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Abstract

We consider a binary-event prediction market in which traders have
heterogeneous prior beliefs. We derive conditions so that the predic-
tion market is accurate in the sense that the equilibrium price equals
the mean of traders’ beliefs. We show that the prediction market is
accurate i) for all distributions of beliefs if and only if the utility func-
tion is logarithmic, and ii) for all strictly concave utility functions if
and only if the distribution of beliefs is symmetric about one half. We
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1 Introduction

Prediction markets are financial markets in which traders bet on the out-
comes of uncertain events (e.g., political elections). Asset prices in predic-
tion markets are often interpreted as probabilities. For instance, Arrow et
al. (2008) introduce prediction markets as follows: “Consider a contract that
pays $1 if Candidate X wins the presidential election in 2008. If the market
price of an X contract is currently 53 cents, an interpretation is that the
market ‘believes’ X has a 53% chance of winning” (Arrow et al. 2008: 877).
This interpretation that a price is a probability may be consistent with the
empirical observation that the forecasts provided by prediction markets have
been fairly accurate.1 However, it is not clear what the “market believes”
exactly means, and it has been argued that there is little theoretical support
for this interpretation in general (Manski, 2006).
In this paper, we consider a simple binary-event prediction market in

which otherwise identical traders have heterogeneous beliefs. We examine
the conditions so that the prediction market is accurate in the sense that
the equilibrium price equals the mean of traders’ beliefs. Manski (2006)
presented a first formal analysis of this question using a model with risk
neutral traders and assuming limited investment budgets. He showed that the
equilibrium price can largely differ from the mean beliefs of traders. Wolfers
and Zitzewitz (2006) consider a more standard model with risk averse traders
and show theoretically that the prediction market is accurate when the utility
function of traders is logarithmic. Moreover Wolfers and Zitzewitz explore
numerically how the equilibrium price is affected by beliefs heterogeneity for
several utility functions and several beliefs distributions.2

Our main contribution in this paper is to derive the exact necessary and
sufficient conditions for prediction market accuracy for general utility func-
tions and for general distributions of beliefs. Specifically, we show that the
prediction market is accurate i) for all distributions of beliefs if and only if the
utility function is logarithmic, and ii) for all strictly concave utility functions
if and only if the distribution of beliefs is symmetric about one half. More-

1An early reference is Forsythe et al. (1992), showing that the Iowa electronic market
performed extremely well. There is evidence that prediction markets have consistently
performed better than any other forecasting institutions (see, e.g., Hanson 2006).

2See Gjerstad (2004) for theoretical results under constant relative risk aversion
(CRRA) utility functions, and some numerical results. See Fountain and Harrison (2010)
for further numerical results with wealth and beliefs heterogeneity.
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over, we present several examples in which the joint distributions of traders’
beliefs, wealth and risk preferences lead to systematically violate prediction
market accuracy. Nevertheless, we provide indications about the direction of
the bias. Most significantly, we exhibit some conditions for the equilibrium
price to be always above or below the mean beliefs for all symmetric beliefs
distributions. This condition provides a rationale to the favorite-longshot
bias in a two-horse race model (Ali 1977; Manski 2006).
We organize the paper as follows. In the next section we introduce the

model and derive a sufficient condition for the equilibrium price to be unique.
In the next two sections we derive necessary and sufficient conditions for
prediction market accuracy. More precisely, section 3 derives a condition
on the utility function, and section 4 derives a condition on the probability
distribution representing the beliefs of traders. Then in section 5 we examine
the conditions leading to favorite-longshot bias in our simple model, and the
last section concludes.

2 The model

We consider a simple prediction market in which risk averse agents can buy
and sell a financial asset paying $1 if a specific event occurs, and nothing
otherwise. The main assumption of the model is that the beliefs of the
agents about the occurrence of the specific event are heterogeneous. We
thus consider a model in which agents “agree to disagree”, and therefore
have different prior beliefs. Namely, the heterogeneity in beliefs does not
come from asymmetric information but rather from intrinsic differences in
how agents view the world.3 As a result, in our model agents do not update
their beliefs when they observe asset prices. In this section, we derive some
properties of the individual asset demand, and then of the equilibrium price
in this specific model.

2.1 Individual asset demand

In our model, each agent maximizes his expected utility based on his own
beliefs. Formally, when he decides how much to invest in the financial asset

3Many models in finance have considered agents with heterogeneous prior beliefs. For a
justification and implications of these models, see for instance the survey papers by Varian
(1989) and Scheinkman and Xiong (2004).
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paying $1 if the event occurs, he maximizes over α the following expected
utility

pu(w + α(1− π)) + (1− p)u(w − απ), (1)

in which w is the agent’s initial wealth, p ∈]0, 1[ his subjective probability
that the event occurs (i.e., his belief), α his asset demand and π the price
of this asset. We assume the utility function u(·) to be strictly increasing,
strictly concave and three times differentiable.
The first order condition of this optimization program is given by

p(1− π)u0(w + α(p, π)(1− π))− (1− p)πu0(w − α(p, π)π) = 0, (2)

in which α(p, π) is the unique solution. Differentiating with respect to p the
last equality, we obtain

0 = (1− π)u0(w + α(p, π)(1− π)) + πu0(w − α(p, π)π) (3)

+αp(p, π){p(1− π)2u00(w + α(p, π)(1− π)) + (1− p)π2u00(w − α(p, π)π)},

and rearranging we have

αp(p, π) =
(1− π)u0(w + α(p, π)(1− π)) + πu0(w − α(p, π)π)

−p(1− π)2u00(w + α(p, π)(1− π))− (1− p)π2u00(w − α(p, π)π)
> 0,

(4)
that is, the asset demand increases with belief p. Since α(p, p) = 0, we
conclude that α(p, π) ≥ 0 if and only if p ≥ π. Namely, the agent buys
(respectively sells) the asset yielding $1 if the event occurs if and only if he
assigns a probability for this event higher (respectively lower) than the asset
price.

2.2 The equilibrium

Let ep be the random variable representing the distribution of beliefs in the
population of agents, and let π∗ be the equilibrium price. The equilibrium
condition is

Eα(ep, π∗) = 0, (5)

in which E denotes the expectation operator with respect to ep. Our main
objective in the paper will be to compare π∗ to Eep. Notice that, when ep is
degenerate and equals p with probability 1, then π∗ = p and there is no trade
at the equilibrium. This is a trivial case always leading to prediction market
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accuracy, π∗ = Eep. We rule out this case, and consider nondegenerate ep in
the following.
It is easy to see that an equilibrium always exists in such a prediction mar-

ket. Indeed, when π tends to 0 (respectively tends to 1) α(p, π) is positive
(respectively negative) for all ep, so its expectation is also positive (respec-
tively negative) over p. Therefore when π increases, the function Eα(ep, π)
must go from a positive to a negative region and thus must cross zero some-
where in between.
We now discuss the uniqueness of the equilibrium. We must show that

Eα(ep, π) only crosses the origin once. We know that α(p, π) has this single
crossing property at π = p. But that does not guarantee that Eα(ep, π) also
has the single crossing property, as illustrated by the following example.

Example 1 (Multiple equilibria): Consider agents with a quadratic util-
ity function u(w) = −(1 − w)2 and initial wealth w = 1/2. The optimal
asset demand is equal to α(p, π) = p−π

2(p−2pπ+π2) . In a prediction market with
only two agents with respective beliefs denoted p1 = 0.1 and p2 = 0.9, the
equilibrium condition is equivalent to 9− 68π + 150π2 − 100π3 = 0. Solving
for this equation, it is found that there are three equilibrium prices in this
prediction market: π∗ = (0.235, 0.5, 0.764).

A sufficient condition for the uniqueness of the equilibrium however is
απ(p, π) < 0 everywhere. Indeed, this implies that the function Eα(ep, π) is
strictly decreasing in π, and therefore crosses zero at most once. Differenti-
ating (2) with respect to π, we have

απ(p, π) (6)

=
−pu0(w + α(p, π)(1− π))− (1− p)u0(w − α(p, π)π)

−p(1− π)2u00(w + α(p, π)(1− π))− (1− p)π2u00(w − α(p, π)π)

−α(p, π) p(1− π)u00(w + α(p, π)(1− π))− (1− p)πu00(w − α(p, π)π)

−p(1− π)2u00(w + α(p, π)(1− π))− (1− p)π2u00(w − α(p, π)π)
.

The first term is strictly negative but the second term is of ambiguous sign
under risk aversion, so that the demand may increase when the price π in-
creases, as it is the case in Example 1. We now provide a sufficient condition
for uniqueness by ensuring that the second term is also negative. We show
that this is the case under nonincreasing absolute risk aversion.
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Proposition 1 The equilibrium price π∗ is unique if u has nonincreasing
absolute risk aversion.

Proof : We are done if we can show that the second term of the right
hand side in (6) is negative. As this is simple to show, we only provide
a sketch of the proof. Let denote ex = (p, (1 − π); 1 − p,−π) so that this
condition can be written more compactly E[exu0(w + αex)] = 0 implies that
−αE[exu00(w + αex)] ≤ 0. Then the condition means that −u0 is more risk
averse than u, which is equivalent to nonincreasing absolute risk aversion.¥

The intuition is the following. When the price of an asset increases,
there are two effects captured by the two terms of the right hand side of
equation (6). First, there is a substitution effect that leads to decrease its
demand, but there is also a wealth effect that may potentially increase its
demand. Intuitively, as the terminal wealth distribution deteriorates, the
investor’s attitude towards risk may change, and this wealth effect might
prove sufficiently strong to increase the demand for the risky asset, as initially
shown by Fishburn and Porter (1976) in the case of a first-order stochastic
dominance (FSD) shift. Under decreasing absolute risk aversion (DARA)
however, the negative wealth effect leads the agent to be more risk averse,
and therefore this effect further decreases the demand for the risky asset.
Under constant absolute risk aversion (CARA), there is no wealth effect, and
only the first negative effect is at play. Finally, Example 1 featured multiple
equilibria because the quadratic utility function has increasing absolute risk
aversion.
When there is a unique equilibrium, one can make a simple comment on

the effect of a change in the distribution of beliefs on the equilibrium price.
Indeed, from the equilibrium condition Eα(ep, π∗) = 0 and since αp(p, π) >
0, any FSD improvement in the distribution of beliefs must increase the
equilibrium price.
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3 Which utility functions lead to prediction
market accuracy?

Assuming a logarithmic utility function u(w) = logw (which displays DARA)
we can obtain a closed-form solution of the first order condition (2):

α(p, π) = w
(p− π)

π(1− π)
.

Assuming identical wealth, this implies that the equilibrium condition (5)
can simply be written

Eep = π∗.

This shows that the logarithmic utility function is sufficient for prediction
market accuracy (Gjerstad 2004; Wolfers and Zitzewitz 2006). A natural
question is whether the utility function must be logarithmic to guarantee
prediction market accuracy or whether this is possible for other utility func-
tions, i.e. whether u(w) = logw is also a necessary condition. We show in
the following Proposition that this is indeed the case.

Proposition 2 For all ep, Eep = π∗ if and only if u(w) = logw

Proof : We just need to prove the necessity. Namely, let p = Eep, we
must show that Eα(ep, p) = 0 for all ep implies u(w) = logw. We are done
if we can show that this implication holds for a specific class of probability
distribution in ep. We consider the class of “small” risks, that is we assume
that ep is close enough to p in the sense of a second-order approximation:
Eα(ep, π) = α(p, π) + 0.5E(ep − p)2αpp(p, π). Using this last equality, the
necessary condition Eα(ep, p) = 0 implies α(p, p) + 0.5E(ep − p)2αpp(p, p) =
0. Since for all p, we have α(p, p) = 0, the necessary condition becomes
αpp(p, p) = 0. Differentiating again (3) with respect to p to compute αpp(p, p)
we obtain

0 = 2αp(p, π){(1− π)2u00(w + α(p, π)(1− π))− π2u00(w − α(p, π)π)}
+ αpp(p, π){p(1− π)2u00(w + α(p, π)(1− π)) + (1− p)π2u00(w − α(p, π)π)}
+ αp(p, π)

2{p(1− π)3u000(w + α(p, π)(1− π))− (1− p)π3u000(w − α(p, π)π)}.

Taking π = p in the last expression, we have αp(p, p) =
1

p(1−p) ×
u0(w)
−u00(w) from

(4), then rearranging yields

αpp(p, p) =
(1− 2p)
p2(1− p)2

∙
u0(w)

u00(w)

¸2∙
u000(w)

−u00(w) − 2
−u00(w)
u0(w)

¸
. (7)
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Therefore a necessary condition is u000(w)
−u00(w) = 2

−u00(w)
u0(w) . Finally, integrating this

differential equation gives u(w) = logw.¥

We complement this result with two remarks.

Remark 1 (Wealth heterogeneity): The result cannot be generalized
to non-identical wealth, as possible correlation between wealth and beliefs
would invalidate the result. Indeed, let ew the random variable representing
wealth heterogeneity. Assuming a logarithmic utility function, we can obtain

π∗ = Eep+ 1

Ew ewCov(ep, ew). (8)

Therefore there is no utility function that can always ensure prediction mar-
ket accuracy when beliefs and wealth are correlated. Observe that, despite
this impossibility result, the direction of the bias can be inferred if the ana-
lyst knows the sign of the correlation between beliefs and wealth. The intu-
ition for equilibrium condition (8) is that richer individuals invest more, and
therefore have more influence on the equilibrium price. Therefore, if wealth
is positively (respectively negatively) correlated with beliefs, the equilibrium
price will be higher (respectively lower).

Remark 2 (Stakes): Suppose the agents have a (positive or negative)
stake ∆ in the event he predicts, so that they now maximize over α the
following expected utility

pu(w +∆+ α(1− π)) + (1− p)u(w − απ).

Then it is easy to understand that the result is not guaranteed either. Indeed
for the logarithmic utility function we have

α(p, π) = w
(p− π)

π(1− π)
−∆

π(1− p)

π(1− π)

leading to the equilibrium condition

π∗ =
wEep

w +∆(1−Eep)
The intuition is that when there is a positive (respectively negative) stake, the
marginal utility decreases (respectively increases) if the event occurs. As a
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result, the agents want to transfer wealth to the state in which the event does
not occur (respectively occurs), and they typically use the prediction market
as a hedging scheme to do this. The consequence is that the equilibrium
is biased downward (respectively upward). Observe that if the stakes are
individual-dependent but uncorrelated with beliefs, and if their mean across
individuals is equal to zero, then we retrieve prediction market accuracy
under a logarithmic utility function.

4 Which distributions of beliefs lead to pre-
diction market accuracy?

The previous section has studied the conditions on the utility function so
that there is market prediction accuracy for all ep. In this section, we want
to study the dual problem: which conditions on ep ensure prediction market
accuracy for all u?4 We show that the necessary and sufficient condition is
that the probability distribution of beliefs is symmetric about one half.

Proposition 3 Assume that the equilibrium price π∗ is unique. For all u,
Eep = π∗ if and only if ep is symmetric about 1/2.
Proof : We first show that if ep is symmetric about 1/2 then Eep = π∗ for

all u. Observe from the first order condition (2) that α(p, π) = −α(1−p, 1−
π). This implies that the equilibrium condition can be written Eα(ep, π∗) =
Eα(1− ep, 1−π∗) = 0. Observe then that ep symmetric about 1/2 means thatep is distributed as 1 − ep. Consequently the equilibrium condition implies
Eα(ep, π∗) = Eα(ep, 1 − π∗). Since the equilibrium is assumed to be unique,
this last condition implies π∗ = 1− π∗, that is π∗ = 1/2 = Eep.
We now demonstrate that if Eep = π∗ for all u then it must be that

the distribution is symmetric about 1/2. This is proved by contradiction.
Consider the following example. Let u(w) = −e−rw with CARA r > 0 and
the probability density of beliefs p̃ is given by

f(p) =

½ 2p
b
, for 0 < p ≤ b

2(1−p)
1−b , for b < p < 1.

4As made clear before, we consider all u that are strictly increasing, strictly concave
and three times differentiable.
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Obviously, for b 6= 1/2, the belief distribution is not symmetric about 1/2. It
can be verified that Eep > π∗ for 0 < b < 1/2 and Eep < π∗ for 1/2 < b < 1. ¥

The intuition for the Proposition is simple. When ep is symmetric about
one half, the two states are formally indistinguishable, and therefore it cannot
be that the price of an asset yielding one dollar in one state is different from
that of an asset yielding one dollar in the other state, implying π∗ = 1/2.
We note, however, that if heterogeneity in individual utility functions is in-
troduced, prediction market accuracy may not hold anymore even underep symmetric about 1/2. The intuition is essentially the same as the one
presented in Remark 1. This is illustrated by the following example which
considers heterogeneity over (constant absolute) risk aversion.

Example 2 (Heterogeneous CARA): Let ui(w) = −e−riw in which ri > 0
represents the CARA index of agents i = 1, 2 with respective beliefs p1 = 0.1
and p2 = 0.9. Under positive correlation between beliefs and risk aversion
(r1, r2) = (1, 3), we have π∗ = 1/4 < 1/2 = Eep, while under negative corre-
lation (r1, r2) = (3, 1), we have π∗ = 3/4 > 1/2 = Eep.
We have characterized the necessary and sufficient conditions for pre-

diction market accuracy, for all ep in Proposition 2, and then for all u in
Proposition 3. These conditions are rather stringent. However, one can relax
these conditions in the sense that it is possible to find well-chosen pairs (u, ep)
also yielding prediction market accuracy. This is shown in the following ex-
ample which uses a specific constant relative risk aversion (CRRA) utility
function and a specific nonsymmetric distribution of beliefs.

Example 3 (Prediction market accuracy under CRRA). Consider agents
with utility function u(w) = −1/w. Two groups of agents participate in the
prediction market: one group has beliefs p1 = p, and the other group has
beliefs p2 = 1− p. Denoting a the proportion of agents in the first group, we
have Eep = ap+(1−a)(1−p). One may then easily obtain that Eα(p̃, π) = 0
implies

p
π(1− π){ap+ (1− a)(1− p)− π} = 0 leading to π∗ = Eep.
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5 A necessary and sufficient condition for the
favorite-longshot bias

In the previous analysis, we have examined under which conditions the pre-
diction market is accurate in the sense that the equilibrium price π∗ is equal
to mean beliefs Eep. In this section, we derive necessary and sufficient condi-
tions for π∗ to be systematically above or below Eep.
The analysis developed in this section may provide a rationale for the

favorite-longshot bias, namely for the empirical observation that longshots
tend to be over-valued and that favorites tend to be under-valued (Ali 1977;
Thaler and Ziemba 1988). To see why, consider a horse race with only two
horses, and call the first horse the favorite (resp. longshot) if the mean
beliefs that this horse wins are such that Eep ≥ 1/2 (resp. Eep ≤ 1/2).
As we will see, the necessary and sufficient condition so that this horse is
under-valued, i.e. π∗ ≤ Eep, critically depends on whether it is a favorite
or a longshot. This result is presented in the following Proposition 4 in
which P (w) = −u000(w)/u00(w) denotes the coefficient of absolute prudence
(Kimball 1990) and A(w) = −u00(w)/u0(w) denotes the coefficient of absolute
risk aversion.

Proposition 4 Assume that the equilibrium price π∗ is unique. Then for all
symmetric ep, π∗ ≥ Eep if and only if (1/2− Eep)(P (w)− 2A(w)) ≥ 0 for all
w.

Proof : See the appendix.

The difference between the mean beliefs and the equilibrium price there-
fore depends on whether the mean belief is less than 1/2, and on whether
absolute prudence is greater than twice absolute risk aversion. The condition
P ≥ 2A is a familiar condition on utility functions derived from comparative
statics analysis within expected utility models (Gollier 2001). Under CRRA
utility functions, P ≥ 2A is equivalent to a parameter of constant relative
risk aversion less than 1. Notice also that DARA is equivalent P larger than
A.
The result presented in Proposition 4 is illustrated in Figure 1. The hor-

izontal axis represents the mean beliefs and the vertical axis represents the
equilibrium price. The diagonal therefore represents prediction market accu-
racy, which holds everywhere if and only if P = 2A (i.e., u is logarithmic).
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The result therefore shows that there is a favorite-longshot bias if and only
if the utility function displays P > 2A.

INSERT FIGURE 1 HERE

This result also generalizes the theoretical results of Gjerstad (2004) ob-
tained for CRRA utility functions, and provide a theoretical foundation of
the numerical simulations presented in Wolfers and Zitzewitz (2006) for var-
ious utility functions and probability distributions of beliefs. Moreover, this
result is connected to an early result obtained by Varian (1985, 1989). In-
deed Varian identifies a condition on the utility function so that the price of
Arrow-Debreu securities in a complete market setting increases when beliefs
are more dispersed in the sense of a mean-preserving spread of ep. Interest-
ingly, Varian shows that the necessary and sufficient condition is A0 ≥ −A2,
which is in fact equivalent to P ≤ 2A. Despite the obvious similarities,
Varian’s result is closely related, but not equivalent to our result however.
Indeed, the nature of the comparison is not the same. As recognized by Var-
ian, his result is not a comparative statics result, as he did not compare two
equilibria, but compared the price of different assets within the same equi-
librium.5 This explains why our result critically depends on whether mean
beliefs are lower or higher than 1/2, while Varian’s result does not.
One may wonder whether the condition (1/2−Eep)(P (w)−2A(w)) ≥ 0 is

also necessary and sufficient for all distributions ep, not only symmetric ones.
Note that π∗ ≥ Eep is equivalent to Eα(ep, p) ≥ 0, and since α(p, p) = 0, by
Jensen’s inequality the necessary and sufficient condition for all ep is simply
given by αpp(p, p) ≥ 0 for all p and p. The computation of αpp(p, p) in (7)
shows that the condition (1/2−Eep)(P (w)− 2A(w)) ≥ 0 is indeed necessary
for the favorite-longshot bias. However this condition is not sufficient, as the
following example shows.

5Let us illustrate this statement using the horse race parabola. Varian considers a race
with n > 2 horses and compares the equilibrium price of two horses s and t within that
race. He assumes that the mean beliefs that horses s and t win are identical, but that
the beliefs over horse s are more dispersed. In contrast, we consider a race with only two
horses. Yet we allow the mean beliefs over the two horses to be different, so that there is
a favorite (and thus a longshot) in that race. We then compare the equilibrium price of
the favorite to the mean beliefs that this horse wins the race.

12



Example 4 (Nonsymmetric beliefs): Consider agents with u(w) =
√
w

(i.e., P > 2A) and heterogeneous beliefs p1 = 0.1 and p2 = 0.9. When the
proportion of agents with beliefs p1 = 0.1 is 75% then π∗ = 0.272 < Eep = 0.3
(i.e., the longshot is undervalued), and when the proportion of agents with
beliefs p1 = 0.1 is 25% then π∗ = 0.727 > Eep = 0.7 (i.e., the favorite is
overvalued).

6 Conclusion

This paper has derived generic conditions so that asset prices in prediction
markets reflect the mean of the beliefs held by the traders. Unsurprisingly,
these conditions are stringent. They require the utility function of all traders
to be logarithmic or their beliefs to be distributed symmetrically. More-
over, no general conditions can be found when heterogeneity over traders’
individual characteristics (wealth, risk aversion) is introduced.
Consistent with Manski (2006), the general message from this theoretical

analysis is that we cannot realistically expect that asset prices in prediction
markets only reflect the average of traders’ beliefs. Typically, they should
also reflect the dispersion of beliefs, as well as the individual characteristics of
the traders. This suggests that the theoretical research on prediction markets
should move beyond its initial focus on predictive accuracy.
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Appendix: Proof of Proposition 4

Recall that, when the equilibrium is unique, π∗ ≥ p if and only if Eα(ep, p) ≥
0. For symmetric distributions, this holds true if and only if for all p (hereafter
denoted p) we have

g(δ) = α(p+ δ, p) + α(p− δ, p) ≥ 0, (9)

in which α(p+ δ, p) is the unique solution of

(p+δ)(1−p)u0(w+α(p+δ, p)(1−p))−(1−p−δ)pu0(w−α(p+δ, p)p) = 0 (10)

and α(p− δ, p) is the unique solution of

(p−δ)(1−p)u0(w+α(p−δ, p)(1−p))−(1−p+δ)pu0(w−α(p−δ, p)p) = 0 (11)

for δ ∈ [0,min{p, 1− p}].
Observe that g(0) = 0 and g0(0) = 0. Moreover, we have g00(0) =

2αpp(p, p). Then, taking αpp(p, p) from (7), we can see that g00(0) ≥ 0 is
equivalent to (1/2 − p)(P (w) − 2A(w)) ≥ 0 for all w. This provides the
necessity part of the Proposition.
We now prove the sufficiency. From (11), condition (9) is equivalent to

(p−δ)(1−p)u0(w−α(p+δ, p)(1−p))−(1−p+δ)pu0(w+α(p+δ, p)p) ≥ 0. (12)

Denoting φ(x) = 1/u0(x) and α = α(p+δ, p) ≥ 0, π∗ ≥ p is therefore satisfied
if

(p+ δ)(1− p)φ(w − αp)− (1− p− δ)pφ(w + α(1− p)) = 0 (13)

which implies

(p− δ)(1− p)φ(w + αp)− (1− p+ δ)pφ(w − α(1− p)) ≥ 0. (14)

We now introduce two random variables:

x̃ =

(
w + αp, p−δ

2p

w − αp, p+δ
2p

, ỹ =

(
w + α(1− p), 1−p−δ

2(1−p)
w − α(1− p), 1−p+δ

2(1−p)
.

Then it can be verified that Ex̃ = Eỹ = w − αδ and x̃ is a mean-preserving
spread of ỹ if and only if p ≥ 1/2. Note that φ00(x) ≥ 0 if and only if P ≤ 2A.
Therefore, when p ≥ 1/2 and P ≤ 2A, we have

Eφ(x̃) ≥ Eφ(ỹ), (15)
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which is equivalent to

1

2p

∙
(p− δ)φ(w + αp) + (p+ δ)φ(w − αp)

¸
≥ 1

2(1− p)

∙
(1− p− δ)φ(w + α(1− p)) + (1− p+ δ)φ(w − α(1− p))

¸
.

This last inequality then leads to

(1− p)(p− δ)φ(w + αp)− p(1− p+ δ)φ(w − α(1− p))

≥−
∙
(1− p)(p+ δ)φ(w − αp)− p(1− p− δ)φ(w + α(1− p))

¸
= 0,

where the last equality is given by (13). This shows that the condition (14)
is satisfied. Hence π∗ ≥ p when p ≥ 1/2 and P ≤ 2A. Moreover, when
p ≤ 1/2, ỹ is a mean-preserving spread of x̃, and φ00(x) ≤ 0 is equivalent to
(15), leading to π∗ ≥ p. The case π∗ ≤ p under (1/2− p)(P − 2A) ≤ 0 can
be demonstrated in an analogous fashion. This concludes the proof. ¥
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Figure 1:

Favorite-longshot bias. This figure plots the equilibrium price π∗ as
a function of mean beliefs p. There is a favorite-longshot bias when π∗ > p
if and only if p < 1/2. This is satisfied for the class of utility functions u
for which absolute prudence P (w) = −u000(w)/u00(w) is greater than twice
absolute risk aversion A(w) = −u00(w)/u0(w).
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