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Abstract

What is the effect of future information on today’s actions? The answer may
help understand, or justify, low investment in the presence of adjustment
costs, a preference for holding liquid money, self-insurance or precautionary
savings motives, environmental preservation and global warming abatement
policies. Within a three-period model, Epstein (1980) showed that the effect
of future information depends on a condition on an indirect value function.
We provide the necessary and sufficient condition on the model’s primitives.
Furthermore, we derive a generic ambiguity result, and characterize all model
specifications for which the question can be answered without ambiguity.
These specifications include all classical models discussed in the literature.
The paper also discusses the interpretation of the concept of flexibility in this
literature.



Introduction

Economic agents often make decisions under uncertainty, anticipating that

future information may reduce uncertainty over time. This paper provides

a systematic analysis of the anticipated effect of future information on to-

day’s decisions. This analysis is relevant to study the option value to wait

for future information,1 but it can virtually apply to all problems in which

decisions are made sequentially. Applications include investment decisions

in the presence of adjustment costs, the decision to preserve or to develop an

environmental area, portfolio composition decisions with costly portfolio re-

balancing, the timing of CO2 emissions or consumption smoothing over time.

Our framework is standard. It is based on a model of learning with a

Bayesian, von Neumann-Morgenstern decision-maker. We consider a three-

period model in which the decision-maker first chooses a; then gets some

information on the unknown state of nature x; and finally chooses b. The

decision-maker has preferences U(x, a, b). Information arrival is modelled

using a Blackwell information structure, whose precision can be varied. The

question is: how does the optimal first-period decision a change when the

information structure is replaced by a more precise one?2

There has been an important literature analyzing the effect of learning

using this framework. The literature begins with Arrow and Fisher (1974)

and Henry (1974) who show that learning always favors more flexible deci-

sions. This classical result is usually coined the ”irreversibility effect”. It is

well-known, however, that Arrow-Fisher-Henry consider a specific problem

1This value is also coined the quasi-option value.
2The literature uses equivalent terms to characterize a more precise information struc-

ture in the sense of Blackwell. These terms include an ealier resolution of uncertainty
(Epstein, 1980), an increase in uncertainty (Jones and Ostroy, 1984), learning (Ulph and
Ulph, 1997), or a better information structure (Gollier, Jullien and Treich, 2000). In this
paper, we will often say that we study the effect of learning, or that of a more precise
information.
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using additive separable preferences of the form U(x, a, b) = u(a, x)+v(b, x).

Epstein (1980) emphasizes this limitation, and considers a general nonsepa-

rable model in which today’s decision a can directly affect the future utility

v(b, x). Epstein derives a condition that permits to sign the effect of the

precision of information in this model. The subsequent literature, including

Demers (1991), Kolstad (1996), Ulph and Ulph (1997), and Gollier, Jullien

and Treich (2000), considers nonseparable models and therefore studies the

Epstein’s condition.3 Jones and Ostroy (1984) extend the Epstein’s condition

to non-differentiable problems.

It must be stressed, however, that the Epstein’s condition bears on the

value function of the second-period problem. More precisely, the condi-

tion depends on the convexity in p of the derivative in a of the function

j(a, p) ≡ maxb

∑
x p(x)U(x, a, b), in which p(x) is the probability of state

x, and p the associated probability distribution. It is recognised that it is

technically difficult to solve the comparative static analysis of learning using

this condition. It is also difficult to connect this condition to the primitives

of the model U . Papers using the Epstein’s condition usually assume simple

functional forms. The analysis of the effect of learning thus does not usu-

ally provide interpretative properties on preferences and technologies, unlike

the literature on the effect of more risk (Rothschild and Stigliz, 1970, Gol-

lier, 2001). Moreover, there are ”ambiguous” results in the literature, in the

sense that an increase in the precision of information may reduce or increase

the first period’s decision depending on precise properties of the function U ,

of prior beliefs, or of the information structures and probability distributions.

This paper first characterizes a condition on U that indicates whether

the problem is ”ambiguous”, that is whether the effect of more precise infor-

mation can always, or can never, be signed. This result therefore identifies

3See also three excellent surveys of the option value literature that base their analysis
on the Epstein’s condition: Graham-Tomasi (1995), Gollier (2001, Chapter 25) and Fisher
and Mäler (2006).
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the exact conditions ensuring that there is a connection possible between the

Epstein’s condition and the primitives of the model. The negative side of

this result is that this condition only holds non-generically in the space of

functions U . The positive side is that the non-generic class of functions U

satisfying our condition is straightforward to characterize. It contains for

example all functions U that are linear in the state of nature x, together

with other, non-linear specifications, as in a global warming model when the

decision-maker is risk-averse with linear tolerance to risk. This condition,

that amounts to characterize a separability property, thus tells us when ex-

isting results in the literature could never be generalized. In particular, we

study when this property is, or is not, satisfied under risk averse preferences.4

Furthermore, when this property is satisfied, and thus when the effect

of learning is non-ambiguous, we derive an additional condition on U that

directly indicates what is the systematic effect of learning. This additional

condition is such that it makes the decision-maker’s payoff more dependent

on the second period decisions. By directly applying this technical condition,

we revisit and/or extend all applications (that we are aware of) that have

been considered so far the literature. For instance, we show that the irre-

versibility effect usually does not hold when adjustment costs are ”smooth”.

We also identify the precise conditions on the utility function and on the

damage function so that learning increase early CO2 emissions within a fairly

standard model of global warming. Also, this condition allows us to discuss

the concept of flexibility, and to provide an interpretation to this concept in

terms of the anticipated cost of ex post mistakes. Finally, we use this condi-

tion to solve new problems, for instance to examine the effect of learning on

the demand of risky assets with adjustment costs.

4It is often recognised that the option value exists even under risk-neutrality. Dixit
(1992, p.110) for instance says that ”the value of waiting has nothing to do with risk-
aversion”. Although this statement is correct, it may lead to believe that risk-aversion
does not affect the option value, and, more generally, does not affect the anticipated effect
of information on early decisions. See, for instance, Kolstad (1996). Our paper strongly
qualifies this belief.
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The plan is the following. Section 1 introduces the model, and the Ep-

stein’s result. Section 2 defines and characterizes a particular class of payoff

functions. Section 3 offers the main result. Section 4 discusses the irre-

versibility effect using simple examples. Section 5 and 6 study more ap-

plications cases found in the literature, and introduce new ones. Section 7

concludes.

1 The Model

We consider a simple three-period model in which a decision-maker first

chooses a; then learns some information y on the unknown state of nature

x ∈ X; and finally chooses b. The decision-maker is a Bayesian expected

utility maximizer, with preferences U(x, a, b) and prior beliefs p. We assume

that b is chosen in Rn (n ≥ 1); that U is strictly concave with respect to

b; that a is chosen in a closed interval of R; that U can be differentiated as

many times as needed with respect to (a, b); that X is finite; and finally that

beliefs p verify p(x) > 0 for all x ∈ X.5

For some prior beliefs p on X, the decision-maker’s objective function

when choosing a is

j(a, p) ≡ max
b

∑
x

p(x)U(x, a, b).

Notice that the strict concavity of U ensures the uniqueness of the solution

b(a, p) to this problem. In the following, we shall without loss of generality

restrict attention to the pairs (a, b) such that b = b(a, p) for some p. Notice

also that j is convex in p because it is a maximum of linear functions.

Consider a random variable ỹ whose distribution conditional to x is

5One could additionally restrict beliefs to belong to an open, convex subset of the set of
distributions on X. The conditions derived below remain unchanged. As a consequence,
our results hold also locally, in the neighbourhood of a decision a and for small variations
in beliefs.
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known.6 Given the prior beliefs p, a realization y of ỹ makes the decision-

maker update his prior p into posterior beliefs qy. Then the decision-maker’s

objective function changes from j(a, p) to

Ey max
b

∑
x∈X

qy(x)U(x, a, b) = Eyj(a, qy)

Notice that Bayesian updating requires that p = Eyqy. From the convex-

ity of j it immediately follows that

Eyj(a, qy)− j(a, p) ≥ 0

This difference is the option value associated to a; it is simply the value

of future information, conditional on the first-period decision a.7

Consider now the more general problem in which it is the precision of fu-

ture information which is learnt to be increased. A more precise information

is defined as a random variable ỹ′, such that any decision-maker prefers learn-

ing ỹ′ to learning ỹ. As is well-known, this is equivalent to the requirement

that ỹ can be obtained from ỹ′ by using a ’garbling machine’, which adds

a noise uncorrelated with the true state of nature.8 Another useful result

about the comparison of information structures is the following : ỹ′ is more

precise than ỹ if and only if, for any prior p, the distribution of posteriors qy′

forms a mean-preserving spread of the distribution of posteriors qy, in the

6y|x then defines an information structure in the sense of Blackwell; assume for sim-
plicity that y takes a finite number of values, and that prob(y|x) is everywhere strictly
positive, so that posterior beliefs qy(x) = prob(x|y) are also everywhere positive.

7This definition may follow from the idea that the option value is a correction term,
allowing to take into account the effects of learning (see Hanemann, 1989).

8One manner to obtain a more precise information is to consider that the decision-
maker faces a given experiment ỹ|x, and to reduce his confidence in his prior beliefs.
Then the decision-maker will revise his beliefs differently, by giving more weight to the
new information and less weight to his prior beliefs. Jones and Ostroy (1984) argue that
this leads to a new structure of posteriors corresponding to a more precise information.
Hence switching to a more precise experiment may be interpreted as introducing more
uncertainty in the decision-maker’s prior beliefs.
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space of posteriors (Marschak and Miyazawa, 1968). In other words, one can

find (hypothetical) conditional probabilities prob(y′|y) such that

∀ y qy =
∑
y′

prob(y′|y)qy′ .

Once more, switching from ỹ to ỹ′ can only benefit the decision-maker,

whatever his first-period decision a : by convexity of j in p we have

Eyj(a, qy) ≤ Eyprob(y
′|y)j(a, qy′) = Ey′j(a, qy′)

The same reasoning can now be applied to check whether the change

from ỹ to ỹ′ increases the first-period decision a. Since the optimal decision

obtains by maximizing Eyj(a, qy), this will be the case if9

Eyja(a, qy) ≤ Ey′ja(a, qy′).

This result forms Epstein condition :

Proposition 1 (Epstein, 1980) An increase in precision of future informa-

tion increases the optimal first period decision if and only if ja(a, p) is convex

in p.

This condition has been applied in the literature to various simple speci-

fications for the function U . Because the condition bears on an indirect value

function and not on U directly, it is not easy to check. The first aim of this

paper is to replace this condition bearing on j by an equivalent condition

bearing on the primitive U .

2 Payoff Functions Admitting an Invariant

The analysis would be easy if the optimal second-period choice b(a, p) did not

depend on a. Notice, however, that one can proceed to a change of variable

on b, without any impact on the choice of a. Hence the definition:

9Subscripts denote partial derivatives.
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Definition 1 Let b(a, p) denote the unique solution to

max
b

∑
x

p(x)U(x, a, b)

The payoff function U admits an invariant if and only if there exists a

change of variable B = f(a, b) such that :

i) for any a, b 6= b′ ⇒ f(a, b) 6= f(a, b′)

ii) for any p, f(a, b(a, p)) does not depend on a.

Therefore, if U admits an invariant f , then f−1 exists and one can define

V (x, a,B) = U(x, a, f−1(B, a))

Then the optimal second-period decision for a decision-maker endowed with

preferences V and beliefs p does not depend on a : it is

B(p) ≡ f(a, b(a, p))

Equivalently, we get b(a, p) = f−1(B(p), a), so that b(a, p) depends on p only

through a statistic B(p). Since the change of variable must be one-to-one,

the constraint is that this statistic B(p) must have the same dimension as b.

This class of functions may seem restrictive, but it contains for example

all functions U that are linear in x. Indeed consider

U(x, a, b) = u(a, b) + v(a, b) · x

where · denotes a scalar product. The decision-maker’s choice b(a, p) is char-

acterized by

ub(a, b) + vb(a, b)Epx = 0

so that b(a, p) depends on p only through the statistic Epx. The problem

thus admits the invariant

f(a, b) = −[vb(a, b)]
−1ub(a, b)
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which is well-defined because we have assumed U strictly concave. In the

case when both b and x are one-dimensional, this invariant is the marginal

rate of substitution between the risk-free part u and the exposure to risk v;

for given beliefs the decision-maker always make the same trade-off between

these two elements.

Other examples of functions U admitting an invariant are discussed in

the next sections. The following result gives a simple property for these

functions:

Suppose that U admits an invariant. Then for any a and b, there exists

a vector d(a, b) and a matrix M(a, b) such that

∀ x Uab(x, a, b) + Ubb(x, a, b)d(a, b) = M(a, b)Ub(x, a, b) (1)

Moreover, if this property holds, then

∀ a, p d(a, b(a, p)) =
∂b

∂a
(a, p).

The restriction in (1) is that it must be valid for all x ∈ X. On the other

hand, (1) only depends on Ub, so that this property is unaffected if one adds

an arbitrary function w(a, x) to U .

The following Corollary may also be useful when U(x, a, b) is differen-

tiable.

Corollary 1 When b and x are real numbers and U(x, a, b) is differentiable,

(1) is equivalent to
∂

∂x
(

∂
∂a

∂
∂x

logUb

∂
∂b

∂
∂x

logUb

) = 0

In the following sections, we will mostly use (1) which allows for multi-

dimensional b and arbitrary x.

3 Main Result

Our main result is the following :
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Proposition 2 If an increase in precision of future information increases

the optimal first-period decision, then U verifies (1).

Conversely, if U verifies (1), and if moreover the matrix M+db is positive

(resp. negative) semi-definite for any a and b, then an increase in precision

of future information increases (resp. decreases) the optimal first-period de-

cision.

Finally, if b is one-dimensional the condition on the sign of M + db is

also necessary.

The necessity part of the Proposition shows that in general one can only

answer the question of the impact of more information on today’s optimal

policy in non-generic cases; indeed (1) has to be satisfied. The proof shows

that this ambiguity is also local: it still holds in neighborhood of a decision

a, and only small variations of beliefs are allowed.

At this stage, we can offer some intuition on the sufficiency part of Propo-

sition 2. Recall that if U admits an invariant f , and if moreover f verifies

differentiability assumptions, then one can work as well with

V (x, a,B) = U(x, a, f−1(B, a))

and the optimal second-period decision B(p) does not depend on a. Therefore

(1) reduces to

VaB(x, a,B) = M(a,B)VB(x, a,B)

In the case when B is one-dimensional, a necessary and sufficient condi-

tion for learning to favour higher decisions a is that the real number M(a, b)

be positive. From the above equality, this means that a higher a increases

the absolute value of VB. Thus the decision-maker’s payoff becomes more

dependent on B, for each state of nature x.

To go further, define the ex-post cost from choosing B as

[max
B′

V (x, a,B′)]− V (x, a,B)
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This term can be interpreted as the ex post cost of a ’mistake’ (as checked

after the realization of x) induced by the choice of B. Our result says that

decisions that are favoured by more learning are those that increase these

costs. Intuitively, a decision-maker who knows he will be better informed

cares less about these mistakes, and can handle relatively more easily an

increase in their costs.

It is useful to relate this intuition to the one given in Jones and Ostroy

(1984) about the concept of flexibility. Jones and Ostroy suggest that a de-

cision is more flexible if it is favoured by the future arrival of a more precise

information. The idea is that tomorrow a better informed decision-maker

will make better choices. Hence the anticipation of more information should

favour decisions which are more ’flexible’, in the intuitive sense of allowing

for a wider range of tomorrow’s decisions at a lower cost. One manner to give

a precise content to this last sentence is thus to characterize decisions which

are favoured by an increase in the precision of future information. This is

what Jones and Ostroy do, and what we do as well. Yet, contrary to the

intuition given by Jones and Ostroy, the formulation above suggests that the

decisions favoured by learning reduce the range of tomorrow’s decisions that

are accessible at a given cost – and thus appear less ’flexible’, and not more.

Finally, we provide a result that complements Corollary 1.

Corollary 2 Assume that b and x are real numbers, that U(x, a, b) is differ-

entiable and that

g(a, b) ≡
∂
∂a

∂
∂x

logUb

∂
∂b

∂
∂x

logUb

is independent from x. An increase in the precision of future information

increases the optimal first-period decision if and only if

1

Ub(x, a, b)

∂

∂b
(Ua(x, a, b)− g(a, b)Ub(x, a, b))

is positive.
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The following sections study the applications found in the literature. In

particular, we show that the class of functions that admit an invariant con-

tains many simple specifications for which it is easy to sign M + db.
10

4 The Irreversibility Effect

As we said in introduction, the literature on the irreversibility effect tradi-

tionally considers additive separable preferences of the form11

U(x, a, b) = u(a, x) + v(b, x)

Following Proposition 2, these preferences imply M + db = 0. Learning

thus does not matter because changes in b do not affect the payoffs from a:

Uab = 0 implies that (1) is verified with M = d = 0.

However, in the literature on the irreversibility effect, learning has an

effect because the today’s decision affects the future decision set. Typically,

there is an irreversibility constraint. Consider for example the case when

a firm chooses an investment a, and can adjust it only upward. The irre-

versibility constraint writes

b ≥ a

It is then easily shown12 that in the presence of an irreversibility constraint,

an increase in precision of future information reduces the optimal choice of a.

This classical result always holds precisely because U is additive separable.

10In the following sections, we will present several applications. We will thus need
to introduce several economic models. Nevertheless, we will only present a very brief
introduction to each of these models. Instead, we will focus on the properties of these
models that are important for the analysis of the effect of learning. For a more accurate
presentation of the various models, we recommend to read their initial presentation in the
references that will be systematically given.

11See, e.g., Arrow and Fisher (1974), Henry (1974), Freixas and Laffont (1984), Fisher
and Hanemann (1987) and Hanemann (1989).

12Using Epstein’s condition, one easily find that ja(a, p) =
∑

p(x)ua(a, x) +
min(

∑
p(x)vb(a, x), 0), and is thus concave in p. Similar proofs can be found in Epstein

(1980).

11



In this section, we show that this result strongly depends on the modelling

of irreversibility, through a constraint. This constraint implies that there is

an infinite cost to choose b lower than a, and a zero cost otherwise. Suppose

instead that one considers instead ”smooth” adjustment costs c(a, b), where

c is strictly convex in b. We write

U(x, a, b) = u(a, x) + v(b, x)− c(a, b) (2)

and we can apply Propositions 2 and 2. In particular, equation (1) becomes

vbbd−Mvb = dcbb + cab −Mcb

Because the right-hand-side of this equation is independent from x, so

must be the left-hand-side. It is easily checked that the associated restriction

on v is that one can write

vb(b, x) = A(b)K(x) + L(b)

Hence an increase in the precision of information does not necessarily

cause a systematic change in a; to be able conclude one has to impose strong

restrictions on v. After this step, one can directly get the values of M and

d. However, because the expressions are complex, and M + db still has an

ambiguous sign.13

The rest of this section revisits standard examples initially analyzed in

literature on the irreversibility effect, using an irreversibility constraint. We

underline that the systematic effect of learning in favor of flexibility may

disappear once the irreversibility constraint is replaced by smooth adjustment

costs.

13In particular, if A(b) > 0, then M + db is positive if and only if cab/( ∂
∂b

L−cb

A ) is
increasing with b. Concavity of U only implies that the denominator is negative, so that
this property is in no way guaranteed.
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4.1 The Arrow-Fisher example

Arrow and Fisher (1974) considers a model similar to the following one. A

forest of unit size whose ecological value x is uncertain. The risk-neutral

decision-maker can cut a share a in the first period, and a share b in the

second period. He or she can sell timber at a price p0 and p1 in each period.

The irreversibility constraint is

0 ≤ b ≤ 1− a

which states that one can neither replant, nor cut more than unit size of the

forest.

We consider a variant version of the Arrow-Fisher example with smooth

adjustment cost. It is based on the following preferences

U(x, a, b) = x(1− a− b) + p0a+ p1b− c(a, b)

Replacing into (1), we get

M(a, b) = 0 d(a, b) = −cab

cbb
(a, b)

so that the effect of learning on a depends on whether d increases with b.

Hence, even in this simple setting the effects of learning depend on third

derivatives of the adjustment costs. One can for instance specify these costs

to set

c(a, b) = C1(b) + C2(1− a− b)

which may be interpreted as a ”smooth” version of the constraint 0 ≤ b ≤
1− a. We then get

d(a, b) =
−1

C ′′1 (b)/C ′′2 (1− a− b) + 1

which is decreasing with b if both C
′′′
1 and C

′′′
2 are negative.
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4.2 The Jones-Ostroy model for holding money

Jones and Ostroy (1984) give an example which offers a rationale for holding

money. The idea is that an investor first chooses a portfolio a, then observes

some information on future portfolio returns x, and reallocates the initial

portfolio a into portfolio b. What is not invested in the portfolio is interpreted

as holding liquid money.

Our framework may be useful to revisit the Jones and Ostroy (1984)’s

example. Consider

U(x, a, b) = u(a, x) + b · x− c(b− a)

where function c is associated to the transaction cost from switching from a

to b. By setting b′ = b− a, we can rewrite

Ũ(x, a, b′) = u(a, x) + a · x+ b′ · x− c(b′)

which is additive separable. Hence learning has absolutely no impact, even

though arbitrary transaction costs are introduced.

In fact, the rationale for holding money originates in another feature: in

the Jones and Ostroy (1984)’s model, financial titles other than money can

only be owned in bounded quantities : bi ∈ [0, 1] for all i > 1 (that is, other

than money). The lower bound corresponds to the absence of short sales;

the upper bound is justified by some indivisibilities. This creates constraints

on b′:

−ai ≤ b′i ≤ 1− ai

so that holding money naturally appears as more profitable. These con-

straints would not play any role in the absence of learning, since then the

investor would choose b = a, or equivalently b′ = 0.14

14One may alternatively consider that these bounds are an extreme form of concavity
of returns: so that we could write U(x, a, b) = u(a, x) + v(b, x)− c(b− a). But we are then
back to the ambiguity underlined when studying (2): to conclude one has to assume that
v is linear in some transform of x.
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4.3 Adjusting the capital stock over time

We consider a three-period version of the model in Demers (1991). A firm

first invests a, then additionally invests b. We write

U(x, a, b) = R(a+ b, x)− wb

where R is the final revenue (a first period revenue R1(a, x) could be included

without change), and w is the investment cost. Clearly we can define the

final capital stock as b′ = a+ b, and get

Ũ(x, a, b′) = R(b′, x)− wb′ + wa

The problem is additive separable, so that learning has absolutely no

impact on the choice on a.15 This suggests that the irreversibility constraint

of the form

b′ ≥ a

plays a major role in the Demers (1991)’s study. Replacing this constraint

by a smooth adjustment cost function of the form c(b− a) would lead to the

same type of ambiguity that we discussed before.

5 Impact of Learning under Risk-neutrality

This section focusses on cases in which U is linear in x, and thus avoids

difficulties associated with risk-aversion:

U(x, a, b) = u(a, b) + v(a, b) · x

This model can be interpreted as a choice of risk-exposure v by a risk-

neutral decision-maker. Consistent with what we said above, this model

admits an invariant. Indeed (1) reduces to the system of equations

uab + ubbd = Mub

15This result holds true regardless of the dimensionality of a and b, or whether w is
in fact part of the unknown x. Allowing for capital depreciation between period 1 and 2
would not change the result either.
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vab + vbbd = Mvb

which permits to find d and M , and so to be conclusive about the effect of

learning. This is illustrated by the following examples.

5.1 Production choices

We consider a model similar to that of Epstein (1980, section 7). A firm

chooses initially a capital stock a. Then the firm observes the output price

x, and chooses another input b (labour), so that its production is F (a, b),

where F is a concave production function. The idea is that labour can be

adjusted in the short-term, while capital is given. Profits are

U(x, a, b) = xF (a, b)− wb

where w is the input price.

We would like to know whether the fact that x will be learnt in the future

modifies the choice of a. Solving (1) yields the system of equations

Fab + Fbbd = MFb

0 = Mw

so that we get

M = 0 d = −F−1
bb Fab

According to Proposition 2 the impact of learning on a depends on

whether d is increasing or decreasing with b. Such a property may or may

not be verified, depending on the third derivative in the production function,

as first acknowledged by Epstein (1980).

Nevertheless, we fully characterize here this critical property, and thus we

can directly conclude for some standard production functions. For instance,

with a Cobb-Douglas production function F (a, b) = Aarbs, we have d =

br(a(1−s))−1 which is increasing in b under r and s in [0, 1]. With a constant

elasticity of substitution production function F (a, b) = A(ras + (1− r)bs)1/s,

16



we have d = b(a)−1 which is also increasing in b. Thus learning increases

capital stock for these two standard production functions.

5.2 Self-protection

We consider a model in which capital b can be protected by an investment

a which costs c(a). We assume that capital b can be adjusted after having

obtained some information on the probability of accident x. We write

U(x, a, b) = v(b)− c(a)− b(1− a)x

in which v(b) could be interpreted as the profitability that is derived from

capital b in the economy. This model is similar to that of Kousky, Luttmer

and Zeckhauser (2007), although that they do not study the effect of learning

on self-protection in their paper.

Thus (1) writes

x+ v′′(b)d = M(v′(b)− (1− a)x)

whose solution is

M = − 1

1− a
d =

1

1− a
T (b)

where T = −v′/v′′ is a measure of the non-linearity of the profitability func-

tion. Hence the effect of learning on the level self-protection a depends on

the sign of T ′(b)−1. Notice that this quantity is exactly zero for v(b) = log b.

5.3 Global warming and emissions

Ulph and Ulph (1997) analyze the effect of learning on the optimal climate

policy.16 They use a microeconomic stock pollutant model:

U(x, a, b) = F (a) +G(b)− xD(a+ b)

16See also Kolstad (1996).
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where the concave functions F and G denote respectively the first- and

second-period utility derived from emissions of pollution a and b, and where

the convex damage function D(a+ b) is affected by the multiplicative shock

x, and depends on the stock of pollution a + b.17 Ulph and Ulph (1997)

indicate that with quadratic functions for F,G and D, learning increases the

first-period emissions a.

According to Proposition 2, we get that the effect in fact depends on the

sign of

[2
−G′′

G′
− G

′′′

−G′′
] + [2

D′′

D′
− D

′′′

D′′
]

In each bracket the first term is positive, so that we can confirm the Ulph

and Ulph (1997)’s result for quadratic functions. But the two other terms

may modify this result. For example this expression is zero (resp. negative)

with well-chosen logarithmic (resp. square root) G and D functions.

6 Impact of Learning under Risk-aversion

We now examine some situations involving a risk-averse decision-maker.

These problems are not linear in x anymore, and can only be solved for some

specific von Neumann-Morgenstern utility functions. In the global warming

example, the problem can be solved only if risk tolerance is linear. In the

cake-eating problem prudence must be constant. This observation may ex-

plain, in part, why economists have not studied the relationship between the

option value and risk-aversion.

6.1 Global warming and emissions (continued)

In Gollier, Jullien and Treich (2000), a and b are first- and second-period

emissions, and x is the unknown unit damage. The payoff function may be

written

U(x, a, b) = u(a) + v(b− x(a+ b))

17Introducing a decay factor would not change the results.
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Replacing into (1) yields

−x(1− x)v′′2dv′′ = M(1− x)v′

which does not depend on u. Define the tolerance to risk T = −v′/v′′, and

divide by (1− x)v′′ to get

−x+ (1− x)d = −MT

The left-hand-side of this equation is linear in x, and so must be the

right-hand-side. This implies that T must be linear, a particular restriction

on the tolerance to risk of v. Such functions are said to display an hyperbolic

absolute risk aversion; classical examples are the quadratic, exponential, log-

arithmic, and power utility functions. This result corresponds to Proposition

2 in Gollier, Jullien and Treich (2000).

So let us set

T (R) = α + γR

Replacing in the above equality at R = b − (a + b)x, one gets a system of

two equations

d+M(α + γb) = 0

1 + d+ γM(a+ b) = 0

whose solution is

M =
1

α− γa
d = −α + γb

α− γa

Finally

M + db =
1− γ
α− γa

Since T (a) = α−γa is a risk-tolerance and is thus positive, we get that an

increase in the precision of information increases optimal emissions today if

γ < 1. This result corresponds to Proposition 1 in Gollier, Jullien and Treich

(2000). This result can be shown to extend to the case of multi-dimensional

b.
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6.2 Eating a cake with unknown size

Eeckhoudt, Gollier and Treich (2005) consider a standard cake-eating model

in which the cake has an unknown size. They study the effect of learning

about the size of the cake on the initial consumption. The model writes

U(x, a, b) = u(a) + v(b) + w(x− a− b)

Therefore, (1) becomes

w′′ + (v′′ + w′′)d = M(w′ − v′)

so that the only part that depends on x is dw′′−Mw′, and setting M = d = 0

yields a contradiction. Therefore one must have

Pw = −w′′′
/w′′ =

M

d

in which Pw is the absolute prudence associated to the function w. We now

know that it is a constant, and cannot depend on the last period consump-

tion. This gives us an expression for w, that we can use to solve completely

the problem. The formulae that we obtain are omitted here. We mention

that when w has a constant absolute risk aversion, then the impact of more

information depends on the sign of

Pw[2Av(b)− P v(b) + Pw]

where Av = −v′′/v′ is the absolute risk-aversion of v, and P v is its absolute

prudence. When w is quadratic, the effect depends only on whether v displays

prudence or not.

These results suggest that the effect of learning is usually ambiguous in

the cake-eating problem, unless the utility functions are quadratic or ex-

ponential. Eeckhoudt, Gollier and Treich (2005), in contrast, obtain some

general results because they compare two extreme cases, that is, no learning

and perfect learning.
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7 Conclusion

This paper has studied the classical question of the effect of learning in a

three-period model. It has provided a theorem that characterizes the class

of models for which this question can be answered without ambiguity, and

another that permits to check the sign of this impact.

Several of our results indicate that ambiguity is the rule. This is the case

for generic choices of the payoff function. This is also the case in simple

additive problems, when an irreversibility constraint is replaced by smooth

adjustment costs. Hence the well-known irreversibility effect is not robust

to such changes, apart in the most simple case. Even in problems that

are non-ambiguous, the sign of the impact depends on precise properties

of the payoff function that are not easy to sign. A consequence is that

in simulation exercises one should be cautious when choosing a particular

parametric specification for these functions. Another consequence is that

risk-aversion is shown to be instrumental for the analysis of the effect of

learning.
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Appendix

Proof of Proposition 2 : notice first that b(a, p) is characterized by∑
x

p(x)Ub(x, a, b(a, p)) = 0

so that we can write for any a, b, p∑
x

p(x)Ub(x, a, b) = 0⇒
∑

x

p(x)[Uab(x, a, b) +Ubb(x, a, b)
∂b

∂a
(a, p)] = 0 (3)

If the problem admits an invariant f , then for any a and p we have

B(p) = f(a, b(a, p))

Suppose that for some a, p, q we have b(a, p) = b(a, q). ThenB(p) = B(q),

so that for any a′ one has f(a′, b(a′, p)) = f(a′, b(a′, q)). Because f is one-to-

one, we obtain that b(a′, p) = b(a′, q) for any a′.

Hence we have shown

b(a, p) = b(a, q)⇒ ∂b

∂a
(a, p) =

∂b

∂a
(a, q) (4)

Therefore ∂b
∂a

(a, p) can depend on b only through b(a, p). There thus exists

d such that

∀ a, p d(a, b(a, p)) =
∂b

∂a
(a, p)

Replacing in (3) we get, for any a, b, p∑
x

p(x)Ub(x, a, b) = 0⇒
∑

x

p(x)[Uab(x, a, b) + Ubb(x, a, b)d(a, b)] = 0 (5)

This implies that there exists a matrix M(a, b) such that (1) holds.18

18There is a slight complication here, as p is not any vector of RX : all its components
must be strictly positive, and they must sum to one. Since we have restricted attention
to pairs (a, b) such that b = b(a, p) for some p, these restrictions turn out to not matter
at all. Proof omitted for brievity.
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Conversely, if (1) holds, then summing over x at b = b(a, p) yields∑
x

p(x)(Uab + Ubbd) =
∑

x

p(x)MUb = M
∑

x

p(x)Ub = 0.

We thus have shown (5). Because by strict concavity of U the hessian

matrix

H(a, p) ≡
∑

x

p(x)Ubb(x, a, b(a, p))) (6)

is negative definite, comparing (3) and (5) we get the second statement

in the Proposition.�

Proof of Proposition 2 : For given beliefs p and q, and r ∈ [0, 1], define

J(a, r) = j(a, (1− r)p+ rq)

Notice that Epstein’s condition is equivalent to Ja being convex in r.

Suppose this is the case. Compute

Jrr(a, r) = [
∑

(q(x)− p(x))Ub(x, a, b(a, (1− r)p+ rq))].
∂

∂r
b(a, (1− r)p+ rq)

From the first-order condition∑
x

[(1− r)p(x) + rq(x)]Ub(x, a, b(a, (1− r)p+ rq)) = 0 (7)

we get the following two expressions

∂

∂r
b(a, (1−r)p+rq) = −H−1(a, (1−r)p+rq)

∑
(q(x)−p(x))Ub(x, a, b(a, (1−r)p+rq)).

(8)∑
(q(x)−p(x))Ub(x, a, b(a, (1−r)p+rq)) = −1

r

∑
p(x)Ub(x, a, b(a, (1−r)p+rq))

where the hessian matrix H is defined as in (6). Replacing yields

Jrr(a, r) = − 1

r2
[
∑

p(x)Ub(x, a, b(a, (1− r)p+ rq))]′[H(a, (1− r)p+ rq)]−1

[
∑

p(x)Ub(x, a, b(a, (1− r)p+ rq))].
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where the prime stands for transposition. This expression must be increasing

with a, for any p, q, r. This implies that

Z(a, p, q) ≡ [
∑

p(x)Ub(x, a, b(a, q))]
′[H(a, q)]−1[

∑
p(x)Ub(x, a, b(a, q))]

is decreasing with a, for any p and q.

Suppose that b(a, p) = b(a, q) at some (a, p, q). Then not only Z(a, p, q) =

0, but also Za(a, p, q) = 0 because all terms in the derivative vanish. Since Z

is decreasing in a and Za = 0, Za attains a maximum at a and thus Zaa = 0.

Computing this second derivative, all terms but one vanish, so that

[
∂

∂a

∑
p(x)Ub(x, a, b(a, q))]

′[H(a, q)]−1[
∂

∂a

∑
p(x)Ub(x, a, b(a, q))] = 0

Since the hessian matrix is negative definite, this implies that

∂

∂a

∑
p(x)Ub(x, a, b(a, q)) = 0

We have thus shown (4), which from the preceeding proof is sufficient for

proving (1). This concludes the proof of necessity.

Conversely, suppose that U verifies (1), and compute

Jar(a, r) =
∑

[q(x)− p(x)][Ua(x, a, b(a, (1− r)p+ rq))

+Ub(x, a, b(a, (1− r)p+ rq))d(a, b(a, (1− r)p+ rq))]

which depends on r only through b(a, (1− r)p+ rq). Differentiating we get

Jarr(a, r) =
∑

(q(x)− p(x))[Uab + Ubbd+ dbUb].
∂

∂r
b(a, (1− r)p+ rq)

and using (1) we obtain

Jarr(a, r) = [
∑

(q(x)− p(x))Ub]
′[M + db]

′ ∂

∂r
b(a, (1− r)p+ rq).

where the prime stands for transposition. Using (8) we get

Jarr(a, r) = −[
∑

(q(x)− p(x))Ub]
′[M + db]

′H−1[
∑

(q(x)− p(x))Ub].

This shows the result, from the fact that the hessian matrix H is definite

negative.�
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