buy more units, larger sizes and in shorter duration to their

previous purchase. We also examine some of the same quantities, however, we control for
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differences across households by using the panel structure of the data.  Blattberg, Eppen and

Lieberman (1981) are concerned with the relationship between retailer and household inventory

policies.  Their model is somewhat similar to ours and like the above mentioned work they present

evidence similar to some of our indirect evidence.

Based on the results from the household-level data, there have been some attempts to find

a dip in the (aggregate) quantity sold following a sale.  The difficulty is finding this effect is noted

in Blattberg, Briesch and Fox (1995).  Neslin and Schneider Stone (1996) discuss eight possible

arguments for why this might be the case.  Van Heerde, Leeflang and Wittink (2000) empirically

examine the importance of these arguments.  Our results directly shed light on this “puzzle”.  

Finally, several recent papers have studied price adjustment and its implications from various

perspectives.  These include Warner and Barsky (1995), Chevalier, et al. (2000) and MacDonald

(2000), who study the seasonality of price adjustments. Feenstra and Shapiro (2001) study the

implications of sales for computation of a price index. 

2. The Data and the Industry

2.1 Data

The main data set used in this paper consists of price and quantity store scanner data and has

two components, store and household-level data.  The first was collected using scanning devices in

nine supermarkets, belonging to different chains, in two separate sub-markets in a large mid-west

city. Besides the price charged and (aggregate) quantity sold we know promotional activities that

took place, for each detailed product (brand-size) in each store in each week. The second component

of the data set is household-level data in which we observe the purchases of roughly 1,000

households over a period of 104 weeks. We know when a household visited a supermarket and how



4In the future we would like to extend the analysis to other categories.

5Towards the end of our sample Ultra detergents were introduced.  These detergents are more concentrated and
therefore a 100 oz. bottle is equivalent to a 128 oz. bottle of regular detergent.  For the purpose of the following numbers
we aggregated 128 oz. regular with 100 oz. Ultra, and 68 oz. with 50 oz.
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much they spent each visit. The data includes purchases in 24 different product categories for which

we know exactly which product each household bought, where it was bought, how much was paid,

and whether a coupon was used.

2.2 The Industry 

We first focus on laundry detergents.4 Laundry detergents come in two main forms: liquid

and powder. Liquid detergents account for 70 percent of the quantity sold.  Unlike many other

consumer goods there are a limited number of products offered.  Table 1 shows the market shares

of the top selling detergents.  The top eight (six) brands account for 75 percent of the liquid (powder)

volume sold.

Most brand-size combinations have a regular price.  In our sample 71 percent of the weeks

the price is at the modal level, and above it only approximately 5 percent of the time.  Defining as

a sale as any price below the modal price, we find that in our sample 43 and 36 percent of the volume

sold of liquid and powder detergent, respectively, was sold during a sale.  There is some variation

over time and across products in the percent sold on sale, as can be seen in Table 1.  The median

discount during a sale is 40 cents, the average is 67 cents, the 25 percentile is 20 cents and the 75

percentile is 90 cents.  In percentage terms the median  discount is 8 percent, the average is 12

percent, and the 25 and 75 percentiles are 4 and 16 percent, respectively.

Detergents come in many different sizes. However, about 97 percent of the volume of liquid

detergent sold was sold in 5 different sizes:5 128 oz. (55%), 64 oz. (31%), 96 oz. (8%), 256 oz. (2%),
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32 oz. (2%).  Sizes of powder detergent are not quite as standardized.  56 different sizes are

available, with the top 10 sizes accounting for approximately 70 percent of sales.  Prices are non-

linear in these sizes.  Table 2 shows the price per 16 oz. unit for several container sizes.  The figures

are computed by averaging the, un-weighted and quantity-weighted, per unit price in each store over

weeks and brands.  The numbers suggest some per unit discount for the largest sizes.  However, most

of the non-linearity in prices is driven by the high prices of the smallest container size (32 oz.).  The

table also suggests that average price and quantity discounts differ across stores.

The figures in Table 2 are averaged across different brands and therefore might be slightly

misleading since not all brands are offered in all sizes or at all stores.  Therefore, some of the

previous conclusions could be driven by differences in the mix of brands.  For this purpose Table

3 presents the same figures but focuses on one brand, Tide.  For this product there does seem to be,

at least for some stores, a per unit discount even when comparing 64 oz. containers to 128 oz.

containers.  The difference in the share of quantity sold of each size seems to be highly correlated

with the size of the discount.

The figures in both Tables 2 and 3 average across sale and non-sale periods.  Defining a sale

as any price below the modal price of a brand-size-store combination, on average 23 percent of the

observations are sales.  9 percent of the observations have a price that is less than 90 percent of the

modal price.  Table 4 presents the modal, non-sale, price and sale frequency by store and size. The

quantity discounts, which we observed in the previous two tables, are present also in the modal price

although on a much smaller scale.  Smaller sizes tend to have less sales with the smallest size having

essentially no sales.  Therefore, the quantity discounts we observe in the previous two tables were

indeed a mixture of non-linear non-sale prices and more sales for the larger sizes. Finally, we can

see from Table 4 that there are differences in the frequency of sales across stores.



6These variables both have several categories (for example, type of display: end, middle or front of aisle).  For
now we treat these variables as dummy variables.
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Our data records two types of promotional activities: feature and display.  The feature

variable measures if the product was advertised by the retailer (e.g., in a retailer bulletin sent to

consumers that week.)  The display variable captures if the product was displayed differently than

usual within the store that week.6  The correlation between a sale, defined as a price below the

modal, and being featured is 0.38.  Conditional on being on sale, the probability of being featured

is less than 20 percent.  While conditional on being featured the probability of a sale is above 93

percent.  The correlation with display is even lower at  0.23.  However, this is driven by a large

number of times that the product is displayed by not on sale.  Conditional on a display, the

probability of a sale is only 50 percent.  If we define a sale as the price less than 90 percent of the

modal price, both correlations increase slightly, to 0.56 and 0.33, respectively.

3. The Model

In this section we present a model of consumer inventory behavior.  We want to use this

model for two somewhat different purposes.  We plan to structurally estimate the parameters of the

model, and therefore the model has to be rich enough to deal with the complexity of the data.  We

also need the model in order to derive predictions which can be taken to the data without imposing

as much structure.  We start by discussing a richer model, which we will take to the data directly,

and then we simplify the model somewhat in order to obtain some analytic predictions, which we

can take to the data in order to test the model indirectly.

3.1 The Basic Setup

We consider a model in which a consumer obtains the following per period
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u(cit , it ; i)% mit

where  is the quantity consumed of the good in question,  is a shock to utility,  is a consumer-cit it i

specific vector of  taste parameters and  is the outside good consumption. The stochasticmit

shock, , captures demand shocks unobserved to the researcher. For simplicity we assume the shockit

is additive in consumption, . The shock affects the marginal utility fromu(cit, it; i)'u(cit% it; i)

consumption. Low realizations of  increase the household’s need, increasing demand and makingit

it more inelastic. We also assume , which is a sufficient condition for
Mu(cit% it ; i )

Mc
$ p æ p and æ

positive consumption every period. This assumption has no major impact on the predictions of the

model, while it avoids having to deal with corner solutions.

The product is offered in J different varieties, or brands. Below we show how the consumer

chooses between brands.  Note that consumption is not indexed by brand, i.e., the utility depends

only on the total consumption of detergents. This is key to deriving the estimation algorithm we

propose below. The consumer faces random and potentially non-linear prices.  Let  be the totalpjt(x)

price associated with purchasing size x of brand j.

Given the prices of all brands and all sizes, the consumer at each period has to decide which

brand to buy, where denotes a choice of brand j, how much to buy, denoted by  (ifdijt'1 xit

, ), and how much to consume.  Rather than letting consumption be endogenouslyx it >0 jj
dijt'1

determined we could let it be set at a fixed rate or let it be described by a random variable distributed

(independently of prices).  Both these alternative assumptions, which have been made by previous

work, are nested within our framework.  All the results below hold, indeed the proofs and estimation

of the structural model are both simpler. We feel it is important to allow consumption to vary in

response to prices since this is the main alternative explanation to why consumers buy more during

sales, and we want to make sure that are results are not driven by assuming it away.
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V(I(0))' max
{ct,xt,djt}

j
4

t'0

t E u(ct, t; )&C(it)%jj
djt pjt(xt)%Ajxt |I(0)

s.t. 0# it, 0#xt

it' it&1%xt&ct

(1)

Since the good is storable, quantity not consumed is kept as inventory for future

consumption. Facing different prices over time, consumers have to decide whether to purchase

immediately or wait for a lower price in the future. For now we assume the consumer visits one store

each week, i.e., we do not model the consumer’s decision of when to shop.  In Appendix A we

discuss an extension that allows consumers to vary in the frequency of visiting stores.  Facing

different prices over time, consumers have to decide whether to purchase immediately or wait for

a low price in the future.  After dropping the subscript i, in order to simply notation, the consumer’s

problem can be represented as

where  is the marginal utility from income,  captures the effects of brand differentiation andAjxt

advertising,  denotes the information at time t,  is the discount factor, and  is the costI(t) >0 C (it)

of storing inventory.7 The effect of differentiation and advertising is  where , isAjxt' j% ajxt% jxt j

a fixed taste of brand j that could be a function of brand characteristics and could vary by consumer,

, the effect of advertising variables on the consumer choice, and , a random shock thatajxt jxt

impacts the consumer’s choice.  Note that the latter is size specific, namely, different sizes get

different draws introducing randomness in the size choice. 

The information set at time t consists of the current inventory, , current prices, the currentit&1



8  In principle, the information set also includes the advertising variables, , (and the taste for the brand ifajt
it varies over time).  However, as we show below for the purpose of specifying the dynamic process we collapse all
these variables into a “quality” adjusted price.  Therefore, in order to simplify notation we include only price in the
information set.  

9It is quite reasonable to assume that at the time of purchase the current utility shock has still not been realized.
This will generate an additional incentive to accumulate inventory – the cost of a stock out.  Since this is not our focus,
we ignore this effect for now, but it can easily be included in the application. 

10In principle we can deal with the case where utility shocks are correlated over time. However, this
significantly increases the computational burden since the expectation in equation (1) will also be taken conditional on t
(and potentially past shocks as well).  In future extensions we would like to endogenize the price process.
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shock to utility from consumption, , and the vector of random shocks.8  Consumers face twot

sources of uncertainty: future utility shocks and unpredictable future prices.  We assume that the

consumer knows the current shock to utility from consumption, ,9 and that these shocks aret

independently distributed over time. Prices are (exogenously) set according to a first-order Markov

process, which we describe in the Section 4.10 Finally, the random shocks, , are assumed to bejxt

independently and identically distributed according to a type I extreme value distribution.

3.2 Deriving predictions

Before we estimate this model structurally we would like to indirectly test its relevance.

Therefore, we derive predictions and their implications for patterns we can potentially observe in

both aggregate and household-level  data. To study the properties of the model we solve for optimal

consumer behavior in equation (1) under two simplifying assumptions:

Assumption 0: Only one brand of the good is offered, it is not advertised (i.e., ), and it isAt(xt)'0

sold in continuous amounts at linear prices.

Assumption 1: Assume first order stochastically dominates for all . F(pt%1 |pt) F(pt%1 |p’t) pt >p’t

Under these simplifying assumptions the consumer’s behavior can be described as follows.

In each period a consumer weights the costs of holding inventory against the (potential) benefits
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max
{ct ,xt, it}

E ( j
4

t'0

t {u(ct% t ; )&C(it)& pt xt % t ( it&1%xt&ct& it )% t xt%µt it } | I(t) ) (2)

u )(ct%vt ; )' t , (3)

pt' t% t , (4)

C '(it)% t' E( t%1 |I(t))%µt . (5)

from buying at the current price instead of future expected prices. She will buy for storage only if

the current price and her inventory are sufficiently low.  At high prices the consumer might purchase

for immediate consumption, depending on her inventory and the realization of the random shock to

utility. We now formally characterize this behavior.

The solution of the consumer’s inventory problem is characterized by the following

Lagrangian

where  and are the Lagrange multipliers of the constraints in equation (1). From equationµt, t, t

(2) we derive the first order conditions with respect to consumption,

purchase,

and inventory,

Using these conditions we derive the basic predictions of the model. We show that consumers follow

a (conditional) S-s type of behavior, where the target inventory level is a function of current price

only, S(p), and the trigger inventory level depends both on prices and the utility shock, s(p, ).

Let  be the consumption level such  and let S(p) be thec ((pt, t) u )(c ((pt, t)% t )' pt

inventory level such .C '(S(p))% pt' E( t%1 |I(t))

Proposition 1 In periods with purchases, , the target level of inventory, , equals S(pt), axt >0 it

decreasing function of pt, independent of the other state variables  and . Moreover, theit&1 t
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inventory level that triggers a purchase is which is decreasing ins (pt, t)'S(pt)%c ((pt, t) ,

both arguments.

Proof of Proposition 1: If  then . If , there is nothing to show, simply S(pt) = 0. Inxt >0 t'0 it'0

the complementary case, , we know .  Using equation  (4) and , equation (5)it >0 µt'0 µt' t'0

becomes:   which shows the end-of period inventory, , is independentC '(it)% pt' E( t%1 |I(t) ), it

of the states variables  and .  Moreover, since  increases in , by equation  (3)  weit&1 t F(pt%1|pt) pt

get that the right hand side of the last equality declines in . Hence, since  the end of periodpt C ))>0

inventory, , declines in price.it

To show that the inventory level that triggers a purchase is  assume first thatS(pt)%c ((pt, t) ,

the consumer is willing to buy when she has an initial inventory .  In such ait&1 >S(pt)%c ((pt, t)

case, , which violates equation (5) since it would hold with equality for , but theit >S(pt) it'S(pt)

left-hand side  is bigger and the right-hand side smaller for . Now suppose the consumerit >S(pt)

does not want to purchase when .  Since  we know  which in turn,it&1 <S(pt)%c ((pt, t) xt'0 t >0,

by equation (3), implies   Hence,  which implies equation (5) cannot hold. Byct >c ((pt, t). it <S(pt),

definition, it holds for  but for  the left-hand side is lower than the right-hand side. WeS(pt), it <S(pt)

conclude that the inventory  triggers purchases. �it&1'S(pt)%c ((pt, t)

Remark:  If only discrete quantities are available or prices are non-linear in quantities then

the target inventory S(@) becomes a function of  and ..  As we see below this implies that we cani t&1 t

not test this proposition directly with our data.

Inventories are an important dimension of household behavior, however since we do not

observe inventories in our data, we present next predictions about purchases on which we have

detailed data.
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Proposition 2   declines in the three arguments.x(it&1,pt, t)

Proof of Proposition 2: There are two cases to consider. Case 1:  and .  In this casext >0 it'0

purchases equal consumption minus initial inventories:  Sincex(it&1,pt, t)'c(it&1,pt, t)& it&1 . xt >0

we can combine equations (3) and (4) to get  which implies thatu )(ct%vt ; )' pt ,

declines in  and , and is independent of Thus, declines in , , andc(it&1,pt, t) t pt it&1 . x(it&1,pt, t) t pt

.it&1

Case 2:  and . From Proposition 1 we know .x t >0 it >0 x(it&1,pt, t)'S(pt)%c(it&1,pt, t)& it&1

The result follows from Case 1 and Proposition 1, which showed  declines in pt. �S(pt)

Corollary 1: There is a price , where  is the highest (non-sale) price, such that at anyp r <p m p m

price   if consumers buy they do so for current consumption exclusively.p$p r

Proof of Corollary 1: At  if  there is nothing to show. If  we can combine equationsp m xt'0 xt >0

(4) and (5) to get .  Moreover, from equation (4) we knowC ’(it)% pt' E( t%1 |I(t) )%µt

.  The right hand side of the last inequality is  strictly lower than  (asE( t%1 |I(t)) # E(pt%1 |I(t)) p m

long as prices lower than ,  arise with positive probability). Hence, since  we knowp m #1

 for any . Therefore, equation (5) can hold with equality only ifC'(it)% p m> E( t%1 | I(t) ) it$0

, i.e., when . Since the inequality is strict it holds also for some . Concluding theµt>0 it'0 p r<p m

proof that if any quantity is purchased, it is for consumption only, since no inventories will be left

at the end of the period. �

Proposition 3:  Holding  and  constant, if  then namely thept t i )t&1 > i ))t&1 it(i
)

t&1,pt,vt)$ it(i
))

t&1,pt,vt),
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target level of inventory,  is an increasing function of .it, it&1

Proof of Proposition 3: There are three cases to consider.  Case 1: Both levels of inventory trigger

purchase.  By Proposition 1 the target level of inventory is S(p), which is independent of initial

inventorty,  and therefore the result holds.  Case 2:  triggers purchase but  does not.  By thei ))t&1 i )t&1

second part of Proposition 1this implies that . Since no purchase was madei )t&1 >S(p)%c ((pt, t)

optimal consumption will be (weakly) less than .  Therefore,c ((pt, t)

.it(i
)

t&1,pt, t)>S(p)' it(i
))

t&1,pt, t)

Case 3: Neither inventory level triggers purchase.  If the optimal consumption isc(it&1,pt, t)

decreasing in  then since there is no purchase the result trivially holds. Consider the case whereit&1

the optimal consumption is increasing in .  Suppose that  decreases in . Plugging equationit&1 it it&1

(3) into equation (5), we see that the left-hand side of equation (5) declines in . However, theit&1

right hand side increases in .  Since we supposed that consumers with higher have a lowerit&1 it&1

, as  decreases the consumer  will  have a higher expected future marginal utility fromit it

consumption. Moreover, if the non-negativity constraint binds, it adds another positive term in the

right hand side. This leads to a contradiction, which implies  increases in , during non-purchaseit it&1

periods. �

Up to now we have focused on characterizing a single consumers optimal behavior. Next we

generate cross household comparative statics. We start by studying how the optimal behavior

changes with a change in storage cost.  Assume storage costs are such that:  increases in h forC ’h(i)

any inventory i.
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Proposition 4: Consumers with higher storage costs (higher h), all else equal, hold lower

inventories, purchase more frequently and in lower quantities.

Proof of Proposition 4: Follows directly from equation (5).

Next, we examine how the optimal inventory behavior changes with changes in the

household consumption needs, captured by consumer characteristics i.  Assume that these

characteristics are such that , namely, consumers with higher  have a higher marginal
M

2u(cit , it ; i )

M Mc
$0

utility from consumption.

Proposition 5: Consumers with marginal utility from consumption (higher ) hold higher

inventories, i.e. all else equal,  is higher.S(pt)

Proof of Proposition 5: Suppose  decreases (weakly) in .  Plugging equation (3) into equationS(pt)

(5), we see that the left-hand side of equation (5) declines in . However, the right hand side

increases in , as consumers with higher  (i) hold lower inventories, hence expect to consume

(weakly) less in the next period, (ii) have a higher marginal utility from consumption and (iii) are

more likely to have the constraint on inventory binding. This leads to a contradiction, which

implies  increases in . �S(pt)

3.3 Testable Implications

In this section we state the model’s predictions that can test with the data described in Section

2. We first present the implication of  Propositions 1 and 2 on the impact of inventories on



11Corollary 1 describes the stockpiling effect for every price less than , which we have implicitly equatedp r

with a sale.  In the empirical analysis we do not observe and therefore we will experiment with several definitionsp r

of a sale.
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purchases.  As we do not observe consumer inventories we use two different strategies. First, we will

make several assumptions that will allow us to come up with a proxy for the unobserved inventory.

Second, we resort to prediction on other aspects of consumer purchase behavior, which indirectly

inform us about the stockpiling behavior. Therefore, before turning to the indirect predictions which

match our data, we present those regarding inventories to be tested by proxies, which follow

Propositions 1 and 2.

Implication I1: Quantity purchased and the probability of purchasing decline in inventories.

We now turn to predictions more relevant for our data, which does not include information

on inventories.  From Proposition 2 we know that during sales quantity purchased is bigger.

Quantity purchased can increase simply because consumption increases when the price decreases

(see equation (3)).  However, our model predicts an additional effect: purchases are bigger during

sales because stockpiling occurs only then (Corollary 1).11  Since we do not know the size of the

consumption effects, showing that quantity purchased increases during sales is a weak test of our

theory.  

The consequence of stockpiling is a higher end of period inventory, which , all else equal,

implies a longer duration until the next time the consumer hits the threshold for purchase, s.

Alternatively, if sales involved a higher purchase only due to consumption effects, duration would

be unaffected by sales.  This gives the following implication, which indirectly testifies to the
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presence of stockpiling.

Implication I2: Duration until next purchase is longer during a sale.

From Proposition 1 we know that the inventory that triggers a purchase, s(@), is lower at non-

sale prices. Hence, according to our model, since during a non-sale purchase inventory is lower, on

average the duration from previous purchase will be longer.  Furthermore, if the previous purchase

was on sale then, all else equal, their inventory would have been higher.  Then by Proposition 3 the

consumer’s inventory would be higher today, relative to their inventory if the previous purchase was

not during a  sale.  Therefore, conditional on purchasing on non-sale today, it is more likely that the

previous purchase was not during a sale. This leads to the following implications.

Implication I3: Duration from previous purchase is shorter at sale periods.

Implication I4: Non-sale purchases have a higher probability that the previous purchase

was not on a sale, namely:  where S =sale purchase andP r (NSt&1 |St)<Pr(NSt&1 |NSt),

NS=non-sale purchase.

In the model we take the frequency with which a household observes a price as given, and

equal across households. However, in our sample some households are exposed to larger numbers

of price draws; either because they visit the supermarket more frequently, or because they visit more

supermarkets per week, or because they perceive a larger number of products as close substitutes.

Households observing more draws are able to purchase at sale prices more often, they may not need
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to store as much when they find a sale. Another dimension in which households are likely to differ

is their ability to store.  The impact of storage cost is given by Proposition 4. The following

implication summarizes these dimensions of household heterogeneity.

Implication I5: The proportion of purchases on sale increases with: (i) the number of price

draws a consumer gets and (ii) the ability to store.

From Proposition 2 and Corollary 1 we know that at the non-sale prices consumers only

purchase for current consumption, hence price only affects consumption. During sales, however,

consumers react to price reductions not only by consuming more but also by accumulating

inventories.

Implication I6:  Consumers are more price sensitive during sales.

We now turn to implications on aggregate demand. The aggregation of implication I2 over

a population that visits the supermarket at different periods leads to implication I7, namely, that store

level demand increases with duration since last sales. Moreover, since at non-sale periods consumers

only demand for current consumption, while, on sale they hoard inventories (Corollary 1) we expect

duration to have stronger effects during sales.

Implication I7: Aggregate demand increases in the duration from the previous sale. 

Implication I7’: Duration effects are stronger during sale.



12 There are at least a couple of alternative ways to construct a consumption series.  First, we could assume that
weekly consumption is constant, for each household over time, and estimate it by the total purchase over the whole
period divided by the total number of weeks.  Alternatively, we could assume that consumption is an exogenously given
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4. Econometrics

Using the data described in Section 2.1 we test the model in two ways.  First, we examine

the theory indirectly by examining some of its implications.  This step is described in detail in the

next section. For reasons we motivate below, we go beyond testing the implications of the theory and

structurally estimate the model.  The structural estimation is based on the nested algorithm proposed

by Rust (1987), but has to deal with issues unique to our problem.  We start by providing a general

overview of our estimation procedure and then discuss some of the more technical details.

4.1 An overview of the estimation 

We base our estimation on the “nested algorithm” proposed by Rust (1987).  The procedure

is based on nesting the (numerical) solution of the consumer’s dynamic programming problem

within the parameter search of the estimation.  The solution to the dynamic programming problem

yields the consumer’s deterministic decision rules, i.e., for any value of the state variables the

consumer’s optimal purchase and consumption .  However, since we do not observe the random

shocks, which are part of the state variables, from our perspective the decision rule is stochastic.

Assuming a distribution for the unobserved shocks we derive a likelihood of observing the decisions

of each consumer (conditional on prices and inventory).  We nest this computation of the likelihood

into a non-linear search procedure that finds the values of the parameters that maximize the

likelihood of the observed sample.

We face two main hurdles in implementing the above algorithm. First, we do not observe

inventory since both the initial inventory and consumption decisions are unknown.  We deal with

the unknown inventories using the model to derive the optimal consumption12 in  the following way.



random variable (Erdem et al, 2000).
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Assume for a second that the initial inventory is observed.  Therefore, we can use the procedure

described in the previous paragraph to obtain not only the likelihood of the observed purchases, but

also the probability of different consumption levels, and therefore the likelihood of different

inventory levels, at time .  For each inventory level we can again use the procedure of thet'1

previous paragraph to obtain the likelihood of the observed purchase, but now we account for the

distribution of the inventory level when computing the likelihood.  We can continue this procedure

to obtain the likelihood of observing the sequence of purchases for each household. In order to start

this procedure we need a distribution for initial inventory.  We experiment with using the ergodic

distribution of inventory for each household, and with using part of the data in order to simulate the

initial distribution of inventory.

The second, and more difficult, problem is the dimensionality of the state space.  If there

were only a few brand-size combinations offered at a small number of prices, then the above would

be computationally feasible. In the data over time households buy several brand-size combinations,

which are offered at many different prices.  This makes the “standard” approach computationally

infeasible.  We therefore propose the following three-step procedure. The first step, consist of

maximizing the likelihood of observed brand choice conditional on the size (quantity) bought in

order to recover the marginal utility of income, , and the parameters that measure the effect of

advertising,  and ’s.  As we show below, we do not need to solve the dynamic programming

problem in order to compute this probability.  In the second step, using the estimates from the first

stage, we compute the “inclusive values” for each size (quantity) and their transition probabilities

from period to period. This allows us, in the final step, to apply the nested algorithm discussed above

to the a simplified problem in order to estimate the rest of the parameters.  Rather than  having the
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state space include prices of all available brand-size combinations, it includes only a single “price”

for each size.  For our data set this is a considerable reduction in the dimension of the state space.

We use this simplified problem to define and maximize the likelihood of purchasing a size

(quantity).

4.2 The three step procedure

For a given value of the parameters the probability of observing the purchase decision (which

brand and what size) as a function of the observed state variables (prices) is

Given the assumption that  follows an i..i.d. extreme value distribution, the probability of thejxt

purchase decision conditional on prices and inventory is

where  and EV(@) is the expected future value given today’s state variables and today’sA 1
jxt'Ajxt& jxt

decisions. Note that the summation in the denominator of equation (6) is over all brands and all

sizes.  The probability of inventory  is computed, as described above, by starting with an initialPr(it)

distribution and updating it using observed purchases and optimal consumption computed from the

model.  This probability can be used to form a likelihood, but as was pointed above (and as we can

see from this equation) it requires keeping as state variables all the prices of all brand-size

combinations.  We therefore propose an alternative three-step procedure.

In the first step, we estimate part of the preference parameters (the marginal utility of income,

, and the parameters that measure the effect of advertising,  and ’s) using a static model of brand

choice conditional on the size (quantity) purchased. In other words, we estimate a logit, restricting

the choice set to options of the same size (quantity) actually bought in each period.  The static



25

Pr (djt'1 |xt, it,pt, t)'
exp pjt(xt)%A 1

jxt

j
k

exp pkt(xt)%A 1
kxt

'Pr (djt'1 |xt,pt,)

xt' log jk
exp pkt(xt)%A 1

kt .

estimation yields consistent, but potentially inefficient, estimates of these parameters.

We now want to justify the first step of our algorithm.  Let be the optimalc (

k (xt, t)

consumption conditional on a realization of  and purchase of size  of brand k.t xt

Lemma 1: c (

j (xt, t)'c (

k (xt, t).

Proof: (in the Appendix).

Conditional on the size purchased the optimal consumption is the same regardless of which brand

is chosen.

Given this lemma and that in our model , namely the brandEV ( It ;djt'1,xt,ct)'EV ( It ;xt,ct)

of the inventory does not affect future utility.  All terms involving future expected utility in the brand

choice cancel, thus, from equation (6)

where the summation is over all brands available in size  at time t.  In order to compute thisxt

probability we do not need to solve the dynamic programming problem, nor do we need to generate

an inventory series.  Therefore, the marginal utility of income, and the parameters that enter  canA 1
jxt

be estimated by maximizing this probability.  This amounts to estimating a brand choice logit using

only the choices with the same size as the size actually purchased.

In the second step, using the estimates from the first stage, we compute the “inclusive values”

for each size (quantity) and their transition probabilities from period to period.  The inclusive value

can be thought of as a “quality” adjusted price index for all brands in that size category.  Note, that

since the parameters might vary by observed or unobserved consumer characteristics these values

will differ by consumer. 



13 There is also a loss of a efficiency in the estimates, mentioned in the first step.

26
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The usefulness of the inclusive value, is that it collapses the state space to a single index per

size, therefore reducing the computational cost.  For example, instead of keeping track of the prices

of nine brands times five sizes (roughly the dimensions in our data), we only have to follow five

quality adjusted prices. The main loss is that transition probabilities have to be defined in a

somewhat limited fashion.  Two price vectors that yield the same vector of inclusive values will have

the same transition probabilities to next period state, while a more general model will allow these

to be different.13  In reality, however, we believe this is not a big loss since it is not practical to

specify a much more general transition process.  For the results presented below we use the inclusive

values estimated from the first step to estimate the following transition

where S is the number of different sizes and N(@,@) denotes the normal distribution.

The usefulness of the inclusive values is twofold. First, it helps us to separate the probability

of observed choices into the probability of choosing a brand conditional on size and the probability

of choosing a size. Second, it helps reduce the computational burden of the dynamic problem since

we need to solve the dynamic problem only in order to compute the latter probability. Each

individual, maximizing her expected value of utility stream, computes her expected value function

with respect to the future evolution of the inclusive value of each for each size only, as oppose to

having to record as state variables all the characteristics (price, advertizing and feature) of each size

and brand.

In the third, and final, step we feed the inclusive values, and the estimated transition

probabilities, into the nested algorithm discussed above to compute the likelihood of purchasing a
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size (quantity). More precisely, using the definition of the inclusive values, and equation (6), we can

write 

It is this probability that we use to construct a likelihood function in order to consistently estimate

the remaining parameters of the model.  

 Our estimates for the parameters of the utility from consumption, the cost of holding

inventory and discount factor are those that maximize this likelihood.  The likelihood is a function

of the expected value function, which despite the reduction in the number of state variables, is still

computationally burdensome to solve.  We use approximation and simulation methods (Keane and

Wolpin, 1994; Rust 1996, 1997; Bertsekas and Tsitsiklis, 1996) and parallel processing to reduce

the computation time. We also hope in the future, once we allow for more heterogeneity in the

dynamic parameters, to use the methods proposed by Ackerberg (2000) to reduce the number of

times needed to solve the dynamic programming problem.

5. Results

In this section we use the data previously described to present evidence on the relevance of

the theory outlined in Section 3.  We start with indirect evidence constructed from both the aggregate

and household-level data.  The evidence generally confirm the implications derived in Section 3.

Motivated by the indirect evidence we impose more structure, which allows us to examine the

relevance of our theory directly.  Also, the direct estimation yields estimates of the parameters of the

model, which allows us to perform counterfactual experiments.



14Duration is measured in weeks/100.  In all the columns, even though the coefficient on duration squared is
significant, the implied marginal effect will be of the same sign as the linear term for the range of duration values mostly
observed in the data.  Therefore, we limit the discussion to the linear coefficient on duration.

28

5.1 Indirect Tests of the Theory

5.1.1 Aggregate data: the effect of duration from previous sales

According to implication I7 demand should increase with the duration from the previous sale

(i.e., as consumers run out of the inventory stockpiled during the last sale). Moreover, the impact of

duration is stronger during sales, (implication I7’).  Table 5 presents the results of regressing the log

of quantity sold, measured in ounces, as a function of price, current promotional activity and duration

from past promotional activity.  Different columns present the results for different samples. 

Using the whole sample, i.e., both sales and non-sales periods, contrary to the model’s

predictions the effect of duration is negative.14  However, this result is driven by the correlation

between sales and other promotional activities, like feature.  Without controlling for duration from

previous feature, which is one of the promotional activities, the coefficient on duration from sale

captures both effects. Indeed, once we include the duration from previous feature, in column 2, the

coefficient on duration is positive and significant as expected.  We also tried to include duration

from last display in the regression, but the coefficient was insignificant.

Restricting attention to sales periods, the effect of duration from previous sale is positive

even before we control for duration from previous feature. Once we control for duration from

previous feature the coefficient increases in magnitude.  For the non-sale sample, the effect of

duration from previous sale becomes positive only once we control for duration from previous

feature. Consistent with implication  I7',  the effect of duration is stronger during sales periods.

5.1.2 Household sales proneness



15We also looked at the fraction of quantity purchased on sale.  The results were essentially identical.
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In addition to the aggregate data used to produce the results in Table 5, we also have data on

the purchases of roughly 1,000 households over a period of two years.  We first use these data to

distinguish between those households that tend to buy on sale and those that do not.  We regress the

fraction of times the household bought on sale during the observed period on various household

characteristics.15  Results, presented in Table 6, show that demographics have little explanatory

power.  In column (i) we see that households without a male tend to buy less on sale, as do

households with a female working less than 35 hours a week.  Households with higher per person

income are less likely to buy on sale, and so are households with a female with post high school

education.  These effects are just barely statistically significant, and some not significant, at standard

significance levels.  Overall the observed demographics explain less than 3 percent of the variation,

across households, in the fraction of purchases on sale.  Both the direction and lack of significance

of these results is consist with previous findings (Blattetberg and Neslin, 1990).

While the frequency a household buys on sale is not strongly correlated with standard

household demographics it is correlated with two other household characteristics, relevant from the

theory perspective.  First, households that live in market 1 tend to buy less on sale.  This is true even

after controlling for many demographic variables including income, family size, work hours, age and

race, as seen in column (ii).  Market 1 has smaller homes with less rooms and bedrooms, relative to

the other market.  Under the assumption that home size proxies storage costs, this finding is consist

with our model that predicts that lower storage costs are correlated with purchasing more frequently

on sale (I5.ii).  Second, though we know nothing about each households’ house, we know the

number of dogs they own. Columns (iii) shows that the having a dog is positively, and significantly,

correlated with purchasing on sale, even after we control for other household characteristics.  At the



16Dogs might alternatively be a proxy for spare time, which may reflect a higher propensity to search. However, if dog was
capturing propensity to search it would loose importance once we control for measures that proxy the propensity search  (e.g.,
frequency of visits and number of stores). In fact the number of dogs is uncorrelated with those proxies, moreover,  dogs’ significance
is not affected by controlling for search proxies (see column (viii)).

17The mean fraction of purchases on sale is 0.48, with a median of 0.5, 25 and 75 percentiles of 0.2 and 0.74,
respectively.
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same time owning a cat is not.  Assuming that dog owners have larger homes, while cat owners do

not, this further supports our theory.  Dog ownership is not just a proxy for the market since the

effects persist once we also include a market dummy variable, as seen in column (iv).16

 To test the first part of implication I5 we explore three proxies for the number of price draws

a household observes.  In columns (v) through (viii) we explore the correlation between frequency

of purchasing on sale and the proxies: the number of stores, the frequency of visits to the stores and

the number of different products the household purchased.

Households that bought in more than one store tend to buy more on sale: increasing the

number of stores visited during the two year period by one, increases the frequency of purchasing

on sale by 5 percentage points.17  The percentage of households that buy in one, two or three stores

is 22, 40 and 23, respectively.  The relationship continues to hold if instead of number of stores

visited we measure the concentration of expenditures across stores with an Herfidendal-like measure.

Going from the 25 percentile household, with a concentration of 0.58, to the median, with a

concentration of 0.82, will decrease frequency of buying on sale by about 8 percentage points.

Column (vi) shows that households that shop more frequently tend to buy more on sale.  If

the average duration between visits to a store increases by a day the frequency of purchasing on sale

decreases by roughly 1.5 percentage points.  The mean duration between visits is 6.2 days, the

median is 5.7 and the 25 and 75 percentiles are 4.1 and 7.9, respectively.

Finally, the frequency of purchasing on sale is also correlated with the number of different
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brands a household purchased over the observed period.  Each additional brand increases the

probability of purchase by 2 percentage points.  The percent of households that buy one through five

brands is 17, 22, 21, 16 and 11, respectively.  Since we want to distinguish between a household that

buys the same brand almost always except for rare occasions, from the household that buys equal

amount of two brands, we also constructed a Herfindel-like measure of the concentration of quantity

purchased of different brands.  The results suggest that moving from the 25 percentile (0.35) to the

median (0.50) to the 75 percentile (0.82) of the brand concentration decreases the frequency of

purchasing on sale by 3 and 9 percentage points, respectively.  All these effects also hold once we

control for the characteristics used in columns (i) - (iv). These findings regarding storage cost proxies

and the frequency of shopping support the predictions in I5.

5.1.3 Sale vs. non-sale purchases

Next, we compare sale and non-sale purchases. The results presented in Table 7 suggest that

when purchasing on sale households buy more units and larger sizes.  This is true both when

comparing between households (households that make a larger fraction of their purchases during

sales tend to buy larger sizes) and within a household over time (when buying during a sale a

household will tend to buy a larger size), as predicted by Proposition 2. 

It is also shown in Table 7 that duration to next purchase is bigger for purchases on sale,

while duration from previous purchase are shorter while on sale. These finding match the within

household duration predictions implied by implications I2 and I3. 

Notice that both implications I2 and I3 are within household implications. However, they

have between households counterparts, namely, those households that consume more, higher , buy

more on sale (Proposition 4). Indeed all the between duration effects are positive. This is quite



18 We also examined random effects models. The results were essentially identical, and therefore not reported.

19In a log-log equation to coefficient is roughly -1.  Note, that none of these numbers should be interpreted as
a demand elasticity.  First, we restrict the sample to strictly positive purchases, i.e., we are examining the decision of
how much to buy conditional on purchase.  Second, the prices, as well as other variables, are for the product actually
purchased and not a fixed product.
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natural, as households more prone to buy on sale buy bigger quantities, hence less frequently. 

Finally, we find that the probability the previous purchase was not on sale, given that current

purchase was not on sale is higher, as implied by prediction I4. The reasoning behind the prediction

is that since non-sale purchases have a lower inventory threshold (namely, inventories have to be low

for the buyer not to be willing to wait for a sale) a non-sale purchase informs us that inventories are

low, which in turn means, other things equal, that the last purchase was not on sale. Notice the

between household differences are a lot bigger. Suggesting a large cross-household heterogeneity

in sales proneness, as those households buying today on sale, are a lot more likely to have purchased

last time on sale as well. 

5.1.4 Inventories, purchases and promotional activities

In Table 8 we present a set of regressions that study the link between quantity purchased by

a household, conditional on a purchase, the price paid and promotional activities. The dependent

variable in all the regressions is the quantity and the dependent variables include household-specific

dummy variables (as well as dummy variables for each store and for each, broadly-defined,

product).18 The average price elasticity implied by the results in the column (i) is roughly -0.8 (with

a median of roughly -0.3).19 

One of the predictions of our theory is that the inventory a household holds should impact

the quantity purchased (implication I1). We do not observe inventory therefore we construct a proxy,



20By regressing this measure on household demographics we can check that we get something reasonable.
Indeed, our measure of consumption increases with family size, if there is a teenager in the family and if the female
works more than 35 hours a week.
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under the assumption of constant consumption over time.  For each household we sum the total

quantity purchased over the two year period.  We divide this quantity by 104 weeks to get the

average weekly consumption for each household.20  Assuming the initial inventory for each

household was zero, we use the consumption variable to construct the inventory for each household

at the beginning of each week.  This generated some negative inventories, which we can treat by

adding a household specific initial inventory that assures that we do not get any negative inventories.

Since we include a household-specific dummy variable these corrections do not matter (as long as

the inventory variable enters the regression linearly).

The results, presented in column (ii) are consistent with implication I1: the higher the

inventory a household holds the less they buy.  The estimated coefficient suggests that each unit of

(16 ounce) inventory reduces the quantity purchased by about 4.3 percent (or roughly two thirds of

an ounce).  In column (iii) we interact this variable with purchase on sale. The effect of inventory

during a sale is higher than during non-sale periods. Although not predicted by the model, this

difference seems reasonable, mainly because of the discreteness of units offered. During non-sale

purchases, consumers are predicted to buy only for current consumption, namely, which in our data

maps into a small container. Hence, as long as a single small container size is offered, inventories

are likely to affect the probability of purchase, but not the quantity purchased.

  The effect of inventories on quantity purchased is statistically different than zero, but the

magnitude of the effect is quite low. From Proposition 1 we know that assuming continuous

quantities, the model predicts a slope of minus one: conditional on purchasing the target is not a

function of inventory and therefore every additional unit of inventory reduces the quantity purchased



21The model we presented in Section 3 predicts that consumption will respond to unobserved shocks.  This
implies that the assumption of constant consumption used to generate the inventory series will be right on average but
will generate measurement error.  The assumptions we made on the shocks will yield classical measurement error.
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by one.  There are several data and modeling  reasons that could explain the difference between

Proposition 1 and the estimated coefficient. First, we measure inventory in a very crude way, leading

to measurement error. Classical measurement error biases the coefficient towards zero.21 Second, as

we pointed out in Section 3, the result of Proposition 1 does not hold once only discrete quantities

are offered, as is the case in practice.  This will make purchases less sensitive to inventories, in

particular during non-sales, where no matter what the initial inventory is, consumers are predicted

to buy only for consumption. Finally, as we saw in Table 7, a significant component of increased

purchase during a sale is buying a larger size, and not more units.  Normally not all sizes are offered

on sale at the same time. Therefore, the result of Proposition 1 does not directly apply here. These

problems are treated in the structural estimation by using the consumption decisions implied by the

structural model and controlling for the actual choice set faced each period.

We performed the same analysis for the effect of inventory on the probability of purchase,

conditional on being in a store (still implication I1).  If the household’s inventory was below its

average it was almost twice as likely to buy.  The overall probability of purchase is roughly 9

percent.  If the inventory was above the average (for that household) it went down to 7 percent and

if the inventory was below average it increased to over 13. The probability of purchasing laundry

detergent decreases by about 0.65 percentage points for every additional 16 ounces of inventory. 

The model does not incorporate other promotional activities than sale, but naturally they

affect purchasing behavior. Columns (iv)- (ix) in Table 8 add the promotional variables to the

regression.  In columns (iv)-(vi) these variables are not interacted with price. The price coefficient

is effected only slightly and for the most part the effects of the promotional variables are as expected.



22This section is incomplete and the results are preliminary.
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The two exceptions are the non-significant coefficient on feature, which is somewhat at odds with

our finding from the aggregate data, and the negative effect of the interaction of sales and display.

The first is driven by the high correlation between the feature variable and the interaction with sale.

As we see at the bottom of the table, for this sample conditional on feature there is 0.89 probability

of a sale. The latter becomes positive, as expected, once we interact the promotional variables with

the price.  Once we interact the promotional variables with price the effect of a sale is to shift out

demand.  This is consist with the theory presented in Section 3, which suggests that households buy

more during a sale in order to store the product in inventory (Proposition1 and Corollary 1).

In columns (vii)- (ix) we allow the price sensitivity to vary with promotional activity.  We

find that sales tend to increase the price sensitivity, especially if they are combined with a feature or

display promotion.  Taken literally this implies that households tend to increase their purchase more

if a price cut is during a sale, compared to a cut in the regular (non-sale) price.  Once again this

interpretation is consist with the model (implication  I6).

5.2 Structural Estimates22

In order to further test our model and in order the derive implications we present in this

section preliminary structural estimates.  We estimates a restricted form of the model described in

Section 3 using the algorithm described in Section 4.  For now we did not allow for any

heterogeneity across households and used a restrictive functional form for the storage costs.  The

results are based on based on a sample of 100 households.  The parameters are of the expected sign.

Since the results are preliminary and the parameters are of little direct interest we only present

(some) implications.
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Table 9 presents a comparison of the own-price elasticities computed from the dynamic

model and those computed from various static models.  All static models include all brand-size

combinations, they differ in how price is measured.  Model 1 used the price of each choice,  Model

2 uses the price per unit, and Model 3 uses the price but also includes a size fixed effect.  It is not

surprising that the own-price elasticity increase (in absolute value) as we move from Model 1.

Households buy larger sizes which are move expensive, without controlling for this the estimation

yields less price sensitive demand.  Model 2 controls for this in a “standard” way by using price per

unit.  Indeed the demand is more elastic.  Model 3 controls for the differences across sizes by using

a size fixed effect.  If the EV term in the dynamic model was constant over time, this model would

perfectly control for it.  For this reason it is the most comparable with the dynamic model.

The mean own-price elasticity from the dynamic model is about 5% lower than Model 3 and

a fair bit higher that the other 2 models.  This might not seem like much, but when we look at the

distribution of 

the percent difference we see that the mean is somewhat misleading.  The differences can be quite

large, and the static model can either over or under estimate the true elasticity, because of the

inventory.  When inventory is high the static model will over estimate the elasticity, and visa versa

when inventory is low.

Overall, we find this results encouraging.  Even with a very restricted version of our model

the results seem to suggest that the dynamic are economically important.  We believe that as we

estimate more complex versions of the model, which allow for more heterogeneity, the economic

significance will only increase.

6. Preliminary Conclusions and Extensions
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In this paper we propose a model of consumer inventory holding.  We use the model to derive

several implications, which we take to the data.  Our data consists of an aggregate detailed scanner

data and a household-level data set.  Using these data sets we find several pieces of evidence

consistent with our model. (1)  Aggregate demand increases as a function of duration from previous

sale, and this effect differs between sale and non-sale periods.  (2) Fraction of purchases on sale are

higher in one market (the market that on average has larger houses) and if there is a dog in the house.

Both of these could potentially be correlated with lower storage costs. (3) When buying on sale

households tend to buy more units, larger sizes and increase the duration to next purchase.  (4) Sales

seem to shift demand and change the price sensitivity. (5) Inventory constructed under the

assumption of fixed consumption over time, is negatively correlated with quantity purchased and the

decision to buy conditional on being in a store.

The main negative result is that the effect of inventory while statistically significant seems

small.  We discussed several reasons that could be driving this result including measurement error

in the construction of the inventory variable and non-linear effects.  Both of these will be handled,

at least partly, in the structural model by relying on the model described in Section 3 to predict the

non-linear effects and to construct an inventory variable assuming optimal behavior by the

consumers.  Furthermore, the structural model will allow us to better interpret the estimates, as well

as perform some counterfactual experiments.  The latter will allow us to return to some of the

questions we used to motivate the analysis.

We are currently exploring extensions along several dimensions.  First, we are extending our

theoretical analysis to include the supply side.  This, jointly with the structural estimates, will allow

us to examine questions like what proportion of the variation in sales can be explained by our

estimates, and given our estimates what are the optimal patterns of sales.  Second, the analysis in this
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paper focuses on one product category, laundry detergents.  We choose this category because we

thought it justified some of the assumptions we had to make to focus the analysis on consumer

inventory.  However, our theory has predictions across categories, which we can test using the

additional categories our data set contains.



23 We abuse notation here since the information in each period is different.  In store visit periods it includes
the random shocks, , while in non-visit periods it does not. More importantly, during store visits the information setjxt
includes actual prices, while during non-store visits prices might not be observed by the consumer and therefore
expected, or imputed, prices enter the information set.
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V I(t) '&C(it)% max
{ct,xt,djt}

u(ct% t)% pjt(xt)%Ajt(xt)% E qV I(t%1) % (1&q)W I(t%1) |I(t)

W I(t) '&C(it)%max
{ct}

u(ct% t)% pjt(xt)% E qV I(t%1) % (1&q)W I(t%1) |I(t) .

Appendix A

The model presented in the Section 3.1assumes that consumers visit the store every

period.  In the data we observe variation in the time between store visits.  This variation impacts

the previous model in two ways.  First, consumption should vary with the duration between

visits.  In principle this could be handled by allowing the distribution of the consumption shock,

, to depend on the duration for previous visit.  This approach does not account for the effect oft

duration to next visit on the expected distribution of prices in the next visit. Therefore, we

propose the following model.

In periods when the consumer visits the store his behavior is described by the above

model.  In each period there is a probability, q, that he will visit the store next period.  If he does

not visit the store he only chooses consumption and does so as to maximize the current utility,

minus inventory cost, plus future gains, subject to the same constraints as before.  As before let

the value function in periods of store visits be , and the value function during non-visitV(I(t))

periods be .23 W(I(t))

The optimal behavior can be characterized by the following Bellman equations

It is easy to allow the probability of a visit in the next period, q, to depend on consumer

characteristics and to let it vary between visit and non-visit periods. 
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k % t)% EV ( It ;djt'1,xt,c
(

k )

u(c (

j % t)&u(c (

k % t)> EV ( It ;djt'1,xt,c
(

k )& EV ( It ;djt'1,xt,c
(

j ).

u(c (

j % t)&u(c (
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(

k )& EV ( It ;djt'1,xt,c
(
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Appendix B

Proof of Lemma 1: Suppose there exists j and k such that   Then c (

j 'c (

j (xt, t)úc (

k (xt, t)'c (

k .

and therefore

Similarly, from the definition of c (

k (xt, t)

which is a contradiction.
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Table 1
Brand Volume Segment Shares and Fraction Sold on Sale

Brand Firm 7/91-12/91 1/92-6/92 7/92-12/92 1/93-6/93

Share
in Seg

%  on
Sale

Share
in Seg

%  on
Sale

Share
in Seg

%  on
Sale

Share
in Seg

%  on
Sale

Liquid: 34.4 37.8 40.0 56.9

Tide P & G* 20.7 19.6 22.2 40.6 22.8 34.8 19.5 47.1

All Unilever 11.3 45.7 11.2 39.8 17.8 52.4 18.5 65.0

Purex Dial 5.9 84.2 10.0 73.6 8.2 62.9 11.4 73.3

Wisk Unilever 12.3 47.2 12.5 53.4 11.2 63.1 9.8 69.1

Solo P & G* 12.8 18.2 10.9 10.5 11.4 11.7 5.6 2.1

Cheer P & G* 5.1 14.3 4.8 45.2 4.1 36.2 4.3 42.6

A & H* C & D* 5.8 36.1 4.5 20.9 4.2 30.2 3.6 52.3

Surf Unilever 5.4 56.7 4.1 36.2 3.8 60.5 2.8 73.9

Other  – 20.6 29.7 19.9 23.4 16.5 25.2 24.5 59.8

Powder 31.2 33.7 36.1 43.7

Tide P & G* 37.5 26.3 42.0 35.3 40.1 37.5 39.2 39.8 

Cheer P & G* 11.0 39.1 8.6 39.0 9.5 37.1 13.2 59.9 

A & H * C & D* 18.9 29.9 13.7 17.2 13.7 10.6 12.0 13.7 

All Unilever 3.6 24.8 5.4 24.8 5.4 69.5 6.0 89.6 

Surf Unilever 3.2 39.8 4.2 30.3 4.2 53.5 4.6 71.1 

Purex Dial 1.2 37.4 0.7 40.9 0.7 17.0 0.4 34.4 

Other – 24.7 35.5 26.3 40.2 26.4 37.8 24.6 39.5 
* A & H = Arm & Hammer; P & G = Procter and Gamble; C & D = Church and Dwight.
Columns labeled Share in Seg are segment market share of volume sold in the nine store in our sample and columns
labeled %  on Sale are the percent of the volume, for that brand in that quarter, sold on sale.  The category Other
includes all other brands, including those produced by some of the manufacturers listed.
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Table 2 
Non-linear Pricing by Store

Size
Store 32 oz. 64 oz. 96 oz. 128 oz. 256 oz.

Mrkt I
$/16 oz. share

(%)
disc (%) share

(%)
disc (%) share

(%)
disc (%) share

(%)
disc (%) share

(%)
uw qw uw qw uw qw uw qw uw qw

1 1.21 1.20 1.8 29.8 36.1 21.1 28.0 29.6 8.7 33.7 41.1 59.5 27.1 33.0 2.3

2 1.46 1.51 1.1 43.6 46.3 23.0 42.0 45.9 7.3 44.9 57.9 54.1 44.1 47.1 2.8

3 1.82 1.63 2.3 49.1 49.6 44.5 43.8 41.8 6.5 52.8 51.2 35.8 – – –

4 1.57 1.62 3.2 38.0 41.7 41.6 35.9 36.9 6.2 39.6 49.6 39.9 – – –

5 1.62 1.62 2.8 40.0 42.1 43.2 39.0 38.7 7.9 43.2 49.1 36.5 – – –

Mrkt II

1 1.86 1.55 1.4 48.3 48.6 26.7 49.2 57.5 10.1 53.3 66.1 58.8 – – –

2 1.51 1.38 2.6 44.2 42.8 50.2 42.2 38.0 15.6 43.0 40.1 29.6 36.8 30.9 1.2

3 1.63 1.57 1.2 48.8 50.4 38.5 44.2 45.0 7.9 52.7 53.6 41.8 – – –

4 1.60 1.64 1.0 46.0 49.0 29.7 44.0 47.2 8.2 47.9 54.3 41.5 39.2 40.6 1.6
Data from all brands of liquid detergent.  The column labeled $/16 oz. presents the average per unit, un-weighted(uw) and quantity-weighted(qw), price of a container
size in a store.  The average is taken over weeks and across different brands. The column labeled disc presents the percentage discount in, un-weighted(uw) and
quantity-weighted(qw), price per 16 oz. unit, relative to the, un-weighted(uw) and quantity-weighted(qw), price of  a 32 oz. packet, respectively.  The column labeled
share presents the share of quantity sold in each store as a total of total quantity of liquid detergent sold in that store.
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Table 3 
Non-linear Pricing for TIDE by Store

Size
Store 32 oz. 64 oz. 96 oz. 128 oz. 256 oz.

Market I

$/16 oz. share
(%)

disc (%) share
(%)

disc (%) share
(%)

disc (%) share
(%)

disc (%)

uw w uw w uw w uw w uw w

1 1.20 1.20 0.6 12.6 14.0 7.1 11.7 11.7 4.9 24.7 35.0 72.6 17.4 17.4

2 1.20 1.20 1.0 13.2 14.4 13.7 17.5 17.5 6.3 19.0 27.6 40.5 24.8 26.2

3 1.33 1.33 4.2 12.0 16.2 26.8 12.3 19.7 15.2 14.3 23.2 25.9 – –

4 1.35 1.35 2.6 14.1 15.4 26.6 13.8 14.0 13.6 14.8 17.7 33.9 – –

Market II

1 1.35 1.35 3.2 15.8 21.5 32.4 13.1 12.9 19.6 17.1 27.7 25.8 – –

2 1.25 1.25 6.2 17.2 17.5 34.5 16.6 16.4 22.8 16.9 17.2 27.9 23.2 23.3

3 1.25 1.25 1.7 16.3 18.9 24.0 17.1 21.1 18.3 19.7 22.8 27.2 – –

4 1.25 1.25 0.6 14.1 23.4 19.6 16.8 18.5 6.5 17.0 24.9 35.3 21.7 21.6
The column labeled $/16 oz. presents the average per unit, un-weighted(uw) and quantity-weighted(qw), price of a container size in a store.  The average is taken
over weeks and across different brands. The column labeled disc presents the percentage discount in, un-weighted(uw) and quantity-weighted(qw), price per 16 oz.
unit, relative to the, un-weighted(uw) and quantity-weighted(qw), price of  a 32 oz. packet, respectively.  The column labeled share presents the share of quantity
sold in each store as a total of total quantity of liquid detergent sold in that store.
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Table 4 
Non-Sale Prices, Frequency of Sale and Quantity Sold, by Store and Size

Size
Store          32 oz. 64 oz. 96 oz. 128 oz.

price
sale
(%)

big sale
(%)

disc
(%)

sale
(%)

big sale
(%)

disc
(%)

sale
(%)

big sale
(%)

disc
(%)

sale 
(%)

big sale
(%)

Market I freq q freq q freq q freq q freq q freq q freq q freq q

1 0.95 0.0 0.0 0.0 0.0 18.0 16.1 38.9 9.8 27.4 13.1 8.6 10.8 0.0 0.0 25.8 15.6 14.3 7.4 11.2

2 1.35 15.4 6.7 15.4 6.7 40.4 29.9 36.1 15.6 16.5 39.6 24.3 29.3 1.1 5.6 44.2 27.8 62.3 9.5 49.6

3 1.28 3.0 2.7 3.0 2.7 32.5 19.6 42.3 13.9 37.4 17.7 21.4 52.0 12.6 43.8 25.4 39.9 71.1 25.9 62.2

4 1.69 8.9 8.3 8.9 8.3 43.8 9.6 19.7 4.3 13.6 40.2 4.0 6.8 1.7 6.0 47.5 17.5 36.2 11.2 31.1

5 1.68 10.8 8.7 10.8 8.7 43.7 10.1 19.9 3.8 13.2 41.9 3.5 8.3 0.8 4.4 46.1 22.8 38.6 16.4 32.8

Market II  

1 1.54 10.5 4.4 0.8 0.1 43.0 15.0 44.4 7.2 39.7 60.5 14.1 11.7 0.7 2.0 52.5 23.7 81.6 12.0 77.4

2 1.28 0.0 0.0 0.0 0.0 34.0 37.2 52.9 19.7 34.2 34.4 24.6 28.1 0.0 0.0 34.2 22.4 32.5 10.9 18.9

3 1.56 9.5 10.4 2.0 2.8 51.1 20.5 35.9 7.6 22.0 42.5 18.6 39.6 6.8 23.7 48.1 36.6 64.5 15.9 42.7

4 0.99 0.4 0.5 0.4 0.5 13.2 25.6 44.3 12.4 29.9 7.8 26.9 42.4 13.8 24.5 13.7 31.5 63.6 11.8 46.8

The column labeled price presents the modal price per 16 oz. for a 32 oz. container in each store.  Columns labeled disc. present the discount in the per unit modal
price for each size.  Columns labeled sale and big sale present the frequency (freq) of the price being below its modal value (by size and store) and the frequency
of it being at less than 90 percent of the modal price, respectively, and quantity sold (q) at those instances.
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Table 5
Demand as a Function of Duration from Previous Promotional Activity

Variable full sample sale=1 sample sale=0 sample

log(price) -2.79
(0.07)

-2.81
(0.07)

-2.76
(0.12)

-2.73
(0.12)

-2.44
(0.11)

-2.35
(0.16)

duration from previous sale -0.48
(0.19)

1.00
(0.26)

1.10
(0.41)

2.70
(0.50)

-0.83
(0.21)

0.75
(0.31)

(duration from previous sale)2 0.32
(0.44)

-1.82
(0.55)

-2.92
(0.96)

-5.08
(1.13)

 0.86
(0.49)

-1.43
(0.64)

feature 0.49
(0.03)

0.49
(0.03)

0.50
(0.04)

0.52
(0.04)

0.77
(0.15)

0.66
(0.16)

display 0.99
(0.02)

0.97
(0.02)

0.92
(0.03)

0.90
(0.03)

1.04
(0.03)

1.02
(0.03)

duration from previous feature – -2.06
(0.24)

– -2.55
(0.43)

– -1.95
(0.29)

(duration from previous feature)2 – 2.78
(0.44)

– 3.05
(1.05)

– 2.66
(0.52)

N = 10,684 10,178 3,225 3,047 7,459 7,131
The dependent variable in all regressions is the natural logarithm of quantity purchased (measured in ounces).  Each observation is a brand-size combination in a
particular store.  Duration from previous sale (feature) is measured as number of weeks, divided by 100, from previous sale (feature) for that brand in that store for
any size.  All regressions include brand-size and store dummy variables. 
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Table 6
Correlation Between Households Fraction of Purchases on Sale

 and Household Characteristics

Variable (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

constant 0.46
(0.03 )

0.53
(0.03)

0.44
(0.03)

0.52
(0.03)

0.36
(0.03)

0.56
(0.03)

0.41
(0.03)

0.43
(0.05)

male head of
household

0.07
(0.02)

0.04
(0.02)

0.06
(0.02)

0.04
(0.02)

0.03
(0.02)

female
works <35
hrs/week

0.06
(0.03)

0.05
(0.03)

0.05
(0.03)

0.04
(0.03)

0.04
(0.03)

female
works >35
hrs/week

-0.01
(0.02 )

-0.02
(0.02)

-0.02
(0.02)

-0.02
(0.02)

-0.01
(0.02)

income per
person

-0.009 
( .009)

0.002
(.009)

-0.005
(.009)

0.005
(.009)

0.006
(0.009)

female post
HS
education

-0.03
( 0.02)

-0.02
(0.02)

-0.03
(0.02)

-0.02
(0.02)

-0.02
(0.02)

Latino -0.12
( 0.05)

-0.05
(0.05)

-0.12
(0.05)

-0.05
(0.05)

-0.04
(0.05)

market I -0.14
(0.02)

-0.14
(0.02)

-0.13
(0.02)

dog dummy
variable

0.08
(0.02)

0.06
(0.02)

0.07
(0.02)

cat dummy
variable

-0.02
(0.03)

-0.01
(0.02)

-0.003
(0.027)

# of stores 0.05
(0.01)

0.03
(0.01)

avg days b/
shopping 

-0.014
(0.004)

-0.009
(0.004)

# of brands 0.021
(0.006)

0.021
(0.006)

R-squared 0.026 0.067 0.037 0.075 0.023 0.015 0.012 0.103
The dependent variable is the fraction of purchases made during a sale.  Each household is an observation. 
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Table 7
Differences in Purchasing Patterns Between Sale and Non-Sale Purchases

Average
during 

non-sale
purchases 

Difference during sale purchases Average
during 

non-big-sale
purchases

Difference during big-sale
purchases

Total Within Between Total Within Between 

households households

Units purchased 1.04
(0.01)

0.07
(0.01)

0.05
(0.01)

0.10
(0.02)

1.04
(0.01)

0.08
(0.01)

0.07
(0.01)

0.09
(0.02)

Size 
(16 oz.)

4.54
(0.03)

0.77
(005)

0.50
(0.04)

1.20
(0.20)

4.61
(0.03)

0.88
(0.05)

0.61
(0.05)

1.10
(0.20)

Quantity
(16 oz.)

4.73
(0.04)

1.21
(0.06)

0.81
(0.60)

1.97
(0.26)

4.82
(0.04)

1.43
(0.07)

1.01
(0.07)

1.77
(0.27)

Duration from previous
purchase (days)

44.26
(0.70)

5.97
(1.07)

-1.62
(0.98)

25.91
(8.32)

44.68
(0.64)

7.12
(1.17)

-2.56
(1.08)

29.61
(8.30)

Duration to next
purchase (days)

43.94
(0.71)

7.50
(1.10)

1.19
(0.99)

30.46
(8.64)

43.97
(0.64)

10.66
(1.20)

3.04
(1.10)

33.15
(8.70)

Duration to next
purchase, conditional on
it being non-sale (days)

41.94
(0.80)

10.99
(1.50)

3.11
(1.23)

28.00
(7.96)

42.20
(0.75)

14.86
(1.70)

5.11
(1.43)

25.72
(8.00)

Previous purchase not
on sale

0.69
(0.01)

-0.28
(0.01)

-0.06
(0.01)

-0.74
(0.02)

0.65
(0.01)

-0.27
(0.01)

-0.03
(0.01)

-0.66
(0.02)

Based on all purchases of liquid and powder detergents by households observed in our sample.  A sale is defined as a price below the modal price, of a UPC in a
store over the observed period. A big sale is defined as a price 10 percent below the modal price. The column labeled Within households controls for an household
fixed effect, while the column labeled Between households is the regression of household means.  Standard errors are provided in parentheses.



51

Table 8
Quantity Purchased by Household as a Function of Price and Promotional Activities

Variable (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

price -2.64
(0.10)

-2.57
(0.10)

-2.58
(0.10)

-2.32
(0.11)

-2.26
(0.11)

-2.26
(0.11)

-1.85
(0.12)

-1.80
(0.12)

-1.79
(0.12)

price*sale -0.91
(0.23)

-0.89
(0.23)

-0.91
(0.23)

price*
feature 

0.14
(0.73)

0.22
(0.72)

0.21
(0.72)

price*
display 

0.19
(0.33)

0.17
(0.32)

0.16
(0.32)

price*sale
*feature 

-2.06
(0.85)

-2.19
(0.84)

-2.16
(0.84)

price*sale 
*display 

-1.34
(0.55)

-1.31
(0.54)

-1.30
(0.54)

sale 0.28
(0.12)

0.31
(0.12)

0.40
(0.12)

1.24
(0.25)

1.25
(0.25)

1.35
(0.25)

feature -0.04
(0.23)

-0.07
(0.23)

-0.06
(0.23)

0.06
(0.53)

-0.02
(0.52)

-0.007
(0.52)

display 0.49
(0.13)

0.51
(0.13)

0.52
(0.13)

0.37
(0.29)

0.40
(0.29)

0.41
(0.29)

sale *
feature 

0.89
(0.27)

0.90
(0.27)

0.88
(0.27)

1.94
(0.63)

2.04
(0.63)

2.00
(0.63)

sale *
display

-0.22
(0.19)

-0.25
(0.19)

-0.27
(0.19)

0.64
(0.47)

0.59
(0.47)

0.56
(0.46)

inventory -0.043
(0.003)

-0.037
(0.004)

 -0.043
(0.003)

-0.034
(0.004)

 -0.043
(0.003)

-0.034
(0.004)

inventory
*sale

-0.015
(0.005)

-0.021
(0.005)

-0.021
(0.005)

Pr(sale | feature) = 0.89; Pr(feature | sale) = 0.63; 
Pr(sale | display) = 0.68; Pr(display | sale) = 0.54

The dependent variable in all regressions is the quantity purchased (measured in 16 oz units.)  The regressions have
8012 observations, where an observation is a purchase of a strictly positive quantity of detergent by a household. All
regressions also include household-specific dummy variables, 8 (broadly defined) product-specific dummy variables
and store dummy variables.  Prices ($/16 oz) and promotional variables are for the product purchased.
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Table 9
A Comparison of Elasticities Computed from the Structural Model

 and from Static Models

Model 1 Model 2 Model 3

Average Own-Price Elasticity
(dynamic model == -2.15)

-0.46 -1.84 -2.25

Percent difference (percent):a

  Average -78.8 -7.3 3.7

    Median -77.8 3.8 9.1

5 percentile -84.6 -55.4 -26.3

95 percentile -76.7 20.4 11.8
All static models are conditional logit models, model 1includes the price of a brand, model 2 includes price per ounce,
model 3 includes price and a size dummy variable.  The elasticities are evaluated for purchases at the purchase price.

aComputed as (static model elasticity - dynamic model elasticity)/dynamic model elasticity.


