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In this appendix we treat more general policies than in the paper by invoking the revelation

principle. This also allows an alternative means of deriving the results in the paper.

1 Incentive Compatibility

Ideally, the social planner would like every innovation yielding social value greater than its cost

to be created. The natural solution to this problem, the principle of payment in accordance with

product advocated by Pigou (1920), would be to give each innovation a reward equal to the social

value it creates. However, given that the planner cannot observe σ and m, he is unable to perfectly

implement payment in accordance with product. An entrepreneur of type (σ,m) can pretend to be

of another type (σ̂, m̂) if she cannot be distinguished by observing the demand that entrepreneur

generates. We assume free disposal of demand: an entrepreneur can freely reduce the demand for

her product. Thus, she is able to imitate another entrepreneur if, at the price that other is asked

to charge, she would generate at least as much demand.

Formally, type (σ,m) can successfully imitate type (σ̂, m̂) if and only if

σQ

(
a (σ̂, m̂)

m̂

m

)
≥ σ̂Q (a (σ̂, m̂))

We will say that the points (σ̂, m̂) satisfying this with equality lie on (σ,m)’s imitation frontier

given pricing policy a. This is a sort of “production possibilities frontier” for the entrepreneur.

To provide entrepreneurs with incentives to truthfully reveal their type, the social planner must

provide at least as great a reward to each entrepreneur type as that she could earn at any other

point along her imitation frontier.

Thus, the social planner’s program is

max
{τ(·,·),a(·,·)}

∫

{θ:c<τ(σ,m)}
[σmS(a(σ,m))− c] f(θ)dθ (1)
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subject to

σQ

(
a (σ̂, m̂)

m̂

m

)
≥ σ̂Q (a (σ̂, m̂)) =⇒ τ(σ,m) ≥ τ(σ̂, m̂). (2)

1.1 From imitation frontiers to isoreward curves

A standard approach to mechanism design problems is to reduce their often unwieldy global incen-

tive compatibility constraints to local constraints. This “Mirrlees-Rogerson first-order approach”

must then be complemented by an ex-post verification of its validity. In this section we develop

an “isoreward” approach that acts as an intuitive multi-dimensional extension of the first-order

approach.1 We begin by developing an analogous relaxed approach in this subsection, and then

verify it validity in the next subsection.

In doing so we draw an analogy to a neoclassical production economy.2 We can think of the

entrepreneur as “producing” her report by choosing a point along her production possibility frontier

(imitation frontier) to maximize her reward. Thus, at the optimal report, the marginal rate at which

the entrepreneur can transform σ̂ into m̂ must be equated to the marginal rate at which the social

planner rewards m relative to σ, as this is the entrepreneur’s marginal rate of substitution between

m and σ. This marginal rate of transformation is − dσ̂
dm̂

, defined by implicit differentiation of the

imitation frontier (her production possibility frontier) at (σ̂, m̂) = (σ,m), which after some algebraic

manipulations yields the simple formula,

− dσ̂
dm̂

m̂

σ̂
= ε (a(σ,m)) at (σ̂, m̂) = (σ,m) (3)

Thus, local to the truth, a one-percent increase in m̂ requires a sacrifice of ε of a percent of σ̂, as

raising m̂ by one percent forces the entrepreneur to raise prices (locally) by one percent. Thus,

crucially, an increase in m̂ requires a sacrifice of σ̂ only to the extent that a is large, as ε increases

from 0 to 1 as a does.3

1Our extension is, like Milgrom and Segal (2002)’s extension of the Mirrlees-Rogerson approach, robust to the
possibility of non-differentiable mechanisms.

2The problem of incentive compatibility in our context can be seen as equivalent to that of market equilibrium in
Rosen (1974)’s model of hedonic pricing in which every product exists (hence first-order conditions for its production
by the most efficient producer, our incentive compatibility constraint, must be satisfied). However, our solution
method via (in his context) isoprice curves, an alternative interpretation of his partial differential equations, has not,
to our knowledge, been applied and might aid in the solution of such models.

3Finite demand and zero marginal distortion at the ex-post efficient price imply that ε(0) = 0 and monopoly
optimization that ε(1) = 1. Furthermore,

MR = p− p

ε
∝ a− a

ε(a)

so

Q′(MR)′ > 0 ⇐⇒
[
a

(
1− 1

ε

)]′
< 0 ⇐⇒ ε′ > − ε

a

(
1− 1

ε

)
⇐⇒ ε′ > −ε

2

a

(
1− 1

ε

)

So, for marginal revenue to be decreasing, ε′ > 0 whenever ε ≤ 1.
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Figure 1: Isoreward curves must be tangent to imitation frontiers at the truthful point

As pictured in Figure 1, the relative marginal rate of substitution, − τm
τσ

, must be equal to the

marginal rate of transformation derived above:

τm
τσ

=
σ

m
ε (a(σ,m)) . (4)

That is, the local reward given to m relative to σ is proportional to the elasticity of the demand

curve for the innovation at the prevailing price, which increases as price increases.

Because the tangency conditions above must hold for every (σ,m) pair, and thus the marginal

rate of substitution is everywhere proportional to σ
m

, Condition (4) uniquely traces out a series of

isoreward curves along which rewards must be constant, as formalized in the corollary below.

Lemma 1: Under an arbitrary differentiable pricing policy a(·, ·), incentive compatibility requires

that τ be weakly monotone in both its arguments and that rewards be constant along any curve

m = M(σ) obeying
dM

dσ
= − M(σ)

σε (a (σ,M(σ)))

except at most on a (welfare irrelevant) countable set of such curves.

Proof. The next subsection is dedicated to the proof.

We index isoreward curves by the point at which they intersect the 45◦, σ = m line. We refer to

this point as k. Given free disposal, the reward clearly must be increasing in k.

1.2 Necessary conditions for incentive compatibility

Nota bene: the proof in this section was written jointly by Weyl and Michal Fabinger. We are

very grateful to Michal and these proofs, along with most of the rest of the material in this online
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appendix, will be spun off into a separate paper (Fabinger and Weyl, 2011). For this reason, this

subsection provides more of a sketch of a proof of Lemma 1 than a fully detailed proof.

Our strategy for establishing Lemma 1, using a series of sublemmata, consists of five steps. In

describing them, we use the terminology “conjectured isoreward curve” to refer to curves defined

by the differential equations in the lemma statement and “actual isoreward curve” to describe a

curve along which τ must in fact be constant. We also repeatedly rely on the fact that conjectured

isoreward curves pass through each point in the (σ,m) plane, smoothly deform, do not intersect,and

intersect the 45◦ line at exactly one point. These are classical results on the solutions to classes of

first-order ordinary differential equations of the form M′(σ;σ,m) = − M(σ)
σε(a(σ,M(σ)))

where ε ≥ 0 and

smooth and the curve passes through (σ,m).

1. We extend the classic theorem of Young and Young (1924) to show that the set of discon-

tinuities of a monotone function of several variables can be placed along a countable set of

non-increasing curves, which we call extended discontinuity curves.

2. We argue that any curve of discontinuities must lie entirely along a conjectured isoreward

curve, since if it were to “cut through” an isoreward curve, it would offer a profitable oppor-

tunity for deviation.

3. Because each extended discontinuity curve can contain at most a countable number of curves

(or almost-curves, curves from which a set of measure zero has been removed) of discontinuity,

these lie along at most a countable number of conjectured isoreward curves.

4. We show that any conjectured isoreward curve not including discontinuities must be an actual

isoreward curve.

5. Finally, we conclude that the set of conjectured isoreward curves failing to be actual isoreward

curves is at most countable and, as such, can be disregarded.

We use a concept that, while in some sense common in economics, does not have a standard

name we are aware of and thus we introduce the terminology that follow.

Definition 1: A non-increasing curve is a curve in R2 with the property that if (x, y) belongs to the

curve and x′ > x, y′ > y then (x′, y′) do not belong to the curve. A non-increasing almost-curve is a

non-increasing curve from which a set of one-dimensional Lebesgue measure zero has been removed.

Note that a demand curve is really a non-increasing curve, not a non-increasing function, if it

may be perfectly inelastic over some range. For verbal economy we will refer to a point at which τ

fails to be continuous in (σ,m) (and not merely those in which it is discontinuous in some direction)

as points of discontinuity of τ . Furthermore by countable we mean any set of cardinality less than

or equal to that of the integers.
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Sublemma 1: The points of discontinuity of τ are a subset of a countable set of non-increasing

curves, which we refer to as extended discontinuity curves, through the (σ,m) plane.

Proof. The proof of this sublemma is fairly involved so we begin with a brief outline:

1. We begin by considering a finite box on the real plane and investigate the maximal number of

non-increasing curves needed to accommodate all of its points of discontinuity of a size larger

than a fixed amount.

2. Along any non-increasing curve through this box there must be no more than a finite number

of discontinuities larger than some size in any direction. In the step that forms the heart of the

proof, we show this implies that the number of non-increasing curves needed to accommodate

all points of sufficiently large discontinuity is finite.

3. We then take the limit as the size of discontinuities grows small, obtaining a countable number

of non-increasing curves for each box.

4. Finally we take the limit as the box grows to encompass the full plane, obtaining a countable

union of countable sets of non-increasing curves.

Note that by the monotonicity of τ in σ and m, any discontinuity of τ in a direction from the

(−,−) quadrant to the (+,+) quadrant of a point must be a jump discontinuity and therefore

have a (supremal) size s (in some such direction). We refer to such discontinuities as monotone

discontinuities of size s. Let us refer to the set of all monotone discontinuities of size great than δ

contained in closed box [0, N ]× [0, N ] as D(N, δ) and to its closure as D(N, δ).

We will construct a set of no more than
⌊
τ(N,N)

δ

⌋
(where bxc represents the greatest integer

function) non-increasing curves, the union of which contains D(N, δ). We do so inductively and

thus define the base inductive case D0(N, δ) ≡ D(N, δ).

Let the weakly undominating set of Di(N, δ),

U
(
Di (N, δ)

)
≡
{

(σ,m) ∈ Di(N, δ) : @(σ′,m′) ∈ Di(N, δ)s.t.(σ
′,m′)� (σ,m)

}

Note that U
(
Di (N, δ)

)
is a closed subset of a non-increasing curve:

1. U
(
Di (N, δ)

)
is closed because it is defined by the failure of strict inequalities among elements

of a closed set.

2. It is (at most) one-dimensional as any two-dimensional closed subset of R2 contains a interior

point and thus dominates another point.

3. It may be chosen to be non-increasing because it is undominating.
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Thus U
(
Di (N, δ)

)
is either connected, and thus forms a non-increasing curve itself, or there is a non-

increasing curve, of which it is a subset, which connects it. While there may be many such curves,

choose one and note that because the curve is non-increasing and every point in U
(
Di (N, δ)

)

is undominating, this curve may also be chosen to be undominating. Call this extended curve

ci+1(N, δ), define Di+1(N, δ) as the closure of Di(N, δ)\ci+1(N, δ) and repeat this process unless

Di+1(N, δ) = ∅.
Db τ(N,N)

δ c(N, δ) must be empty. To see this, suppose that this were not the case. Then there

would be some point (σ,m) ∈ Db τ(N,N)
δ c(N, δ) which is actually in D(N, δ), not merely its closure, as

only closed sets are removed at each step and thus mere limit points will always be removed. There-

fore (σ,m) /∈ U
(
Db τ(N,N)

δ c−1
(N, δ)

)
and thus strictly dominates some point in Db τ(N,N)

δ c−1
(N, δ).

This point again cannot be merely a limit point but must actually be an element of D(N, δ) as dom-

inance is strict. But this point in turn must strictly dominate a point of Db τ(N,N)
δ c−2

(N, δ)∩D(N, δ)

and so on. Thus, by the transitivity of strict dominance, (σ,m) lies atop a hierarchy of (at least)⌊
τ(N,N)

δ

⌋
strict dominance relations among points in the box.

However, because the dominance is strict, it is possible to draw a non-decreasing curve (analogous

to a non-increasing curve) between these points hitting each at from any direction from the (−,−)

to the (+,+) quadrant. Thus, by the monotonicity of τ , τ(N,N) ≥
(⌊

τ(N,N)
δ

⌋
+ 1
)
δ > τ(N,N)

which is a contradiction. Thus Db τ(N,N)
δ c(N, δ) is in fact empty.

Thus D(N, δ) ⊂
⋃b τ(N,N)

δ c
i=1 ci(N, δ) as desired. Thus clearly the set of all monotone discontinuities

τ (of any size) is a subset of limN→∞
⋃N
j=1

⋃bNτ(N,N)c
i=1 ci

(
N, 1

N

)
. But by Theorem 4 of Young

and Young (1924), any point at which a monotone function of two variables is continuous in all

directions from the (−,−) to (+,+) quadrants it is continuous from all directions. Thus the set

of discontinuities of τ is a subset of limN→∞
⋃N
j=1

⋃bNτ(N,N)c
i=1 ci

(
N, 1

N

)
, a countable union of non-

increasing extended discontinuity curves.

Sublemma 2: Every non-increasing curve or almost-curve of discontinuities of τ is a subset of

some conjectured isoreward curve.

Proof. If the discontinuity curve consists of a point, it clearly lies along a conjectured isoreward

curve. For non-point curves and almost-curves, our proof strategy for this sublemma is again quite

intricate so we again outline it before diving in:

1. We begin by investigating discontinuity curves (rather than almost-curves) in a finite box

consisting entirely of discontinuities of size at least δ. In particular we focus on a single curve

lying along the highest extended discontinuity curve, to avoid any interference by other curves

of discontinuity.

2. We use an inductive argument to show that no curve of discontinuity of at least size δ may

“cut through” a conjectured isoreward curve as a series of local dominance relationships of the
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smooth imitation frontiers might then be established which would force τ to take an infinite

value in this finite region.

3. Because the discontinuity curve may not cut through, it must either be locally differentiable

or kinked (in a Dini derivative sense). But if kinked a local value can be found which will cut

through a sufficiently close isoreward curve, contradicting the prior step and establishing the

differentiability of the discontinuity curve.

4. Any differentiable discontinuity curve which cannot cut through conjectured isoreward curves

must be everywhere tangent to any such curve it intersects, determining a differential equation

“pinning” the discontinuity curves to the conjectured isoreward curves.

5. The argument extends without any trouble to almost-curves, then to other extended discon-

tinuity curves in the same finite region and then over all such curves as the region grows large

and increment size small.

First we define the notion of tangency we are interested in, using the standard notation for

Dini derivatives: D−, D
−, D+, D

+ represent respectively the lower left, upper left, lower right and

upper right Dini derivatives. For a treatment of Dini derivatives, which are not used commonly

in economics, see for example Royden (1988). We say that a non-increasing curve is tangent to a

conjectured isoreward curve at point (σ,m) if

1. The discontinuity curve is a function m̌(σ̌) in a neighborhood about (σ,m).

2. The discontinuity curve does not cut the conjectured isoreward curve from above at (σ,m):

D−m̌(σ) <M′(σ;σ,m) =⇒ D+m̌(σ) ≥M′(σ;σ,m).

3. The discontinuity curve does not cut the conjectured isoreward curve from below at (σ,m):

D−m̌(σ) >M′(σ;σ,m) =⇒ D+m̌(σ) ≤M′(σ;σ,m).

Consider D
(
N, 1

N

)
as defined above and its highest extended discontinuity curve and any non-

point curve in this extended discontinuity curve, if such exists. Choose any interior point of the

curve; this is some (σ,m) corresponding to an isoreward and imitation frontier. Suppose that the

discontinuity curve fails to be tangent to this conjectured isoreward curve at (σ,m). There are two

possibilities. Either the curve is locally a correspondence or it is a continuous function whose upper

and lower Dini derivatives from each side exist, but they fail to obey the specified bounds. We

focus on the second case to begin with, as the argument in the first case is essentially a special case

of the second. Furthermore, we focus on showing the impossibility of a cut from above in the case

when τ is continuous at (σ,m) from the (+,+) quadrant rather than the (−,−) quadrant (it must

be from one by monotonicity), as the argument for a contradiction in all other cases is perfectly
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analogous. Thus we assume that D+m̌(σ) < M′(σ;σ,m) and that D−m̌(σ) < M′(σ;σ,m), seeking

a contradiction.

By differentiability and tangency to the conjectured isoreward curve of the imitation frontier

anchored at (σ,m), if D+m̌(σ) <M′(σ;σ,m), there exists a region to the southeast of (σ,m) above

m̌ and below the imitation frontier m̂(σ,m). By the arguments from the proof of Sublemma 1,

τ ≥ 1
N

in this region. But, by continuity of the imitation frontier in its parameters for any (σ′,m′)

along the conjectured isoreward curve m̌ sufficiently close to (σ,m), the imitation frontier m̂(σ′,m′)

contain points dominating points in his region. Thus by incentive compatibility, τ(σ′,m′) ≥ 1
N

.

However, again by continuity and monotonicity of the imitation frontiers in the (σ,m) at which

they are anchored, if we chose any (σ′′,m′′) > (σ,m) interior to [0, N ] × [0, N ], which is possible

because (σ,m) was constructed as an interior point, there is some point of the form (σ′,m′) de-

scribed in the preceding paragraph dominated by a neighborhood of (σ′′,m′′). Furthermore because

D−m̌(σ) < M′(σ;σ,m), by the exact argument of the preceding paragraph, some such point lies

below m̌ and that there is some region, in the dominating neighborhood of (σ′′,m′′) lying above m̌

and below M(σ′′,m′′). By the argument above, τ in this region is at least 1
N

greater than τ(σ′,m′)

which it dominates through m̌. Thus τ must be at least 2
N

in this region. Thus we can iterate the

argument to show that there is some point, interior to [0, N ] × [0, N ] on which τ takes arbitrarily

high values, a contradiction.

To prove that m̌ may not be vertical at (σ,m) follows precisely the same logic and to prove it

cannot cut below follows the same logic in reverse (starting from the left, then moving to the right,

moving down rather than up across conjectured isoreward curves).

Therefore m̌ must be tangent to any isoreward curve it intersects. Thus either D−m̌(σ) ≥
M′(σ;σ,m) or D+m̌(σ) ≥M′(σ;σ,m) and either D−m̌(σ) ≤M′(σ;σ,m) or D+m̌(σ) ≤M′(σ;σ,m).

We now wish to establish that at all σ, m̌ is differentiable and m̌′(σ) = M′(σ;σ,m). This is

equivalent to

D−m̌(σ) = D−m̌(σ) = D+m̌(σ) = D+m̌(σ) = M′(σ;σ,m)

This may fail, for example, if D−m̌(σ) < M′(σ;σ,m). If so, ∃δ > 0 : D−m̌(σ) < M′(σ;σ,m) − δ.
A well-known property of Dini derivatives4 is their potential continuity: ∀η > 0,∃σ? ∈ [σ − η, σ] :

D−m̌ (σ?) , D+m̌ (σ?) < D−m̌(σ) + η. But by the continuous differentiability of ε and a and con-

tinuity of m̌, for η sufficiently small M′ (σ?;σ?, m̌ (σ?)) is arbitrarily close to M′(σ;σ,m). Thus

D−m̌ (σ?) , D+m̌ (σ?) < M′ (σ?;σ?, m̌ (σ?)) and m̌ is not tangent to the isoreward curve passing

through (σ?, m̌ (σ?)). But this contradicts our above reasoning. All other ways in which m̌ may fail

to be differentiable can be ruled out similarly. Thus m̌(σ) is differentiable at all σ in its support

and

m̌′(σ) = M′(σ;σ,m)

4See, for example, Hagood and Thomson (2006).
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an ordinary differential equation with a unique solution passing through any point, corresponding

to the conjectured isoreward curve passing through that point. Thus m̌ lies entirely along a single

conjectured isoreward curve.

This argument may be repeated first for all other curves lying along the extended discontinuity

curve in consideration, showing each of these lies along a conjectured isoreward curve. Furthermore

it is straightforward to demonstrate that the same argument applies to almost-curves as to curves:

removing a set of measure zero does not interfere with any of the steps as proper closure was applied

in all of our arguments above.

Moving to the next extended discontinuity curve down, we may now ignore all points inD
(
N, 1

N

)
,

as these dominate all points in this curve and we can thus consider the argument over a sufficiently

small box so as to exclude these points. The same argument can then be repeated to show all curves

along this, and inductively all other, extended discontinuity curves containing D
(
N, 1

N

)
lie entirely

along conjectured isoreward curves.

But of course this argument hold for any N and thus, by the same limiting argument as in

the proof of Sublemma 1, establishes that all curves and almost-curves of discontinuities lie each

entirely along a single conjectured isoreward curve.

Sublemma 3: At most a countable number of conjectured isoreward curves contain discontinuities

of τ .

Proof. It is a classic real analysis result that every subset of the real line is dense in a countable

union of closed intervals. Thus, because any non-increasing curve is uni-dimensional and therefore

isomorphic to (a subset of) the real line, the points of discontinuity along every extended disconti-

nuity curve from Sublemma (1) is a countable union of non-increasing curves or almost-curves. But

by Sublemma 2 each of these intersects at most a single isoreward curve. Thus the set of isoreward

curves containing discontinuities has the cardinality of non-increasing curves of discontinuity, which

are a countable union of countable sets and therefore countable.

Sublemma 4: Suppose that τ is continuous in (σ,m) at every point along a conjectured isoreward

curve. Then this is an actual isoreward curve.

Proof. Our proof proceeds in three steps:

1. We argue that along any conjectured isoreward curve where τ is continuous, the upper Dini

derivative from the direction below and perpendicular to the conjectured isoreward curve is

continuous along that curve.

2. We show that if this Dini derivative is bounded from above at a point, then the conjectured

isoreward curve is constant in the neighborhood of that point.
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3. We show that arbitrarily close to any conjectured isoreward curve from below there must exist

another conjectured isoreward curve along which all points have finite upper Dini derivatives

and, therefore, that this other conjectured isoreward curve is an actual isoreward curve.

4. Finally, by continuity, we conclude that the conjectured isoreward curve is, in fact, an isore-

ward curve.

We begin by establishing the continuity of Dini derivatives along conjectured isoreward curves at

which τ is continuous. Consider a point (σ,m). We would like to show that the upper Dini derivative

of τ at (σ,m) from below in the direction
(

1,− 1
M′(σ;σ,m)

)
is continuous along the conjectured

isoreward curve. We will denote this derivative by D̃−. To do this we begin by establishing bounds

on these Dini derivatives.

To place a lower bound on D−τ (σ′,M (σ′;σ,m)) we must, for any distance we are challenged

with, find a point closer than that distance to (σ′,M (σ′;σ,m)) in the lower perpendicular direction

to the isoreward curve which is sufficiently lower than τ (σ′,M (σ′;σ,m)). To see that this is possible,

note that points very close in the negative perpendicular direction to (σ,m) will be dominated by,

and therefore with a lower value than, (σ′,M (σ′;σ,m)); by continuity, such a point, jointly with

(σ′,m′) may be chosen so that the value of τ is arbitrarily close to τ(σ,m). Furthermore the

definition of the lower perpendicular Dini derivative at (σ,m) implies that a close point to on the

lower perpendicular of (σ,m) may be chosen to be dominated by a slightly lower point on the lower

perpendicular of (σ′,M(σ′;σ,m)) and still have a sufficiently low value of τ . This ensures that the

desired point on the lower perpendicular of (σ′,M(σ′;σ,m)) does in fact exist and establishes the

lower bound.

By repeating the same argument, but reversing the choice of point dominance we obtain the op-

posite inequality: ∀δ > 0, ∃η : ∀σ′ ∈ [σ, σ + η] , D̃−τ (σ,m)− δ ≥ D̃−τ (σ′,M (σ′;σ,m)). Combining

these two implies the continuity of the lower Dini derivatives along the conjectured isoreward curve.

Next we argue that Dini derivatives being bounded above at a point from below along the local

perpendicular implies the conjectured isoreward curve being constant in that neighborhood. Note

that this hypothesis is equivalent, by the continuity of the Dini derivatives shown above to the Dini

derivative being bounded in a neighborhood about this point.

Suppose this were false. Then there must be two points, (σ,m) and (σ′,m′) lying on the same

conjectured isoreward curve in a neighborhood of bounded upper Dini derivative; take this upper

bound to be M . Suppose we consider another conjectured isoreward curve that is sufficiently close

(δ2 along the local perpendicular) to the original one in question. Then by differentiability of the

conjectured isoreward curves and tangency of the imitation frontier, the local imitation frontier

will intersect the slightly lower conjectured isoreward curve at a distance of order δ along the

isoreward curve (if a local perpendicular is drawn). The value of τ at this point must be no greater

than τ(σ,m) by incentive compatibility. Furthermore, the value at the point along the original
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conjectured isoreward curve must not exceed τ(σ,m) by more than Mδ2, by the upper bound on

the upper Dini derivative. Iterating this argument one finds that if the distance between (σ,m) and

(σ′,m′) is less than d, then τ(σ′,m′) < τ(σ,m) + dδ. Because δ maybe chosen arbitrarily small we

obtain that τ(σ′,m′) ≤ τ(σ,m).

The argument may be repeated in the opposite direction to show that τ(σ′,m′) ≥ τ(σ,m) and

thus it must be that τ(σ′,m′) = τ(σ,m). Thus any neighborhood of bounded upper Dini derivatives

from below along perpendicular must have a locally constant τ value along the conjectured isoreward

curve.

Now consider the actual value of these upper Dini derivatives from below along the local perpen-

dicular. Note that for the perpendicular emanating from any point along the conjectured isoreward

curve, the upper Dini derivative from below along this curve cannot be infinite, in any neighborhood

of the curve, over any set of positive measure; otherwise the value of the curve would, by mono-

tonicity, be infinite at some finite point. Thus along each perpendicular at most a set of measure

zero has points where the upper Dini derivative from below is infinite.

Choose a countable, dense set of points in a neighborhood about (σ,m) and consider the per-

pendiculars emanating from these points. The set of conjectured isoreward curves passing through

as point of infinite Dini derivative from below along any of these perpendiculars must be of measure

zero, as a countable union of sets of measure zero is of measure zero. So must be the set of these

conjectured isoreward curves that contain discontinuities of τ by Sublemma 3. Therefore we can

always find a “normative” conjectured isoreward curve avoiding both of these sins and arbitrarily

close to the original conjectured isoreward curve of interest.

This normative curve must have uniformly bounded upper Dini derivatives along the diagonal in

the neighborhood of each point in the countable dense set. It must therefore be constant over these

sets. Furthermore because it may be chosen arbitrarily close to the original conjectured isoreward

curve, at which τ is continuous, this original curve must have constant τ over this neighborhood as

well.

Putting this all together, we have established that each conjectured isoreward curve, if it contains

no discontinuities of τ , must be constant in the neighborhood of each point along the curve. But

clearly this establishes constancy over the whole curve.

Proof of Lemma 1. By Sublemma 3 and Sublemma 4, the set of conjectured isoreward curves which

fail to be actual isoreward curves is countable. Now suppose some τ ?? was incentive compatible, but

violated the isoreward property on some countable set of pathological conjectured isoreward curves.

Then consider another τ ? which matches the values of τ ?? on the non-pathological conjectured

isoreward curves but assigned to all point of the pathological isoreward curves any value taken by

τ ?? along these pathological isoreward curves. Because f is continuous and has all finite moments

social welfare is exactly the same under τ ?? as under τ ? as changing the value of a function along a

countable set does not alter its Riemann-Stieljes or Lebesgue integral. And clearly τ ? satisfies the
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isoreward property along all conjectured isoreward curves. Thus some optimal τ always satisfies

the isoreward property of the Lemma.

1.3 Sufficient conditions for incentive compatibility

Suppose that for every (q, p) pair there is some entrepreneur whom we would like to produce q and

charge p.5 By free disposal, t must be increasing in (q, p) for this to be feasible. If entrepreneur

(σ,m) is to choose a quantity price pair
(
σQ
(
p
m

)
, p
)

then the isoquant (isoreward curve) of t(q, p)

must be tangent to (σ,m)’s demand curve at
(
σQ
(
p
m

)
, p
)
.

Suppose we wish to implement some continuous mapping (q, p) : R2
+ → R2

+ which prescribes the

quantity q(σ,m) and price p(σ,m), which any entrepreneur is instructed to produce and charge,

respectively. Clearly to be implementable the price-quantity pair must lie along the appropriate

demand curve:

q(σ,m) = σQ

(
p(σ,m)

m

)

What else is required of (q, p) to be implementable? Suppose that q were to be decreasing in σ

or p decreasing in m. This would effectively ask types with a comparative advantage in producing

demand or prices to produce less of these than another type with a comparative disadvantage. The

classic logic of Spence (1973) and Mirrlees shows this may not be incentive compatible. Moreover,

in two variables individual (weak) monotonicity in each argument is not sufficient (McAfee and

McMillan, 1988); if (q, p) is differentiable the Jacobian of the transformation must be positive

semidefinite (it cannot flip points across quadrants in coordinate systems based at any point). Such

a differentiable mapping is known as a monotone orientation-preserving weak self-diffeomorphism

(weak MOPSD) of R2
+; a strict MOPSD has a positive definite Jacobian.

While this condition is quite imposing as a formal statement, it is really just the most nat-

ural two-dimensional generalization of the standard monotonicity condition for one-dimensional

implementation. Calculating the Jacobian of the (σ,m) to (q, p) transformation in logs yield

[
1− εεaσ εaσ

−εεam 1 + εam

]
.

Thus a MOPSD simply requires that εεaσ < 1 (where εaσ is the elasticity of a with respect to σ),

εam > −1 and that εεaσ− εam < 1. The first condition is that increasing σ should not increase prices

so far as to offset the direct increase in quantity this causes, so that q remains monotone in σ. The

second condition posits that a should not fall so rapidly in m that p is actually declining in m. The

final condition is equivalent to the condition that moving along the local demand function towards

5Note that even if this fails it is irrelevant and we can always restore monotonicity, as any time there is an
entrepreneur at (q, p) the reward there must be greater than at any point dominated by this.
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higher prices also moves towards higher m and lower σ. This last is the requirement, in addition to

monotonicity, that ensures the preservation of orientation.

Lemma 2: Suppose that (q, p) is a strict MOPSD of R2
+ with q(σ,m) = σQ

(
p(σ,m)
m

)
. Then the

conditions in Lemma 1 are necessary and sufficient for incentive compatibility. Almost conversely

if (q, p) is differentiable then any incentive compatible t implementing (q, p) is constant over any

neighborhood where (q, p) fails to be MOPSD.

Thus, if we are willing to assume (q, p) is differentiable, we may use the isoreward approach

except when there is bunching (a weak MOPSD or no MOPSD at all with flat t).6 However, any

weak MOPSD is the limit of a series of strict MOPSD and thus little is lost by restricting attention

to the latter.

Proof. In the forward direction, necessity follows from the fact that a MOPSD is clearly equivalent

to a differentiable pricing policy a: by the nature of a MOPSD is isoreward curves in the (σ,m)

space may easily be transformed into those in the (q, p) space.

For sufficiency consider some type (σ,m). Suppose that rather than choosing (q(σ,m), p(σ,m)),

(σ,m) strictly prefers
(
σQ
(
p′

m

)
, p′
)

where p′ > p(σ,m); in particular consider the point
(
σQ
(
p′

m

)
, p(σ,m)

)

and let (σ′,m′) be its inverse under (q, p) which exists as it is a strict MOPSD. Also, let (σ′′,m′′) be

the inverse of
(
σQ
(
p′

m

)
, p′
)

. It is well-known that the inverse of a strict MOPSD is itself a strict

MOPSD so by orientation-preservation (property 3),

(m′′ −m′) (σ − σ′) > (m−m′)(σ′′ − σ′) (5)

while by monotonicity we have that m′ > m′′ and σ > σ′. However we also know that
(
σQ
(
p′

m

)
, p′
)

lies on (σ,m) and (σ′′,m′′)’s (downward sloping) demand curves. So either σ > σ′′ and m < m′′ or

σ < σ′′ and m > m′′. Suppose the second were the case; then clearly σ′′ > σ > σ′ and m > m′′ > m′

so

(m−m′)(σ′′ − σ′) > (m′′ −m′)(σ − σ′)

in contradiction of inequality (5). Thus we must have σ > σ′′ and m < m′′. But then clearly the

elasticity demand for (σ′′,m′′) at p′ is great smaller than that of (σ,m). Thus if type (σ′′,m′′) is

locally indifferent to raising q to increase k, type (σ,m) must be able to strictly raise k (which is

strictly monotone by construction). Thus imitating (σ′′,m′′) cannot be the k-maximizing choice for

(σ,m). But this argument may be repeated for any point on the frontier (σ̂,m) 6= (σ,m) (for points

to the southeast the argument is analogous but reversed) proving that the k-maximizing point for

(σ,m) is (q, p).

For the partial converse, suppose that (q, p) is not a weak MOPSD. Then, by continuity, there

exists a neighborhood where either monotonicity in some direction or orientation-preservation in

6Fabinger and Weyl (2011) are working to relax the differentiability and other technical assumptions.
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some direction is violated for each pair or triple of relevant points in the neighborhood. This can

easily be shown to give rise to the exactly the opposite of the argument above, establishing the

local convexity of the objective function of the entrepreneur at a point in the neighborhood and

thus establishing that (q, p) is not in fact an optimal choice for her. If t is constant over that range,

however, the argument fails and t may clearly still implement the desired function.

Note that this implies that over regions where t is endogenously optimally flat or near flat it

may be optimal to adopt very low prices as anything may be implemented. This is intuitive: if t

is not optimally increasing over a range there is little incentive to sort, as which isoreward curve

innovations are assigned to is irrelevant.

2 Optimal pricing

Building on the preceding section we may now investigate the properties of more general, incentive

compatible pricing rules. Our analysis is less complete than under proportional pricing, but we

provide four results. First, we present a general first-order derivative with respect to adjusting

prices at any point and use it to provide a generalization of Theorem 1 from the text. Second,

we discuss a version of our analysis that may apply even absent proportional pricing: a first-order

derivative with respect to the overall level of market power. Third, we use a similar strategy to

prove a generalized version of Theorems 2 and 3 from the text. Finally, we discuss which direction,

starting from proportional pricing, may be optimal to move the price schedule. This provides some

limited justification for proportional pricing. For simplicity we restrict attention to the case when

τ ? is differentiable.

Under general pricing we can again change variables from (σ,m) to (k, x). Here k again repre-

sents the isoreward curve measured by the point at which it intersects the 45◦, σ = m line and x is

again m
σ

. However, now that pricing is not proportional, demand elasticity is not the same at all

points. It is thus necessary to consider, for any point (k, x), the elasticity of demand at that point

ε(k, x); we also use this convention for other quantities such as S and Q. However, not only the

elasticity at a point is relevant; the value of k corresponding to any (σ,m) is determined by the

elasticity at every point along the isoreward curve passing through (σ,m) between x and the 45◦

line. Thus, one must consider the average elasticity of demand:7

ε̃(k, x) ≡ 1
1

1+ε
(k, x)

− 1

7As described in Online Appendix Subsection 5.2, this is a (transformed) log-average elasticity along the isoreward
curve from point (k, x) to point (k, 1).
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where
1

1 + ε
(k, x) ≡

∫ x

z=1

1

z log(x) [1 + ε(k, z)]
dz

We begin be establishing the validity of our change of variables. We want to show that point

(σ,m) =
(
kx−

ε̃(k,x)
1+ε̃(k,x) , kx

1
1+ε̃(k,x)

)
lies along an isoreward curve intersecting the 45◦, σ = m line at

m = σ =

√
σmx−

1−ε̃(k,x)
1+ε̃(k,x) where

ε̃(k, x) ≡ 1
1

1+ε
(k, z)

− 1

1

1 + ε
(k, x) ≡

∫ x

z=1

1

z log(x) [1 + ε(k, z)]
dz

where ε(k, x) ≡ ε
(
a
(
kx−

ε̃(k,x)
1+ε̃(k,x) , kx

1
1+ε̃(k,x)

))
. By Lemma 1, along an isoreward curve

∂σ

∂M
= −ε(k, x)

x

Thus moving along an isoreward curve while adjusting x until one reaches the 45◦ line makes

log(m)+

∫ 0

l=log(x)

1

1 + ε (k, el)
dl = log(k) ⇐⇒ log(m) = log(k)+log(x)

1

1 + ε
(k, x) ⇐⇒ m = kx

1
1+ε̃(k,x)

A similarly derivation applies to σ.

Next we define the notion of a variation of a(σ,m) in the direction of another policy â(σ,m)

in keeping with the classical calculus of variations. In particular letting maximized social welfare

under policy a be W (a) the first variation of welfare in the direction of â is

δW (â) ≡ lim
δ→0

W [(1− δ)a+ δâ]−W (a)

δ

We now seek to calculate δW (â) for arbitrary â. To do this we exploit some terminology we now

define.

Let ∆a = â − a and generalize ·(x, k) to potentially run over a range other than x to 1. For

example, ∆aε′

(1+ε)2 (k, x)
∣∣∣
x̃

denotes a case when the lower bound of integration in the relevant equations

is replaced by x̃ and log(x) is replaced by log
(
x
x̃

)
so that ∆aε′

(1+ε)2 (k, x) = ∆aε′

(1+ε)2 (k, x)
∣∣∣
1
.

First note that, as before, the points lying along the isoreward curve of a point which is, under

a, assigned to (k, x) take the form (where we drop the arguments of σ and M inside the large

expressions and assume 1 < x̃ < x):

σ(δ; x̃, k, x) = kx̃−
ε̃(k,x̃)

1+ε̃(k,x̃) e
∫ log(x)
z=log(x̃)

1
z (

ε(k,z)
1+ε(k,z)

− ε([1−δ]a(σ,M)+δâ(σ,M))
1+ε([1−δ]a(σ,M)+δâ(σ,M)))dz ≡ kx̃−

ε̃(k,x̃)
1+ε̃(k,x̃) eδσ(x̃;k,x)
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M(δ; x̃, k, x) = kx̃
1

1+ε̃(k,x̃) e
∫ log(x)
z=log(x̃)

1
z (

1
1+ε(k,z)

− 1
1+ε([1−δ]a(σ,M)+δâ(σ,M)))dz ≡ kx̃

1
1+ε̃(k,x̃) eδm(x̃;k,x)

Note that limδ→0 δm(x̃; k, x), δσ(x̃; k, x) = 0 ∀(x̃; k, x). Furthermore we can obtain

dσ(x̃, k, x)(â) ≡ lim
δ→0

kx̃−
ε̃(k,x̃)

1+ε̃(k,x̃) eδσ(x̃;k,x) − kx̃−
ε̃(k,x̃)

1+ε̃(k,x̃)

δ
= kx̃−

ε̃(k,x̃)
1+ε̃(k,x̃) lim

δ→0

δσ(x̃; k, x)

δ
=

−kx̃−
ε̃(k,x̃)

1+ε̃(k,x̃) log
(x
x̃

) ∆aε′

(1 + ε)2 (k, x)

∣∣∣∣
x̂

dM(x̃, k, x)(â) = kx̃
1

1+ε̃(k,x̃) log
(x
x̃

) ∆aε′

(1 + ε)2 (k, x)

∣∣∣∣
x̂

We can then calculate that the isoreward curve k̂ assigned to (k, x) under the new policy is

k̂(k, x; δ, â) = ke
∫ log(x)
z=1

1
z (

1
1+ε(k,z)

− 1
1+ε(δâ(σ(z;k,x),M(z;k,x))+[1−δ]a(σ(z;k,x),M(z;k,x))))dz

Let dk(k, x)(â) ≡ limδ→0
k̂(k,x;δ,â)−k

δ
. It is straightforward, but tedious, to show that a number of

second-order effects drop out because a small move towards â only causes a small change in σ; thus

we are left with two effects:

dk(k, x)(â)

k
= log(x)




∆aε′

(1 + ε)2 (k, x)

︸ ︷︷ ︸
direct sorting

+
log
(
x
z

)
∆aε′

(1+ε)2 (k, x)
∣∣∣
z

(εam − εaσ) ε′

(1 + ε)2 (k, x)

︸ ︷︷ ︸
indirect sorting




The source of the first effect is both familiar from before and discussed more extensively below:

raising a locally causes all innovations with a higher x on the same isoreward curve to have a higher

k changing the local direction of the isoreward curve. The second effect is a bit more subtle, but

not fundamentally different. To the extent a is not constant, changing a and thus the path of the

(k, x) isoreward curve not only directly changes the path of the isoreward curve, but also does so

indirectly by changing the set of elasticities “encountered” by the isoreward curve on its way to the

45◦ line.

We can now return to δW (â). As usual we have two effects: one on the boundary and one on

the interior of the integral. If we skip over steps now familiar from the calculation of numerous

first-order derivatives of W above, we obtain

δW (â)=

∫
k

∫
x≥1

k

(
τ?
′
(k)

dk(k,x)
k

[
S(k,x)k2x

1−ε̃(k,x)
1+ε̃(k,x)−τ?(k)

]
f̃(k,x,τ?(k))−∆a(k,x)Q(k,x)ε(k,x)x

1−ε̃(k,x)
1+ε̃(k,x)

∫ τ?(k)
c=0 f̃(k,x,c)

)
dx+...dk=

16



where . . . represents the corresponding opposite term for x < 1. Dropping arguments where possible

∫
k

∫
x≥1

k2

 τ?
′

k
log(x)

[
log(xz ) ∆aε′

(1+ε)2

∣∣∣∣
z
(εam−εaσ )+∆a

]
ε′

(1+ε)2

[
Sk2x

1−ε̃
1+ε̃ −τ?(k)

]
f̃(x|k,τ?)f̃(τ?|k)−∆aQεx

1−ε̃
1+ε̃ f̃(x|k,c<τ?)F̃(τ?|k)

f̃(k)dx+...dk∝

∫
k
k4

∫
x≥1

 τ?
′

k
log(x)

[
log
(
x
z

)
∆aε′

(1+ε)2

∣∣∣∣
z
(εam−εaσ )+∆a

]
ε′

(1+ε)2

Sx 1−ε̃
1+ε̃ −E

f̃,x

Sx 1−ε̃
1+ε̃

η(τ?(k)|k)−∆aQεx

1−ε̃
1+ε̃ E

f̃,x

Sx 1−ε̃
1+ε̃

f̃(x̂|k̂,τ?)
E
[
f̃( x̂|k,c)

∣∣∣c<τ?(k),k
]

f̃( x|c=τ?(k),k)

f̃(k)dx+...dk

(6)

First-order conditions for maximization over all differentiable schedules a require that δW (â) be

0 for all differentiable â. It is well known that this condition8 is equivalent to this condition holding

for the class of differentiable functions

â(k, x; k̂, x̂, η) = a(k, x) +
e
− (k−k̂)2+(x−x̂)2

η2

2πη

for all choices of (k̂, x̂) and all η < η for an arbitrarily small η, as such functions form a basis for

the set of all differentiable functions. If we allow η → 0 we obtain a point mass difference between

a and â and the notion of a perturbation of W at (k̂, x̂):

W ′(k̂, x̂) ≡ lim
η→0

W
(
â
(
k̂, x̂, η

))

η

As the proof of our first result in this section shows, these perturbations can be computed as limits

of formula (6) when ∆a converges to 0 everywhere by (k̂, x̂) and to ∞ at that point.

An innovation’s social value is, after some algebraic manipulations, S (k, x) k2x
1−ε̃(k,x)
1+ε̃(k,x) . The ben-

efits of raising a again arise from sorting and those of lowering it from reducing ex-post inefficiency,

both locally holding fixed rewards given to each k by the envelope theorem; the optimum balances

these two incentives. However for general pricing we must consider this trade-off at each (σ,m), or

(k, x), pair.

Proposition 1: If τ ? is differentiable in k, the first-order net benefit of increasing a at
(
k̂, x̂
)

beginning from a strict MOPSD pricing policy a(·, ·) is, if x ≥ 1, proportional to

τ?
′

k̂

ε′(k̂,x̂)

x̂[1+ε(k̂,x̂)]2

[
1+log(x̂)

ε′(εam−εaσ )
(1+ε)2

(k̂,x̂)
]E

f̃,x>x̂

[
Sx

1−ε̃
1+ε̃

]

E
f̃,x

[
Sx

1−ε̃
1+ε̃

] −1

η(τ?|k̂)
︸ ︷︷ ︸

sorting

−Qεx̂
1−ε̃
1+ε̃H(x̂|k̂,τ?)

E[ f̃( x̂|k̂,c)|c<τ?,k̂]
f̃(x|c=τ?,k̂)︸ ︷︷ ︸

ex-post distortion

8Note that π in this condition is the geometric constant, not a variable for profits.
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where H is the (conditional) hazard rate of x under f̃ and if x < 1, proportional to

τ?
′

k̂

ε′(k̂,x̂)

x̂[1+ε(k̂,x̂)]2

[
1+log(x̂)

ε′(εam−εaσ )
(1+ε)2

(k̂,x̂)
]1−

E
f̃,x<x̂

[
Sx

1−ε̃
1+ε̃

]

E
f̃,x

[
Sx

1−ε̃
1+ε̃

]
η(τ?|k̂)−Qεx̂ 1−ε̃

1+ε̃R(x̂|k̂,τ?)
E[ f̃( x̂|k̂,c)|c<τ?,k̂]

f̃(x|c=τ?,k̂)

where R is the reversed hazard rate. A necessary condition for a strict MOPSD (no-bunching)

solution is that these equal zero at every point in the plane.

This is just the standard calculus-of-variations first-order derivative at a point in this context,

using the envelope theorem.

Proof. As usual with Dirac-convergent weighting functions, the integral converges to the value of

the density at the limit mass point. The value of the second term of (6) is easy to evaluate at this

mass point so we focus on the first term and begin by analyzing:

log(x)

[
log(xz ) ∆aε′

(1+ε)2

∣∣∣∣
z
(εam−εaσ )+∆a

]
ε′

(1+ε)2
=

∫
x

z=1
1
z

ε′(k,z)
[1+ε(k,z)]2

(
∆a(k,z)+[εam (k,z)−εaσ (k,z)]

∫ x
α=z

1
α
ε′(k,α)∆a(k,α)

[1+ε(k,α)]2
dα

)
dz

Evaluating this in the limit as ∆a becomes a point mass of 1 on (k̂, x̂) yields

1x≥x̂
x̂

ε′(k̂, x̂)
[
1 + ε(k̂, x̂)

]2 +

∫ x

z=1

1z<x̂<xε
′(k̂, x̂)

[
1 + ε(k̂, x̂)

]2

[
εam(k̂, z)− εaσ(k̂, z)

]
dz

1x≥x̂
x̂

ε′(k̂, x̂)
[
1 + ε(k̂, x̂)

]2

[
1 + log(x̂)

ε′ (εam − εaσ)

(1 + ε)2 (k̂, x̂)

]

So by equation (6) for x̂ > 1, W ′(k̂, x̂) ∝
∫ ∞
x=x̂

τ?
′
ε′(k̂,x̂)

k̂x̂[1+ε(k̂,x̂)]2

[
1+log(x̂)

ε′(εam−εaσ )
(1+ε)2

(k̂,x̂)

](
Sx

1−ε̃
1+ε̃ −E

f̃,x

[
Sx

1−ε̃
1+ε̃

])
η(τ?(k)|k)−Qεx̂

1−ε̃
1+ε̃ E

f̃,x

[
Sx

1−ε̃
1+ε̃

]
f̃(x̂|k̂,τ?)

E[ f̃( x̂|k,c)|c<τ?(k),k]
f̃(x|c=τ?(k),k)

=

τ?
′

k̂

ε′(k̂, x̂)

x̂
[
1 + ε(k̂, x̂)

]2
[

1 + log(x̂)
ε′ (εam − εaσ )

(1 + ε)2
(k̂, x̂)

]Ef̃ ,x>x̂

[
Sx

1−ε̃
1+ε̃

]
Ef̃ ,x

[
Sx

1−ε̃
1+ε̃

] − 1

 η (τ?(k)|k)−Qεx̂
1−ε̃
1+ε̃H

(
x̂|k̂, τ?

) E [ f̃ ( x̂| k, c)
∣∣∣ c < τ?(k), k

]
f̃ (x| c = τ?(k), k)

(7)

as in the text. For x̂ < 1 the reasoning is analogous and thus omitted.

Three things may be gleaned from these relatively dense expressions. First, despite their com-

plexity, the same basic forces are at work as with proportional pricing. The first term is the product

of materialism and the degree to which raising a is able to sort for the best innovations. This is quite

naturally measured by the ratio of the social value of average innovations with a higher value of x

than x̂, along isoreward k̂, to the social value of an overall-average innovation along that isoreward
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curve. Thus, the basic logic of our analysis carries through more generally. Second, there seems be

a strong indication, discussed more extensively later, that along an isoreward curve a will optimally

decline in x (decline in m and/or increase in σ), at least over a significant range. We will discuss

the reasoning behind this more extensively below.

Finally, supposing this is the case, it is worth noting that this creates both greater, and lesser,

selective pressure in favor of high x innovations. On the one hand, it raises selective pressure as

their S values are higher as well. On the other hand in this case εam is likely smaller than εaσ (so

that a declines in x along k) so that the rather odd term

log(x̂)
ε′ (εam − εaσ)

(1 + ε)2

(
k̂, x̂
)

becomes negative and thus depresses the incentives for market power. The basic source of this

term, explained extensively in Online Appendix Subsection 5.2, is that changing pricing alters the

set of prices through which (σ,m)’s isoreward curve passes as it approaches the 45◦ line and thus

indirectly affects the rewards given to (σ,m) to the extent that a is not constant.

This analysis may be used to generalize Theorem 1 from the text.

Theorem 1: At global ex-post efficient pricing there is a local incentive at all points to raise prices

at any (σ,m) for which τ ?(σ) is not constant in the neighborhood of σ. At global monopoly pricing

there is a local incentive at all points to lower prices.

Proof. At globally ex-post efficient prices ε = εam = εaσ = 0 and S = 1 for all innovations. Thus

expression (7) becomes

τ ?
′

k
ε′(0)

(
Ef̃ ,x>x̂ [x]

Ef̃ ,x [x]
− 1

)
η (τ ?(k)|k, x)

which is strictly positive whenever τ ?
′ 6= 0. By similar tricks at global monopoly pricing

Ef̃ ,x>x̂

[
Sx

1−ε̃
1+ε̃

]

Ef̃ ,x

[
Sx

1−ε̃
1+ε̃

] − 1 = 0

as ε̃ = 1 everywhere while the second term is

−QεH(x̂|k) < 0

A similar logic holds for x < 1.

Another way of recovering some broader results of our analysis is to focus on its primary goal:

determining the optimal “level”, rather than structure, of market power. One of the necessary

conditions for optimality is, of course, choosing this level correctly. In particular, we can consider
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the first-order costs and benefits of uniformly lowering 1
1+ε

at every point by a small amount; this

particular direction is chosen for the analytic simplifications it allows. This gives a similar expression

to our baseline proportional pricing first-order condition, as shown in the following proposition.

However the additional forces identified above still play a role.

Proposition 2: Starting from any strict MOPSD policy a with a < 1 everywhere and assuming τ ?

is differentiable at this policy, the first variation of W in the direction a+ (1+ε)2

ε′
(uniform decrease

in 1
1+ε

) is proportional to

Ek,f̃

[
k4

(
ητ?
′

k
Covx,f̃

[
ε′

(1+ε)2

(
1+log(xz )(εam−εaσ )

)
log(x),Sx

1−ε̃
1+ε̃

])
−Ef̃ ,x

[
Qεx

1−ε̃
1+ε̃

∣∣∣∣k,c<τ?(k)

]
Ef̃ ,x

[
Sx

1−ε̃
1+ε̃

]]

Proof. Lowering 1
1+ε

uniformly by one unit corresponds to ∆a = [1+ε]2

ε′
. Plugging this into expression

(6) yields

δW

(
a+

(1+ε)2

ε′

)
=

∫
k
k4

∫
x≥1

(
τ?
′

k
log(x)[1+log(xz )(εam−εaσ )]

(
Sx

1−ε̃
1+ε̃ −E

f̃,x

[
Sx

1−ε̃
1+ε̃

])
η(τ?(k)|k,x)−Qε[1+ε]2

ε′ x
1−ε̃
1+ε̃ E

f̃,x

[
Sx

1−ε̃
1+ε̃

])
f̃(k,x)dx+...dk

The corresponding term for x < 1 is essentially identical so we obtain

δW

(
a+

(1+ε)2

ε′

)
=

∫
k
k4

∫
x

(
τ?
′

k
log(x)[1+log(xz )(εam−εaσ )]

(
Sx

1−ε̃
1+ε̃ −E

f̃,x

[
Sx

1−ε̃
1+ε̃

])
η(τ?(k)|k,x)−Qε[1+ε]2

ε′ x
1−ε̃
1+ε̃ E

f̃,x

[
Sx

1−ε̃
1+ε̃

])
f̃(k,x)dxdk∝

Ek,f̃

[
k4

(
ητ?
′

k
Covx,f̃

[
ε′

(1+ε)2

(
1+log(xz )(εam−εaσ )

)
log(x),Sx

1−ε̃
1+ε̃

])
−Ex

[
Qεx

1−ε̃
1+ε̃

∣∣∣∣k,c<τ?(k)

]
Ef̃ ,x

[
Sx

1−ε̃
1+ε̃

]]

Similarly, we may consider the benefits of moving towards monopoly pricing from any pricing

policy arbitrarily close to it, or towards ex-post efficiency from any pricing policy arbitrarily close

to it, to derive a general version of Friedman’s Conjecture, or its converse.

Theorem 2: Beginning from any a sufficiently, uniformly close to uniform monopoly pricing (a = 1

everywhere) but with a < 1 everywhere, if V1 (of Theorem 2 from the text) is sufficiently large there

are first-order benefits from moving a small amount (uniformly) towards uniform monopoly pricing.

Beginning from any strict MOPSD a sufficiently, log-uniformly close to ex-post efficiency (a = 0

everywhere) but with a > 0 everywhere, if V0 (of Theorem 3 from the text) is sufficiently small there

are first-order benefits from moving a small amount (uniformly) towards ex-post efficiency.

The proof is effectively identical to that of Theorems 2 and 3 from the text, with only slight

complexities in simplifying the more general first-order condition local to the proportional policies

of ex-post efficiency and monopoly pricing.

Proof. If a is sufficiently, uniformly close to 1 or 0 then, because ε′

(1+ε)2 is approximately constant,

moving towards monopoly pricing is equivalent to uniformly increasing 1
1+ε

. Furthermore all the
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simplifications from the proof of Theorem 1 apply and the first-order derivative from Proposition

1 simplify to those in the proofs of Theorem 2 and 3 from the text and the results therefore follow

by the same reasoning as there.

Finally, to provide at least some notion of what the optimal structure of market power may look

like, we can consider evaluating the first-order condition for optimal pricing at each point, beginning

from optimal proportional pricing. This provides at least some indication of the optimal structure

of market power.

Corollary 1: If τ ? is differentiable in k, the first-order net benefit of increasing a at
(
k̂, x̂
)

given

beginning from a proportional pricing policy a is, if x ≥ 1, proportional to

ε′τ ?
′
(
k̂
)

(1 + ε)2 k̂x̂
2

1+ε



Ef̃ ,x>x̂

[
x

1−ε
1+ε

∣∣∣ k̂, τ ?
]

Ef̃ ,x

[
x

1−ε
1+ε

∣∣∣ k̂, τ ?
] − 1


 η

(
τ ?|k̂

)
−QεH

(
x̂|k̂, τ ?

) E
[
f̃
(
x̂| k̂, c

)∣∣∣ c < τ ?, k̂
]

f̃
(
x| τ ?, k̂

)

and if x < 1

ε′τ ?
′
(
k̂
)

(1 + ε)2 k̂x̂
2

1+ε


1−

Ef̃ ,x<x̂

[
x

1−ε
1+ε

∣∣∣ k̂, τ ?
]

Ef̃ ,x

[
x

1−ε
1+ε

∣∣∣ k̂, τ ?
]


 η

(
τ ?|k̂

)
−QεR

(
x̂|k̂, τ ?

) E
[
f̃
(
x̂| k̂, c

)∣∣∣ c < τ ?, k̂
]

f̃
(
x| τ ?, k̂

)

With some additional simplifying assumptions these formula may give some insight. Assume

that k, x and c are all independent, which implies that τ ? is quadratic in k. Furthermore, suppose

that
Ef̃ ,x̂

[
x̂

1−ε
1+ε

∣∣∣∣x̂>x,k,c=τ?(k)

]
Ef̃ ,x̂

[
x̂

1−ε
1+ε

∣∣∣∣k,c=τ?(k)

] − 1 = γx
1−ε
1+ε as in a generalized Pareto distribution. Then the first

formula simplifies to
γε′η

(1 + ε)2 x
−QεH (x)

This setting implies that the local incentives for distortion are independent of k. However it also

gives a sense that, after some point at least, the local incentive for raising prices is likely to decline

in x along an isoreward curve. This occurs for two reasons. First, if we have the standard increasing

hazard rate condition, H grows in x. This is just the logic behind the classic “no distortion at the

top” result of Mirrlees (1971), though based on sorting rather than rent extraction. The sorting

benefits of higher prices only affect innovations with higher x than that at which prices are distorted;

if the mass of such upper-tail innovations shrinks relative to that of those being distorted as hazard

rates are increasing, there will be little incentive to create such distortion. However there is also

an additional motive for lower distortions for higher x here: the multiplicative, log-linear nature

of the stretch parameterization implies that the upper tail is less affected by shifts in elasticity at

high x values than those at low values (above unity).9 In some sense the closer x is to 1 the more

9It would be interesting to know if this is a more general property of multidimensional screening problems.
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dramatically a change in the elasticity at that point shifts the isoreward curve and therefore the

greater its sorting value. While for x < 1 things are a bit subtler, there seems to be some weak,

but general, indication that optimal policy calls for a values declining along isoreward curves.10
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Rochet, Jean-Charles and Philippe Choné, “Ironing, Sweeping and Multidimensional Screen-

ing,” Econometrica, 1998, 66 (4), 783–826.

10This extremely tentative conclusion merits two comments. First, if this is the case it might point towards
bunching (a weak MOPSD) being optimal as a declining with rising x pushes up against order-preservation and/or
monotonicity. This would be consistent with the arguments of Armstrong (1996) and Rochet and Choné (1998)
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