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adverse selection. Finally, we show in what sense improving risk perception
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1 Introduction

A typical situation where the risk perception of the insurer and that of policyholders

differ is one in which each party knows something that the other does not. The in-

surer may correctly assess the impact on risk of an individual’s characteristics without

observing them all, whereas policyholders may know all their characteristics without

relating them correctly to their risks. These simple and realistic assumptions in-

evitably introduce imperfect risk perception and adverse selection.

In articles combining adverse selection with nonexpected utility, Young and Browne

(2001) and Jeleva and Villeneuve (2004) study, respectively, the Rothschild-Stiglitz

equilibrium and the monopolist’s problem. Though the modeling is similar, our objec-

tive is wider: rather than focusing on particular allocations, we study the whole set of

optimal risk sharing in a context that we interpret as twofold asymmetric information.

Redistribution possibilities and insurance quality under the informational con-

straints are first characterized. We show that the set of feasible redistributions is a

convex subset of the redistributions that a first best economy would allow, and that

the set of second-best efficient redistributions is a convex subset of all feasible redistri-

butions. In other terms, the social planner should limit itself to moderate redistribu-

tion. Due to imperfect risk perception, in general none of the types gets full insurance.

More precisely, we show that the type which values most (respectively least) insur-

ance is increasingly overcovered (respectively undercovered) as wealth transfers in his

favor increase. This generalizes results by Crocker and Snow (1985) and Dionne and

Fombaron (1996) to the context of imperfect risk perception.

Risk perception biases are the critical factors in determining the nature of risk

sharing. We distinguish between weak and strong adverse selection. The former

occurs when agents overstate the difference between types: they tend not to envy

the others’ optimal insurance and the economy admits a continuum of undistorted

incentive compatible allocations. The latter occurs when agents underestimate the

differences between types: the weight of incentive constraints is maximal and there is

a continuum of distorted pooling allocations. In a model where policyholders differ

by their risk aversions and costs of effort, de Meza and Webb (2001) find inefficient

equilibrium pooling. They can solve partially this problem with appropriate taxation,
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but the constrained efficient allocations and the means of implementing them are not

explored.

Finally, we question the effects of improving risk perception. In the context of

pure adverse selection à la Rothschild-Stiglitz (1976), reducing (statistically) the ex-

isting asymmetries of information through categorical discrimination enhances welfare

(Crocker and Snow, 1986). The intuition is that a fraction of the costs that incentive

compatibility constraints impose on the mechanism can be economized. Our message

is quite different. In a Bayesian setting, an improved understanding of risk on the

part of policyholders typically corresponds to polarization in some segments, and to

depolarization in others. But only the polarization of beliefs facilitates redistribu-

tion and guarantees welfare gains for all the segment, the argument being that, for

given risks, more different tastes soften the impact of self-selection constraints. We

discuss the ambiguity of the impact of public information campaigns when they are

not accompanied with appropriate transfers.

Our departure from the assumption that policyholders are better informed raises

two issues. The first is their resistance to learning their risk. The second is the

objective of the social planner: should it maximize utilities as actually perceived by

the consumers or maximize utilities calculated with true probabilities? These issues

are addressed in turn.

Resistance to learning. The causes of adverse selection are well known, but why

doesn’t the consumer infer his type from the contracts he is offered? The sophisticated

consumer would think: “if I prefer an offer which is seen by the insurer as appropriate

to a certain type, I should infer that I have this type and therefore improve my

probability assessment” (Villeneuve, forthcoming).

We assume away this possibility. The objective of this paper is to analyze the

situation where policyholders are not able to reconstruct the reasoning of the insurer.

Deducting one’s unknown characteristics requires an unlikely knowledge of the com-

position (types and proportions) of the pool one belongs with. For example, a menu

may redistribution wealth between policyholders; in that case, the insurance premium

of the contract one prefers is not actuarially fair and its interpretation is ambiguous.

Moreover, if the consumer fails to observe which offers are taken by some other con-
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sumers, he may attach importance to contracts that are never chosen in actuality. In

sum, the policyholder lacks the key parameters that meaningful inference demands.

Welfare. In front of consumers that somewhat err in their risk assessment, the

social planner faces a dilemma: should consumers’ preferences be taken as they are

or as they should be? Whatever the choice, some insurance can be provided, though

coverage may be less than perfect. The ex ante Pareto optimum (EA) amounts

to taking consumers’ preferences as they are at the moment of choice, i.e. based on

subjective probabilities. The ex post Pareto optimum (EP) is evaluated with the true

distribution of loss ex post, which amounts to considering consumers’ preferences as

they should be. These two concepts disagree in general.

An EA is decentralizable (after appropriate redistribution) since competitive in-

surers base their strategies on the actual (not the ideal) preferences of the consumers.

By contrast, an EP program is implementable only via centralized provision, which

is a political and practical disadvantage. For this reason, EA is privileged in the

paper. A comparison between EA and EP will be given in the case of strong adverse

selection.

Organization of the paper. Section 2 sets up the insurance model with subjective

belief and adverse selection. Section 3 explores the whole set of constrained Pareto

optima for given objective probabilities and risk perceptions. Section 4 presents the

comparative statics with respect to risk perception.

2 Model

2.1 Consumers, risk and insurance

Throughout the paper, we consider a unique benevolent insurer (hereafter “the in-

surer”) in charge of implementing the constrained Pareto optima that the social plan-

ner chooses. The insurer is assumed to be risk neutral and is constrained to make no

losses.

There is a continuum of two types of consumers i and j in proportions λi and λj

respectively (λi + λj = 1), and one commodity in the economy. Each consumer faces
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an individual risk, with two individual states s = 1 (no loss) and s = 2 (loss).

The objective probability pi of being in state 2 (loss) for a type-i individual is

statistically known to the insurer (pi 6= pj). Individual risks are assumed to be inde-

pendently distributed, and both types have the same initial contingent endowment

ω = (ω1, ω2) ∈ R∗2
+ . We suppose that consumers evaluate “expected” utility with the

same VNM utility function u defined over R∗
+. However, they use different subjective

probabilities (qi and qj, respectively). We do not assume that qi and qj are ranked

like pi and pj.

We propose a Bayesian interpretation of the discrepancy between risk assessments.

There are two risk factors: one is privately observed by policyholders and takes one of

two possible values, i and j, the other is privately observed by the insurer and takes

one of two possible values, a and b. In a given insurance segment (say policyholders

bearing marker a), there are two “types” (i, a) and (j, a), whose loss probabilities are

perceived differently by the parties. If we drop the segment marker, we retrieve pi, pj

for the insurer and qi, qj for the policyholders, all these parameters being conditional

probabilities.

This is not restrictive for the understanding of optimal risk-sharing. Indeed, op-

timal risk-sharing is decomposable into two dimensions: within a segment (a or b),

and between segments (a to b or the other way around). For the social planner, the

latter is trivial, since, by definition, segments are based on the insurer’s information.

This paper develops the former dimension.

With the Bayesian interpretation, there are overall restrictions on the subjective

probabilities but to integrate interpretations other than the Bayesian one, we have

chosen to keep the four parameters (pi, pj, qi, qj) free. The assumption that policy-

holders do not revise their beliefs as they see the contracts they are offered denies

common knowledge. Our arguments are in the Introduction.

2.2 Contracts and type-efficiency

Insurance contracts consist in an exchange, by the policyholder, of risk ω for a con-

ditional consumption plan x = (x1, x2). As in Prescott and Townsend (1984), x1 and

x2 might be lotteries. This approach is more general and many proofs are simplified.

Indeed, the decision variables of the insurer are now a finite number of probability
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distributions over the consumption set (a pair of contracts here is a quadruple of dis-

tributions). The objective, the choice sets and the feasibility constraints (incentive,

profit) are linear with respect to these variables. Linear programming results, like

uniqueness or continuity with respect to exogenous parameters, can be invoked (see

also Landsberger and Meilijson, 1999). Lotteries do not seem to be observed empir-

ically. Accordingly, Proposition 1 shows that for optimal allocations (constrained or

not), contracts are always “degenerate”.

Given a contract x, the insurer’s net profit πk(x) depends on the consumer’s type:

πk(x) = (1− pk) (ω1 − Ex1) + pk (ω2 − Ex2),∀k = i, j, (1)

and the consumer’s utility is

uk(x) = (1− qk) Eu(x1) + qk Eu(x2),∀k = i, j. (2)

The expectation operator E only recalls that lotteries are allowed.

We define the coverage rate of a deterministic contract x by

c(x) =
u′(x1)

u′(x2)
. (3)

Full insurance means a coverage rate of 1, underinsurance a coverage rate of less than

1 and overinsurance a coverage rate of more than 1. The curve of contracts ensuring

a constant coverage is an income expansion path.

In any unconstrained Pareto optimal allocation (xi, xj), no lotteries are used and

each type’s marginal rate of substitution is equal to that of the insurer:

c(xk) = ck =
qk

1− qk

· 1− pk

pk

. (4)

A contract xk satisfying the above condition is said to be k-efficient, or simply type-

efficient in the absence of ambiguity. The related coverage rate is denoted by ck.

Type efficiency does not mean full insurance when objective probability and beliefs

differ. An optimistic consumer (qk < pk) has an optimal coverage strictly lower than

the full coverage rate (ck < 1), and the rate of coverage is higher than 1 for a

pessimistic consumer (ck > 1).
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2.3 Feasible allocations and redistribution profile

In the situation of adverse selection that we assume, implementing Pareto opti-

mal allocations (type-efficient contracts and no profit overall) is impossible in gen-

eral, though there are important exceptions. Indeed, a pair of efficient contracts

x• = (xi, xj) is likely to violate one (or more) incentive compatibility constraints

(Rothschild and Stiglitz, 1976).

We apply the revelation principle to reason directly on menus. We have indeed a

classical principal-agent structure. Any allocation that can be implemented by some

mechanism can also be implemented via a direct mechanism in which consumers are

offered a menu of two contracts. We denote by F the set of feasible menus, i.e. menus

that are incentive compatible and that satisfy the resource constraint:

x• ∈ F ⇔


λi πi(xi) + λj πj(xj) ≥ 0,

ui(xi) ≥ ui(xj),

uj(xj) ≥ uj(xi).

(5)

The redistribution of expected wealth is parametrized by the profit profile π• =

(πi, πj). For any π•, we define

Fπ• = {(xi, xj)|πi(xi) ≥ πi ; πj(xj) ≥ πj ; ui(xi) ≥ ui(xj) ; uj(xj) ≥ uj(xi)} (6)

as the set of menus for which profit profile π• is feasible. All sets Fπ• or F comprise

quadruples of probability distributions. Constraints being linear, these sets are linear

and convex. By linear of u with respect to probabilities, the set of feasible payoffs

u(F) is convex.

A profit profile making zero profit is called a redistribution profile. The set of fea-

sible redistribution profiles, which is denoted by Π, is a segment (a convex, bounded,

one-dimensional set in R2).

3 Welfare analysis of transfers

3.1 Redistribution constrained optima

The second fundamental theorem of welfare states that any redistribution is compat-

ible with efficiency, provided that the Walrasian market mechanism determines the
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allocation. The following definition will serve to show how second-best economies

depart from first-best economies. Pareto dominance is envisaged in terms of ex ante

welfare (EA in the Introduction).

Definition 1 (RCO) x• is a redistribution constrained optimum (RCO) relative to

profit profile π• if it is not Pareto-dominated in Fπ• .

Under symmetric information, an RCO is always a Pareto optimum. Under asym-

metric information, this concept of efficiency is weaker than second-best optimality,

since we ignore for the moment whether the profit profile we consider is compatible

or not with second-best efficiency.

The proposition shows the relationships between the redistribution profiles, the

set of RCOs and the frontier of the set of implementable payoffs.

Proposition 1 Under adverse selection,

1. The RCO related to some feasible profit profile π• is unique; the contracts sup-

porting it are degenerate, they Pareto-dominate all the menus in Fπ• ; the budget

constraints by type are both binding;

2. The application which associates to any feasible redistribution profile the unique

related RCO, Π → F , π• 7→ x̂• = (x̂i, x̂j), is continuous;

3. The application which associates to any feasible redistribution profile the utilities

of the types at the related RCO, Π → u(F), π• 7→ (u(x̂i), u(x̂j)), is one-to-one

and its image is a continuous portion of the frontier of u(F).

INSERT FIGURE 1 ABOUT HERE

It is never socially desirable that the insurer retains positive profit (first point).

The rest of the paper works with redistribution profiles and their unique RCOs (second

point). Efficient RCOs are on the North-East frontier of u(F). The corresponding

redistribution profiles are said to be efficient and they form a convex subset of Π

(third point). When RCOs are sought via weighted sums of the types’ utilities, the

greater the weight assigned to a type, the greater the expected wealth this type

receives. Inefficient RCOs correspond to negative weights given to one of the types

and extreme transfers.
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The Rothschild-Stiglitz allocation, that is the unique candidate equilibrium in the

standard model, is in fact the RCO associated with the no-redistribution profile. For

the very reason that an implementable redistribution profile may not be efficient, the

Rothschild-Stiglitz allocation may not be a second-best optimum.

3.2 Redistribution and coverage

The critical question with second-best optima is whether or not types are efficiently

insured. Next proposition shows that the type whose expected wealth is low gets a

type-efficient contract at the RCO.

Proposition 2 Consider a redistribution profile in Π and the corresponding RCO

(x̂i, x̂j),

1. If type j’s incentive constraint is not binding, x̂i is i-efficient.

2. If x̂i is i-efficient, then type i’s contract remains i-efficient at the RCO when

more wealth is transferred from type i to type j.

A direct corollary is that there are two thresholds in redistribution levels, each

separating, for a given type, RCOs assigning type-efficient contracts from RCOs as-

signing type-inefficient contracts.

In the standard model (qi = pi and qj = pj), the two thresholds are identical, and

for this particular redistribution, all types are fully insured at the average price. For

any other redistribution profile, the type that receives low transfers is assigned an

efficient contract, not the other.

In our more general setting, we retrieve this idea for relatively low and relatively

high transfers. However, for intermediate transfers (i.e. between the two thresholds),

RCOs assign type-efficient contracts either to both types or to neither. This important

difference with the Rothschild-Stiglitz model that we find is explored in more detail

in Section 4. We show there how it relates with the biases of risk perception.

Coverage varies with the expected wealth allocated to a type. The simplest fact

is that any pair of contracts that satisfies incentive constraints is such that the type

that values coverage more (i.e. with the highest subjective loss probability) gets more

coverage. The proposition goes further.
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Proposition 3 At the RCO,

1. The coverage rate of the type which values coverage more (resp. less) is greater

(resp. smaller) than this type’s optimal coverage rate.

2. The coverage rate of the type which values coverage more (resp. less) increases

(resp. decreases) with the expected wealth this type receives.

In the Rothschild-Stiglitz model, the first point means that the high risk is fully

insured for a small expected wealth, but that this type receives overinsurance if trans-

fers overpass those implicit in the average actuarially fair full insurance (Dionne and

Fombaron, 1996). The only way by which one can implement such high transfers is

by providing overinsurance that low risk policyholders value less.

The second point goes further in the comparative statics. The intuition is simple

but requires a careful proof. Increasing transfers increases the weight of incentive

constraints: it becomes increasingly difficult to discourage the disadvantaged type

from choosing the advantaged type’s contract. The increasingly generous contract

has to be increasingly distorted away from the coverage quality the envious type likes

most. This causes the inefficiency of extreme transfers: at some point, the marginal

distortion (degraded quality) becomes too costly compared with the benefit of the

marginal increase of expected consumption.

4 The effects of risk perception

4.1 Weak and strong adverse selection

Under adverse selection, significant redistribution causes envy and therefore distor-

tions are necessary to circumvent it. What happens with moderate redistribution?

What it the minimal distortion one can expect in an economy? The economy is said to

exhibit weak adverse selection when the intersection of first-best efficient allocations

and second-best allocations is non-empty. It exhibits strong adverse selection when

the intersection is empty, i.e. when envy always restricts efficiency. These qualitative

properties critically depend on risk perception.
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Proposition 4 The economy exhibits weak (strong) adverse selection if and only if

subjective accident probability and optimal coverage are positively (negatively) corre-

lated (qi − qj) · (ci − cj) ≥ (<)0.

Strong adverse selection corresponds to the situation in which there is a contra-

diction between first-best requirements (e.g. ci > cj : type i should be more covered

than type j) and feasibility constraints (e.g. qi < qj : type i will be less covered than

type j). This excludes that both types receive type-efficient contracts at the same

time. This is an instance of the phenomenon that Guesnerie and Laffont (1984) name

nonresponsiveness.

Fix the objective probabilities with pi > pj. Figure 2 is the phase diagram of

the model when qi and qj vary from 0 to 1. Between the frontiers qi = qj and ci =

cj,
1 the economy exhibits strong adverse selection, outside, it exhibits weak adverse

selection. Strong adverse selection is met under two conditions: risk perceptions

are relatively close, and they are positively correlated with true probabilities. The

Rothschild-Stiglitz model is represented by the unique point qi = pi and qj = pj. In

any neighborhood of that economy, strong and weak adverse selection are possible.

INSERT FIGURE 2 ABOUT HERE

For intermediate redistribution, contracts are either both type-efficient or type-

inefficient (a corollary of Proposition 2). Under weak adverse selection, intermediate

RCOs assign type-efficient contracts (no adverse effects of adverse selection), while

under strong adverse selection, intermediate RCOs assign a pooling, i.e. a unique

contract which is type-inefficient for both types.

In the particular but significant case where types do not perceive their difference

(qi = qj), there is a unique second-best optimum.2 Each type is assigned a type-

efficient contract, since the economy exhibiting weak adverse selection, this unique

allocation is necessarily a first-best optimum. The two contracts in the menu are

1Notice that ci(qi, qj) = cj(qi, qj) is a section of an ellipse passing through (0,0), (pi, pj) and

(1,1). In factorized (non-polynomial) form, the equation is indeed(
qi

1− qi

) (
1− pi

pi

)
−

(
qj

1− qj

) (
1− pj

pj

)
= 0. (7)

2Incentive compatibility imposes that the two types receive the same utility in a given RCO. The

RCO that provides maximum utility is the unique second-best optimum.
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equivalent for both types but, in equilibrium, the right type must choose the right

contract. The implementability of this allocation depends on the ability of the insurer

to coordinate policyholders on the appropriate choices.3

The two objectives (EA and EP) discussed in the Introduction are sometimes

reconciled. With strong adverse selection and intermediate redistribution, incentive

constraints command and types are pooled: the objective of the social planner is

locally irrelevant. By contrast, under weak adverse selection, EA and EP always

disagree.

4.2 Feasibility and efficiency with polarized beliefs

Intuitively, differences in tastes facilitate the implementation of different contracts

since envy-free conditions are easier to satisfy. Interpreted in terms of risk perception,

this idea suggests that, other things equal, increasing the disparity between beliefs

alleviates incentive constraints. In this section, we consider changes of the consumers

beliefs, without affecting the objective parameters pi and pj.

Definition 2 Consider beliefs Q = (qi, qj). Beliefs Qe = (qe
i , q

e
j ) are a polarization

of Q if, when qi > qj then qe
i ≥ qi and qj ≥ qe

j (with at least one strict inequality).

The contrary of polarization is depolarization.

Theorem 1 Let beliefs Qe be a polarization of beliefs Q.

1. The set of feasible menus associated with Qe is greater than the one associated

with Q ;

2. The set of transfers associated with Qe such that type i gets an i-efficient con-

tract at the RCO is greater than the one associated with Q ;

3. The set of efficient transfers associated with Qe is greater than the one associ-

ated with Q.

We come back to the Bayesian interpretation of the model and show the ambiguous

effects of information sharing. Assume that segments a and b are such that pja = pjb =

3When beliefs differ, the issue is less disturbing since, for all ε > 0, an ε-optimum, with strong

preference for their contracts on the part of the types, always exists.
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qj = pj (type j is not affected by the factor the insurer observes) but pia > qi > pib

(being a is bad news and being b is good news for type-i).

Should the insurer disclose the risk factor? In segment a, this implies passing

from risk perceptions (qi, qj) to risk perceptions (pia, pj). This is a polarization only

if qi > qj. Conversely, disclosing the risk factor in segment b is a polarization only

if qi < qj. In other words, disclosing the information cannot improve welfare, in the

sense of the Theorem, in both groups.

Theoretically, limiting the transmission of information to the well chosen segment

could be welfare improving: if qi > qj, “say bad news, never say goods news” (tell a,

not b); if qi < qj, “say good news, never say bad news” (tell b, not a). In practice,

targeting a or b might be unfeasible and the open question now is whether a pub-

lic information campaign associated with compensatory transfers between segments

enhances welfare.

5 Conclusion

The possible inefficiency in the Rothschild and Stiglitz model hinges on the market’s

inability to perform transfers between types. To overcome this failure, the simplest

policy is to choose the optimum one wants to implement, then to impose the basic

uniform coverage performing the desired redistribution, and finally to leave the market

reach the Rothschild-Stiglitz equilibrium (Crocker and Snow, 1985).

Previous results on redistribution remained unclear as to the degrees of freedom

left for public choice (Dahlby 1981, Crocker and Snow 1985). The first contribution

of this paper is to prove that second-best allocations are confined to a convex set

of redistribution profiles. If redistribution goes further, the allocation becomes inef-

ficient, and if it goes even further, it becomes unimplementable. We indicate how

incentive constraints, through risk perception and derived tastes, distort the quality

of insurance: the greater the expected wealth a type receives, the lesser the quality

of coverage this type is assigned.

The second contribution is to find that for a large set of parameters, pooling types

is second-best efficient. In the case of strong adverse selection, for a convex set of

transfers, none of the types obtains a type-efficient contract. This contrasts with
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the original Rothschild-Stiglitz economy, in which the only efficient pooling is the

average fair full insurance. Our model permits degrees of freedom in risk perception.

We show that if for some parameters a redistribution profile is efficient, then it remains

so as risk perception polarizes. Said differently, if for some initial endowment, the

Rothschild-Stiglitz equilibrium exists, existence is not lost by polarization.

Last but not least, this paper proposes a Bayesian interpretation of the disparity

between risk perception and true probabilities in terms of two-sided asymmetric infor-

mation. We show that when the insurer cannot observe the information policyholders

possess, information transmission from the insurer to policyholders has ambiguous ef-

fects. We propose an important example in which, in one market segment, efficiency

requires risk perception improvement, while in the other segment, information shar-

ing hardens the incentive constraints. The original criterion we propose to evaluate

efficiency gains (more efficient redistribution, more contracts) deserves development.
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A Appendix

Technical note. In the proofs, we adopt the weak topology for lotteries, but to

simplify, we never write the restriction “almost surely”. Two lotteries are considered

as equal if their consequences differ only for events of null probability.

A.1 Proof of Proposition 1

The maximum element in Fπ• . Fix π• and suppose that Fπ• is non-empty. Define

Cπ• as the set of contracts appearing in some menu of Fπ• (x• = (xi, xj) ∈ Fπ• ⇒
xi ∈ Cπ• ; xj ∈ Cπ•). Define xM

k ∈ arg maxx∈Cπ• uk(x) for k = i, j. By continuity

of u, Cπ• is closed, therefore xM
i and xM

j are in Cπ• . There is a contract Xi ∈ Cπ•

such that ui(Xi) ≥ ui(x
M
i ) and πi(Xi) ≥ πi (possibly, Xi = xM

i ). Similarly, there is a

contract Xj ∈ Cπ• such that uj(Xj) ≥ uj(x
M
j ) and πj(Xj) ≥ πj (possibly, Xj = xM

j ).

Moreover, xM
i and xM

j are such that ui(x
M
i ) ≥ ui(Xj) and uj(x

M
j ) ≥ uj(Xi). The

preceding conditions imply that menu (Xi, Xj) ∈ Fπ• dominates (weakly) any other

menu of Fπ• , and uk(Xk) = uk(x
M
k ). This implies that there is at least one maximum

element of Fπ• which is, necessarily, an RCO.

Binding constraints. We prove that for RCO (Xi, Xj), profit constraints by type

are binding. We reason by contradiction. Suppose that πi(Xi) > πi. The components

of Xi are denoted by x̃1 and x̃2, which are lotteries a priori (Xi = (x̃1, x̃2)). As u

is concave, the degenerate lottery (u−1(Eu(x̃1)), u
−1(Eu(x̃2))), instead of Xi, imple-

ments the same payoffs for the types, but yields a larger profit than πi. There is an

open ball B around (u−1(Eu(x1)), u
−1(Eu(x2))) in which πi(·) > πi. Now we define

the (degenerate) contract Xε,η = (x1, x2) by the following equations:

u(x1) = Eu(x̃1) + ε, (8)

u(x2) = Eu(x̃2) + η. (9)

Profit functions being continuous, ε and η exist such that Xε,η is in B and verifies

(1− qi) ε + qi η > 0, (10)

(1− qj) ε + qj η < 0. (11)
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It follows that (Xε,η, Xj) satisfies incentive constraints, belongs to Fπ• , and ui(Xε,η) >

ui(Xi), a contradiction. Moreover, Xi is composed of degenerate lotteries, else (X0,0, Xj)

would be a menu belonging to Fπ• , yielding the same utility as (Xi, Xj), which would

verify πi(X0,0) > πi, a contradiction.

Uniqueness of the RCO and continuity of the mapping. For a given redistri-

bution profile π•, RCOs are unique in terms of utilities implemented, since they are

all maximum elements of Fπ• . Therefore that they are all solution of the following

program (the objective could be any other function increasing in ui and uj):

max
xi,xj

ui(xi) + uj(xj) (12)

s.t. ui(xi) ≥ ui(xj); uj(xj) ≥ uj(xi); πi(xi) ≥ πi; πj(xj) ≥ πj.

The constraints and the objective are continuous with respect to π• and the objective

is never collinear to a constraint,4 therefore the solution is necessarily at a corner.

This implies that the solution is unique, and that the mapping which associates that

solution to any feasible redistribution is continuous.

The application Π → U , π• 7→ u•. Consider an RCO x̂•, associated with a redis-

tribution profile in Π, whose payoffs are û• = (ûi, ûj). We prove that û• cannot be in

the interior of u(F). We reason by contradiction: assume that û• has a neighborhood

v in the interior of u(F). Choose two points (ûi, ûj +ε) and (ûi +η, ûj) in v with ε > 0

and η > 0. We denote by y• = (yi, yj) (resp. z• = (zi, zj)) a menu implementing

(ûi, ûj + ε) (resp. (ûi + η, ûj)).

One can readily see that (x̂i, yj) and (zi, x̂j) satisfy incentive constraints. The

Pareto optimality of (x̂i, x̂j) in Fπ• implies that these pairs of contracts cannot belong

to Fπ• , and we must conclude that:

πj(yj) < πj(x̂j), (13)

πi(zi) < πi(x̂i). (14)

4For the profit conditions, remark that, u being concave, expected value and expected utility are

not collinear. For the incentive constraints, note that the two independent operators ui and uj are

combined independently to generate the objective and the constraints.
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Profit on (x̂i, x̂j) being zero, this implies in turn that

πi(yi) > πi(x̂i), (15)

πj(zj) > πj(x̂j). (16)

Now consider the menu of lotteries (lαi , lαj ) where, for k = i, j, lαk pays yk with probabil-

ity α and zk with probability 1−α. Menu (lαi , lαj ) belongs to F and Pareto dominates

(x̂i, x̂j); moreover, by continuity of profit functions, α0 exists such that

πi(l
α0
i ) = πi(x̂i), (17)

which implies that

πj(l
α0
j ) ≥ πj(x̂j), (18)

in contradiction with the fact that (x̂i, x̂j) is a maximum element in Fπ• .

Finally we prove that the mapping Π → u(F), π• 7→ u• is one-to-one. Each redis-

tribution profile corresponds to a unique RCO, and a unique element of u(F). Assume

that two RCOs (x̂i, x̂j) and (ŷi, ŷj) implement the same payoffs (ûi, ûj). Without loss

of generality, suppose that πi(x̂i) > πi(ŷi). This condition implies that (x̂i, ŷj) imple-

ments the same utility as the RCOs, is feasible and makes strictly positive profits.

This is impossible (Proposition 1/1).

A.2 Proof of Proposition 2

Point 1. When type j’s incentive constraint is not binding, any possibility to im-

prove type i’s coverage is exploitable (Proposition 1/1), thus type i gets an i-efficient

contract.

Point 2. Denote by π1
• and π2

• two redistribution profiles such that π1
i < π2

i (π1
• is

more favorable to i than π2
•). Assume that x̂i(π

1
•) is i-efficient (we denote it x1

i ). We

prove that xi(π
2
•) (or x2

i ) is implementable, which, with Proposition 1, implies that

x̂i(π
2
•) = x2

i .

Assume that type i’s incentive constraint is binding at x̂•(π
1
•). Denote by c1

j the

coverage rate of x̂j(π
1
•). Denote by x2

j the contract whose coverage rate is c1
j and

which gives the same utility to i as x2
i . The single crossing condition imposes that
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since type j prefers x̂j(π
1
•) to x̂i(π

1
•), then type j also prefers x2

j to x2
i . Menu (x2

i , x
2
j)

is incentive compatible. Remark also that this menu offers more profitable contracts

to both types than x̂•(π
1
•) (smaller value, for the same coverage rates). We conclude

that x2
i is implementable.

As long as type i’s incentive constraint is not binding at x̂•(π
1
•), then one can

increase profits on that type without losing i-efficiency (which is what the proposition

says). Once the incentive constraint starts to be binding, the paragraph above can

be applied.

A.3 Proof of Proposition 3

To fix ideas, we suppose in this proof that qj ≥ qi.

Point 1. We reason by contradiction. Suppose that, given the redistribution profile

π•, the RCO (x̂i, x̂j) is such that type j’s coverage cj is strictly smaller than cj.

Clearly, type j strictly prefers the corresponding j-efficient contract xj to x̂j. Consider

then contract yj which coverage equals cj and that gives to type j the same utility

as x̂j. Obviously, this contract is less expensive than xj and x̂j. Moreover, as type

j weakly prefers x̂j to yj whenever c(x̂j) < c(yj), single crossing conditions implies

that it is also the case for type i (ui(x̂j) ≥ ui(yj)). It follows that menu (x̂i, yj) is

feasible; however, it gives the same utility as the RCO and belongs to Fπ• ; this is in

contradiction with the uniqueness result of Proposition 1.

Point 2. The following remark is instrumental. Call OI (for overinsurance) the set

of contracts whose coverage rates are greater or equal to cj. Take two contracts in OI,

if the one with the greatest expected wealth for j has the lowest coverage rate, then

it is the one preferred by i and j.

Consider two RCOs (x̂i, x̂j) and (ẑi, ẑj) such that type j’s expected wealth is

greater with ẑj. We reason by contradiction. Suppose that c(ẑj) < c(x̂j).

1. Proposition 3/1 implies that c(ẑj) ≥ cj; but c(x̂j) > c(ẑj) and thus c(x̂j) > cj.

We conclude that x̂j is not j-efficient and ui(x̂i) = ui(x̂j).

2. Remark also that ẑj gives more expected wealth to type j than x̂j, therefore

Proposition 2/2 implies that ẑj is not j-efficient, and ui(ẑj) = ui(ẑi).

18



3. ẑj is preferred to x̂j by both types, because contracts x̂j and ẑj belong to OI

(Proposition 3/1) and the remark on OI above applies. We thus have

ui(x̂i) = ui(x̂j) < ui(ẑj) = ui(ẑi), (19)

meaning that ẑi is preferred to contract x̂i by type i.

4. ẑi, though less expensive, is preferred to x̂i by type i (equation 19). This implies

that x̂i is not i-efficient.

5. x̂• is a pooling (x̂i = x̂j), the two incentive constraints being binding (points 1

and 4).

6. ci > cj, because from Proposition 3/1, and from point 5, one knows that

ci ≥ c(x̂i) = c(x̂j) > cj.

7. c(ẑi) ≤ c(ẑj) (property of any menu), c(ẑj) < c(x̂j) (by assumption), c(x̂j) =

c(x̂i) (point 5) and c(x̂i) ≤ ci (Proposition 3/1). Consequently, ẑi is not i-efficient,

and uj(ẑj) = uj(ẑi).

8. ẑ• is a pooling (ẑi = ẑj), the two incentive constraints being binding (points 2

and 7).

9. pj < pi. Indeed, pooling x̂• covers more than pooling ẑ•, and type j’s (type i’s)

expected wealth is smaller (resp. larger) with x̂• than with ẑ•;

10. cj > ci, since pj < pi and qj > qi.

There is a contradiction between points 6 and 10.

A.4 Proof of Proposition 4

Under weak adverse selection, there is at least one transfer system such that both

types get an efficient contract at the RCO, and then c(x̂i) = ci and c(x̂j) = cj. This

implies that (qi − qj) · (ci − cj) ≥ 0. To prove the reciprocal, there are two cases to

be considered once, to fix ideas, we assume that pi > pj.

qi > qj and ci > cj. Denote by xI the contract at the intersection of the two curves

of equations c(x) = ci and λi πi(x) + λj πj(x) = 0. Consider redistribution profile

(πi(xI), πj(xI)) and the RCO for this profile. Clearly xI = xi therefore x̂i = xi is

i-efficient.

We apply the same argument for xJ , the contract at the intersection of the two
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curves of equations c(x) = cj and λi πi(x) + λj πj(x) = 0. The corresponding re-

distribution profile assigns a j-efficient contract at the CPO to type-j policyholders.

However, since ci > cj, the transfers implicitly defined by xJ are more favorable to

type j than (πi(xI), πj(xI)). So from Proposition 2/2, we deduce that type-j poli-

cyholders also get a j-efficient contract at the RCO associated with (πi(xI), πj(xI)).

Consequently (xi, xj) is the RCO associated with this transfer. We are in a situation

of weak adverse selection.

qi < qj and ci < cj. We apply the intermediate value theorem to define implicitly

a redistribution such that the associated i- and j-efficient contracts verify ui(xi) =

ui(xj). Given that c(xi) < c(xj), it follows that xi1 > xj1, and the single crossing

property of the indifference curves with qi < qj implies that uj(xi) < uj(xj), which

proves that (xi, xj) is feasible. We are in a situation of weak adverse selection.

A.5 Proof of Theorem 1

Let ue
k(x) denote the indirect utility that type k with beliefs qe

k draws from contract

x.

A.5.1 Point 1

Lemma 1 Let x and y be two contracts. If ue
i (y) ≥ ue

i (x) and ue
j(y) ≥ ue

j(x), with

at least one strict inequality, then ui(y) ≥ ui(x) and uj(y) ≥ uj(x) with at least one

strict inequality.

Proof. This is a direct consequence of the single-crossing property.�

Suppose that (xi, xj) is a menu for parameters (Q, π•). Incentive constraints

are satisfied ui(xi) ≥ ui(xj) and uj(xi) ≤ uj(xj). With Lemma 1, this implies that

ue
i (xi) ≥ ue

i (xj) and ue
j(xi) ≤ ue

j(xj), meaning that incentive constraints relative to

beliefs Qe are verified. We conclude that (xi, xj) is a menu relative to parameters

(Qe, π•).
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A.5.2 Point 2

Let π• be a redistribution profile such that type i gets an i-efficient contract, xi,

at the RCO with beliefs Q (the RCO is (xi, x̂j)). We denote by xe
i the i-efficient

contract relative to parameters (Qe, π•) (the RCO is (x̂e
i , x̂

e
j)). We treat separately

cases qi = qe
i and qi 6= qe

i .

Case qi = qe
i . Point 1 of this theorem implies that (xi, x̂j) is a also menu for pa-

rameters (Qe, π•). This menu is Pareto dominated by the RCO (x̂e
i , x̂

e
j), in particular

ue
i (x̂

e
i ) ≥ ue

i (xi). However, as qi = qe
i , xi = xe

i . We conclude that type i gets an

i-efficient contract at the RCO relative to parameters (Qe, π•).

Case qi 6= qe
i . Type-i agents with beliefs qi and qe

i prefer their own i-efficient con-

tracts:

ue
i (x

e
i ) > ue

i (xi), (20)

ui(x
e
i ) < ui(xi). (21)

Then, it follows from Lemma 1 that

ue
j(x

e
i ) < ue

j(xi). (22)

We know from point 1 of this theorem that menu (xi, x̂j) is feasible for parameters

(Qe, π•), hence:

ue
i (xi) ≥ ue

i (x̂j), (23)

ue
j(xi) ≤ ue

j(x̂j). (24)

(xe
i , x̂j) is a menu for parameters (Qe, π•). Indeed, feasibility is immediate, and

ue
i (x

e
i ) > ue

i (x̂j), (25)

ue
j(x

e
i ) < ue

j(x̂j), (26)

where (25) is deduced from (20) and (23) while (26) is deduced from (22) and (24).

However, the RCO (x̂e
i , x̂

e
j) relative to parameters (Qe, π•) Pareto dominates any

feasible menu for parameters (Qe, π•), and particularly (xe
i , x̂j). This means:

ue
i (x̂

e
i ) ≥ ue

i (x
e
i ), (27)
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which implies in turn that x̂e
i = xe

i . Type i gets an i-efficient contract for the RCO

relative to parameters (Qe, π•).

A.5.3 Point 3

We know from Proposition 1 (/2 and /3) that the set of efficient redistribution profiles

is an interval, so we have to check that this interval is bigger with beliefs Qe than with

beliefs Q. We focus, without loss of generality, on the RCO (xi, xj) that maximizes

type j’s utility for beliefs Q, the associated profit being denoted by π•. We check that

the RCO relative to parameters (Qe, π•), (xe
i , x

e
j), is also a second-best allocation.

An RCO is of one of the following three types: (a) the two contracts are type-

efficient, (b) one of the contracts only is type-efficient, (c) no contract is type-efficient.

Point 2 of this theorem implies that the set of type-efficient contracts cannot

decrease when beliefs are polarized. This implies that if (xi, xj) if of type (a), then

so is (xe
i , x

e
j), and we are done, as for any case where (xe

i , x
e
j) is of type (a). If (xi, xj)

if of type (b), the only case which is possible and nontrivial is (xe
i , x

e
j) of type (b);

this is treated in “(b) to (b)”. If (xi, xj) if of type (c), the case (xe
i , x

e
j) of type (c) is

treated in “(c) to (c)” and (xe
i , x

e
j) of type (b) is treated in “(c) to (b)”.

The following lemma will be used on several occasions.

Lemma 2 Let (xi, x̂j) be an RCO for beliefs Q in which xi is i-efficient, type i’s

incentive constraint is binding and type j’s incentive constraint is not binding. (xi, x̂j)

is a second-best Pareto optimum if and only if τ(qi, qj) ≥ 0 with

τ(qi, qj) =
λi(1− pi)

(1− qi) u′(xi1)
+

λj

qj − qi

(
qj (1− pj)

u′(xj1)
− (1− qj) pj

u′(xj2)

)
. (28)

Proof. Let (xi, x̂j) be an RCO in which type i is assigned an i-efficient contract,

type i’s incentive constraint is binding and type j’s incentive constraint is not binding.

Notice that type j’s contract is fully determined by type i’s utility and expected

wealth. Given that xi is i-efficient, x̂j is fully determined by type i’s utility.

Modify x̂j so that it gives the same utility to type j and it gives utility ui(x̂j)+dε

to type i. This contract is unique (single-crossing condition). Meanwhile, we assign

to type i the i-efficient contract that gives utility ui(x̂j) + dε. By continuity, for a

small dε, type j prefers the modified x̂j to the modified xi. Thus, by construction,
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the new pair of contract satisfies the incentive constraint for a small dε and type i is

indifferent between the two offers.

The original RCO is a second-best allocation if and only if the new menu cannot

be financed, which is what we see now by analyzing the case dε > 0.

We denote by (dxj1, dxj2) the variation, component by component, of type j’s

contract and we denote u′(xj1) and u′(xj2) by u′1 and u′2 respectively. By construction

(1− qj) u′1dxj1 + qj u′2dxj2 = 0, (29)

(1− qi) u′1dxj1 + qi u′2dxj2 = dε, (30)

that is

dxj1 =
qj

qj − qi

dε

u′1
and dxj2 = − 1− qj

qj − qi

dε

u′2
. (31)

The variation of type i’s expected wealth (for a utility increase of dε) is

1− pi

(1− qi) u′(xi1)
dε. (32)

As for type j, the variation of expected wealth is (1 − pj) dxj1 + pj dxj2; using (31)

and (32), we find that the change cannot be financed iff τ(qi, qj) ≥ 0 where

τ(qi, qj) =
λi(1− pi)

(1− qi) u′(xi1)
+

λj

qj − qi

(
qj(1− pj)

u′1
− (1− qj)pj

u′2

)
.� (33)

(b) to (b). We apply Lemma 2 for beliefs Q and Qe. To determine the sign of τ,

we study separately changes of type j’s and type i’s beliefs.

We first check that, the RCO of interest maximizing type j’s utility, the charac-

teristics of the contracts are exactly those required by the lemma. If the type-efficient

contract were type j’s, then uj(xi) = uj(xj) (to explain that the other contract is

inefficient). We also know that ui(xi) = ui(xj) : indeed, if type i’s incentive constraint

were not binding, the RCO being continuous with respect to redistribution, type j’s

contract would remain j-efficient with a (slightly) more favorable redistribution, but

the new contract to j would be better for this type than the optimum, a contradiction.

As a consequence of these two equalities, xi = xj : the RCO is a pooling. We find

that xj is at the same time j-efficient and optimal for j among pooling allocations, an

impossibility because this supposes that two different marginal rates of substitution

are equal. The lemma is applicable.
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Type j’s beliefs are modified. For a given redistribution, the menu with

polarized beliefs (qi, q
e
j ) is the same as before since it depends on pi, pj and qi but

not on qj. We can now calculate the variations the τ with respect to qj. Remark that

τ(qi, qj) = 0. It follows that

τ(qi, q
e
j ) = τ(qi, q

e
j )−

qj − qi

qe
j − qi

τ(qi, qj)

=
λi(1− pi)

(1− qi) u′(xi1)

[
1− qj − qi

qe
j − qi

]
+

λj

qe
j − qi

[
(qe

j − qj)(1− pj)

u′1
+

(qe
j − qj)pj

u′2

]
=

qe
j − qj

qe
j − qi

[
λi(1− pi)

(1− qi) u′(xi1)
+ λj

(
1− pj

u′1
+

pj

u′2

)]
.

(34)

This expression being always positive, the considered redistribution remains efficient

for the polarized beliefs.

Type i’s beliefs are modified. We parameterize the effects on the menu of

changing qi. Point 1 of this theorem states that type j’s utility increases when beliefs

are polarized; the increase of type j’s utility is a monotonic function denoted by η(qe
i ).

We calculate dxj1 and dxj2 as a function of dη by solving (1− pj) dxj1 + pj dxj2 = 0,

(1− qj) u′1dxj1 + qj u′2dxj2 = dη.
(35)

We find  dxj1 = −pj

∆
dη,

dxj2 =
1− pj

∆
dη.

(36)

where ∆ = (1− pj) qj u′2 − pj (1− qj) u′1 (∆ 6= 0 since type j coverage is inefficient).

Given that τ(qi, qj) = 0, simple algebra shows that ∆ · (qi − qj) > 0.

We distinguish two cases, A : qe
i < qi < qj and B : qe

i > qi > qj. We show that

τ(·, qj) multiplied by a well-chosen positive function increases when we pass from qi

to qe
i , which is sufficient to establish that τ(qe

i , qj) > 0. We can then conclude that

the redistribution profile considered remains efficient for beliefs (qe
i , qj).

Case A : qe
i < qi < qj. Define

τA(qi, qj) = (1− qi) τ(qi, qj) =
λi(1− pi)

u′(xi1)
+ λj fA(qi) gA(xj(η)) (37)
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where

fA(qi) =
1− qi

qj − qi

, (38)

gA(xj(η)) =
qj (1− pj)

u′(x̂j1)
− (1− qj) pj

u′(x̂j2)
. (39)

We can now collect the arguments.

1. When we pass from qi to qe
i , the i-efficient contract offers less coverage to type

i, meaning that xi1 increases as well as the first term of τA(qi, qj);

2. fA and ∂fA/∂qi are positive;

3. gA is negative at qe
i = qi ; indeed, at this point τ(qi, qj) = 0 implying that

fA ·gA = − λi

λj

1− pi

u′(xi1)
< 0. The derivative ∂gA/∂η at the same point is calculated

from (36). We find

∂gA

∂η
=

qj (1− pj) pj u′′(xj1)

∆ (u′(x̂j1))2
+

(1− qj) pj (1− pj) u′′(xj2)

∆ (u′(x̂j2))2
, (40)

which is positive (∆ < 0 since qi − qj < 0).

4. Type j’s utility increases when qe
i diminishes (∂η/∂qi < 0).

This implies that the derivative of the second term of τA(qi, qj),

λj

(
∂fA

∂qi

gA + fA
∂gA

∂η

∂η

∂qi

)
, (41)

is unambiguously negative, and we conclude that τA(qi, qj) increases when the first

variable decreases.

Case B : qe
i > qi > qj. Define

τB(qi, qj) = qi τ(qi, qj) =
λipi

u′(xi2)
+ λj fB(qi) gB(xj(η)) (42)

where

fB(qi) =
qi

qj − qi
, (43)

gB(xj(η)) = gA(xj(η)). (44)

We use the fact that, type i’s contract being i-efficient,

qi =
pi

1− pi

(1− qi) u′(xi1)

u′(xi2)
. (45)

The useful arguments are the following.

25



1. When we pass from qi to qe
i , the i-efficient contract offers more coverage to type

i, meaning that xi2 increases as well as the first term in τB(qi, qj);

2. fB is negative and its derivative ∂fB/∂qi is positive;

3. gB is positive at qe
i = qi ; indeed, fB ·gB < 0. The derivative ∂gB/∂η is negative

(see (40) with ∆ > 0 since qi − qj > 0).

4. Type j’s utility increases when qe
j increases (∂η/∂qi > 0).

This implies that the derivative of the second term in τB(qi, qj),

λj

(
∂fB

∂qi

gB + fB
∂gB

∂η

∂η

∂qi

)
, (46)

is unambiguously negative, and we conclude that τB(qi, qj) increases when the first

variable increases.

(c) to (c). Denote the RCO by (z, z). By continuity of the RCO with respect to

redistribution, the RCO for beliefs Qe remains of type (c) in a open neighborhood of

π•. If the RCO for parameters (Qe, π•) were not efficient, then there would be another

redistribution profile associated with a pooling RCO (Z,Z) such that

ue
i (Z) ≥ ue

i (z) and ue
j(Z) ≥ ue

j(z). (47)

with a least one strict inequality. Lemma 1 implies then that:

ui(Z) ≥ ui(z) and uj(Z) ≥ uj(z). (48)

with at least one strict inequality, which implies that (z, z) is not a second-best menu

relative to beliefs Q, a contradiction.

(c) to (b). Define Q(λ) = (1 − λ)Q+λQe. Beliefs are increasingly polarized as λ

goes from 0 to 1. Define π•(λ) as the redistribution that maximizes type j’s utility

for beliefs Q(λ). It suffices to show that πj(λ) is smaller than πj (more transfers to

type j).

We reason by contradiction. Assume that for some λ, πj(λ) > πj.
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1. The RCO associated with (Q(λ), π•) is not a second-best allocation since it

gives more expected wealth to type j than π•(λ).

2. The RCO associated with (Q(λ), π•) is of type (b), since it cannot be of type

(a) without contradicting 1 and it cannot be of type (c) ((c) to (b) would be

applicable but it contradicts 1).

3. At the RCO associated with (Q(λ), π•), only one type gets a type-efficient con-

tract. If it were type j, then type j would also obtain a j-efficient contract at

the RCO associated with (Q(λ), π•(λ)), since πj(λ) > πj (see Proposition 2).

This configuration would contradict the beginning of (b) to (b). We conclude

that type i gets an i-efficient contract for the RCO associated with (Q(λ), π•)

and also for the RCO associated with (Q(λ), π•(λ))

Denote by λ∞ the largest λ in [0, 1] such that for all µ ∈ [0, λ), the RCO associated

with (Q(µ), π•) is a second-best allocation.

1. By continuity, the RCO associated with (Q(λ∞), π•) is a second-best allocation.

This implies that πj(λ∞) ≤ πj.

2. In any interval [λ∞, λ∞ + ε), there is at least some µ such that the RCO as-

sociated with (Q(µ), π•) is not a second-best allocation. This implies that (i)

πj(µ) > πj and that (ii) the RCO associated with (Q(µ), π•(µ)) is of type (b)

(see 1-3 above). From (i), we draw that by continuity, πj(λ∞) ≥ πj.

We conclude from 1-2 that πj(λ∞) = πj i.e. π•(λ∞) = π•, and that the RCO

associated with (Q(λ∞), π•) is a second-best allocation of type (b). Paragraph (b)

to (b) is now applicable with (Q(λ∞), π•) as starting point: for all λ ≥ λ∞, the

RCO associated with (Q(λ), π•) is a second-best allocation. Consequently, λ∞ = 1,

implying that the RCO associated with (Qe, π•) is a second-best allocation.
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Figure 1 : Feasible utility set and RCOs
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Figure 2 : The effect of risk perceptions on adverse selection
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⇒ λiπi + λjπj = 0 (1)

⇒ λiπi + λjπj > 0 (2)

⇒ more transfers to i (3)>>>


