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Abstract

This paper analyzes the possibility and the consequences of rational bubbles in a dy-

namic economy where financially constrained firms demand and supply liquidity. Bub-

bles are more likely to emerge, the scarcer the supply of outside liquidity and the more

limited the pledgeability of corporate income; they crowd investment in (out) when

liquidity is abundant (scarce). We analyze extensions with firm heterogeneity and sto-

chastic bubbles.
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I Introduction

Despite some progress in our understanding of asset price bubbles, many challenging ques-

tions are left unanswered. What role do macroeconomic conditions and financial institutions

play in the emergence of bubbles? Is the classic theory of rational bubbles correct in predict-

ing that bubbles raise interest rates and crowd out productive investment?1 Symmetrically,
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1While the interest rate response is rather undisputed, some famous episodes seem consistent with a

crowding in hypothesis. For example, Japan’s bubble came with not only high interest rates but also
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what are the consequences of bubble crashes? Do bubbles benefit/hurt some sectors more

than others? What is the appropriate test for the existence of bubbles? Is there a link

between dynamic inefficiency and the possibility of bubbles?

This paper investigates these questions by adding to the standard growth model an asyn-

chronicity between firms’ access to and need for cash. While this asynchronicity is perfectly

resolved by capital markets in classic growth theory, capital markets are here imperfect:

Factors such as agency costs prevent firms from pledging the entirety of the benefits from

investment to outside investors, resulting in credit rationing. The anticipation of credit ra-

tioning in turn gives rise to a familiar demand for liquidity (or stores of value; we will use

the two terms interchangeably). Firms also supply liquidity by issuing securities, i.e. claims

to their future revenues. Each firm is at times a net demander of liquidity or a net supplier

of liquidity.

At the heart of this paper is the interplay between different forms of liquidity. Specifically,

we investigate the interaction of inside liquidity (securities issued by financially constrained

firms), outside liquidity (assets that originate in a different sector in the economy), and

bubbles. Literally speaking, bubbles are a form of outside liquidity, but because they are the

focus of this paper, we choose to single them out.

The impact of outside liquidity on investment and economic activity accordingly hinges

on the relative potency of two effects: a liquidity effect and a leverage effect. On the demand

side, the firms’ hoarding of liquidity makes them benefit from an increase in the supply, and

a reduction in the price of liquidity. On the supply side, their issuing securities to finance

investment makes them vulnerable to high interest rate conditions: An increase in outside

liquidity raises interest rates and competes with the securities issued by the firms, reducing

their leverage.

This paper makes several contributions. First, as we just discussed, it studies the interplay

between inside and outside liquidity. Outside liquidity helps firms address the asynchronicity

between their access to and need for cash–the liquidity effect–but also competes for savings

with productive investment–the leverage effect. We show that the liquidity effect dominates

when outside liquidity is abundant.

Second, the paper shows that bubbles are more likely to exist and can be larger when

agency problems are severe (firms can only pledge a small fraction of their future revenues),

vigorous investment and growth; when it burst, the country went through a prolonged deflation and recession.

Similarly, in the US, the Internet and housing bubbles were accompanied with economic booms; interest rates

and investment fell when these bubbles burst.
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outside liquidity is scarce, and when the demand for liquidity is high (the net worth of firms

is high).2

Third, bubbles are a form of outside liquidity. They are more likely to crowd the

financially-constrained corporate sector’s investment in (out), the more (less) abundant the

outside liquidity.

Fourth, the crash of a bubble is accompanied by low interest rates and high leverage.

It has a negative effect on firms’ financial net worth, and further reduces liquidity. Conse-

quently, even in a risk neutral environment, a stochastic bubble carries a liquidity premium

(it features positive excess returns relative to the risk-free rate) since it pays little or zero

in states where internal funds can be levered the most. Furthermore, bubble bursts can be

endogenously triggered by adverse shocks to corporate net worth, resulting in a liquidity

dry-up: financial disruptions amplify real disturbances.

Fifth, bubbles, and more generally outside liquidity, impact firms differently. Firms with

limited ability to pledge future cash-flows are little hit by competing claims as they issue

no or few securities. They benefit more from a bubble. They are also more eager to hold

stochastic bubbles.

Finally, in standard models of rational bubbles (e.g. Tirole 1985), bubbles can occur only

if the economy is dynamically inefficient so that tests aimed at detecting dynamic inefficiency

can be used to determine if bubbles are possible. In our environment, Abel et al. (1989)’s

finding that the productive sector disgorges at least as much as it invests does indicate

that the economy is dynamically efficient. The possibility of bubbles is determined by the

condition that the interest rate be higher than the growth rate of the economy, in conformity

with Santos and Woodford (1997).3 But with imperfect capital markets, the economy can be

dynamically efficient, and at the same time the interest rate can be lower than the growth

rate of the economy. This is because the social rate of return on internal funds exceeds

that on borrowed funds; therefore the social rate of return on investments is higher than

the market interest rate when returns can be only imperfectly collateralized. As a result,

bubbles are possible even when the economy is dynamically efficient.4

2Accordingly, the much discussed ”global savings glut” may have contributed to the recent housing bubble

in the U.S. by creating a shortage of liquidity (stores of value). The low real interest rates that accompanied

this episode are consistent with this narrative. To be certain, there are also other causes (failure of prudential

regulation, etc.).
3Moreover, our agency-based approach argues in favor of the use of (relatively low) interest rates received

by outside investors such as the interest rate on riskless bonds.
4Typically, bubbles do not lead to Pareto improvements. For example, the holders of outside liquidity in

general lose from the emergence of a bubble, since it increases interest rates and lowers the price at which
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The paper proceeds as follows. Section II sets up the model and describes the solution

when there are no bubbles. It characterizes its unique steady state and derives some key

comparative statics results. Section III introduces the possibility of rational asset price

bubbles. It derives the dynamics with bubbles and describes the properties of the unique

bubbly steady state. Section IV first analyzes how bubbles affect the cross section of firms

when there is heterogeneity in pledgeability; it then introduces stochastic bubbles and derives

the mechanics of a bubbly boom-bust episode. Section V checks the robustness of the results

in several variants of the model. Finally, Section VI summarizes the main insights and

discusses alleys for research. Most of the proofs are contained in the Appendix, as well as in

an online Appendix.

Relation to the literature. The paper builds on a number of contributions. Most obvi-

ously, it brings together the literature on (rational) bubbles and that on aggregate liquidity.

The leverage effect, however, differs from the related competition effect featured in Diamond

(1965)’s celebrated analysis of national debt, and prominent in the theory of rational bub-

bles (Tirole 1985), whereby bubbles crowd investment out. The standard competition effect

captures the idea that unconstrained firms want to invest less when interest rates are high.

Our leverage effect has it that high interest rates aggravate credit rationing and so firms

cannot invest as much. In particular, Diamond’s competition effect is inconsistent with the

existence of a liquidity effect.

The role of stores of values in supporting investment when income is not fully pledge-

able has been stressed for example by Woodford (1990), Holmström-Tirole (1998) and a large

recent literature, including independent contributions by Kiyotaki-Moore (2008) and Kocher-

lakota (2009). In Woodford’s and Kocherlakota’s contributions, which are most closely re-

lated to ours, firms are net demanders of liquidity and there is always a potential shortage

of stores of value. These two papers assume that firms cannot supply liquidity (they have

zero leverage) by positing that none of the future cash flow is pledgeable to investors and so

firms do not issue securities. The possibility of leverage is central to many of our insights

(existence of liquidity and leverage effects, conditions for the existence of bubbles, impact of

bubbles on the cross section of firms).5

Saint-Paul (2005) shows that government debt (a store of value), while deterring capital

they can sell them. Similarly, equilibria with bubble crashes are usually not Pareto dominated by equilibria

with no bubble crash.
5As we show in Appendix A3, the mechanism through which bubbles may crowd investment in is very

different in our model and in Woodford (1990) or Kocherlakota (2009).
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accumulation, can increase the efficiency of the financial sector. Entrepreneurs can buy

public debt and use it as collateral. The existence of collateral reduces agency costs (Saint-

Paul uses the costly-state-verification model as an illustration). Accordingly, public debt

boosts growth over a range of parameters.

The paper shares with Kiyotaki-Moore (1997) the idea that investment decisions are

intertemporal complements. In Kiyotaki-Moore, tomorrow’s investment will raise the price

of the store of value, which is used as an input in the production process; this future increase

in the price of the store of value raises the firms’ wealth and thereby today’s investment.

In our paper, it is yesterday’s investment that supports today’s investment, by creating

securities that firms can hoard to meet their liquidity needs. Thus, Kiyotaki and Moore’s

dynamics are forward looking while ours are essentially backward looking (in the absence of

bubbles). Also, Kiyotaki-Moore’s focus is rather different as it has no bubbles.

The rational bubble literature has addressed the crowding-out critique in alternative

ways.6 Bubbles are attached to investment in Olivier (2000) and to entrepreneurship in Ven-

tura (2003), generating an incentive and a wealth effect respectively; in both papers, bubbles

can crowd investment in. Saint-Paul (1992), Grossman-Yanagawa (1993), and King-Ferguson

(1993) address the dynamic-efficiency critique by studying endogenous growth models with

bubbles, in which the social return on investment exceeds the private return due to spillovers.7

Caballero-Krishnamurthy (2006) develops a theory of bubbles in emerging markets. They

introduce, as we do, an investment driven demand for liquidity and show that in the presence

of fragile (stochastic) bubbles, the economy overinvests in the bubbly asset and is overexposed

6Other theories based on agency problems and asymmetric information as well as behavioral models have

proliferated in recent years. A partial list includes Abreu-Brunnermeier (2003), Allen-Gale (2000), Allen-

Gorton (1993), Allen-Morris-Postlewaite (1992), Barlevy (2009), Conlon (2004), Dobles-Madrid (2009), and

Scheinkman-Xiong (2004). See LeRoy (2004) for a good survey. These theories typically reach more precise

predictions than rational bubbles models regarding which assets are more likely to feature bubbles, and have

a rich array of implications for volume, turnover etc. However, these contributions have for the most part

retained a more microeconomic focus, and have not analyzed the liquidity-provision function of bubbles.
7The long-term rate of interest can then be smaller than the rate of growth of the economy, and yet the

economy be dynamically efficient. However, the condition for the existence of bubbles is still determined

by the condition that the growth rate of the economy be higher than the interest rate. Our results are

reminiscent of their findings. However, in our paper, the reason that the social rate of return on investment

is higher than the interest rate is fundamentally different: it does not stem from an externality in production

but rather from an agency problem such as moral hazard or limited commitment. As a result only a fraction of

the return to investment can be pledged to outside investors, and the rest is appropriated by entrepreneurs

(and more generally by insiders of the firm in a broader interpretation of the model). The interest rate

reflects the fraction of the return to investment which is pledgeable to outside investors, whereas the social

rate of return on investment accounts for the total return on investment—both the pledgeable part and the

unpledgeable part which is appropriated by entrepreneurs.
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to bubble crashes due to a pecuniary externality.

Our paper also sheds some light on the debate as to whether monetary authorities should

try to lean against bubbles (or, in a more extreme form, try to make them pop) by raising

interest rates or denying access to the discount window to banks that extend too many

loans. Some scholars (e.g., Bernanke 2002, Bernanke-Gertler 2000, 2001, Gilchrist-Leahy

2002) argue that the central bank should not pay attention to asset prices unless these signal

future inflation; others (e.g., Bordo-Jeanne 2002) are in favor of a moderate reaction.8 All

concur that a restrictive policy leads to a lower output and a significant risk of collateral-

induced credit crunch. Our model is consistent with this premise, as the pricking of the

bubble leads to a collateral shortage and reduced investment and production.

Our paper is related to several strands of the monetary literature. It has been well

known since Allais (1947)’s and Samuelson (1958)’s seminal contributions that there exists

economies in which money has a positive value in spite of the fact that it is intrisically

useless.9 In those models, money can be readily reinterpreted as a rational bubble, a fact

long recognized in the rational bubbles literature. Our paper is also related to a more recent

strand of the monetary theory literature often referred to as the New Monetarist literature.

It emphasizes the role of money and other assets in overcoming trading frictions in economies

with decentralized trade. Because of problems related to the double coincidence of wants,

imperfect commitment, enforcement, and record keeping, unsecured credit is not viable and

some trades must quid pro quo, involving either the sale of an asset or a collateralized

loan. Such setups give rise to endogenous liquidity premia. Williamson-Wright (2010) and

Nosal-Rocheteau (2010) provide excellent surveys. Most closely related to us is Rocheteau-

Wright (2010). They build on the extension by Rocheteau-Wright (2005) of the model of

Lagos-Wright (2005), and include endogenous participation decisions. Some of their results

resemble ours. Indeed, in their model, liquid assets can trade above their fundamental value if

the aggregate supply of liquid assets is low. They also generate multiple stationary equilibria

where asset prices and output are positively related. Moreover, they also construct non-

stationary equilibria, even when fundamentals are deterministic and non-stochastic. These

include equilibria with price trajectories that resemble bubbles growing and bursting. An

important difference with us, is that, using the language of our model, they focus on liquidity

8This is only a partial list of references on the topic. See Adrian-Shin (2008) for a more complete list.
9Overlapping generations models with money have been later thoroughly developed by Gale (1973), Cass-

Okuno-Zilcha (1979), Wallace (1980), Hahn (1982), Balasko-Shell (1981), Grandmont (1985), among others.

A textbook treatment can be found in Azariadis (1993).
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effects and assume away leverage effects.10

II The model

II.1 Description

Demographics, preferences and technology. Our model has overlapping generations of

risk-neutral entrepreneurs. The population is constant (all our results generalize to the case

of positive population growth). Entrepreneurs live for three periods: young, middle-aged

and old. For simplicity, we assume that entrepreneurs consume only when old. They are

risk-neutral and seek to maximize expected consumption. Each generation is indexed by the

period in which it is born. Time runs from  = 0 to  =∞. At each date  = 0 1 ∞, the
economy is inhabited by the old (generation − 2), the middle-aged (generation − 1), and
the young (generation ).

There is a single good in the economy. When young, entrepreneurs of generation  are

endowed with  units of good (wealth). When middle-aged, they invest +1 to produce

1+1 when old. However, only a fraction 0+1  1+1 of the return on investment is

pledgeable, where 1  0  0.

Market for liquidity. In every period, a market for liquidity allows entrepreneurs to

lend and borrow, subject to the borrowing constraints imposed by the limited pledgeability

of their future income. The interest rate prevailing between date  and date +1 is 1+ +1.

In equilibrium, it will always be the case that the pledgeability parameter 0 is strictly

less than 1 + +1, otherwise middle-aged entrepreneurs could achieve an infinite investment

scale. Because pledgeability is limited, firms can only partially rely on outside financing

at the investment stage. We will only analyze equilibria where 1  1 + +1 so that the

investment opportunities of entrepreneurs are strictly positive net-present-value projects.

The ingredients that determine supply and demand in the market for liquidity are as

follows. The asynchronicity between the availability of cash and investment opportunities,

together with the imperfect pledgeability of cash flows from investment, lead to a demand

for liquidity (stores of value) from young entrepreneurs: they purchase assets in their youth

10More precisely, the absence of leverage effects is tied to their assumption that shares in firms provide no

liquidity service.
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when they have wealth,11 and sell them in their middle age when they have an attractive

investment opportunity that can only be partially financed by the market. In turn, middle-

aged entrepreneurs are also suppliers of liquidity: they supply assets which capitalize the

pledgeable cash flows from their investment project.

At the heart of this paper is the interplay between different forms of liquidity. Specifically,

we investigate the interaction of inside liquidity (assets produced by middle-aged entrepre-

neurs of generation  when they pledge a fraction of the return on their investment project),

outside liquidity (assets that originate in a different sector in the economy), and bubbles.

Literally speaking, bubbles are a form of outside liquidity, but because they are the focus of

this paper, we choose to single them out.

We model outside liquidity as follows. At each point of time , there is a net supply of 

units of Lucas trees or “rents”: date- trees each pay one unit of good at date + 1. These

assets will be purchased in equilibrium by young entrepreneurs so as to be able to invest

when middle-aged. We will focus on the case where  ≥ 0. In extensions in Sections V.1 and
V.3, we explain how in some cases, it can make sense to examine the case   0. Section V.1

explains how our analysis differs in this case. At this stage, we only offer a simple model of the

owners of these assets: they are completely passive and supply them inelastically:  is just an

exogenous supply and the focus is entirely on entrepreneurs. One possible microfoundation

is that at each date , one-period-lived date- consumers are endowed with trees paying a

dividend equal to  at date +1. These consumers live only in period , and need to consume

at that date. We will encounter in Section V.3 other microfoundations for outside liquidity in

which  may respond to the interest rate; as we will see, the theory extends to such situations.

Liquidity can also come in the form of a rational bubble. The bubble is an asset in unit

supply that pays no dividend. We denote by  ≥ 0 the value of the bubble at date .
In the basic model, all these forms of liquidity–securities issues by middle-aged entre-

preneurs, trees, and the bubble–are riskless assets. No arbitrage requires all these assets to

have the same rate of return 1 + +1 between dates  and + 1.

The problem of entrepreneurs. Entrepreneurs invest all their wealth in their youth

in assets–trees, the bubble, and investment projects of the previous generation–and use

these savings when middle-aged as internal funds for their investment project. In their youth,

entrepreneurs of generation  must decide how much to spend 
, on trees, how much 



11That the entrepreneurs are net savers when young follows Woodford (1990). The results however only

hinge on their having a demand for liquidity available in their middle age.
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of the bubble to acquire and how much 
 to invest in securities issued by entrepreneurs of

generation − 1:
 = 

 +
 +



At date  + 1 the total resources available for investment for date- entrepreneurs are the

value of the claims on the future cash flows from their investment 0+1 (1 + +2), and

the date  + 1 value of its portfolio of trees 
, bubbles 


 , and securities 


 issued by the

previous generation of entrepreneurs.12 All these assets have the same return 1++1. Hence

+1 =
0+1

1 + +2
+ (1 + +1)[


 +

 +
] or +1 =

(1 + +1)[

 +

 +
]

1− 0
1++2



As is standard from the corporate finance literature, investment +1 increases with the

entrepreneurs’ net worth (1 + +1)[

 +

 +
] at the time when the investment is made.

The investment multiplier 1[1 − 0(1 + +2)] is a measure of leverage. It increases with

the fraction of income that is pledgeable to investors 0, and decreases with the interest rate

1 + +2 through the decrease in the value of the collateral generated by the project.
13

Discussion. We have adopted a framework with overlapping generations of entrepre-

neurs. The concept of generation should not be interpreted too literally–a period in our

model need not last for 25 years. Rather, overlapping generations are the simplest modelling

device that allows us to capture two features that are essential to our analysis. First, at

any point in time, some entrepreneurs are net suppliers of liquidity while others are net

demanders of liquidity. Second, interest rates can be lower than the rate of growth of the

economy (here, zero), which makes room for rational bubbles.

Other modelling options would have delivered these same features. For example we

could have analyzed a model à la Woodford (1990) where entrepreneurs are segmented into

12Total resources available for investment at date  + 1 to a date- entrepreneur come from two sources.

First, he collects resources 0+1 (1 + +2) by selling securities that grant a right to a payoff 0+1 in

period  + 2. This transaction is equivalent to a fully collateralized loan. In addition, he liquidates its

portfolio for a value (1 + +1)
£

 +

 +


¤
.

13We also need to specify what happens with the initial middle aged and the initial old entrepreneurs in

period 0. We assume that the initial old entrepreneurs have invested at scale −1 and pledged a fraction
0−1 of this return in the form of securities issued to the inital middle-aged entrepreneurs. At date 0, the

value of the portfolio of the initial middle-aged entrepreneurs is equal to the sum of the value of the bubble

0, the dividend 0−1 on the securities issued by the initial old entrepreneurs, and the dividend  on the

trees. The resources available for investment for the initial middle-aged entrepreneurs in period 0 are the

sum of the value of their portfolio and the value 00 (1 + 1) of the securities that they sell to the initial

young entrepreneurs.
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groups with alternating investment opportunities and borrowing constraints. Or we could

have opted for a model à la Aiyagari (1994), Bewley (1986) and Hirano-Yanagawa (2010)

where the investment opportunities of entrepreneurs are stochastic, with idiosyncratic risk

(and possibly aggregate risk as well). Under both types of models, occasionally binding

borrowing constraints segment the horizons of agents with essentially the same effects as

overlapping generations.

The potential benefit of Aiyagari-Bewley models over ours is that they are in principle

more suitable for realistic quantitative explorations. However, the parameters for a realistic

calibration in the context of our model (i.e. a precautionary savings model for firms instead

of the more customary income fluctuation problem for consumers) are currently largely

unknown. Moreover, this benefit has to be weighted against the cost in terms of loss of

tractability. Indeed, the dynamics of such models can be hard to characterize theoretically

because of the need to keep track of the evolving cross-sectional distribution of wealth. By

contrast, we are able to derive the solution of our model in closed form. Since our objective

is mostly theoretical, we view our model as preferable.

II.2 Competitive equilibrium

A competitive equilibrium imposes market clearing: 
 = (1 + +1) 


 =  and 

 =

0(1+ +1)We will use a version of recursive equilibrium as our running definition. The

economy is amenable to a recursive representation with two state variables: past investment

−1 and the bubble . The laws of motion for these variables can be derived from three

simple equations: a bubble dynamics equation, an asset supply equation and an asset demand

equation.

Bubble dynamics. The absence of arbitrage implies that the bubble must grow at the

rate of interest:

+1 = (1 + +1) (1)

Asset supply. The supply equation describes how generation ( − 1)’s investment at
date  is constrained by the available liquidity, + + 0−1, and by the investment-related

pledgeable income, 0(1 + +1) :

 =
0

1 + +1
+ [ +  + 0−1]
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and can be expressed as

 =
 +  + 0−1
1− 0

1++1

 (2)

Asset demand. The demand equation says that generation ’s wealth goes into buying

outside liquidity (), the bubble, and the assets generated by the previous generation’s in-

vestment (0):

 =


1 + +1
+  +

0

1 + +1


It can be expressed as

 =
 (1 + +1)−  −  (1 + +1)

0
 (3)

We define a competitive equilibrium as a sequence of investment levels, bubble and in-

terest rates {  } such that at every date  the asset market clears. We need to specify
the following initial conditions: the investment level −1 of generation −1 maturing at date
0; and the value 0 of the bubble at date 0.

Definition 1 A competitive equilibrium is a sequence {  }≥0 together with an initial
investment level −1  0 and an initial bubble 0 such that: (i) the bubble condition (1), the

asset supply and asset demand equations (2) and (3) hold; and (ii) for all  ≥ 0,  ≥ 0,
 ≥ 0, and 1  1 +  ≥ 0.

Note that in a competitive equilibrium, we necessarily have 1+  0 for all , otherwise

middle-aged entrepreneurs would invest at an infinite scale, which is impossible because the

resources available for investment are bounded.

II.3 The bubble-free case

Let us first assume that 0 = 0. This implies that  = 0 for all . The economy is a one-

dimensional dynamic system with state variable −1. Given −1, we now explain how  can

be computed using equations (2) and (3) with  = 0. Detailed derivations can be found in

Appendix A1.

Dynamics. The asset supply equation (2) determines  as a decreasing function of

+1. And the asset demand equation (3) determines  as an increasing function of +1.

11



Figure 1: asset supply and asset demand curves. The dotted curves represent the effects of

an increase in  (Section 2) or  (Section 3).

As 1 + +1 increases from 0 to +∞, the supply curve decreases from +∞ to ( + 0−1)

and the demand curve increases from (− 0) to +∞. The unique intersection of these
supply and demand curves with (1 + +1) ∈ (0+∞) determines the values of   0 and

1 + +1  0.
14 We denote by  = Φ (−1 0), +1 = Φ (−1 0) the corresponding policy

functions. The argument ”0” in Φ (−1 0) and Φ (−1 0) indicates that we have imposed

 = 0. In Appendix A1, we derive closed-form expressions for Φ (−1 0) and Φ (−1 0) 

Inside and outside liquidity. The productive sector provides its own liquidity in a

dynamic fashion: an increase in −1 leads to an increase in . Indeed, an increase in −1
leads to an upward shift in the asset supply curve (2) and does not affect the asset demand

curve (3). The result is an increase in investment  and an increase in the interest rate

1 + +1.

The asset supply and asset demand equations (2) and (3) can also be used to de-

termine the impact of outside liquidity () on investment  for a given −1 (see Figure

1). Given −1, increasing outside liquidity  shifts the asset supply curve (2) upwards

and the asset demand curve (3) downwards. The interest rate +1 unambiguously in-

creases. The effect on investment  is ambiguous. Indeed, using the asset supply equation

14This derivation assumes that 1 is large enough so that 1  1 + +1. As stated above, we focus on

equilibria which verify this property.
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 = ( + 0−1) [1− 0 (1 + +1)], the impact of the increase in outside liquidity on in-

vestment can be decomposed into two effects. On the one hand, increasing outside liquidity

 increases the net worth  +  + 0−1 of middle-aged entrepreneurs at date –a liquidity

effect. On the other hand, and as noted above, increasing outside liquidity increases the

interest rate +1. As a result leverage 1[1− 0(1 + +1)] decreases, which just expresses

the fact that financing is harder when interest rates are high. This we call the leverage effect.

The resulting effect on investment  at date  is ambiguous.

Intuitively, firms demand liquidity which is akin to an input in production. This tends to

make investment and outside liquidity complements. But investments made by the private

sector also play the role of inside liquidity. Inside liquidity is in direct competition with

outside liquidity. This tends to make investment and outside liquidity substitutes. This

distinction between the liquidity effect and the leverage effect also has a temporal dimen-

sion. Existing liquidity–inside liquidity −1 or outside liquidity –and contemporaneous

investment  are complements. Future outside liquidity and contemporaneous investment 

are substitutes.

Steady state. To solve for a steady state (∗ ∗) of the bubble-free economy, we look

for a solution to the system of equations obtained by imposing  = −1 = ∗ and +1 = ∗

in the asset supply and asset demand equations (2) and (3):

∗ =
 + 0

∗

1− 0
1+∗

and ∗ =
 (1 + ∗)− 

0
 (4)

There is a unique solution with ∗ ≥ 0 and 1 + ∗ ≥ 0 In Appendix A1, we provide a

closed-form solution for ∗ and ∗. The following proposition establishes that this steady

state is stable and summarizes the dynamics of the bubble-free economy.15

Proposition 1 Let { }≥0 be a competitive equilibrium of the bubble-free economy. The

economy converges to the bubble-free steady state. Moreover this convergence is monotonic:

investment  converges monotonically to 
∗.

We can clarify the circumstances under which outside liquidity and investment are com-

15When   0 (this is also true of the case   0 analyzed in Section V.1), this is the unique solution

of the system of equations in (4) with positive investment ∗ ≥ 0. When  = 0, there is another solution

of the system of equations in (4) with positive investment: ∗ = 0 and 1 + ∗ = 0. However, this is not a

competitive equilibrium, since a necessary condition is 1 + ∗  0.
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plements or substitutes. The equations in (4) can be rearranged to yield

∗ =
(1 + ∗)
1− 0

1+∗
 (5)

It can be verified that ∗ increases with ∗ if and only if the following condition holds:

1

2
≥ 0
1 + ∗

 (6)

In Appendix A1, we verify that ∗ increases with . Hence ∗ increases with  if and only if ∗

increases with ∗ in (5), i.e. if and only if condition (6) holds. Given that ∗ is an increasing

function of outside liquidity , this condition will hold if  is large enough.16 Let 0 be the

corresponding threshold. Clearly 0  0 if and only if condition (6) is violated when  = 0

(in which case 1 + ∗ = 0 (1− 0)), i.e. if and only if 12  0.

Proposition 2 In the bubble-free economy, steady state interest rate ∗ increases with out-

side liquidity. Steady state investment ∗ increases with outside liquidity  when the interest

rate is high enough so that (6) is verified. More precisely, there exists 0 ≥ 0 such that for
all  ≥ 0, ∗


is positive if and only if  is greater (smaller) than 0. Moreover we have 0  0

if and only if 0  12.

This proposition characterizes the situations where inside liquidity (investment) and out-

side liquidity (trees) are complements or substitutes. When liquidity is abundant ( high),

the price of liquidity is low (the interest rate ∗ is high) and the liquidity effect outweighs

the leverage effect so that investment ∗ increases with  An intuition for this result is

that an increase in the interest rate ∗ has a constant positive marginal effect on net worth

at the time of investment (1 + ∗) but a decreasing negative marginal effect on leverage

1[1− 0(1 + ∗)]

The case  = 0. The case  = 0 proves to be an important benchmark to understand

the effects of bubbles. For this reason, we find it useful to highlight its properties even in

the bubble-free case. The bubble-free steady state is then ∗ =  (1− 0) and 1 + ∗ =

0 (1− 0). In Appendix A1, we show that whenever   0, the steady state interest rate is

higher so that 1 + ∗  0 (1− 0).

16Indeed ∗ goes to infinity as  goes to infinity as can be seen from eliminating ∗ in (4) or from equation

(17) in Appendix A1.
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III Bubbles

In this section, we consider the possibility of rational bubbles. We first start by eliciting

the dynamics of the economy and the conditions for the existence of a bubbly steady state

in Section III.1. We show that there exists either zero or one bubbly steady state. This

steady state features higher investment than the bubble-free steady state. There are multiple

competitive equilibria corresponding to the same initial investment level −1. For any initial

investment level −1, we show that there exists a maximum feasible initial bubble ̄(−1).

For 0  ̄ (−1), the economy converges to the bubble-free steady state. For 0 = ̄ (−1),

the economy converges to the bubbly steady state. Detailed derivations can be found in

Appendix A2, and its continuation in the online Appendix A2.

III.1 Bubbly dynamics and steady state

In this section we focus on the case where   0. We return to the case  = 0 at the end of

the section.

Dynamics. The economy is a two-dimensional dynamic system with state variables −1
and . Given −1 and , we now explain how  and +1 can be computed.

As can be seen from equation (3), a necessary condition for equilibrium is then that

  . The asset supply equation (2) determines  as a decreasing function of +1. and

the asset demand equation (3) determines  as an increasing function of +1. As 1 + +1

increases from 0 to +∞, the supply curve decreases from +∞ to ( +  + 0−1) and

the demand curve increases from (−  − 0) to +∞. The unique intersection of these
supply and demand curves with (1 + +1) ∈ (0+∞) determines the values of  and +1.

See Figure 1 for a graphical illustration.

We can then infer the value of +1 from (1).17 We denote by  = Φ (−1 ), +1 =

Φ (−1 ) and +1 = Φ (−1 ) the corresponding policy functions. In Appendix A2, we

derive closed-form expressions for Φ (−1 ), Φ (−1 ) and Φ (−1 ).

Bubbly steady state. There exists either zero or a unique bubbly steady state. When

a bubbly steady state exists, the values of ∗∗ ∗∗ and ∗∗ can be found by imposing  =

−1 = ∗∗  = ∗∗ and +1 = ∗∗ = 0 in equations (2) and (3). See Figure 2 for a graphical

17This derivation assumes that 1 is large enough so that 1  1 + +1. As stated above, we focus on

equilibria which verify this property.
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Figure 2: asset supply and asset demand curves in steady state. The dotted curves represent

the effects of an increase in  (Section 2) or a shift from ∗ = 0 to ∗∗  0 (Section 3).

illustration.

When it exists the bubbly steady state is given by

∗∗ =


1− 0
 ∗∗ = 

1− 20
1− 0

−  and ∗∗ = 0

The condition of existence of a bubbly steady state is

1− 20
1− 0





 (B)

Condition (B) shows that bubbles can emerge when inside (0) and outside () liquidity is

scarce, creating a high demand for assets. Moreover the size of the bubble ∗∗ in the bubbly

steady state decreases with the fraction 0 of income that is pledgeable and with outside

liquidity : variations in  are compensated one for one by variations in the size of the bubble.

The interest rate ∗∗ is pinned down at 0. As a result, investment ∗∗ at the bubbly steady

state does not depend on 

In Section III.2 below, we show that condition (B) is equivalent to the standard condition

that the interest rate in the bubble-free steady state (∗) be less than the rate of growth of

the economy (0). There, we also analyze the connection between dynamic efficiency and the
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condition for the existence of bubbles.

Phase diagram analysis. It will prove convenient to describe the dynamics that we

have just derived using a phase diagram. This requires characterizing the  = −1 schedule–

the set of values (−1 ) such that Φ (−1 ) = −1–and the +1 =  schedule–the set

of values (−1 ) such that Φ (−1 ) = .
18

The  = −1 schedule is given by

 = 2−1
0 (1− 0)


− 0−1

+  −
³
1
0
−
´



− 

which defines a function (−1). The +1 =  schedule is given by

 = −20−1 + (1− 0) (− )− 0

which defines a function (−1).

Lemma 1 Suppose that   0. The interest rate +1 = Φ (−1 ) and investment  =

Φ (−1 ) are increasing in −1 and . Investment  = Φ (−1 ) is greater (smaller)

than −1 if and only if  is greater (smaller) than  (−1). The bubble  = Φ (−1 ) is

greater (smaller) than −1 if and only if  is greater (smaller) than  (−1).

The intuition for this lemma is simple: the presence of the bubble lowers the price of

outside liquidity, or in other words, increases the interest rate. This increases corporate net

worth and investment, to the detriment of the suppliers of outside liquidity.

Figure 3 is a phase diagram representing the dynamics of the economy.19 The bubbly

steady state always features more investment than the bubble-free steady state. The latter

is stable while the former features a downward-sloping saddle path. If the economy starts

on the saddle path, it will eventually converge to the bubbly steady state. If it starts below

the saddle path, it will eventually converge to the bubble-free steady state. The economy

cannot start above the saddle path without eventually violating the constraint   , which

is a necessary condition for a competitive equilibrium.

18Note that +1 =  = 0 whenever  = 0. Literally speaking the +1 =  schedule consists of two parts:

the one characterized by  (−1) which applies whenever   0, and the line  = 0; abusing terminology,

we refer to the former as the +1 =  schedule.
19We have (0) = −  0 and (0) = (1− 0) (− )− 0which is strictly positive as long as (B) holds.

It is easy to verify that  is increasing when it intersects . The sign of 

−1
|−1=0 on the other hand, is

unclear a priori.
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Proposition 3 Assume that (B) holds and that   0. Then ∗  0 and ∗∗  ∗. For

any −1, there exists a maximum feasible bubble ̄(−1) The path of productions/investments

{}≥0 and interest rates {}≥0 are increasing in the size of the original bubble 0. For

0  ̄(−1) the economy is asymptotically bubble-free: it converges to the bubble-free steady

state. For 0 = ̄(−1) the economy is asymptotically bubbly: it converges to the bubbly steady

state. Moreover, the function ̄(−1) is decreasing in −1.

Remark 1. As in usual in rational bubbles models, our model features multiple equi-

libria. Absent additional structure, theory is agnostic as to equilibrium selection: it makes

no prediction as to which equilibrium is more likely to be observed.

We are now in position to describe the dynamics when a bubble unexpectedly bursts. We

have in mind the following experiment. For   0, the economy evolves as a competitive

equilibrium
n
̃ ̃ ̃

o
≥0
with ̃  0 for all . Then at  = 0 an unforeseen (zero-probability)

event materializes which changes the conditions in the economy: for  ≥ 0 the economy

evolves according to the competitive equilibrium with initial conditions 0−1 = ̃0−1 and

0 = 0. In Section IV.2, we set up a sunspot model. The realization of the sunspot triggers

a bubble crash. We construct a rational expectations equilibrium which takes into account

that the bubble has a non-zero probability of crashing. The unexpected bubble burst that

we consider here can be thought of as a limit of the sunspot model when the probability

that the sunspot variable materializes goes to zero.

Suppose for example that we are initially in the bubbly steady state ̃ = ∗∗, ̃ = ∗∗

and ̃ = ∗∗ = 0. When the bubble crashes at  = 0, the economy jumps downwards to

the  = 0 line. Investment collapses, the interest rate decreases and the economy gradually

converges to the bubble-free steady state.
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Figure 3: phase diagram with positive outside liquidity.

The case  = 0. This analysis carries through to the case where  = 0. The only

difference is that the  = −1 schedule becomes vertical at ∗. Investment dynamics are

unaffected by the existence of a bubble:

 = + 0−1

The reason is that the sum of the value of the securities issued by the middle-aged generation,

0(1++1), and the bubble  in the end is equal to the savings  of the young generation.

Put differently, the bubble fully crowds out the value of the assets produced by previous

generations of entrepreneurs. Its only effect is to increase the rate of interest, as

 +
0

1 + +1
= 

Similarly the bubbly steady state (if it exists) features the same investment level as the

bubble-free steady state ∗∗ = ∗ =  (1− 0). At a steady state, the bubble simply

increases the interest rate.20

20Woodford (1990) shows that the introduction of bubbles always crowds investment in, starting in a

situation where there are neither outside stores of value ( = 0) nor inside stores of value (0 = 0). Because

0 = 0, his model assumes away leverage effects. As we show here, with 0  0 bubbles have no effect on

investment if  = 0. There is a discountinuity at 0 = 0. See Appendix A3 for a detailed discussion.
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III.2 Tests for bubbles and dynamic efficiency

To discuss efficiency, we first need a metric to index the welfare of the original holders of

trees in every period. We take the utility of the original holders of date- trees to be (any

increasing function of) the amount of resources that they receive from selling their trees.

This is the right concept in the example we gave for the supply of outside liquidity with

one-period-lived consumers in Section II.

In our model, dynamic efficiency and Pareto efficiency are equivalent concepts and we

therefore use the two terms interchangeably in what follows. An allocation is dynamically

efficient if there is no other resource-feasible allocation that increases the lifetime utility of

some agent without reducing that of another. Note that in this definition, the pledgeability

constraints are deliberately ignored.

If an allocation is not dynamically efficient, we can ask whether it satisfies a weaker notion

of efficiency which we refer to as constrained dynamic efficiency: an allocation is constrained

dynamically efficient if there is no other resource-feasible allocation that increases the lifetime

utility of some agent without reducing that of another, and which satisfies the pledgeability

constraints that require that the consumption of old entrepreneurs at date  exceed (1 − 0)

times the amount of resources that were invested at date − 1. Actually, we will show that
competitive equilibria of our economy, when they are not dynamically efficient, are also not

constrained dynamically efficient.

Determining whether an allocation is dynamically efficient is a simple task: when the

pledgeability constraints are ignored, our economy is a simple overlapping generations econ-

omy with a linear investment technology with rate of return 1. The following proposition

demonstrates that the efficiency of the allocations that satisfy Definition 1 of a competitive

equilibrium (and this definition does incorporate pledgeability constraints) hinges on the

value 1.

Proposition 4 If 1  1, all competitive equilibria of our economy with or without bubbles

are dynamically efficient. If 1  1, no competitive equilibrium is constrained dynamically

efficient.

Note that dynamic inefficiency (1  1) implies that 
∗  0. However, ∗  0 is compat-

ible with dynamic efficiency (1  1). Interest rates below the growth rate of the economy

are compatible with dynamic efficiency because the interest rate reflects the fraction of the
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return on investment which is pledgeable to outside investors and not the total return on

investment. Indeed, the paths for investment and the interest rate do not depend on the

total return on investment 1 (as long as 1  1 +  for all ), but only on the pledgeable

part of this return 0. In sum, 
∗  0 is a necessary but not sufficient condition for dynamic

inefficiency.

Abel et al (1989)’s test remains valid in our model as a test of dynamic efficiency, but

it does not directly address the possibility of bubbles: Dynamic inefficiency is a sufficient

but not necessary condition for the possibility of bubbles. In contrast, the possibility of

bubbles–condition (B)–is still determined by the interest rate test ∗ ≤ 0.

Proposition 5 The possibility of bubbles is exactly determined by an (uninformed investor)

interest rate test of the form ∗ ≤ 0.

At the bubbly steady-state, the interest rate ∗∗ is equal to 0. Therefore, at a steady

state, one can test for the possibility of bubbles by comparing the interest rate with the rate

of growth of the economy, without taking a view as to whether or not the economy is at the

bubble-free or the bubbly steady state.

The validity of Abel et al (1989)’s test to detect dynamic efficiency is most easily illus-

trated by applying it to steady states. Indeed, consider a (bubbly or bubble-free) steady

state ( ) ∈ {(∗ 0)  (∗∗ ∗∗)}  The test involves three quantities: the value of resources 1
produced in every period, the resources  used for investment, and the value of the market

portfolio 0. It states that the economy is dynamically efficient (inefficient) if and only if the

difference between the resources produced and the resources used of investment normalized

by the value of the market portfolio (1− )  (0) is strictly positive (negative), i.e. if and

only if 1 is greater (smaller) than 1, exactly as prescribed by Proposition 4.

The considerations brought about by our analysis go part of the way towards rehabili-

tating interest rate tests as an indication for the possibility of bubbles. They shed light on

which interest rate to use in these tests: this rate corresponds to an interest rate available to

outside investors–a relatively low interest rate, such as the interest rate on riskless bonds.

III.3 Summary

Figure 4 allows for a concise summary of the dependence on outside liquidity  of the bubbly

steady and the bubble-free steady states. The figure displays investment ∗ at the bubble-free
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steady state as a function of outside liquidity . We denote this function by ∗ (). We also

use the notation ∗ () to denote the interest rate in the bubble-free steady state. The figure

also represents investment at the bubble-free steady state when   0. This case will be

covered later in Section V.1. For now, we focus on the part of the figure that corresponds

to  ≥ 0.
The function ∗ () reaches a minimum on [0+∞) at the threshold 0 ≥ 0. In Proposition

2, we showed that 0  0 if and only if 0  12. The left panel illustrates the case where

0  12 (and hence 0  0) and the right panel illustrates the case where 0  12 (and

hence 0 = 0).

When 0  12, liquidity always crowds investment in: ∗ () is increasing in  for all

 ≥ 0. For all values  ≥ 0, condition (B) is violated, and hence bubbles cannot arise.
In the rest of this section, we assume that 0  12, liquidity crowds investment in (out)

if and only if  ≥ 0 (  0): 
∗ () decreases in  on [0 0] and increases in  on [0∞). There

is always a value ∗∗ ≡  (1− 20)  (1− 0)  0 such that 
∗ (∗∗) = ∗ (0).

Condition (B) holds, and hence bubbles can arise, if and only if 0 ≤  ≤ ∗∗. At the

bubbly steady state, variations in  are compensated one for one by variations in the size of

the bubble since ∗∗ =  (1− 20)  (1− 0)− . As a result, investment ∗∗ =  (1− 0) at

the bubbly steady state does not depend on  Importantly, investment at the bubbly steady

state is always equal to investment at the bubble-free steady state when  = 0: ∗∗ = ∗ (0).

When  = ∗∗ investment is at the same level in the bubble-free and bubbly steady states:

∗ (∗∗) = ∗∗ =  (0). Moreover, the gross interest rate is equal to zero in the bubble-free

steady state 1 + ∗ (∗∗) = 0, and the value of the bubble in the bubbly steady state is

∗∗ = 0. For 0    ∗∗, investment is strictly higher in the bubbly steady state than in the

bubble-free steady state ∗∗ = ∗ (0)  ∗ (). For 0 ≤   ∗∗, the gross interest rate at the

bubble-free steady state is strictly negative 1 + ∗ ()  0 and the size of the bubble at the

bubbly steady state is given by ∗∗ = ∗∗ −   0.

All in all, bubbles, when they are possible, always restore investment to the steady state

level corresponding to both  = 0 and  = ∗∗: ∗∗ = ∗ (0) = ∗ (∗∗). When bubbles

are possible, investment at the bubble-free steady state ∗ () initially decreases as outside

liquidity increases from  = 0 to  = 0. Investment at the bubble-free steady state 
∗ () then

increases as outside liquidity increases from  = 0 to 
∗∗ and reaches ∗ (∗∗) =  (0). For all

0    ∗∗ we have ∗ ()  ∗∗ =  (0) =  (∗∗). For   ∗∗, bubbles cease to be possible.
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Figure 4: Comparing (∗∗ ∗∗) and (∗ ∗).

IV Economic implications

IV.1 Collateral heterogeneity

We have assumed so far for simplicity that firms are homogenous (perhaps up to a scaling

factor). When firms differ, say, in the pledgeability of their income, those with limited access

to unsophisticated investors, i.e., low 0 firms (family firms, private equity, startups), benefit

relatively more from the presence of a bubble. They enjoy the liquidity effect without being

much impacted by the leverage effect as they do not resort much to small investors’ money.

Conversely, they also suffer more from a bubble crash.

Let  be an index for firms and let 0 be an increasing function of  We can assume

without loss of generality that  is distributed uniformly on [0 1]. We denote by  the

investment of firm  in period : each firm’s investment is potentially different since they

they differ in their ability to generate pledgeable income 0

 from investment. Importantly,

all firms have the same initial net worth , and hence the same wealth  +  +
R
0


−1
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when middle-aged, so that investment by firm  is

 =
 +  +

R
0


−1

1− 0
1++1

 (7)

We then have the following aggregation result. The economy is described by two state

variables: the value of the bubble  and the integral
R
0


−1 describing the total value

of the existing stock of securities The law of motion for  is still +1 = (1 + +1) whileR
0


−1 and +1 are jointly determined as the intersection of the aggregate supply and

the demand curves for assets21:

Z
0


  =

⎛⎝Z 0

1− 0
1++1



⎞⎠µ +  +

Z
0


−1

¶
(8)

and Z
0


  = [ (1 + +1)−  − (1 + +1)] (9)

There exists either zero or a unique bubbly steady state. When a bubbly steady state

exists, the values of
R
0

∗∗ and ∗∗ can be found by imposing
R
0


  =

R
0


−1 =R

0
∗∗  = ∗∗ and +1 = ∗∗ = 0 in equations (8) and (9). Investment ∗∗ by firm 

can then be computed using equation (7). We then have:

∗∗ =


1− 0
 ∗∗ =

µZ
1− 20
1− 0



¶
−  and ∗∗ = 0

The condition for a bubble to exist is now given byµZ
1− 20
1− 0



¶





 (B’)

The analysis of the dynamics of the economy are exactly as in Section III.1. Replacing the

representative firm’s pledgeable income by the industry-average pledgeable income, we see

that the previous analysis generalizes to heterogenous firms.

The relative size of firms with low pledgeable income increases when bubbles arise and

21Equations (8) and (9) are the same as equations (2) and (3) replacing 0 with
R
0


  and

0
1−0(1++1)

by
R 0
1−0(1++1)


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decreases when bubbles crash: Taking derivatives in equation (7),


 

=

 

+


 +1

+1



=
1

 +  +
R
0


−1

− 0
(1 + +1 − 0)

2

+1



We can also analyze the consequences of an unexpected (zero probability) bubble crash of

the form discussed in Section III.1. There are two immediate opposing effects on investment:

(a) firms which used the bubble to hoard liquidity have less net worth (b) the interest rate

decreases, which allows for more leverage. The percentage decrease in investment resulting

from a lower net worth is independent of 0. The percentage increase in investment from

a higher leverage is higher, the higher is pledgeable income 0. As a result, in relative

terms, the size of firms with low pledgeable income compared to the size of firms with high

pledgeable income decreases when a bubble crashes.

Proposition 6 Assume that (B’) holds and that   0. Then:

(i) for any value of
R
0


−1, there exists a maximum feasible bubble ̄

¡R
0


−1

¢
 The

path of interest rates {}≥0 are increasing in the size of the initial bubble 0; the path

of productions/investments {}≥0 is increasing in the size of the initial bubble 0. For

0  ̄
¡R

0

−1

¢
, the economy is asymptotically bubble-free: it converges monotonically to

the bubble-free steady state. For 0 = ̄
¡R

0

−1

¢
 the economy is asymptotically bubbly:

it converges monotonically to the bubbly steady state;

(ii) the equilibrium paths for {}≥0 and {}≥0 are increasing in the size 0 of the initial
bubble;

(iii) the relative size of firms with low pledgeable income (low 0) compared to the size of

firms with high pledgeable income (high 0) increases with the size of the initial bubble 0:

the relative variation
¡

¢−1

 0 of investment 

 at date + 1 with respect to the initial

bubble 0 is decreasing in .

IV.2 Stochastic bubbles (1): bubbly liquidity premium

As in Weil (1987), we can allow the bubble to burst stochastically depending on the realiza-

tion of a sunspot. Suppose that each period the bubble bursts with probability 1 − . An

asset’s liquidity service depends on what the asset delivers when cash is particularly valuable

to firms. Building on this idea, we now argue that, even in this risk neutral environment, a
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stochastic bubble trades at a liquidity discount or equivalently a risk premium relative to

riskless stores of value. We focus on the case   0.

Let  and +1 (respectively, 
−
 and 

−
+1) denote the investment levels and interest rates

when the bubble has lasted until period +1 and continues (respectively, bursts). The asset

supply equations are given by

 =
 +  + 0−1
1− 0

1++1

and − =
 + 0−1
1− 0

1+−+1



Similarly, the asset demand equations are given by

 =
 (1 + +1)−  − (1 + +1)

0
and − =


¡
1 + −+1

¢− 

0


Since − and −+1 are determined by the same set of equations as  and +1 but with

 = 0 it is clear that +1  −+1: the burst of the bubble depresses the interest rate. The

immediate response of investment  to a bubble crash is determined by Lemmas 1 and 3:

as long as   0, the burst of the bubble depresses investment so that   − ( = − when

 = 0).

At date , generation- entrepreneurs can hold safe assets (trees, claims on previous

investments’ income) or risky ones (stochastic bubble). Letting e denote the return on
the bubble when it does not burst:  = (1 + ̃) −1 if the bubble does not burst and

 = 0 otherwise. By investing one in a tree at , an entrepreneur can secure 1 +  at

+1, which allows him to invest (1 + )  [1− 0 (1 + +1)] at +1 if the bubble does not

crash at  + 1 and (1 + ) 
£
1− 0

¡
1 + −+1

¢¤
if it crashes. This allows him to consume

(1 − 0) (1 + )  [1− 0 (1 + +1)] at  + 2 if the bubble does not crash at  + 1 and

(1 − 0) (1 + ) 
£
1− 0

¡
1 + −+1

¢¤
if it crashes. Similarly, investing one in the bubble at

 delivers 1+ ̃ at +1 if the bubble does not crash at +1 and zero if it crashes. This allows

the entrepreneur to invest (1 + ̃)  [1− 0 (1 + +1)] at +1 if the bubble does not crash at

+1 and zero if it crashes. This allows him to consume (1 − 0) (1 + ̃)  [1− 0 (1 + +1)]

at +2 if the bubble does not crash at +1 and zero if it crashes. In equilibrium, expected

consumption at + 2 from these two investment options at  must be equalized. This leads

to the following arbitrage equation between bubbles and trees:


1 + 

1− 0
1++1

+ (1− )
1 + 

1− 0
1+−+1

= 
1 + e

1− 0
1++1

(10)
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This in turn implies that 1 + e  (1 + ) . Despite risk neutrality, stochastic bubbles

feature a liquidity premium: they command positive net excess returns  (1 + e)− (1 + ).

The intuition is straightforward. Bubbles deliver no return when internal wealth is the most

valuable: when liquidity is scarce, interest rates are low and internal funds can be levered a

lot.

There are multiple equilibria with such stochastic bubble, exactly as in our baseline

model. There exists a unique conditional bubbly steady state: A competitive equilibrium

such that the variables ( ) are constant and equal to (
∗∗ ∗∗) with ∗∗  0 until the

sunspot variable realizes and the bubble crashes. At such a conditional steady state, the

bubble is constant (until it crashes) and hence 1 + e∗∗ = 1. Moreover
1 + ∗∗ =

Ã
1 +

1− 



1− 0
1+∗∗

1− 0
1+∗∗−

!−1


 + 0
+ ∗∗

1+∗∗
1−0

1− 0
1+∗∗−

=
 (1 + ∗∗−)− 

0

∗∗ =
+  ∗∗

1+∗∗

1− 0
and ∗∗ =

+  ∗∗
1+∗∗

1− 0

µ
1− 0

1 + ∗∗
− 0

¶
− 

The condition for the existence of a bubble becomes22

1− 0
1+∗∗ − 0

1− 0


"
1

1 + 


∗∗
1+∗∗

#



 (B”)

This condition is more likely to be verified, the higher is ∗∗. It coincides with condition

(B) when ∗∗ = 0. Note that we necessarily have (1 + ∗∗)   1 + ̃∗∗ = 1 so that

∗∗  − 1  0. As a result, condition (B”) is more stringent than condition (B): condition
(B”) implies condition (B).

Proposition 7 Suppose that (B”) holds and that   0, then:

(i) in any competitive equilibrium with a strictly positive bubble, before the bubble bursts, the

bubble features a liquidity premium;

(ii) in any competitive equilibrium with a strictly positive bubble, the bursting of the bubble

decreases interest rates: firms scramble for collateral, which becomes more valuable;

22Unfortunately, this condition determines only implicitly the parameter region that leads to the possibility

of bubbles. It features an endogenous object ∗∗. This complication arises for the following reason. Bubbles
now present a risk premium and thus a positive net excess return: (1+ ̃∗∗)− (1+∗∗)  0 In a conditional
bubbly steady state, zero bubble growth pins down the expected return on bubbles: 1 + ̃∗∗ = 1, but the

risk-free rate ∗∗ has to be determined jointly with ∗∗−as solutions to a non-linear system.
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(iii) in any competitive equilibrium, when the bubble bursts, investment immediately de-

creases; then, the economy gradually converges to the bubble-free steady state;

(iv) in the conditional bubbly steady state–before the bubble bursts–as the probability of

bursting (1 − ) increases, the interest rate ∗∗ and the bubble ∗∗ decrease; investment ∗∗

decreases;

(v) in the conditional bubbly steady state, interest rates and investment are high (∗∗  ∗

and ∗∗  ∗).

For example, when   0, steady state investment ∗∗ bubble size ∗∗ and interest rate

∗∗ are all decreasing in the probability 1− that the bubble crashes A more stable bubble

provides more liquidity and is more conducive to investment. This in turn boosts the demand

for liquidity and makes for a larger bubble.

A full characterization of the dynamics is outside the scope of this paper. Indeed, an extra

state variable is required to describe the economy. The state space is now given by the triple

(−1  ) The reason past interest rates  have to be kept track of is that the arbitrage

equation (10) involves both the interest rate at date  and at date + 1 As a consequence,

simple two-dimensional phase diagrams cannot be used anymore. A full characterization of

the stability properties of the different steady states and their basin of attraction is rather

involved and outside the scope of this paper.

Remark 2. Imagine that there is a stochastic bubble in an economy with heterogeneity

in pledgeable income as in Section IV.1. Equation (10) has the implication that firms with

higher 0 will demand a higher expected return to hold the bubble: they are more affected by

the double whammy associated with a bubble crash (the loss of wealth at the moment when

levering up is attractive). Therefore, in equilibrium, the bubble will be held by the firms

with the lowest 0.
23 When   0, we showed in Proposition 6 that for a given portfolio,

these firms are also the firms whose investment decreases the most in percentage terms

when the bubble crashes. The result is an amplification mechanism whereby the equilibrium

allocation of the bubble across firms magnifies the impact of a crash. In equilibrium, firms

with a high 0 do not hold the bubble so that their net worth is insulated from the bubble

crash. Moreover, they can increase their leverage more than firms with a low 0 in response

to the drop in interest rates that follows the crash of the bubble. Conversely, firms with

23Interestingly, the recent real estate crash did affect many highly levered financial institutions. The

prospect of a public bailout (more likely for levered financial institutions) however is not part of our com-

petitive equilibrium modeling.
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a low 0 hold the bubble so that their net worth is impaired when the bubble crashes. In

addition, their leverage increases less than firms with a high 0 in response to the drop in

interest rates that follows the crash of the bubble.

IV.3 Stochastic bubbles (2): endogenous crashes

Following up on section (IV.2), we modify the environment in the following way. Suppose

that  follows a two-state Markov process  ∈ {  } with   . Initially  =  

With probability 1−   0 per period,  transitions to  which is an absorbing state.

We assume that (B”) is verified for an exogenous bursting probability (1 − ) in an

economy with a deterministic and constant  equal to   Similarly, we assume that for

any  ∈ [0 1] (B) is violated in an economy with a deterministic and constant  equal to

 Hence if the economy is already in the state of low net worth  =  the demand for

liquidity is low, the interest rate is high and bubbles cannot exist. Bubbles however, can

exist as long as net worth is high:  =  .

Suppose that  =  and consider the economy entering period +1 with state variables

given by ( −1 )  Then if +1 =   (+1  +1) are given by the same equations as

in Section IV.2 with  =  . On the other hand if +1 =  then the bubble bursts:

 = 0 and  is given by the same equations as above with  =  and  = 0 The economy

then evolves as in Section II.2.

Proposition 8 Assume that (B”) holds with  =  but that (B) is violated with  = .

Consider an economy where in the initial period the economy is in steady state along the

bubbly path and  =   In the first period where  =  the bubble bursts. Then, the

economy converges to the bubble-free steady state corresponding to  = 

The mechanics of a bubble crash are similar to those of the previous section. The dif-

ference is that in Section IV.2, the burst of the bubble was triggered by the realization of a

pure sunspot variable. Here by contrast, the burst of the bubble is triggered by an adverse

fundamental shock to initial net worth  of entrepreneurs. When this shock occurs, the

demand for liquidity drops enough that bubbles are not feasible anymore.

This environment makes clear that when   0, bad shocks to corporate balance sheets

can potentially have an amplified negative effect on investment over and above that described
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in the literature emphasizing the importance of corporate net worth–for example Bernanke-

Gertler (1989) and Kiyotaki-Moore (1997)–by triggering liquidity dry-ups in the form of

bubble bursts.

V Discussion and Robustness

V.1 Negative outside liquidity

We now assume that net outside liquidity  is negative. This can be motivated by imagining

that there is a demand for outside liquidity from an unmodelled part of the economy (another

group of consumers, or foreigners) who demand liquidity in excess of the supply of trees. We

develop some of these ideas in Section V.3.

We focus on steady states. Detailed derivations, as well as an analysis of the dynamics,

can be found in Appendices A1, A2, and A4.

Steady states. There is a unique bubble-free steady state which corresponds to the

intersection of the  = 0 locus with  = −1 ≥ 0; this steady state is always stable.24 If (B)
holds, there are two intersections between the  = −1 and the +1 =  schedules such that

  0. The corresponding investment levels are given by − (1− 0) 0 and  (1− 0) 

As long as the following condition is satisfied, the lowest solution corresponds to an unstable

bubbly steady state and the highest solution to a saddle-path-stable bubbly steady state:

− 




0

(1− 0)
2
 (11)

Condition (11) is more likely to be verified, the lower the net demand − for outside liquidity,
the higher the level of pledgeable income 0 and the higher the net worth of entrepreneurs

. We maintain it throughout this section. When there is no risk of confusion, we refer to

the saddle-path-stable bubbly steady state, with a slight abuse of terminology, as the bubbly

steady state.

Proposition 9 Suppose that   0, then:

(i) ∗ increases with ; steady state investment ∗ increases with  when the interest rate is

high enough so that (6) is verified; more precisely, there exists ̃0 such that for all ,
∗


 0

24We have (0) = −  0 and (0) = (1− 0) (− )which is strictly positive as long as (B) holds.
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if and only if   ̃0; moreover we have ̃0  0 if and only if 0  12;

(ii) suppose that (B) and (11) hold, then investment at the bubbly steady state is lower than

investment at the bubble-free steady state ∗∗ =  (1− 0)  ∗;

(iii) suppose that (11) holds, then the results in Propositions 4 and 5 extend to the case   0.

The first part of the proposition focuses on the question of whether outside liquidity

crowds investment in or out at the bubble-free steady state. This result generalizes that

of Proposition 2: outside liquidity crowds investment in when outside liquidity is abundant

enough.

The second part of the proposition focuses on the question of whether bubbles crowd in-

vestment in or out by comparing the bubble-free and bubbly steady states. Bubbles always

increase interest rates, which reduces the value of the trees. When   0 the non-corporate

sector is a net seller of trees. The bubble then operates a transfer from the non-corporate

sector to the corporate sector, which increases investment. Bubbles and investment are com-

plements. When   0 the opposite happens and bubbles crowd investment out. Bubbles

and investment are then substitutes. Figure 4 provides a convenient summary.

The third part of the Proposition shows that both our efficiency results in Proposition 5

and our results for the interest rate test to infer the possibility of bubbles in Proposition 4,

generalize to the case   0.

Remark 3. Entrepreneurs’ preferences were chosen such that they save their entire

endowment when young, and invest all the resulting wealth when middle aged. The online

Appendix A4 relaxes this assumption and allows more flexibility in the entrepreneurs’ sav-

ings/dissavings choices. It turns out that the results obtained in this paper carry over, with

the one following caveat. Once we allow for flexibility in the entrepreneurs savings/dissavings

choices, it is still true that bubbles boost investment when outside liquidity  exceeds some

threshold, this threshold need not be equal to zero, and instead may either be positive or

negative.

V.2 Public debt as outside liquidity

In a non-Ricardian environment, public debt can be a form of outside liquidity. Indeed,

imagine that there are consumers who live for one period, receive income . Imagine that

the government taxes a portion ̃   of their income, and issues bonds one period ahead
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that are claims on the tax proceeds ̃. Let  be the number of newly-born consumers per

newly-born entrepreneur. At date  the government receives ̃(1 + +1) from the bond

issuance and distributes it to consumers. Then  = ̃. By issuing debt and redeeming it

by taxing newly-born consumers, the government is able to increase the supply of outside

liquidity.

As long as 1+ +1  1, this policy makes consumers worse off. However, when condition

(B) holds so that bubbles are possible, the government can issue debt and constantly roll it

over without ever raising taxes: the bubble and government debt become isomorphic. Hence,

a possible reinterpretation of the model is that the bubble is government debt. Under this

interpretation, when liquidity is scarce–condition (B) holds–the government can increase

the supply of outside liquidity at no cost to the government budget (without ever having to

raise taxes).

V.3 Interest-rate sensitive outside liquidity

In this section, we provide some other microfoundations for outside liquidity. In these other

foundations  decreases with the interest rate. We show how to extend some of our most

important results to this more general case.

Unconstrained firms. Suppose that there also exists a competitive fringe of firms

operating a concave production function () These firms are owned by consumers who only

consume when young. Consumers then sell the firms to investors for a price ()(1+)−
where  is the equilibrium investment level In equilibrium, it will be the case that 

0 () =

1 +  so that  =  () where  is decreasing in  This creates a net positive supply of

trees  =  () ≡  ( ()) 

Consumers as borrowers and securitization. Suppose that consumers have concave

preferences and hence an elastic borrowing margin. They live for two periods and have

preferences given by

() + ()

where  and  denote respectively consumption when young and old. They earn income

 when young and  when old. To simplify the analysis, we focus on the case of log

preferences where () = log() In this case, consumers of generation , facing interest rate
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, consume



 =

1

1 + 

µ
 +



1 + 

¶
and  =



1 + 
((1 + )

 + ) 

The supply of trees from the consumers’ sector is therefore

 = () ≡  − 

1 + 
((1 + )

 + )

where () is decreasing with 

In this analysis, consumers do not face collateral constraints when they borrow. In

practice, they often do; furthermore, the institutions that determine the extent to which

claims on consumers’ future income can be transformed into stores of value have high policy

relevance.25

Generalizing the analysis to interest-sensitive outside liquidity. Let us now

analyze a framework that encompasses all the examples mentioned above. There is a net

supply of assets owned by another sector of the economy (which we call the consumers’

sector) in the amount  = (), where  is decreasing in 

The supply and demand equations for assets are now given by

 =
 +  + 0−1
1− 0

1++1

and  =
 (1 + +1)− +1 − (1 + +1)

0


The dynamics of this economy are harder to analyze because the endogeneity of  imposes

to keep track of an additional state variable in addition to −1 and : the past level of the

interest rate  However, the state-steady analysis remains very tractable. In the bubbly

steady state

∗∗ =


1− 0
 ∗∗ = 

1− 20
1− 0

− (0) and ∗∗ = 0

25Suppose that consumers have some endowment of goods –labor income–in their youth. They use that

labor income to build a house, which has total value 1 at period  + 1 where  is the home investment

realized in period  However, suppose only a fraction 0  1 can be collateralized. Consumers can

invest up to  [1− 0 (1 + )] in housing. Consumers thus create  =  () additional stores of values

for the corporate sector where  () ≡ 0 [1− 0 (1 + )]. An increase in securitization–in the form of

mortgage backed securities for example–can be formalized as an increase in 0 towards 1 and materializes

as an increase in  In this microfoundation, the amount of trees  () is again endogenous as it decreases

with the interest rate.
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Note that investment in the bubbly steady state is independent of the function () There

is perfect crowding out between bubbles and trees: ∗∗ + (0) is independent of the function

() away from zero interest rates.

The condition for the bubbly steady state becomes


1− 20
1− 0

− (0)  0 (B”’)

We continue to denote investment and the interest rate that prevail at the bubble-free steady

state by ∗ and ∗.

Proposition 10 Suppose that (B”’) holds. Then the interest rate at the bubble-free steady

state is negative: ∗  0.

(i) If (∗)  0, investment in the bubbly steady state ∗∗ is higher than investment ∗ in the

bubble-free steady state.

(ii) If (∗)  0 and −1−0
0

(∗)  
1−0 , investment in the bubbly steady state ∗∗ is lower

than investment ∗ in the bubble-free steady state.

Remark 4. In the model with unconstrained firms, we have (∗) =  (∗)  0. Propo-

sition 10 then shows that ∗∗  ∗ However, note that the steady state investment level for

unconstrained firms in a bubbly steady state is lower than in the non-bubbly steady state:

∗∗  ∗ This is the standard crowding-out effect of bubbles on investment emphasized in

Tirole (1985) in the context of the model of Diamond (1965). Therefore, bubbles crowd in

the investment of constrained firms (∗∗  ∗) but crowd out the investment of unconstrained

firms (∗∗  ∗)

VI Conclusion

This paper suggests a number of promising research avenues. Three themes seem to us

particularly interesting. First, we have only briefly touched in Section IV.2 on the question of

who should hold the bubble. There we saw that a stochastic bubble is held in equilibrium by

the firms with the lowest pledgeable income. To explore the ownership question further, one

could, for example, allow less levered agents such as consumers to hold the bubble. Second,

our model is too stylized to analyze the specific role of monetary policy, or the interaction

between prudential regulation and interest rate policy; developing the model along this
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dimension would be interesting. Third, it would be worth introducing the possibility of

bailouts. In Farhi and Tirole (2010), we investigate this question and point out that systemic

bailouts (for example through lax interest rate policy in response to a crisis) result in strategic

complementarities in liquidity and portfolio choices. The financial institutions’ incentive to

correlate their positions on the overvalued assets would have implications for macro-dynamics

and public debt.

Our analysis has been deliberately theoretical. Its implications for public policy require

further thought and extensions. Economies recurrently generate cycles of asset price over-

valuations, credit booms, and, when bubbles burst, recessions. Potential applications to

the measurement of capital adequacy abound. For example, asset price overvaluation and

crashes are closely related to the policy debates on pro-cyclical regulation, fair value ac-

counting, and deleveraging in busts. Similarly, an analysis of the link between bubbles and

the scarcity of liquidity can shed light on public policies controlling the supply of outside

liquidity, for example by adjusting the level of public debt or by tightening or relaxing secu-

ritization standards. Finally, this type of analysis can shed light on the link between bubbles

and financial development.26 Our stance that policy implications lie outside the scope of our

paper should not obscure the potential fruitfulness of such policy investigations.

26Financial development in our model is captured by the quality of governance (0) and the existing stock

of traded securities (0−1).
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Appendix
A.1 Proofs for Section II

Although we focus on the case  ≥ 0 in the text, the derivations in this Appendix A1 are also
valid when   0. We make use of some of these results when we turn to the case   0 in Section

V.1.

Derivation of the closed-form expressions for the policy functions Φ, Φ and Φ in the

bubble-free case. Assume that  = 0. The system of two equations (2,3) in the two unkowns

( +1) can be solved as follows. Using equation (3) to find an expression for +1 and replacing

this expression in equation (2), we are led to the following a quadratic equation:

2 −
∙
+ 0−1 − 

µ
1

0
− 1
¶¸

 −  ( + 0−1)
0

 (12)

Given a solution to this equation, we can then compute the associated interest rate 1 + +1 =

(0 + ) . The only solution of equation (12) with  ≥ 0 and an associated interest rate such
that 1 + +1 ≥ 0 is given by:

 =

+ 0−1 −
³
1
0
− 1
´
 +

rh
+ 0−1 −

³
1
0
− 1
´

i2
+ 4 

0
( + 0−1)

2
 (13)

Using the asset demand equation (3) we can compute the associated interest rate:

1++1 = 0

+ 0−1 +
³
1 + 1

0

´
 +

rh
+ 0−1 −

³
1
0
− 1
´

i2
+ 4 

0
( + 0−1)

2 (− )
 (14)

Derivation of the bubble-free steady state. A steady state (∗ ∗) of the bubble-free economy

solves

∗ =
 + 0

∗

1− 0
1+∗

and ∗ =
 (1 + ∗)− 

0


This yields the following quadratic equation in ∗:

∗2 (1− 0)− ∗
∙
+  −

µ
1

0
− 1
¶


¸
− 2

0
= 0 (15)
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This equation has two solutions. When  6= 0, one of these solutions is strictly negative, and the
other one is strictly positive. The strictly positive solution is given by:

∗ =
(+ )−

³
1
0
− 1
´
 +

rh
(+ )−

³
1
0
− 1
´

i2
+ 4 

2

0
(1− 0)

2 (1− 0)
 (16)

Using 1 + ∗ = (0
∗ + ) , we can compute the associated interest rate ∗:

1 + ∗= 0

+ 
0
+

rh
(+ )−

³
1
0
− 1
´

i2
+ 4 

2

0
(1− 0)

2 (1− 0)
 (17)

When  = 0, we have 1 + ∗ = 0 (1− 0)  0. When   0 we have 1 + ∗  0 (1− 0).

This is obvious when from the equation ∗ =  (1− 0 − 0 (1 + ∗)).27

With  = 0, the second solution of equation (16) features positive (in fact zero) investment. It

is given by ∗ = 0 and 1+ ∗ = 0. However, this does not correspond to a competitive equilibrium

(which requires 1 + ∗ ≥ 0).

Proof of Proposition 1. We know that the steady state is the unique intersection of the

function → Φ ( 0) with the identity function →  on [0∞). We can compute

Φ (0 0) =

− [ 1
0
− 1] +

rn
− [ 1

0
− 1]

o2
+ 4 

2

0

2
 0

Similarly Φ ( 0) ∼→∞
0
2
. This ensures that Φ ( 0)   for  low enough and Φ ( 0)   for 

high enough. Since there is a unique positive solution to Φ ( 0) = , this proves that Φ ( 0)  

for   ∗ and Φ ( 0)   for   ∗. Since in addition, Φ ( 0) is increasing in , we have that

∗  Φ ( 0)   for   ∗ and ∗  Φ ( 0)   for   ∗. This ensures that this steady state

is stable.

27Note that the analysis extends to the case   0. In this case, the function  [1− 0 (1 + ∗)− 0]

is convex and increasing. It increases from −0 to +∞ on
³
0

0
1−0

´
. The function

[ (1 + ∗)− ] 0 is linear and increasing. It increases from  −  0  −0 to  (1− 0) − 0

on
³
0

0
1−0

´
. The unique intersection of these functions on

³
0

0
1−0

´
is given by (16) and (17).

Hence 0 (1− 0)  1 + ∗  0.
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Proof that ∗ increases with . We have

∗


=

(1 + ∗)− 0

2 (1− 0)

q
[0 + ]

2 − 4 (1− 0) 0

 0

A.2 Proofs for Section III

Although we focus on the case  ≥ 0 in the text, the derviations in this Appendix A2 are also
valid when   0, except for the proof of Proposition 3 which is specific to the case  ≥ 0. We
make use of some of these results when we turn to the case   0 in Section V.1.

Derivation of the closed-form expressions for the policy functions Φ, Φ and Φ. The

system of two equations (2,3) in the two unkowns ( +1) can be solved as follows. Using equation

(3) to find an expression for +1 and replacing this expression in equation (2), we are led to the

following a quadratic equation:

2 −
∙
+ 0−1 − 

µ
1

0
− 1
¶¸

 −  ( +  + 0−1)
0



Given a solution to this equation, we can then compute the associated interest rate 1 + +1 =

(0 + )  (− ). When  ≥ 0    is a necessary condition for equilibrium. When   0

we can have    or  ≥ . Assume first that   . Then the only solution of equation (12)

with  ≥ 0 and an associated interest rate such that 1 + +1 ≥ 0 is given by  = Φ (−1 )

where

Φ (−1 ) ≡
+ 0−1 −

³
1
0
− 1
´
 +

rh
+ 0−1 −

³
1
0
− 1
´

i2
+ 4 

0
( +  + 0−1)

2


(18)

Using the asset demand equation (3) we can compute the associated interest rate 1 + +1 =

1 + Φ (−1 ) where

1+Φ (−1 ) ≡ 0

+ 0−1 +
³
1 + 1

0

´
 +

rh
+ 0−1 −

³
1
0
− 1
´

i2
+ 4 

0
( +  + 0−1)

2 (− )
(19)

and the bubble in the next period +1 = Φ (−1 ) ≡ [1 + Φ (−1 )] . These equations

determine the policy function Φ, Φ and Φ in closed form.
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We now need to consider the case where   0 and  ≥ . In this case, there is a solution to the

quadractic equation (12) with  ≥ 0 and 1++1 ≥ 0 if and only if
h
+ 0−1 −

³
1
0
− 1
´

i2
+

4 
0
( +  + 0−1)≥ 0 and − − 

0
  + + 0−1When these conditions hold, (18) and

(19) still represent one solution with  ≥ 0 and 1+ +1 ≥ 0
28, but there is now another solution

given by

 =

+ 0−1 −
³
1
0
− 1
´
 −

rh
+ 0−1 −

³
1
0
− 1
´

i2
+ 4 

0
( +  + 0−1)

2

and 1++1 = (0 + )  (− ). We argue that this solution has undesirable characteristics and

focus on the solution given by equation (18) and (19). Our motivation is that the other intersection

displays perverse comparative statics: it has the unnatural feature that an upward shift in the asset

demand curve leads to a decrease in −1 and a decrease in the price 1 (1 + +1). This is because

this solution corresponds to a point where the asset demand curve crosses the asset supply curve

from above at the intersection with the lowest value of . By contrast, the asset demand curve

crosses the asset supply curve from below at the solution given by (18) and (19).

Derivation of the  = −1 and +1 =  schedules. Imposing  = −1 in equation (2) we

find

−1

µ
1− 0 −

0
1 + +1

¶
=  +  (20)

Using equation (3), we can replace 1 (1 + +1) in equation (20) by

1

1 + +1
=

− 

 + 0−1


This yields to the following equation for the  = −1 schedule:

 = 2−1
0

(1− 0)−

0−1


∙
+

µ
2− 1

0

¶


¸
− 

28In the particular case where  = , equation (18) gives  = −0. Both the numerator and the
denominator in expression for 1+ +1 in equation (19) are zero. The value of the interest rate is not pinned

down by this equation. In this case, the value of the interest rate can be inferred from the asset supply

equation

1 + +1 =
0

 − ( +  + 0−1)
= 0

− 
0

− 
0
− ( +  + 0−1)


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Imposing +1 = 0 in equation (2), we find

 =
 +  + 0−1

1− 0
 (21)

Imposing +1 = 0 in equation (3) and imposing +1 = 0, we find  =  + 0 +  Using

equation (21) to replace  this expression can be rearranged as follows

 = −20−1 + (1− 0) (− )− 0

yielding the desired equation for the +1 =  schedule.

A useful Lemma.

Lemma 2 The interest rate +1 = Φ (−1 ) is increasing in −1 and .

The proof of this lemma is as follows. In the derivation of the closed-form expressions for the

policy functions Φ, Φ and Φ we proved the following: at the solution given by (18) and (19), the

asset demand curve (3) crosses the asset supply curve (2) from below. Moreover, the asset supply

curve is downward sloping. Since increases in −1 shift the asset supply curve upwards without

affecting the asset demand curve. Increases in  shift the asset supply curve upwards and the asset

demand curve downwards. In both cases, the interest rate +1 increases.

Proof of Lemmas 1 (and 3 in the online Appendix). The properties of the interest rate

+1 = Φ (−1 ) are a direct consequence of Lemma 2. Let us turn to the properties of investment

 = Φ (−1 ). We can solve for investment  as a function of −1 and :

=

+ 0−1 + [1− 1
0
]+rn

+ 0−1 + [1− 1
0
]
o2
+ 4 

0
[ +  + 0−1]

2

From this expression, it is clear that  is increasing in −1 and  if   0 and decreases with  if

  0 The other results follow directly from these properties of Φ and Φ.

The rest of Appendix A2, with the proofs of Propositions 3 and 4 can be found online, together

with Appendices A3 and A4.
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Online Appendix
A.2 (continued form Appendix A2 in the printed version) Proofs for Section III

Proof of Proposition 3. The  = −1 schedule is given by

(−1) = 2−1
0

(1− 0)−

0−1


∙
+

µ
2− 1

0

¶


¸
− 

The  = +1 schedule is given by

= −20−1+(1− 0)− 

The function  (−1) is a parabola. We have (0) = −  0. The function  (−1) is strictly
negative on [0 ∗) It is strictly positive and strictly increasing on (∗+∞).

The function  (−1) is linear and decreasing. We have (0) = (1− 0) −   0 from

the bubble existence condition. The unique positive solution of  (−1) =  (−1) is the bubbly

steady state ∗∗ and  (∗∗) =  (∗∗) = ∗∗  0. As a result, we necessarily have ∗∗  ∗. Since

 (−1) is decreasing, we have  (∗)  0. As a result, 1 + ∗  1 or equivalently, ∗  0. This

proves the first part of the proposition.

Consider two competitive equilibria {  } and {0 0 0} such that −1 = 0−1 and 
0
0  0.

Using Lemma 1, it follows that 01  1 and 
0
1  1. By induction, we have 

0
   and 

0
   for

all . This also implies 0   for all . This proves the second part of the proposition.

Consider the region  ≥ 0 and −1  0. The curves  (−1) and  (−1) divide this region

into four subregions. We call region A the set

©
(−1 ) | (−1) ≥  ≥ max

©
 (−1)  0

ª
and −1  0

ª


We call region B the set

©
(−1 ) |min

©
 (−1)  

 (−1)
ª
  ≥ 0 and −1  0

ª


We call region C the set

©
(−1 ) | (−1) ≥  ≥ max

©
 (−1)  0

ª
and −1  0

ª

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We call region D the set

©
(−1 ) |  max

©
 (−1)  

 (−1)
ª
and −1  0

ª


It will prove useful to subdivide region B into regions B1 and B2. Region B1 is the set

©
(−1 ) |min

©
 (−1)  

 (−1)
ª
  ≥ 0 and ∗∗ ≥ −1  0

ª


Region B2 is the set

©
(−1 ) |min

©
 (−1)  

 (−1)
ª
  ≥ 0 and −1  ∗∗

ª


We will also subdivide region D into regions D1 and D2. Region D1 is the set

©
(−1 ) |  max

©
 (−1)  

 (−1)
ª
and ∗∗  −1  0

ª


Region D2 is the set

©
(−1 ) |  max

©
 (−1)  

 (−1)
ª
and −1 ≥ ∗∗

ª


Figure 5: regions in the phase diagram with positive outside liquidity.

Consider a point (−1  ) in region A. Then  ≤  (−1). Using Lemma 1, we conclude that

 ≤ Φ
¡
−1  (−1)

¢
. It is easy to check that Φ

¡
−1  (−1)

¢
= 0−1 + . Therefore, we

get  ≤ 0
∗∗ + = ∗∗. Hence ( +1) is either in region A, in region B1 or in region D1.

Consider a point (−1  ) in region C. Using Lemma 1, we conclude that  ≥ Φ
¡
−1  (−1)

¢
=

0−1 + ≥ 0
∗∗ + = ∗∗. Hence ( +1) is either in region C, in region B2 or in region D2.
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Consider a point (−1 ) in region B with   0. We show that (−1 ) is part of a

competitive equilibrium, and that this equilibrium converges to the bubble-free steady state (∗ 0).

Using Lemma 1, we have +1   and   −1. Hence ( +1) is etiher in region B or in

region A with +1    ∗∗. It is then clear that for all  ≥ 0, (−1+ +) is in region

B or in region A and satisfies +  +−1      ∗∗ The economy is eventually in

region B1 or in region A. This follows because if (−1+ +) is in region  with + ≤ ∗∗

or in region B1, then so will be (−1+0  +0) for all 0 ≥ . The only other possibility is that

(−1+ +) is in region B2 for all  ≥ 0. But this would imply that −1      −1+
and +  +−1    , which implies that (−1+ +) converges. The convergence point

is necessarily a steady state, but there are no steady states in region B2, a contradiction. Hence,

for  high enough, we have + ≤ ∗∗. But then since +  , we have, using Lemma 1 that

++1  Φ (∗∗ )  Φ (∗∗ ∗∗) = ∗∗ = 0. This in turn implies that the bubble + converges

to 0 when  goes to∞. Consider the equilibrium starting at ¡0−1 0¢ with 0−1 = −1 and 0 = 0.

We know that investment 0−1+ converges monotonically to 
∗. Hence 0−1+ ≥ min {∗∗ −1}.

Using Lemma 1, we have −1+  0−1+ ≥ min {∗∗ −1}. This implies that the sequence

{−1+}≥0 is bounded. Together with the fact that + converges to 0, this implies that the
competitive equilibrium starting at (−1 ) converges to the bubble-free steady state (∗ 0).

This proof also establishes that a point (−1 ) in region A with   ∗∗ is part of a compet-

itive equilibrium, and that this equilibrium converges to the bubble-free steady state (∗ 0).

We show that a point (−1  ) in region D cannot be part of an equilibrium. Suppose by

contradiction that this point is reached in a competitive equilibrium. Using Lemma 1, we have

+1   and   −1. Hence ( +1) is etiher in region D or in region C. Since +1 

  ∗∗, it is clear that for all  ≥ 0, (−1+ +) is in region D or in region C and satisfies

+  +−1      ∗∗. The economy is eventually in region D2 or in region C. This follows

because if (−1+ +) is in region C with +  ∗∗ or in region D2, then so will be (−1+0  +0)

for all 0 ≥ . The only other possibility is that (−1+ +) is in region D1 for all  ≥ 0. But
this would imply that −1      −1+ ≤ ∗∗ and  ≥ +  +−1    , which

implies that (−1+ +) converges. The convergence point is necessarily a steady state, but there

are no steady states in region D1, a contradiction. Hence, for  high enough, we have + ≥ ∗∗.

But then since +  , we have, using Lemma 1 ++1  Φ (∗∗ )  Φ (∗∗ ∗∗) = ∗∗ = 0.

This in turn implies that the bubble + eventually reaches , which is impossible in a competitive

equilibrium, a contradiction.

This proof also establishes that a point (−1 ) in region C with   ∗∗ cannot be part of

an equilibrium.
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Consider a point in region (−1 ) in region A with  ≥ ∗∗. Suppose that (−1 ) is part

of a competitive equilibrium that does not converge to the bubble-free steady state (∗ 0). We

claim that the competitive equilibrium converges to the bubbly steady state (∗∗ ∗∗). Indeed, it

is necessarily the case that (−1+ +) is in region A for all  ≥ 0. This implies that ∗∗ ≥
−1+ ≥ −1+−1 ≥  ≥ −1 and 0 ≤ + ≤ +−1 ≤  ≤ . Hence there exists ̃ ∈ [−1 ∗∗]
and ̃ ∈ [0 ] such that (−1+ +) converges to

³
̃ ̃
´
. Moreover,

³
̃ ̃
´
is necessarily a steady

state. Since the economy is not converging to (∗ 0) by assumption, we have
³
̃ ̃
´
= (∗∗ ∗∗) so

that the economy converges to the bubbly steady state.

Similarly, consider a point in region (−1  ) in region C with  ≤ ∗∗. Suppose that (−1 )

is part of a competitive equilibrium that does not converge to the bubble-free steady state (∗ 0).

We claim that the competitive equilibrium converges to the bubbly steady state (∗∗ ∗∗). Indeed,

it is necessarily the case that (−1+ +) is in region C for all  ≥ 0. This implies that ∗∗ ≤
−1+ ≤ −1+−1 ≤  ≤ −1 and ∗∗ ≥ + ≥ +−1 ≥  ≥ . Hence there exists ̃ ∈ [∗∗ −1]
and ̃ ∈ [0 ∗∗] such that (−1+ +) converges to

³
̃ ̃
´
. Moreover,

³
̃ ̃
´
is necessarily a steady

state. Since the economy is not converging to (∗ 0) by assumption, we have
³
̃ ̃
´
= (∗∗ ∗∗) so

that the economy converges to the bubbly steady state.

Collecting our results, we have proved that if (−1 ) is part of a competitive equilibrium,

then (−1+ +) converges over time, either to (∗ 0) or to (∗∗ ∗∗).

We now prove that for every −1  0, if (−1 ) is part of a competitive equilibrium, then

for all 0  , (−1 0) is part of a competitive equilibrium that converges to (∗ 0). We know

that (−1+ +) converges over time, either to (∗ 0) or to (∗∗ ∗∗)  Using Lemma 1 we know

that for all  ≥ 0, +  0+ and 
0
+  +. This implies that 

0
+   for all  ≥ 0 so that

(−1 0) is part of a competitive equilibrium. It therefore converges either to (
∗ 0) or to (∗∗ ∗∗).

Using Lemma 1 we know that for all  ≥ 0, +  0+. Hence lim→∞0+  (0) 
∗∗  ∗∗.

Hence (−1 0) is part of a competitive equilibrium that converges to (∗ 0).

We now prove that for every −1  0, the set of  such that (−1 ) is part of a competitive

equilibrium that converges to the bubble-free steady state (∗ 0) is open to the right and contains

a neighborhood of of 0. The competitive equilibrium starting at (−1 0) converges to (∗ 0). Let

Γ be a neighborhood of (∗ 0) such that every point ( ) in Γ is either in region A or B and

satisfies   ∗∗. Then there exists ̄  0 such that for  ≥ ̄, the competitive equilibrium starting

at (−1 0) lies in Γ. We can find   0 such that if   , the competitive equilibrium starting

at (−1 ) is such that (−1+̄ +̄) is in Γ. But then we know that it converges to (∗ 0). This

proves that the set of  such that (−1 ) is part of a competitive equilibrium that converges
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to the bubble-free steady state contains a neighborhood of of 0 Now consider   0 such that

(−1 ) is part of a competitive equilibrium that converges to the bubble-free steady state. Then

there exists ̄  0 such that for  ≥ ̄, the competitive equilibrium starting at (−1 ) lies in Γ.

We can find   0 such that if 0   + , the competitive equilibrium starting at (−1 0) lies

is in Γ at date  + ̄. But then we know that it converges to (∗ 0). This proves that the set of

 such that (−1 ) is part of a competitive equilibrium that converges to the bubble-free steady

state is open to the right.

We now prove that for every −1  0, the set of  such that (−1 ) is part of a competitive

equilibrium is closed to the right. Consider an increasing and strictly positive sequence { }≥0 with
lim→∞ + = , such that there exists a competitive equilibrium starting at

¡
−1 




¢
with −1 =

−1. Using Lemma 1, we know that +−1 ≥ −1+−1 ≥  ≥ 0+−1, 

+ ≥ −1+ ≥  ≥ 0+ and

++1 ≥ −1++1 ≥  ≥ 0++1. We claim that for every  ≥ 0, lim→∞ +  . If not, then

lim→∞ ++1 = +∞. But then ++1 ≥ 0
£¡
1 + 0+1

¢ ¡
1 + 0+2

¢

¡
1 + 0+

¢¤ ¡
1 + ++1

¢
so that lim→∞ ++1 = +∞, and hence ++1 exceeds  for some , a contradiction. We can

now define for all  ≥ 0, +−1 = lim→∞ +−1, + = lim→∞ + and + = lim→∞ +.

This constitutes a competitive equilibrium.

Collecting our results, we know that for every −1  0, the set of  such that (−1 ) is part

of a competitive equilibrium is a closed interval with non-empty interior of the form
£
0 ̄ (−1)

¤
.

For  ∈ [0 ̄ (−1)), the competitive equilibrium starting at (−1 ) converges either to (∗ 0).

Since the set of  such that that (−1 ) is part of a competitive equilibrium that converges to

(∗ 0) is open to the right,
¡
−1 ̄ (−1)

¢
cannot converge to (∗ 0). It therefore converges to

(∗∗ ∗∗).

In addition we know that ̄ (−1) ≥ ∗∗ for −1  ∗∗ and ̄ (−1) ≤ ∗∗ for −1  ∗∗.

Moreover we know that Φ
¡
̄ (−1)  −1

¢
= ̄

¡
Φ
¡
̄ (−1)  −1

¢¢
. We now claim that ̄ (−1)

is decreasing in −1. Towards a contradiction, suppose that there exists 0−1  −1 with 0 =

̄
¡
0−1

¢ ≥  = ̄ (−1). Then using Lemma 1, we can infer that 0+ 
0

+. This contradicts

lim→∞ 0+ = lim→∞ + = ∗∗.

Combining these results yields Proposition 3.

Proof of Proposition 4. Denote by  the resources consumed by entrepreneurs of generation

− 2 in their old age at time , and denote by  the resources transferred to the original holders
of trees in period  Suppose first that 1  1 If an allocation {∗  ∗  ∗}≥0 solves the following

49



program for some set of Pareto weights {( )}≥0, then it is dynamically efficient:

max
{}≥0

∞X
=0

 +  (22)

s.t.

 +  +  ≤ 1−1 ++ 

−1 = ̄∗−1

 ≥ 0

 ≥ 0

It is important to emphasize that this program abstracts from pledgeability constraints. Assuming

that the positivity constraints are not binding, a necessary and sufficient condition is that for all

 ≥ 0 the resource constraint holds with equality and

 =  = −1 0 (23)

Moreover, with Pareto weights chosen as in (23), the objective function in the planning problem is

well defined and the maximum is finite. Since all our competitive equilibria satisfy the constraints

of the planning problem with equality, the corresponding allocations are solutions of the planning

problem, and are therefore dynamically efficient.

Consider an allocation {∗  ∗  ∗}≥0. If this allocation does not solve the following planning
problem, then it is not constrained dynamically efficient:

max
{}≥0

0 (24)

s.t.

 ≥ ∗ for all  ≥ 1

 ≥ ∗

 +  +  ≤ 1−1 ++ 

 ≥ (1 − 0) −1

−1 = ̄−1

 ≥ 0
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 ≥ 0

Note that this constrained social planning problem (24) incorporates pledgeability constraints  ≥
(1 − 0) −1.

Suppose now that 1  1 and consider a competitive equilibrium allocation {∗  ∗  ∗}≥0 such
that investment is strictly positive in every period (this is the case in every competitive equilibrium).

We reduce investment −1 in period 0 by  and give the freed resources to the old entrepreneurs of

generation −2 Resources available at date 1 have decreased by 1 Correspondingly, we reduce
investment in period 1 by 1Resources available at date 2 have decreased by 

2
1 Correspondingly,

we reduce investment in period 2 by 21 We keep doing this ad infinitum: we reduce investment

in period  by 1. The corresponding allocation is resource feasible, satisfies the pledgeability

constraints, and all agents are exactly as well off except for the old entrepreneurs of generation −2
who are better off. Hence {∗  ∗  ∗}≥0 does not solve the constrained social planning problem
(24) and is therefore not constrained dynamically efficient.

Proof of Proposition 5. The proposition is a direct consequence of expression (17) for ∗

derived in appendix A1.

A.3 Relationship with Woodford (1990)

In this appendix, we clarify the relationship of our model with that of Woodford (1990). We

show that the mechanism by which bubbles affect investment is quite different in our model and in

Woodford’s model.

Our model is closest to Woodford’s in a particular case of ours, when 0 = 0 and  = 0We by

no means imply that this particular case is exactly the model he analyzed. There are important

differences. Notably in his model, preferences are not linear, production functions are concave,

and agents are infinitely lived. In particular, the discontinuity that we emphasize below in our

version of Woodford’s model would not occur in his model. Nonetheless, these results are useful to

emphasize how different the mechanisms by which bubbles affect investment are in our model and

in his.

When 0 = 0 and  = 0, in the absence of a bubble, there are no stores of value. As a

consequence, in the bubble-free steady state (there is no transitional dynamics), investment ∗ is

equal to 0: (i) the returns to investment are entirely non-pledgeable so that no outside funds can

be raised in the intermediate period; (ii) there is no way for the entrepreneurs to transfer funds

from the early period to the intermediate period. The implicit interest rate is 1 + ∗ = 0 By
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contrast, in the bubbly steady state, ∗∗ =  and the interest rate is 1 + ∗∗ = 1 The bubble

size ∗∗ is commensurate to the amount of wealth that entrepreneurs have in the early period of

their life: ∗∗ =  The bubble provides stores of value and allows the entrepreneurs to transfer

their funds to the intermediate period of their life where they can invest. The bubble simply allows

different generations to realize some trades that were impossible in its absence: they now have an

asset that they can pass on to each other.

Consider now our model when 0  0 We maintain the assumption that  = 0 In the bubble-

free steady state, we have ∗ = 
1−0 and 1+∗ = 0

1−0  If 1+∗  1 there is also a bubbly steady

state where investment is given by ∗∗ = 
1−0 and 1+ ∗∗ = 1 Note that we have ∗∗ = ∗. Hence,

bubbles have no effect on investment: in contrast with both Woodford’s model and our version of

it where bubbles crowd investment in, there is neither crowding in nor crowding out in our model

when 0  0 and  = 0.

Recall that our intuition is that the effect of bubbles on investment can be understood as follows:

bubbles raise the interest rate and therefore crowd investment in if outside liquidity is positive. In

considering the case  = 0 we have essentially gotten rid of the consumers sector. That in this

context, bubbles have no effect on investment is therefore consistent with our intuition.29

With  = 0, steady state investment at the bubble-free steady state is discountinuous at 0 = 0

By contrast, investment at the bubbly steady state is continuous at 0 = 0. Both in Woodford’s

model and in our version of it, bubbles systematically crowd investment in, even when  = 0When

0  0 this direct effect disappears and bubbles have no effect on investment when  = 0

We have restricted our discussion to the case  = 0. Note for completeness that investment

and interest rates in all the steady states that we consider in this section (both with 0  0 and

0 = 0) are continuous in .

A.4 Proofs for Section V.1

In this Appendix A4, we make use of some the results we established for the case   0 in

Appendices A1 and A2 to prove the results in Section V.1.

Proof of Proposition 9. Define ̃ ≡ − The ̃ and ̃ schedules are now

 = − (1− 0) 0
1

̃
2−1 +

0−1
̃

"
+ (1− 20)

̃

0

#
+ ̃

29For crowding in to occur in Woodford’s model, in addition, there needs to be sufficient intertemporal

substituability in consumption.
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and

 = −20−1 + (1− 0)+ ̃

Investment is given by the following equation

 =

1
0
(1− 0) ̃ + 0−1 ++r

[ 1
0
(1− 0) ̃ + 0−1 +]2 − 4 1

0
̃
h
 + 0−1 − ̃

i
2

We have (0) = −  0 and (0) = (1− 0) (− )As long as (B) holds, (0)  0. There

are two intersections of the functions (−1) and 

(−1) given by

1 =


1− 0

2 =
1− 0
0

̃

Condition (11) guarantees that 2  1

We have

̃(−1) ≥ ̃(−1)

if and only if −1 ∈ [2 1]. Moreover, the function (−1) reaches its maximum to the left of 1 so
that  (−1)is decreasing for −1 ≥ 1 (it decreases to −∞ as −1 goes to +∞). The bubble-free
steady state ∗ is given by  (

∗) = 0. We necessarily have ∗  1.

A phase diagram analysis based on the lemma below shows that the bubbly steady state corre-

sponding to 1 is saddle path stable, while that corresponding to 2 is unstable.

Lemma 3 The interest rate +1 = Φ (−1 ) is increasing in −1 and . Investment  =

Φ (−1 ) decreases with the state variable . Investment  = Φ (−1 ) is greater (smaller)

than −1 if and only if  is smaller (greater) than  (−1). The bubble  = Φ (−1 ) is greater

(smaller) than −1 if and only if  is greater (smaller) than  (−1).

The intuition for this lemma is simple: the presence of the bubble lowers the price of outside

liquidity, or in other words, increases the interest rate. Since entrepreneurs are now net suppliers

of liquidity, this decreases corporate net worth and investment.

Proof of Remark 2 . Here we extend the results of the model to the case where entrepreneurs
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have flexibility in their savings/dissavings choices. We show that our main results generalize. Once

we allow for flexibility in the entrepreneurs savings/dissavings choices, it is still true that bubbles

boost investment when outside liquidity  exceeds some threshold, this threshold need not be equal

to zero. By studying two examples, we now show that the threshold may indeed be positive or

negative.

Example: log preferences. Suppose that entrepreneurs have utility from consumption vector

(  0) in the three periods of their life:

 = log  +  log  + 2 log 0

Let  denote their endowment when young. The rates of return on generation-’s savings when

young is 1 + ; the rate of return on their investment when credit-constrained at + 1 is

1 + ̂+1 =
1 − 0
1− 0

1++1



Optimal saving behavior implies that they save

 ≡  + 2

1 +  + 2


when young. When middle aged, they contemplate consumptions:

 = (1 + )−
µ
1− 0

1 + +1

¶
 and 0 = (1 + ̂+1)

µ
1− 0

1 + +1

¶


The asset supply and asset demand equations become respectively

(−1 +1) =


1 + 

 +  + 0−1
1− 0

1++1

and

(+1) ≡  (1 + +1)−  −  (1 + +1)

0


The condition for a bubble to exist becomes

1− 0

³
1 + 

1+

´
1− 0





 (Biv)

The analysis of the steady states and the dynamics of the economy is very similar to Section III.
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It is omitted for conciseness. Instead,we focus on one important object that behaves differently in

this setup: the conditions under which bubbles increase investment. We find it most illustrative to

focus on steady states and characterize the threshold for outside liquidity above which investment

is higher at the bubbly steady state than at the bubble-free steady state.

Proposition 11 Suppose that preferences are log and that (Biv) holds. Then there exists a thresh-

old 0  0 such that for   0 investment at the bubbly steady state is higher than at the bubble-free

steady state ∗∗  ∗ and for   0 investment at the bubbly steady state is lower than at the bubble-

free steady state ∗∗  ∗

Proof. Let  =  (1 + )  Investment in the bubbly steady state is given by

∗∗ =


1− 0

and investment in the bubble-free steady state is given by

∗ =
0−  (1− 20) +

q
[0−  (1− 20)]2 + 420 (1− 0)

20 (1− 0)

and the interest rate is

1 + ∗ =
0+  +

q
[0−  (1− 20)]2 + 420 (1− 0)

2 (1− 0)


It can be verified that (Biv) is equivalent to ∗  0.

After a few manipulations, it can be verified that ∗∗  ∗ if and only if

2 − 1− 20
1− 0

 − 0
1− 0

∙

1− 0
1− 0

− 1
¸
2  0

Together with condition (Biv), this is equivalent to  ∈ [0 1] where

0 = 

1−20
1−0 −

r³
1−20
1−0

´2
− 40 (1− )

1−0(1+)
1−0

2

1 = 

1−20
1−0 +

r³
1−20
1−0

´2
− 40 (1− )

1−0(1+)
1−0

2

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It can be shown that as long as (Biv) holds, 0  0 and   1

Some intuition can be given along the following lines. Let us compare log preferences with the

preferences used in Section III for any given level of outside liquidity  Since now only a fraction

 (1 + ) of middle-aged wealth is spent on investment by entrepreneurs, the liquidity effect of

bubbles through the impact of increased interest rates on internal funds is mitigated. On the other

hand, the leverage effect through the impact of increased interest rates on leverage is unaffected.

Example: linear-log preferences. We now sketch a specification of preferences for which even

for  = 0 investment at the bubbly steady state is higher than at the bubble-free steady state. We

take

 =  + ̃ [ (1 + )]
1

1+ [ (1 + ) ]


1+

and refer to these preferences as linear-log. Linear-log preferences lead to the same asset supply

and asset demand equations as above, with the difference that now  =  ( +1) is endogenous,

with

 ( +1)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 if (1 + )

µ
1−0

1− 0
1++1

¶ 
1+

 1

̃


0 if (1 + )

µ
1−0

1− 0
1++1

¶ 
1+

 1

̃


(25)

The difference with the log preferences of the previous example is that now the intertemporal

elasticity of substitution between  and a composite period that aggregates  and 0 is equal to

infinity. This feature reinforces the liquidity effect: bubbles, by increasing the interest rate, can

increase savings when young.

The condition for a bubble to exist is:

1− 0

³
1 + 

1+

´
1− 0





 (Bv)

This condition is equivalent to ∗  0, where ∗ is the interest rate at the bubble-free steady state.

It is verified for  = 0 if and only if 0 (1 +  (1 + ))  1.

We illustrate our point by deriving conditions for which investment ∗∗ at the bubbly steady

state is strictly positive but investment ∗ at the bubble-free steady state is zero. Assume that (Bv)
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is verified. It is possible to find ̃  0 such that  (∗ ∗) = 0 and  (∗∗ ∗∗) =  if and only if

1

1 + ∗

µ
1− 0

1+∗

1− 0

¶ 
1+

 1 (26)

Since we have assumed that (Bv) holds or equivalently that ∗  0, condition (26) is always verified

for  close enough to 0.

Proposition 12 Suppose that preferences are linear-log, that  = 0, and that (Bv) holds. If

condition (26) is verified, then there exists ̃  0 such that investment at the bubbly steady state

is higher than investment at the bubble-free steady state ∗∗  ∗ = 0. This condition is always

verified when  is small enough.

A.5 Proofs for Section V.3

Proof of Proposition 10. The proof proceeds as follows. Consider the economy where trees

supplied by consumers are fixed and equal to ̃ = (∗) The corresponding variables for this

economy are denoted with a tilde. We can use the phase diagram derived in Sections III.1 and

V.1 to analyze this economy. At the intersection of ̃ and ̃ investment is equal to ̃∗∗ = 
1−0 

the bubble is equal to ̃∗∗ = − 1−20
1−0 − ̃ (possibly negative) and the interest rate is equal to 0.

Note that this economy is such that, ∗ = ̃∗ ∗ = ̃∗ and ∗∗ = ̃∗∗ Hence ∗∗  ∗ if and only if

̃∗∗  ̃∗

Let us first prove by contradiction that (B”’) implies that ∗  0 Assume that ∗ ≥ 0 Then
̃   () so that ̃∗∗  0 But this is possible only if ̃∗  0 i.e. ∗  0This is a contradiction.

Hence ∗  0

Let us now move on to prove (i) and (ii) in Proposition 10. Suppose first that ̃  0 We

know from the phase diagram analysis in Section III.1 and the fact that ∗  0 that ̃∗∗  ̃∗. We

therefore conclude that ∗∗  ∗. The proof of (ii) proceeds exactly along the same lines.
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