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Abstract

In this paper, we derive a set of simple conditions such that am-

biguity aversion always raises the demand for self-insurance and the

insurance coverage, but decreases the demand for self-protection. We

also characterize the optimal insurance design under ambiguity aver-

sion, and exhibit a case in which the straight deductible contract is

optimal as in the expected utility model.
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1 Introduction

Almost all models used in insurance economics up to now have been based on

subjective expected utility theory. Therefore this literature has assumed that

ambiguity over probabilities does not matter for decisions. This assumption

is inconsistent with many experimental results (see, e.g., Camerer, 1995). The

most famous observation illustrating the violation of the subjective expected

utility theory is the Ellsberg (1961)’s paradox. The paradox can be explained

by ambiguity aversion, which can be thought as an aversion to any mean-

preserving spread in the space of probabilities. For example, ambiguity averse

agents prefer the lottery that yields a specific gain with a probability 1/2 to

another lottery in which the probability of earning the same gain is uncertain,

but with a subjective mean of 1/2 (for example if the agent believes that the

probability is either 1/4 or 3/4 with equal probability); see, e.g., Halevy

(2007) for recent experimental evidence. This psychological trait differs from

risk aversion, which is an aversion to any mean-preserving spread in the

payoff of the lottery. Since the seminal work by Gilboa and Schmeidler

(1989), decision theorists have proposed various decision models that exhibit

a form of ambiguity aversion (for a literature survey, see, e.g., Etner, Jeleva

and Tallon, 2009).

In this paper, we study the effect of ambiguity aversion on insurance

and self-protection decisions using the theory of ambiguity axiomatized by

Klibanoff, Marinacci and Mukerji (2005). This theory captures the idea

that mean-preserving spreads in probabilities reduce the welfare of ambiguity

averse agents. Also, this theory permits to separate the effect of ambiguity

aversion from that of risk aversion. Therefore our results permit to examine

whether the effect of ambiguity aversion differs from that of risk aversion.

There has been several papers studying the effect of risk aversion on in-

surance and self-protection decisions within the subjective expected utility

model. A well-known result is that risk aversion increases the demand for in-

surance, i.e. it raises the coverage rate, and it reduces the straight deductible.

Indeed, in the case of coinsurance, this result is a direct consequence of the

well-known Pratt’s result that risk aversion decreases the demand for the

risky asset. Similarly, it can be shown that risk aversion always increases the

demand for self-insurance (Ehrlich and Becker, 1972). In contrast, the effect

of risk aversion on self-protection is not clear, as first shown by Dionne and
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Eeckhoudt (1985).1

Intuitively, ambiguity aversion reinforces risk aversion. Under this intu-

itive view, ambiguity aversion should raise the demand for insurance, and it

should have an ambiguous effect on self-protection. Following Gollier (2011),

we show that ambiguity aversion is not equivalent to an increase in risk

aversion. For example, Gollier shows that ambiguity aversion may raise the

demand for an ambiguous risky asset in a simple one-risky-one-risk-free asset

portfolio model. In general, the effect of ambiguity aversion on the optimal

decision is complex, but strongly connected to the comparative statics analy-

sis of the effect of risk.2

In this paper, we mostly consider specific ambiguous contexts where the

ambiguity is concentrated on one state of nature. That is, we assume that

conditional to the information that this state does not occur the distribution

of final wealth is unambiguous. This restrictive structure of ambiguity al-

lows us to get simple results regarding the effect of ambiguity aversion. Our

results are driven by the observation that the behavioral effect of ambiguity

aversion is as if an expected utility maximizer would use a more pessimistic

distribution of his beliefs when he acts. And it happens that the compara-

tive statics of a change in subjective probability is simpler than that of risk

aversion within the subjective expected utility model. We in turn derive

interpretable conditions so that ambiguity aversion increases self-insurance

and the demand for insurance but decrease self-protection decisions.

We finally examine the robustness of the celebrated Arrow (1971) result to

the introduction of ambiguity aversion. Within the subjective expected util-

ity model, Arrow showed that the optimal insurance contract has a straight

deductible when the insurance tariff is based on the actuarial value of the

contract. We show that under our specific structure of ambiguity the straight

deductible contract remains optimal under ambiguity aversion. The only ef-

fect of ambiguity aversion is to reduce the level of the optimal deductible.

1An activity of self-protection consists in investing to reduce the probability of an

accident. In fact, no general result can be obtained to sign the effect of risk aversion on

self-protection in the general case (Sweeney and Beard, 1992). To sign this effet, it is

necessary to specify the value of the probability of loss and to make further assumptions

on the utility function (Dachraoui et al., 2004; Eeckhoudt and Gollier, 2005).
2Gollier (1995) summarizes the main findings on this comparative statics analysis in the

case of a portfolio choice problem, which is further examined in Abel (2002). Strong re-

strictions on the utility function are required to guarantee that ambiguity aversion reduces

the optimal risk exposure.
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The paper is organized as follows. In the next section, we introduce the

model of ambiguity aversion with the basic full insurance problem. We then

study the self-insurance problem in section 3, and the self-protection problem

in section 4. In section 5, we examine the problem of the optimal insurance

design, and we conclude in the last section.

2 Full insurance

We consider an agent who faces an uncertain final wealth that can take

values 1  2    . The wealth distribution is represented by a

vector (1()  ()) that belongs to the simplex of 
. It is ambiguous

in the sense that it depends upon a parameter  that can take values in

Θ. The ambiguity takes the form of a probability distribution for  Let

 : Θ → [0 1] denote the cumulative distribution function describing this

parametric uncertainty. Let () =
R
Θ
() () denote the expectation

operator with respect to the parametric uncertainty.

Suppose that the true value of  is known, and let () denote the ex-

pected utility reached for that specific . It is defined as follows:

() =

X
=1

()() (1)

 being the vNM utility function. We say that the agent is ambiguity neutral

if he evaluates his welfare ex ante by the expected value (), i.e., if he

uses expected utility with the mean state probabilities  = (). This

agent is indifferent to any mean-preserving spread in state probabilities. In

accordance to the resolution of the Ellsberg paradox, let us assume alterna-

tively that the agent dislikes mean-preserving spreads in state probabilities,

i.e., that he is ambiguity averse. Following the work by Klibanoff, Marinacci

and Mukerji (2005) (KMM hereafter), let us assume that the agent evaluates

his welfare ex ante by the certainty equivalent of the random variable ()

computed with an increasing and concave valuation function . The concav-

ity of  expresses ambiguity aversion, i.e. an aversion to mean-preserving

spreads in the random state probabilities (). The ex ante welfare is equal

to the certainty equivalent of () using the concave function  :

−1[[()]]
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In this section, we study the willingness to pay (hereafter WTP)  for risk

elimination under ambiguity aversion, defined by:

( −  ) = −1[[()]]

where  is equal to
P

=1 

The special case of a linear  function corresponds to ambiguity neutrality.

In that case, the WTP for the elimination of risk is denoted 0, which is

defined by ( − 0) = (). Observe that under  concave, namely

under ambiguity aversion, we have

[( −  )] = [()]

≤ [()] = [( − 0)]

Therefore 0 is always less than  under  concave. In other words, ambi-

guity aversion always raises the WTP for risk elimination. The intuition is

that eliminating the risk also eliminates all the ambiguity associated with the

risk. Therefore this is no surprise that ambiguity averse agents are willing to

pay an extra premium for risk elimination.

3 Self-insurance

Self-insurance is a technique aimed at increasing wealth in a specific state

 against a cost incurred in all states. We assume that the ambiguity is

concentrated on that state  in the sense that the distribution of final wealth

conditional to the information that “the state is not ” is unambiguous. This

means that for all  ∈ Θ and all  6= 

() = (1− ()) (2)

where  is the probability of state  conditional to the state not being ,

with Σ6= = 1. This structure of ambiguity is without loss of generality

when there are only two states of nature. It is restrictive when there are

more than two states of nature. Without loss of generality, we assume in this

paper that  is increasing in .
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3.1 Willingness to pay for self-insurance

We first examine the willingness to pay for an infinitesimal insurance for state

. Let  () denote the WTP for an increase in wealth in state :



"
()( + −  ()) + (1− ())

X
6=

( −  ())

#
= [()]

Fully differentiating this equation with respect to  yields

 0(0) =
0()()

0[()]


0[()] [()0() + (1− ())0(−)]
 (3)

where 0(−) = Σ 6=0() is the expected marginal utility conditional

to the state not being . We are interested in determining the effect of ambi-

guity aversion on the willingness to pay for insurance. Using (3) with 0 ≡ 1
implies that the marginal WTP for insurance under ambiguity neutrality

equals


0()


0() + (1− )

0(−)
 (4)

Under ambiguity aversion, we can define a distorted probability of state  as

follows: b = ()
0[()]


0[()]

 (5)

We can then rewrite (3) as

 0(0) =
b0()b0() + (1− b)0(−)  (6)

The effect of ambiguity aversion on the marginal WTP for insurance in favor

of state  is equivalent to a change in the probability of state  from  to b. It
is easy to check that an increase in the distorted probability b always raises
the marginal WTP. Thus, ambiguity aversion raises the marginal WTP to

insure state  if and only if it raises the distorted probability of state .

Let us define 1 as the certainty equivalent of −:

(−) = (1)

It is easy to check that b is larger than  if and only if  is smaller than

1. Observe that () = ()() + (1− ())(1) is decreasing in  in
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that case. Because 0 is decreasing under ambiguity aversion, the covariance
rule (Kimball, 1951) implies that

b = ()
0[()]


0[()]

≥ ()
0[()]


0[()]

= () = 

Thus, ambiguity aversion has the effect to increase the distorted probabil-

ity of the state to insure if the corresponding state wealth is smaller than

the certainty equivalent wealth in other states, and to reduce the distorted

probability of the state to insure otherwise. This concludes the proof of the

following proposition:

Proposition 1 Consider the decision to self-insure state  in which ambi-

guity is concentrated. Ambiguity aversion raises the marginal WTP to self-

insure state  if wealth in state  is smaller than the certainty equivalent

wealth 1, and it reduces it otherwise.

There is a simple intuition to this result. When state  has a wealth

smaller than the certainty equivalent 1, raising  reduces the dispersion

of (). Therefore, it is positively valued by all ambiguity averse agents.

The opposite result holds when wealth in state  is larger than 1. Note

that in the two-state case where a loss  occurs in state , we simply have

 =  −   1 = , so that ambiguity aversion raises the marginal WTP

to self-insure state .

3.2 Optimal self-insurance

We now examine the impact of ambiguity aversion on the optimal insurance

in favor of state . It is convenient to consider first a general model in

which the expected utility ( ) is a function of a decision  and of an

unknown parameter . Under ambiguity neutrality, the agent selects the level

 that maximizes her unconditional expected utility ( ). It yields the

following first-order condition (hereafter subscripts with decision variables

denote derivatives):

(
∗ ) = 0 (7)

From now on, ∗ denotes the solution of this equation, and is interpreted
as the optimal prevention effort under ambiguity neutrality. Under ambigu-

ity aversion, the objective of the decision-maker is to maximize  [ ()] =
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[( )] where  () could be interpreted as the certainty equivalent

utility on the same way than the certainty equivalent wealth in the expected

utility theory. Assuming that  is concave in , the optimal level of effort is

increased by ambiguity aversion if  0(∗) is positive. We have that

0[ (∗)] 0(∗) = (
∗ )0[(∗ )] (8)

As a simple application of the covariance rule, we obtain the following pre-

liminary result.

Lemma 1 In decision problem [( )] with  ≤ 0, ambiguity

aversion increases (resp. decreases) the optimal decision  if and only if

(∗ ) and (
∗ ) are anti-comonotonic (resp. comonotonic), where ∗

is defined by (7).

Proof: If (∗ ) and (
∗ ) are anti-comonotonic, we have that

(
∗ )0[(∗ )] ≥ (

∗ )
0[(∗ )] = 0

The first inequality comes from the fact that 0 is decreasing, which implies
that (∗ ) and 0[(

∗ )] are comonotonic. The second equality is due
to (7). This shows that  0(∗) ≥ 0, so that the optimal prevention under
ambiguity aversion is less than ∗, the optimal effort under ambiguity neu-
trality. This proves sufficiency. For necessity, suppose by contradiction that

there exists ( 0) ∈ Θ2 so that (∗ 0)  (∗ ) and (
∗ 0)  (

∗ ).
Let  be distributed as ( ; 0 1−). Under this assumption, we obtain that
(

∗ )0[(∗ )]  0, a contradiction. ¥
The optimal effort is increased by ambiguity aversion if the marginal

value of effort (expressed by ) is larger for less favorable priors, i.e. for 

yielding a smaller expected utility  . Indeed, ambiguity averse agents put

more weight on these unfavorable priors than ambiguity neutral agents.

We apply this result to the case of the optimal insurance of state . More

specifically, suppose that one can undertake ex ante an effort  that raises

wealth in state  to ()− and that reduces wealth in all other state  6= 

to  − . The problem can be written as follows:

( ) = ()(()− ) + (1− ())
X
 6=

( − )

To make the problem interesting, we assume that 0() is larger than
unity. The condition  ≤ 0 is satisfied under 00 () ≤ 0. If ∗ is the optimal
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demand for insurance of the ambiguity neutral agent as defined by equation

(7), we can redefine the certainty equivalent wealth level 1 conditional to

 6=  in this self-insurance context as follows:X
6=

( − ∗) = (1 − ∗) (9)

Suppose first that (
∗) is smaller than 1. It implies that (

∗ ) is de-

creasing in . Observe also that

(
∗ ) = ()

0((
∗)− ∗)(0(

∗)− 1) + (()− 1)
X
6=


0( − ∗)

The two terms in the right-hand side of the above equation are increasing in ,

independent of the value of (
∗) relative to 1. Thus, Lemma 1 implies that

the optimal self-insurance effort is increased by ambiguity aversion when the

wealth level in the insurable state is smaller than the certainty equivalent

wealth level in the other states. Because  and  are comonotonic when

(
∗) is larger than 1 the opposite result holds in that case. This proves

the following proposition.

Proposition 2 Consider the decision to self-insure state  in which ambi-

guity is concentrated. Ambiguity aversion raises the optimal self-insurance

effort if wealth in state  is smaller than the certainty equivalent wealth 1
defined by (9), and it reduces it otherwise.

This result generalizes a result in Snow (2011), who considers the special

case with only two states of nature. As mentioned above in such a case, 1
is equal to the initial wealth and the result holds true. Indeed the intuition

of our result is the same as for Proposition 1. When the insurable state

has a low wealth level, self-insurance reduces the dispersion of conditional

expected utility levels. Ambiguity averse agents will therefore invest more in

self-insurance.

A special case of this result is obtained in the case of the demand for

insurance, where  is reinterpreted as the insurance premium. Suppose that

there are two states of nature. In the no-loss state, initial wealth is , whereas

it is only− in the loss state . For each dollar of premium, the policyholder
receives an indemnity  if and only if a loss occurs. If a premium  is paid
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ex ante, final wealth will be equal to ()−  and −  respectively in the

loss state and in the no-loss state, with () =  −  +  and  = .

Assuming that the indemnity  can never exceed the loss, we have that (
∗)

is always smaller than the certainty equivalent wealth 1 =  This yields

the following corollary.

Corollary 1 Consider the standard coinsurance problem with two states of

nature. Ambiguity aversion always raises the insurance coverage rate.

We can infer from Gollier (2011) that this result does not hold under a

general structure of ambiguity as considered in section 2.

4 Self-protection

Self-protection is a technique aimed at reducing the probability of a specific

state  at a cost incurred in all states. As in the previous section, we assume

that the ambiguity is concentrated on that state  in the sense of equation

(2).

4.1 Willingness to pay for self-protection

We first examine the impact of ambiguity aversion on the willingness to pay

for a marginal investment in self-protection. Suppose that one can reduce

the probability of state  by  in all possible scenarios . The distribution of

wealth conditional to  6=  is supposed to be unaffected by this investment.

These two ceteris paribus assumptions mean that the self-protection effort

affects the risk but has no impact on the degree of ambiguity. The WTP for

this action is denoted  (), which is defined as follows:



"
(()− )( −  ()) + (1− () + )

X
6=

( −  ())

#
=  [()] 

Straightforward computations lead to

 0(0) =

ÃX
 6=

()− ()

!


0 [()]



Ã
()0() + (1− ())

X
 6=

0()

!
0 [()]

 (10)
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This can be rewritten as follows:

 0(0) =
(1)− ()b0() + (1− b)0(2)  (11)

in which b is the distorted probability defined by equation (5), and 1 and

2 are respectively the certainty equivalent and the precautionary equivalent

wealth level conditional to  6= :

(1) =
X
6=

() and 0(2) =
X
6=


0() (12)

We hereafter assume that the wealth level in state  is smaller than the

certainty equivalent 1 so that the marginal WTP for self-protection is posi-

tive. We see from equation (11) that the marginal WTP is the ratio between

the marginal utility benefit of self-protection and the marginal utility cost

of the corresponding effort. The marginal utility benefit is measured by the

expected utility difference when  =  and when  6=  , whereas the util-

ity cost of self-protection is measured by the ambiguity-distorted expected

marginal utility b0() + (1− b)0(2). Equation (11) corresponds to the
marginal WTP of an ambiguity neutral agent with distorted beliefs b. Thus,
as in the previous section, the effect of ambiguity aversion is to transform

probability  = () into a distorted probability b. We have shown in
the previous section that b is larger than  if and only if  is smaller than

1. On the other hand, it is immediate from (11) that the marginal WTP

for self-protection of state  is decreasing in b if and only if  is smaller

than the precautionary equivalent wealth 2.

Let us assume that the utility function of the agent exhibits decreasing

absolute risk aversion (DARA). From Kimball (1990), we know that this

means that the precautionary equivalent 2 is smaller than the certainty

equivalent 1. Let us first consider a situation in which the wealth level 

in state  is smaller than 2 ≤ 1. In that case, b is larger than  and the

marginal WTP is decreasing in b. This implies that ambiguity aversion has
a negative impact on the marginal WTP for self-protection. The intuition is

that ambiguity aversion induces the agent to put more weight on scenarios 

with a large probability (), since () is decreasing with  when   1.

This raises the distorted probability b above  But this has the effect to
raise the marginal utility cost b0() + (1− b)0(2) of the ex ante effort,
since   2. The marginal utility benefit of self-protection expressed by

11



(1)− () being unaffected by ambiguity aversion, we can conclude that

ambiguity aversion reduces the marginal WTP of self-protecting states whose

wealth level is below the precautionary equivalent wealth. The opposite result

prevails when  is in between 2 and 1. This is because the increased

distorted probability b now implies a reduction in the utility cost of effort.
These results are summarized in the following proposition.

Proposition 3 Consider the decision to self-protect state  in which ambigu-

ity is concentrated. Suppose that the agent is DARA, and that the wealth level

 in state  is less than the certainty equivalent wealth level 1. Ambiguity

aversion reduces the marginal WTP to self-protect state  if  is smaller

than the precautionary equivalent wealth 2, and it raises it if  ∈ [2 1].

4.2 Optimal self-protection

We now consider a specific prevention model in which the effort  affects the

probability ( ) of state  in which ambiguity is concentrated. We define

expected utility as follows

( ) = ( )( − ) + (1− ( ))
X
6=

( − ) (13)

We assume that the probability of state  is differentiable with respect to

 with ( ) ≤ 0. We also assume that the second order condition is

satisfied.3 Let ∗ denote the optimal effort of self-protection for the ambiguity
neutral agent. Suppose without loss of generality that (

∗ ) is increasing in
. Using Lemma 1, we need to determine whether  and  are comonotonic

or anti-commonotonic to determine the impact the ambiguity aversion on the

optimal effort. Redefining the certainty and the precautionary equivalents

1 and 2 as

(1 − ∗) =
X
6=

( − ∗) and 0(2 − ∗) =
X
6=


0( − ∗)

we can rewrite the conditional expected utility as

(∗ ) = (
∗ )( − ∗) + (1− (

∗ ))(1 − ∗) (14)

3In this model, the condition  ≤ 0 requires some specific restrictions on functions 
(Jullien, Salanié and Salanié, 1999).
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and its derivative with respect to  as

(
∗ ) = (

∗ ) [( − ∗)− (1 − ∗)] (15)

− [(∗ )0( − ∗) + (1− (
∗ ))0(2 − ∗)] 

As earlier, suppose that  is smaller than the certainty equivalent 1.

This means that we focus on a state satisfying the natural property that

a reduction of its probability raises expected utility. In other words, from

(14),  ≤ 1 implies that the conditional expected utility is decreasing in .

The sensitiveness of  to changes in  is more difficult to evaluate at that

degree of generality, as can be seen from equation (15). As earlier in this

section, let us now assume that the degree of ambiguity is not affected by

the effort. In other words, let us assume at this stage that  is independent

of . This implies that the first term in the right-hand side of equation (15)

is independent of . What remains in the right-hand side of the equation is

decreasing in  if  is smaller than 2. Using Lemma 1 yields the following

proposition.

Proposition 4 Consider the decision to self-protect state  in which ambi-

guity is concentrated. Suppose that the agent is DARA, and that the wealth

level  in state  is less than the certainty equivalent wealth level 1. If

(
∗ ) is independent of  ambiguity aversion reduces the optimal self-

protection effort if  is smaller than the precautionary equivalent wealth 2,

and it raises it if  is larger than 2.

The intuition of this result is the same as for Proposition 3. When the

wealth level in the state whose probability is reduced by the effort is smaller

than the precautionary equivalent wealth, the increase in the distorted prob-

ability b that is induced by ambiguity aversion raises the marginal utility
cost of effort, thereby reducing the optimal effort.

Let us now relax the assumption that the effort level has no impact on

the degree of ambiguity. Suppose alternatively that an increase in effort

raises the degree of ambiguity, i.e., that (
∗ ) is increasing in  Possible

probabilities of state  become more dispersed when effort is increased. In-

tuitively, this should reinforce the negative impact of ambiguity aversion on

effort. This can be checked by observing that the first term in the right-hand

side in equation (15) is decreasing in , as is the second term when  ≤ 2.
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Proposition 5 Under the conditions of Proposition 4, if (
∗ ) is increas-

ing in  then ambiguity aversion reduces the optimal self-protection effort if

 is smaller than the precautionary equivalent wealth 2.

This result is related to Snow (2011), who exhibits a case in which

ambiguity aversion raises the optimal self-protection effort.4 Using a two-

state model, Snow restricts the functional form describing the effect of self-

protection on the probability of accident. Using our notation, Snow assumes

that, for all ( ) ( ) = ()() where () captures the effect of the

self protective effort, with ()  0 and 0()  0. This is a special case

in which the proportional effect of effort on the loss probability is the same

for all . Under this condition, Snow shows that the self-protection effort is

increased by ambiguity aversion. Because ( ) = ()() implies that

 is decreasing in , Snow’s result is not inconsistent with our Proposition

5 in which we instead assume that  is increasing in .5

5 Optimal insurance design

In this section, we explore the problem of the optimal insurance contract

design. As first proved by Arrow (1971), any insurance contract is dominated

by a contract with a straight deductible. As it is intuitive, the deductible

contract optimizes the risk transfer to the insurer for any insurance budget

level, since it provides indemnities where the marginal utility of wealth is the

largest. We are interested here in determining whether this Arrow’s result is

robust to the introduction of ambiguity aversion.

As a particular case of the specific structure of ambiguity considered in

sections 3 and 4, we limit the analysis to the case in which the ambiguity is

concentrated in the probability of the no-loss state. We have  =  and

4Berger (2011) also examines a model of self-protection and self-insurance under am-

biguity aversion, but in a two-period model.
5Here is a sketch of the proof of Snow (2011)’s result. Let us assume  =  − ,

 =  and ( ) = ()(). We need to show that (
∗ ) increases in  in this

specific model. It can easily be shown that this holds if and only if (∗) = 0(∗)(( −
− ∗)− ( − ∗))− (∗)(0( − − ∗)− 0( − ∗)) is positive. Note that the first
term of (∗) is positive while the second term is negative, illustrating that the effect

is in general indeterminate when  is decreasing in . Nevertheless, observe that the

first order condition of this problem simply reduces to (())(
∗) = 0(− ∗), which

implies (∗)  0.
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 =  −  where  is the loss in state . Let () denote the ambiguous

probability that a loss occurs. Conditional to the occurrence of a loss, the

level of loss is a random variable  which is independent of . That is, the

distribution of the severity of the loss is unambiguous. An insurance contract

stipulates an indemnity () for each possible loss level . To any such

indemnity schedule, there is an insurance premium which is proportional to

the actuarial value of the policy:

 = (1 + )()

where as before  = () is the expected probability of accident and  is

the loading factor. Conditional to  the policyholder’s expected utility is

written as

() = (1− ())( −  ) + ()( − + ()−  )

The ambiguity averse policyholder selects the indemnity schedule () that

maximizes its ex ante welfare which is measured by [()]. By the con-

cavity of  and , this maximization is well-behaved, and its first-order con-

ditions are necessary and sufficient. We first prove the following proposition.

Proposition 6 Suppose that the policyholder is ambiguity averse and that

the ambiguity is concentrated on the probability of the no-loss state. Under

this specification, the optimal insurance contract contains a straight deductible

: () = max(0  − ).

Proof: Suppose by contradiction that the contract 0 that maximizes[()]

is not a straight deductible contract. It yields an insurance premium 0 =

(1 + )0(). Then, let 0 denote the deductible which yields the same

insurance premium than 0 :

(1 + )(max(0 − 0)) = 0

But we know from Arrow (1971) that this alternative contract with a straight

deductible 0 dominates any other insurance schedule as 0 :

( −min( 0)− 0) ≥ ( − + 0()− 0)

It implies that for all  we have

(1− ())( − 0) + ()( −min( 0)− 0)

≥ (1− ())( − 0) + ()( − + 0()− 0)
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Because the expected utility conditional to  is larger with the straight de-

ductible 0 than with contract 0 for all  the former necessary yields a larger

ex ante welfare [()]. This is a contradiction.¥
We now examine the impact of ambiguity aversion on the optimal de-

ductible. Corollary 1 answered this question in the special case of only one

possible loss, since in that case a proportional coinsurance or a straight de-

ductible are formally equivalent. With more than one possible loss level, the

decision problem can thus be rewritten as follows:

max


[( )] (16)

with

( ) = (1− ())( −  ()) + ()( −min( )−  ())

and  () = (1 + )max(0  − ). We suppose that (1 + ) is smaller

than unity, so that reducing the deductible makes the policyholder wealthier

in high loss states. Let ∗ denote the optimal deductible under ambiguity
neutrality. By Lemma 1, and because  is concave in 6 ambiguity aversion

reduces the optimal deductible if (∗ ) and (
∗ ) are comonotonic.

Suppose that  is increasing in , so that (∗ ) is decreasing in . We have

(
∗ ) = − 0(∗) [(1− ())0( −  ∗) + ()0( −min( ∗)−  ∗)]

−()(1−  (∗))0( − ∗ −  ∗) (17)

where and  ∗ =  (∗) and  is the cumulative distribution function of .

This equality can be rewritten as follows:

(
∗ ) = − 0(∗)(1− ())0( −  ∗) + ()(1−  (∗))

× [(1 + )0( −min( ∗)−  ∗)− 0( − ∗ −  ∗)] 
(18)

This is obviously decreasing in , since  0(∗)  0, 0(−min( ∗)− ∗) ≤
0( − ∗ −  ∗) and (1 + ) ≤ 1. This proves the following proposition.

Proposition 7 Under the specification of Proposition 6, the optimal de-

ductible is reduced by ambiguity aversion.

6See Schlesinger (1981).
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The intuition for this result can be obtained from the observation that the

effect of ambiguity aversion is here equivalent to an increase in the implicit

loss probability defined by

b = 
0[(∗ )]()


0[(∗ )]



Because (∗ ) and () are negatively correlated and because 0 is decreas-
ing, we have that b is larger than () = , under ambiguity aversion.

We assumed in this section that the ambiguity is concentrated on the no-

loss state. We finally show that the optimal insurance schedule is in general

not a straight deductible for other structures of ambiguity. This is done

with a numerical counter-example. Suppose that the agent has an initial

wealth  = 3 and that there are three possible loss levels  = (0 1 2) The

ambiguity is structured as follows. There are two equally-likely probability

distributions for  with support (0 1 2) : The good distribution is ( =

1) = (12 12 0) whereas the bad distribution is ( = 2) = (14 14 12).

Observe that, under our terminology, the ambiguity is here concentrated on

the large loss  = 2. The loading factor of the insurance premium is  = 02

The policyholder’s utility function is () = −1, and we calibrate ambiguity
aversion with [] = −−100. Using Mathematica, we solve numerically the
following problem:

max
1∈[01] 2∈[02] 

1

2


∙
1

2
(3−  ) +

1

2
(2 + 1 −  )

¸
+
1

2


∙
1

4
(3−  ) +

1

4
(2 + 1 −  ) +

1

2
(1 + 2 −  )

¸
subject to

 = 12

µ
3

8
1 +

1

4
2

¶


We obtain ∗1 = 0407 and 
∗
2 = 1630. Because 

∗
2−∗1  2−1 we see that

the optimal contract is not a straight deductible, i.e., there is no  such that

∗() = max(0 − ) for all . Final wealth is larger in state with  = 2

than in state with  = 1. This is done to compensate for the relatively

large ambiguity associated to the large loss. We conclude that the result

expressed in Proposition 6 is not robust to the relaxation of the condition

that ambiguity is concentrated on the no-loss state.
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6 Conclusion

In this paper, we have shown that ambiguity aversion tends to raise the

incentive to insure and to self-insure, but to decrease the incentive to self-

protect. The intuition for our results is that ambiguity aversion has an

effect which is behaviorally equivalent to the effect of more pessimism under

subjective expected utility theory. Since the effect of a change in probability

in expected utility models is usually different from that of a change in risk

aversion, this explains why the effect of ambiguity aversion differs from that

of risk aversion. We have also exhibited a case where the optimal insurance

contractual form contains a straight deductible as in the expected utility

model.

This paper has thus generalized the analysis of some standard problems

in insurance economics to ambiguous risks. Some technical difficulties remain

however. In particular, it could be interesting to consider more general am-

biguous probability distributions, ambiguity averse insurers and other forms

of ambiguity sensitive preferences. At a more conceptual level, we finally ob-

serve that if the distinction between (self-)insurance and self-protection has

classically been done in the insurance economics literature, the case for main-

taining such a distinction may become more problematic under conditions of

ambiguity.
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